Supplement to “Crop Yield Prediction Using
Bayesian Spatially Varying Coefficient Models with

Functional Predictors”

This supplement contains the full hierarchical models and MCMC sampling algorithm for
the proposed model. We also provide MCMC diagnostics, additional Monte Carlo experi-

ments, and additional corn yield data analysis results.

S1 Full Hierarchical Models

We present the full Bayesian Spatially Varying Functional Model (BSVFM) for data collected
in K years, where data in different years are treated as independent replicates. As discussed
in Section 5.1, the exponential correlation function is employed to regulate the spatial struc-
ture of varying coefficients 3,(s;) and a;(s;), FPC scores &, (s;), and the latent process v, (s;)
for variable selection. The common range parameters are assumed for each type of spatial
variables or latent processes. Here, IG(-,-) and T'N(-,-;a,b) denote the inverse gamma dis-

tribution and truncated Normal distribution in the range [a, b], respectively.

(i) Data stage: for k=1,...,K,and i =1,...,n,

h p
Yi(si) = ao(si) + Y Zij(si)aj(si) + > &rr(si) {8 (si)7r(s0)} + en(si),
r=1

j=1 (S1.1)
ek(si) ~ N{O, ag/wk(si)},
Wi(siit) =D &e(si){Ty @ 7 (1)}, + wp(si; 1),
r=1 (S1.2)

ug(sipt) " NA{0, diag(02,,...,02,)}, tET,

where ey (s;) and ug(s;; t) are independent, and 7, (s;) is defined in (3) of the manuscript.



(ii) Process stage:

oo ~ N{ttagln, 00,2 (¢ag)}ts @ ~ N{pa;1n, 05, 2(a)}, j=1,...,h,
B, ~ N{ug.1n, 05 2(dp)}, r=1,....p,
£k ~ N{On, 07 B(oe)}, k=1,....K, r=1,...,p, (S1.3)
vy~ N{py, 1o, 03 B(¢0)}, r=1,...,p,

d, ~ N(0,z,1, ® D,), where D, =diag(c,c, \; ..., A\ ), r=1,...,p.

(iii) Prior stage:

For smoothing parameters,

A 1/2 ~ Uniform(ay, b.), where

(S1.4)
—-1/2 —-1/2
a1 =0, ar=A_"1", r=2,....p, bp=A 1", r=1...,p—1, by =c;
For mean and variance parameters,
02 ~IG(Ae, Be), 02 ~IG(Ay,By), 1=1,...,q,
pa; ~ N(0,52), on ~IG(Aa,Ba), j=0,....h,
B, NN(O,S%), J[%T ~IG(Ap,Bg), r=1...,p, (S1.5)

O'gTNIG(Ag,Bg), T‘Zl...,p,

fo, ~ N(0,82), o2 ~IG(Ay,By), r=1,...,p;
For range parameters,

bog ~ TN(m%O,séaO;O, ), ¢a ~TN(mg,,ss,;0,00),
b ~ TN(m%,séﬁ;O, ), ¢ ~ TN(m(bg,ség;O, 00), Py ~ TN(m%,siv;O,oo).
(51.6)
The data may have an irregular structure with observations collected from different sets of
spatial locations in each year. Let Sy = {si1,...,Skn, } be the locations with records in year

k and & = UiSk be the set of spatial locations with information from at least one year.



Set n = |S|. Then the full model (S1.1) is specified under s;, i = 1,...,n, by admitting
missing values and the practical strategy to handle missing values in MCMC implementation
is described in the following section. In (S1.2), Wiy(s;,t) are the centered temperature
trajectories as described in Section 3.1. Since the meteorological data is generally available
and complete for the past half a century, we use the available climate records to estimate the
temperature mean function at each location s; and center the temperature trajectories by

these location-specific mean functions.

In (S1.3), d, = (d%,,...,d

rq )T

YI'is a (Lg x 1) vector, where d,; = (dyips.- . dpr)” is
a vector of spline coefficients for f,; based on basis functions 1(t) = {¢1(t),..., (1)},
for l = 1,...,q. They are subject to orthogonal constraints, dflJ¢dT/l =1 ifr=1,0
otherwise, where J,, = [ 4(t)3p” (t)dt. And we set ¢ = 10® to make the prior non-informative.
Using uniform priors on the smoothing parameters A, and enforcing the ordering constraint,
A1 > Ay > - > )\, > 0, the priors are as in (S1.4). We set sufficiently large ¢, = 10* for the
upper bound of smoothing parameter A,. By incorporating orthogonality constraint on f,,
the full conditional posterior distributions of A, and d,; can be derived as truncated Gamma
and Gaussian distributions, respectively, as we shall see in the following section.

