
Supplement to “Crop Yield Prediction Using

Bayesian Spatially Varying Coefficient Models with

Functional Predictors”

This supplement contains the full hierarchical models and MCMC sampling algorithm for

the proposed model. We also provide MCMC diagnostics, additional Monte Carlo experi-

ments, and additional corn yield data analysis results.

S1 Full Hierarchical Models

We present the full Bayesian Spatially Varying Functional Model (BSVFM) for data collected

in K years, where data in different years are treated as independent replicates. As discussed

in Section 5.1, the exponential correlation function is employed to regulate the spatial struc-

ture of varying coefficients βr(si) and αj(si), FPC scores ξkr(si), and the latent process vr(si)

for variable selection. The common range parameters are assumed for each type of spatial

variables or latent processes. Here, IG(·, ·) and TN(·, ·; a, b) denote the inverse gamma dis-

tribution and truncated Normal distribution in the range [a, b], respectively.

(i) Data stage: for k = 1, . . . ,K, and i = 1, . . . , n,

Yk(si) = α0(si) +

h∑
j=1

Zkj(si)αj(si) +

p∑
r=1

ξkr(si){βr(si)γr(si)}+ ek(si),

ek(si) ∼ N{0, σ2e/ωk(si)},

(S1.1)

W k(si; t) =

p∑
r=1

ξkr(si){Iq ⊗ψT (t)}dr + uk(si; t),

uk(si; t)
i.i.d.∼ N{0,diag(σ2u1, . . . , σ2uq)}, t ∈ T ,

(S1.2)

where ek(si) and uk(si; t) are independent, and γr(si) is defined in (3) of the manuscript.
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(ii) Process stage:

α0 ∼ N{µα01n, σ
2
α0
Σ(ϕα0)}, αj ∼ N{µαj1n, σ

2
αj
Σ(ϕα)}, j = 1, . . . , h,

βr ∼ N{µβr1n, σ2βrΣ(ϕβ)}, r = 1, . . . , p,

ξkr ∼ N{0n, σ2ξrΣ(ϕξ)}, k = 1, . . . ,K, r = 1, . . . , p,

vr ∼ N{µvr1n, σ2vrΣ(ϕv)}, r = 1, . . . , p,

dr ∼ N(0qL, Iq ⊗Dr), where Dr =diag(c, c, λ−1
r , . . . , λ−1

r ), r = 1, . . . , p.

(S1.3)

(iii) Prior stage:

For smoothing parameters,

λ−1/2
r ∼ Uniform(ar, br), where

a1 = 0, ar = λ
−1/2
r−1 , r = 2, . . . , p, br = λ

−1/2
r+1 , r = 1, . . . , p− 1, bp = cb;

(S1.4)

For mean and variance parameters,

σ2e ∼ IG(Ae, Be), σ2ul ∼ IG(Au, Bu), l = 1, . . . , q,

µαj ∼ N(0, s2α), σ2αj
∼ IG(Aα, Bα), j = 0, . . . , h,

µβr ∼ N(0, s2β), σ2βr ∼ IG(Aβ, Bβ), r = 1 . . . , p,

σ2ξr ∼ IG(Aξ, Bξ), r = 1 . . . , p,

µvr ∼ N(0, s2v), σ2vr ∼ IG(Av, Bv), r = 1, . . . , p;

(S1.5)

For range parameters,

ϕα0 ∼ TN(mϕα0
, s2ϕα0

; 0,∞), ϕα ∼ TN(mϕα , s
2
ϕα ; 0,∞),

ϕβ ∼ TN(mϕβ , s
2
ϕβ
; 0,∞), ϕξ ∼ TN(mϕξ , s

2
ϕξ
; 0,∞), ϕv ∼ TN(mϕv , s

2
ϕv ; 0,∞).

(S1.6)

The data may have an irregular structure with observations collected from different sets of

spatial locations in each year. Let Sk = {sk1, . . . , sknk
} be the locations with records in year

k and S = ∪kSk be the set of spatial locations with information from at least one year.
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Set n = |S|. Then the full model (S1.1) is specified under si, i = 1, . . . , n, by admitting

missing values and the practical strategy to handle missing values in MCMC implementation

is described in the following section. In (S1.2), W k(si, t) are the centered temperature

trajectories as described in Section 3.1. Since the meteorological data is generally available

and complete for the past half a century, we use the available climate records to estimate the

temperature mean function at each location si and center the temperature trajectories by

these location-specific mean functions.

In (S1.3), dr = (dTr1, . . . ,d
T
rq)

T is a (Lq × 1) vector, where drl = (drl,1, . . . , drl,L)
T is

a vector of spline coefficients for frl based on basis functions ψ(t) = {ψ1(t), . . . , ψL(t)}T ,

for l = 1, . . . , q. They are subject to orthogonal constraints, dTrlJψdr′l = 1, if r = r′, 0

otherwise, where Jψ =
∫
ψ(t)ψT (t)dt. And we set c = 108 to make the prior non-informative.