There are no closed-forms for the full conditional distributions of the range parameters
on the exponential correlation functions, ¢a,, ¢, ¢g, ¢¢, and ¢y, in (S1.3), and we employ
the Metropolis-Hastings (M-H) algorithm. The priors of these scale parameters are set to
be truncated Normal distributions truncated at zero to assure positive posterior samples. In
our analysis, we set mgy, = my, = mg, = me, = mg, = 300 and sy, = S, = S, =
S¢s = Sp, = 100, considering the distances among the counties in the selected Midwest states
ranging from 10 to 1,500 (km). We have also compared the posterior distributions with the
priors and verified that these choices are not restrictive. The M-H algorithm is also applied to
sample the latent process v, for the model selection indicator variable. The implementation
processes are described in the following section. Lastly, hyper priors are chosen as follows:
for IG priors, Ae = Ay = Ayy = Aa = A¢ = Ag = A, =28 and B, = B, = By, = By, =

B¢ = Bg = B, = 1/2.8; for Gaussian priors, so, = 5o = ¢ = sg = s, = 50. All these hyper



priors are non-informative in the sense that the posterior distributions are not restricted by

the corresponding priors.

S2 MCMC Sampling Algorithm

Our MCMC sampling scheme is based on Gibbs sampling where we iteratively sample the
parameters and latent variables from their full conditional distributions. A M-H algorithm is
used when a full conditional distribution does not have a closed form. For notation simplicity,
we denote the observed scalar predictor from location s; in year k by Zj(s;) and the corre-
sponding coefficient by a(s;). In practice, functional trajectories are collected over discretized
points, t1,...,t7 € T, and we use Wi (s;;tr) = {Wii(si, tr), Wia(si, t)} 1, for 7 = 1,...,T,
in the model estimation. Under the missing at random assumption as discussed in Section
6, we ignore the missing values in the model estimation by replacing missing information in
Y (si) and Zg(s;) with zero in data preparation and performing the same replacement process
for corresponding FPC scores &, (s;). Now the sampling algorithm consists of the following

steps.

1. Basis functions and smoothing parameters: forr=1,...,p,

r o Yr

(a) [A]--+] o Gamma{3(L —3),2>7 | Z£:3 dzl,h} truncated to (a, 2,b,2), where
a1 =0, a = A;j{% r=2...,p, b = )\;&{2, r=1,....,p—1,b, = 104 and L

denotes the number of known splines for the estimation of f,.

(b) [dr]---] x N{diag(fI,«l, . ,IEIrq)hT, diag(f{,q, . ,ﬁTq)}, where diag(ﬂrl, ol
H,,) denotes the (Lg x Lq) block-diagonal matrix based on (L x L) matrices H,,
and h, = (h}},....h})T is a (Lg x 1) vector based on (L x 1) vectors h, =
(Rotay s hup)t, for 1 =1,...,q. Let Q- = (Jpdits ..., Jpdr_11, Jypdriig,
ooy Jydy) with Jy = [9(t)ep" (t)dt. Then conditioning on d},Qy_,; = 0, we
have
Hy = Hy; - HuQu(Qf . HuQy ) ' Q) Hyi, where
H.'=D; " +02 >, 6. (si) [ ()" (t)dt and



by = oo T30 e (30) o AWha(sistr) — Yoz S ()T (8r) dyri Yab (21).

After sampling the A, we sample and normalize d, with a modified version of the
efficient Cholesky decomposition approach. Sampling under conditional distribu-
tions (a) and (b) can be implemented by R function mfdlmF () written by Kowal
et al. (2017).

2. Spatially structured variables:

(a)

Spatially varying intercept:
[a()] e ] [0 ¢ N(Aoao, Ao), where
Ay = {Ln 1 B(dag)”! }_1

2 2
o UQO

s WY ()~ Zi(si) (i) =X, Sir (587 (1)}

2
Te

E(¢a0)7lﬂa0 ln
o2 )
@Q

where {3(¢q,) }iiw = exp{—d(s;,si)/¢a, } based on the Euclidean distance d(s;, s;)

between s; and s;. Here, 1% denotes the (n x 1) vector with 1 at ith element and

(07) +

0 elsewhere, and £/ (s;) = 5r(si)7r(s:).

Spatially varying coefficients for scalar predictor:

[a] -] x N(Aa, A), where
1) 5 T a1
A= {Z’WI" = I

o7 2
o — i 1 Ze() (ils) —00(80) =%, €er (8087 (80} | B(da) Ml

2
O¢ T

where Zy. = {Zx(s1), -, Zr(sn)}7, {2(0a)}isr = exp{—d(si,sv)/da}, and L) is

the (n x n) matrix with 1 at (¢,7)th element and 0 elsewhere.

I

Spatially correlated FPC scores and corresponding regression coefficients: for r =
1,...,p,

i [€r] -] x N(Agrap,, Ak), where
B ERVCH(CH t 03 dh )Wl (t)dy | Se0) 1]
Ak"/‘ fd |:Z7,I B;(Br) I +ZZ{I Z-r Tl'(gw(; )d’ (t ) l}+ (Z-Sg) ] ,

2 2
e ul &r

3 1 B (s Yk (30)—a0 (i) = Zi (5:)(8:)— 5 v oy s (50) 87 (51)}

Ay = o2 +
S 18 5 T () e Wit (Sitr) =5 iy € (30)97 ()1}
Zl [ To'il ]7

where B) = {8 (s1), ..., B;(sn)}" and {2(g¢)}i,r = exp{—d(s;,sir)/de}-
ii [ﬂr| e ] & N(Ara'ra Ar)a where



oe

A — {zk,iﬂ?szr(ezrﬂﬂ L B }1

. 5,
ks 1€, (5 {Yk(50) —a0(si) — Z(s1)a(s1) =0 4y €1, (31)B,0 (5} | S(ép)” s, 1n
aT‘ - Ug + 0.% bl

Where E;:;r = {SZT<SI>7 e ,EZT(SH)}T Wlth gZ’I‘(SI) = flﬂ'(Si),yT(Si) al’ld {E(Qbﬁ)}z,z’ -
exp{—d(s;,sy")/dp}.

3. Variance parameters:

(a) Measurement error variance on functional predictors: for [ =1,...,¢,

ol -] o IG(E 4 Ay § S AWhi(sis ) = 32, G (80)2b 7 (£7) i} 4 Bu).
(b) Observation error variance on scalar response:

021+ o TG (24 4 e, 5 303 {Vil(s:) — aols:) — Zi(si)a(s:)

= 220 & (80)[Br (80) 1, (s1)20 ]} + Be).-

(c) Variance on spatial intercept:

(03] ] IG{% + A, 5(0x0 = ag1n) "B (ag) (@0 — fay1n) + Bao |
(d) Variance on spatial coefficients for scalar predictors:

[oa] -] o IG{% + Ao, %(a — taln) B (da) M = paln) + Ba}'
(e) Variances on spatial FPC scores and corresponding regression coefficients: for

r=1,...,p,

[0 | ] o IG{R™ 4 Ac, 55 €L B(0) 6k + Be)

i [oF |- ] oc IG{% + Ap, 5(B, — ps.1n)"Z(dp) " (B, — 115, 1n) + Bs}-
4. Mean parameters:

(a) Mean on spatial intercept:

T 1 -1
[fao| - --] o< N(Momo, Mp), where My = {82i + %} and mg =
]-Z;E(QZ%(;)7 (e 7))

(b) Mean on spatial coefficients for scalar predictor:

_ -1 _
[Hal -] o< N(Mm, M), where M = {S% + Li5(¢e)1n 11"} and m = 7122(;]53) o

0%
(¢) Mean on spatial coefficients for FPC scores: for r = 1,...,p,

T -1 -1 T —1
[uﬁr\-~-]ocN(MTmT,MT),WhereMT:{%—1—%} and m, = 220s)" B
5B ] 7B
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5. Spatial range parameters on spatial priors: sampling through M-H algorithms as

follows.

(a) Sampling ¢¢ at each iteration j:

i Draw ¢} from proposal distribution q{¢§|¢§] 1)} TN{gZ) ; 0,00},

pmp &

truncated Normal distribution, and s? is set to achieve the acceptance

prop,§
rate 25-50%.

p(ot])a{od " ot) }
{w ”|}q{¢>gw¢“ R
Here, p(¢¢|') = > 1, f(&kn|9%) o (9F), where f(:|¢7) is a density from multi-

variate normal distribution for &, in (S1.3) conditional on range parameter

ii Calculate acceptance ratio ¢ = min{l

d)Z, and 7, () denotes a density from the truncated Normal prior distribution

of range parameter ¢¢ in (S1.6).

4 s if re > w.
iii Generate w ~ Uniform(0,1). Then ¢¢) = ¢? ¢
¢§‘7 -l , otherwise.

(b) Sampling ¢ at each iteration j:

i Draw ¢ from proposal distribution q{¢g|¢>( } ~TN {qﬁ(j b

p(931)afsf 105} }
" {6 ”\}q{%w(g‘”}
Here, p(¢3|) = >, f(B,¢5)ms,(¢5), where f(-|¢%) is a density from multi-

variate normal distribution for 3, in (S1.3) conditional on range parameter P35,

0,00}.

’ pmp B

ii Calculate acceptance ratio rg = min{l

and 7y, (-) denotes a density from the prior distribution of range parameter
n (S1.6).
- o5, if rg > w.
iii Generate w ~ Uniform(0,1). Then qbg) = B' f
gb(ﬁj_l) , otherwise.

(c¢) Sampling ¢, and ¢, at each iteration j follows (b) by replacing 8 with ap and

«, respectively.
6. Model selection parameters: for r =1,...,p,

(a) [Ugr‘ o ] X IG{% + A”Ua %(Ur - Mvrln)Tz(¢v)il(vr - Mvrln) + BU}'

—1 _
(b) [, |- -] o< N(Mymy, M), where M, = {SQJFM} and m, — L= tor

v

7



S3

(c) Sampling ¢, at each iteration j by M-H algorithm:

i Draw ¢} from proposal distribution q{gb;‘j]qﬁgj_l)} ~ TN{qu,j_l) 52 510,00}

) Oprop,vs
p(el)a{od " Vlen} }
"o{or "V a{opley Y
Here, p(¢3|-) = >, f(vr|d))me, (6}), where f(-|¢;) is a density from multivari-

ii Calculate acceptance ratio r, = min{l

ate normal distribution for v, in (S1.3) conditional on range parameter ¢,

and 7y, (-) denotes a density from the prior distribution of range parameter in

(S1.6).
() s if ry, > w.
iii Generate w ~ Uniform(0,1). Then ¢’ = '
1(,] 71), otherwise.
(d) Sampling v, at each iteration j by M-H algorithm:
i Draw v} from proposal distribution q{'v;f|'v,(nj71)} ~ N{'v,(njfl), sf,mp’wln}.
ii Calculate acceptance ratio r,,, = min{l, %}
" p('vrj |)

Here, p(vr]) = X2y, fAYk(si)|vi}me, (v]), where f(:|v}) is a density from

T
normal distribution for Yj(s;) in (S1.1) conditional on v}, and m,,(-) denotes
a density from multivariate normal distribution in (S1.3).
() v-F, if 7y, > w.

iii Generate w ~ Uniform(0, 1). Then vy .
0,0, otherwise.

MCMC Diagnostics

We examine the MCMC convergence on corn yield data analysis using two diagnostics tools;

(i) trace plots and (ii) potential scale reduction factor (PSFR; Gelman and Rubin, 1992).

Figure S1 presents trace plots for posterior samples obtained through MCMC implementation

based on a total of 15,000 iterations, where a posterior sample of size 2500 is acquired by

using the first 5,000 iterations as burn-in and thinning the remaining 10,000 by a factor of

4. Figure S1 shows posterior samples of o2, ag(s1), a(s1), B1(s1), &11(s1), and ¢n. We then

calculate the PSFR to assess and summarize the convergence of MCMC algorithm, using

the coda package (Plummer et al., 2006) in R. A PSRF close to 1 indicates convergence

of a Markov chain, while a large PSRF means that the chain has not yet converged. The
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Figure S1: Trace plots for o2, ag(s1), a(s1), B1(s1), &11(s1), and @, from corn yield prediction
analysis.

Table S1: Mean and median of potential scale reduction factor (PSRF)
afsi) Bi(si) Pa(si) Bs(si) Balsi) Bs(si)
Mean(RSPF) 1.13 1.05 1.06 1.00 1.00 1.02
Median(RSPF) 1.03 1.05 1.06 1.00 1.00 1.02

reference value of 1.1 was recommended by Gelman et al. (2014) and generally adopted by
MCMC practitioners. To calculate the RSRF, we first run three sets of MCMC iterations
for our corn yield data, following the same sampling and burn-in process. We then compute
PSRFs for the regression coefficients, a(s;), fi(si), ..., B5(s;), for i = 1,...,403. Table S1
shows the mean and median of PSRF's from the Markov chains of the regression coefficients.
As we can see, most means and medians of PSRF are all very close to 1, indicating the chains
have converged. The only exception is that the mean RSPF for «(s;) is slightly over 1.1,
which might be due to the relatively weak effect of the precipitation on crop yield, as the
regions with good irrigation systems may depend less on the precipitation. The weak signal
leads to slower convergence in those locations, but the inflation of mean RSPF is tiny and the

median RSPF is well below 1.1, so the convergence of a(s;) should not be a serious concern.



S4 Additional Monte Carlo Experiments and Results

S4.1 Performance Evaluation of Parameter Estimation

In the manuscript, we present the superior prediction performance of our proposed model
estimated by MCMC implementation. Besides the prediction, in practice, the parameter
identifiability is also important for the validity of the model interpretation based on the
estimated coefficients. Since model interpretation is heavily centered on the regression coef-
ficients «, (31, and B2, we examined the performance of their estimates in our simulations.
Under the simulation setting described in Section 4.1, with a moderator spatial correlation
range parameter ¢ = 200, we calculated the Pearson correlation between the parameter es-
timates (posterior means) and the true parameters. The Pearson correlations are 0.73, 0.80,
and 0.75 for a, B1, and Bs, respectively. Figure S2 displays the scatter plots between the
estimated and true parameters, pooling from five randomly selected simulation runs. We
observe from Figure S2 that most of the points lie around the 45-degree reference line, which

illustrates the desirable performance of our Bayesian estimators.

(a) (b) (c)

Figure S2: Scatter plots of estimated coefficients vs. true coefficients from five randomly
selected simulation sets for (a) regression coefficient a for the scalar covariate, (b) regression
coefficient 3 for the first FPC scores, and (c) regression coefficient 35, for the second FPC
scores.
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S4.2 Prediction Performance in High Dimension

We conduct additional Monte Carlo experiments to examine the performance of our model
under a higher dimension setting. Specifically, we double the number of scalar predictors and
the number of functional covariates to h = 2 and g = 4, respectively. We also double the
number of FPC’s to p = 4. Following the same settings of the spatial location s; as in Section

4.1, we generate five replicates of the responses process based on

Zij S; Ck] Sz + Z{kr S; {Br(sz)')’r S; }+ek(sz

7j=1

where k and i are indices for years and counties, respectively, Zy;(s;) i uni £(0,3), for
j =1,2. While the data generation settings for B¢, B, &1, &2, Y1, and v, are kept the same
as specified in Section 4.1, we generate oy ~ N{2-1,,3(¢)}, aa ~ N{—2-1,,3(¢)}, &3 ~
N{0,,25(6)}, €xs ~ N{0ns D)}, Bs ~ N{15-1,,95(6)}, By ~ N{~1.5-1,,45()}. The
binary indicator variables «5 and -, defined based on (3) of the manuscript, are generated
by vz ~ N{0,,¥(¢)} and vs ~ N{0,,X(¢)}, respectively. The correlation matrix X(¢) is
governed by a Matérn correlation function with the spatial correlation at a moderate level

iid

¢ = 200 and smoothness parameter x = 1. The errors eg(s;) ~ N(0,22). We then generate

the 4-dimensional multivariate functional predictors as
S’Lv ngT SZ fr + ’U,k(SZ, )a

where f,.(t) = {fri(t),..., fra(®)}? with f.i(t) = cos(2rnt)/v2, fra(t) = sin(2rat)/v/?2,
fr3(t) = cos{2(r+4)mt} /2, fr3(t) = sin{2(r4+4)nt}/v2,t € [0,1], forr = 1,...,4, satisfying
fol FE@)f,.(t) = I(r = r'). The measurement errors wy(s;;t) = {ug1(si;t), ..., upa(si;t)}7
are generated from ug(s;;t) n N(0,12), for [ = 1,...,4. Functional trajectories are gener-
ated at a regular grid of 100 points in [0, 1]. By following the same MCMC implementation
steps described in Section 4.1 for 100 simulation sets, we calculate the prediction error based

on randomly selected 20% of observations as the testing data and the rest as training input.

11
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Figure S3: Box plots of Mean Squared Prediction Errors (MSPE) from the proposed BSVFM
and the competing models, PLFAM, FGAM and FLM (a) when A = 2 and ¢ = 4, and (b)
when h =1 and ¢ = 2.

We fix p = 4 for our proposed BSVFM. Then we calculate prediction errors for competitors,
PLFAM, FGAM, and FLM. For competing methods involving mFPC scores in the model,
PLFAM and FLM, we determine the number of FPC that recovers at least 99.5% of the total
variation.

Figure S3 (a) shows the MSPE under the new setting from our proposed BSVFM, and
the competing methods including PLFAM, FGAM, and FLM. As we can see, our proposed
method still outperforms the competing methods when the dimensions of the scalar and
functional predictors are higher. For comparison, we present the results for h = 1, ¢ = 2
and ¢ = 200 in Figure S3 (b), which corresponds to Figure 3 (b) in the manuscript. When
comparing the two panels in Figure S3, we observe overall larger MSPE’s among all models
under the high dimension setting. This is because the average marginal variance of Y is
62.1 under the new setting with more scalar and functional predictors, whereas the average

marginal variance of Y is 51.3 under the old setting with h = 1 and ¢ = 2.
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Figure S4: Boxplots of Mean Squared Prediction Errors (MSPE) from the proposed BSVFM
under three data generation settings: ‘Gaussian’ where our model is correctly specified, ‘t-
error’ where the model and measurement errors follow ¢-distributions with 3 d.f., and ‘t-coef’

where the regression coefficients and FPC scores follow multivariate t-distributions with 3
d.f.

S4.3 Robustness against Distribution Misspecifications

We have conducted additional simulation studies to examine the robustness of our model
to distribution misspecification. Our proposed model, specified in (4)-(6) of the manuscript,
assumes Gaussian distribution on error terms and the coefficients. We therefore consider two

non-Gaussian distribution scenarios in the data generation:

(i) ‘t-error’ - both the model error eg(s;) and the measurement error uy(s;;t) of the func-

tional covariates follow ¢ distributions with 3 degrees of freedom (d.f.)

(ii) ‘t-coef’ - the FPC scores, &1 and &2, and the regression coefficients, a, (31, and (2,

follow multivariate ¢ distributions with 3 d.f.

All ¢t distributed variables are re-scaled to have the same variance as their Gaussian coun-
terparts as described in Section 4.1. The remaining settings are the same as Section 4.1,
and we fix the range parameter of the spatial correlations at ¢ = 200 which corresponds to
the moderate spatial correlation considered in Section 4.1. The simulations are repeated 100
times.

Figure S4 shows the Mean Squared Prediction Errors (MSPE) of our method under three

13
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Figure S5: Boxplots of Mean Squared Prediction Errors (MSPE) from (a) PLFAM and (b)
FLM by using different numbers p of mFPC scores. In each plot, the results are based on
either a fixed p = 2 or a larger p chosen by 99.9% FVE.

data generation settings: the original ‘Gaussian’ data described in Section 4.1, the ‘t-error’
and ‘t-coef’ scenarios described above. Even under the two non-Gaussian settings where
our model is misspecified, our method still achieves comparable MSPE as with the Gaussian
data. Without surprise, we notice that the MSPE’s under the two non-Gaussian settings
show more variability and outliers as Y now follows a heavy-tailed distribution. The median
MSPE under the ‘t-coef’ seems even slightly lower than the ’Gaussian’ setting. We found this
could be because the marginal variances of the response Y under the ‘t-coef’ setting is slightly
lower than under the ’Gaussian’ after re-scaling the t-coefficients to match the variance of

their Gaussian counterparts.

S4.4 Further Experiments on FLM and PLFAM

The true number of FPCs in our simulated data from Section 4.1 is p = 2, and on average
the top 2 FPCs explain 99.3% of the total variation in the functional predictors. Among
the three competing functional data methods, PLFAM and FLM are based on FPC scores.
Following the referee’s suggestion, we have refitted the PLFAM and FLM with the number

of FPCs chosen by 99.9% fraction of variation explained (FVE), which leads to p = 11 on
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average. Figure S5 compares the MSPE of PLFAM and FLM with a fixed p = 2 vs a p chosen
by 99.9% FVE. There seems to be no clear advantage of using a more extensive set of FPCs
in our simulation study. Furthermore, we observe higher variation in the MSPE when using

a larger p, possibly due to the overfitting of the training data.

S5 Additional Corn Yield Data Analysis Results

S5.1 Further Exploration of Machine Learning Methods

Existing machine learning literature on crop yield prediction uses temperature information
in various ways, including (i) daily maximum and minimum temperatures (730 features each
year) (Chu and Yu, 2020), (ii) weekly averages of the maximum of minimum temperatures
(104 features) (Schwalbert et al., 2020; Khaki et al., 2020), or (iii) monthly averages of
the maximum and minimum temperatures (24 features) (Khaki and Wang, 2019). While our
paper followed option (i), we carry out analysis with reduced temperature information for the
exploration. We therefore additionally ran the Neural Network (NN) and XGBoost (XGB)
using weekly and monthly averages of max/min temperatures as input. We further consider
directly using the 5 FPC scores identified in our model fitting as the input for machine
learning methods.

Table S2 presents the MSPE by 10-fold cross-validation from Neural Network (NN) and
XGBoost (XGB) using the daily, weekly, and monthly temperatures and 5 FPC scores as
input. It appears that using reduced temperature information does not result in better

prediction performance. Chu and Yu (2020) empirically illustrated through the real data

Table S2: MSPE and weighted MSPE based on the 10-fold cross validation calculated from
BSVFM, Neural Network (NN), and XGBoost (XGB). The NN, NN(w), NN(m) and NN(fpc)
represent the Neural Network model fitted using daily temperatures, weekly averaged tem-

peratures, monthly averaged temperatures, and five mFPC scores, respectively. The XGB,
XGB(w), XGB(m), and XGB(fpc) are named in the same way.

BSVFM NN NN(w) NN(m) NN(fpc) XGB XGB(w) XGB(m) XGB(fpc)

MSPE 425.5 714.4  925.7 1005.1 817.2 448.3 507.4 448.5 710.8
Weighted MSPE 355.7 586.5  744.7 851.6 681.1 367.9 387.9 445.9 587.9
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Figure S6: Observed corn yield after subtracting the year effect (o) and the fitted corn yield
using our BSVFM (0O) and using the SVCM (V) over years from two randomly selected
counties in (a) and (b).

analysis that the optimal choice for the number of hidden layers in NN could address the
potential overfitting issue. We used cross-validation to choose the number of hidden layers
in the NN, and the lowest MSPE of NN using the daily temperature in our results seems to
corroborate their conclusion. The same phenomenon is observed for the XGBoost approach.
The comparison of all methods using 5 FPCs indicates that our spatial functional regression
approach outperforms the machine learning methods in corn yield prediction given the same

information.

S5.2 Predictive Performance Comparison of BSVFM and SVCM

In Section 5.2, we considered a non-functional spatially varying coefficient Model (SVCM) as
one of competing methods, which simply replaces the functional temperature covariates in our
model by the annual averages of maximum and minimum temperature. Figure S6 illustrates
the comparison of prediction performance between our functional BSVFM and non-functional
SVCM for two randomly selected counties over the years, where the y-axis is the corn yield
after removing the year effects. As discussed in Section 5.1, the year effects in crop yield

can be largely explained by different genetic variants of corn being planted each year and
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land fallows, and we remove these effects to better unveil the effects of temperature. We
observe that our BSVFM outperforms the SVCM by tracking the true trajectory of Y more
closely. This follows our intuition as the FPC scores capture the major modes of temperature
trajectories and thus are likely able to catch the daily temperature influence on crop growth

better than simple summary statistics of temperatures.

S5.3 Additional Figures from the Crop Yield Prediction Application

Figure S7 shows the spatially varying behaviors in posterior mean of coefficients f4(s) and
Bs(s) for the fourth and fifth FPC scores. As the model diagnostic, we calculate the autocor-
relation function (ACF) for each county based on the residuals from the fitted yield prediction
model. Figure S8 shows the ACF for randomly selected four counties with the complete corn
yield data over 22 years. All ACF’s fall within the confidence band based on the assumption
of no temporal dependency, which supports the conditional independence assumption that

we make.
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(a) (b)

Figure S7: Posterior means of the spatially varying coefficients of (a) B4(s;) and (d) B5(s;)
over Kansas, Towa, Illinois, Indiana, and Missouri. Counties with non-null coefficients are
marked by yellow circle. Counties with missing data are colored by grey.
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Figure S8: The ACF plot for randomly selected four counties with the complete corn yield
information over 22 years, based on the residuals from the corn yield prediction model.
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