Using uniform priors on the smoothing parameters λr and enforcing the ordering constraint,

λ1 > λ2 > · · · > λp > 0, the priors are as in (S1.4). We set sufficiently large cb = 104 for the

upper bound of smoothing parameter λr. By incorporating orthogonality constraint on f r,

the full conditional posterior distributions of λr and drl can be derived as truncated Gamma

and Gaussian distributions, respectively, as we shall see in the following section.

There are no closed-forms for the full conditional distributions of the range parameters

on the exponential correlation functions, ϕα0 , ϕα, ϕβ, ϕξ, and ϕv, in (S1.3), and we employ

the Metropolis-Hastings (M-H) algorithm. The priors of these scale parameters are set to

be truncated Normal distributions truncated at zero to assure positive posterior samples. In

our analysis, we set mϕα0
= mϕα = mϕξ = mϕβ = mϕv = 300 and sϕα0

= sϕα = sϕξ =

sϕβ = sϕv = 100, considering the distances among the counties in the selected Midwest states

ranging from 10 to 1,500 (km). We have also compared the posterior distributions with the

priors and verified that these choices are not restrictive. The M-H algorithm is also applied to

sample the latent process vr for the model selection indicator variable. The implementation

processes are described in the following section. Lastly, hyper priors are chosen as follows:

for IG priors, Ae = Au = Aα0 = Aα = Aξ = Aβ = Av = 2.8 and Be = Bu = Bα0 = Bα =

Bξ = Bβ = Bv = 1/2.8; for Gaussian priors, sα0 = sα = sξ = sβ = sv = 50. All these hyper
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priors are non-informative in the sense that the posterior distributions are not restricted by

the corresponding priors.

S2 MCMC Sampling Algorithm

Our MCMC sampling scheme is based on Gibbs sampling where we iteratively sample the

parameters and latent variables from their full conditional distributions. A M-H algorithm is

used when a full conditional distribution does not have a closed form. For notation simplicity,

we denote the observed scalar predictor from location si in year k by Zk(si) and the corre-

sponding coefficient by α(si). In practice, functional trajectories are collected over discretized

points, t1, . . . , tT ∈ T , and we use W k(si; tτ ) = {Wk1(si, tτ ),Wk2(si, tτ )}T , for τ = 1, . . . , T ,

in the model estimation. Under the missing at random assumption as discussed in Section

6, we ignore the missing values in the model estimation by replacing missing information in

Yk(si) and Zk(si) with zero in data preparation and performing the same replacement process

for corresponding FPC scores ξkr(si). Now the sampling algorithm consists of the following

steps.

1. Basis functions and smoothing parameters: for r = 1, . . . , p,

(a) [λr| · · · ] ∝ Gamma{1
2(L − 3), 12

∑q
l=1

∑L
h=3 d

2
rl,h} truncated to (a−2

r , b−2
r ), where

a1 = 0, ar = λ
−1/2
r−1 , r = 2, . . . , p, br = λ

−1/2
r+1 , r = 1, . . . , p − 1, bp = 104, and L

denotes the number of known splines for the estimation of f r.

(b) [dr| · · · ] ∝ N{diag(H̃r1, . . . , H̃rq)hr, diag(H̃r1, . . . , H̃rq)}, where diag(H̃r1, . . . ,

H̃rq) denotes the (Lq×Lq) block-diagonal matrix based on (L×L) matrices H̃rl,

and hr = (hTr1, . . . ,h
T
rq)

T is a (Lq × 1) vector based on (L × 1) vectors hrl =

(hrl,1, . . . , hrl,L)
T , for l = 1, . . . , q. Let Ql[−r] = (Jψd1l, . . . ,Jψdr−1,l, Jψdr+1,l,

. . . , Jψdpl) with Jψ =
∫
T ψ(t)ψ

T (t)dt. Then conditioning on dTrlQl[−r] = 0, we

have

H̃rl =Hrl −HrlQl[−r](Q
T
l[−r]HrlQl[−r])

−1QT
l[−r]Hrl, where

H−1
rl =D−1

r + σ2ul
∑

k,i ξ
2
kr(si)

∫
T ψ(t)ψ

T (t)dt and
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hrl = σ2ulT
−1

∑
k,i ξkr(si)

∑
τ{Wkl(si; tτ ) −

∑
r′ ̸=r ξkr′(si)ψ

T (tτ )dr′l}ψ(tτ ).

After sampling the λr, we sample and normalize dr with a modified version of the

efficient Cholesky decomposition approach. Sampling under conditional distribu-

tions (a) and (b) can be implemented by R function mfdlmF() written by Kowal

et al. (2017).

2. Spatially structured variables:

(a) Spatially varying intercept:

[α0| · · · ] ∝ N(A0a0,A0), where

A0 =
{

In
σ2
e
+

Σ(ϕα0 )
−1

σ2
α0

}−1
,

a0 =
∑

k,i 1
(i)
n {Yk(si)−Zk(si)α(si)−

∑
r ξkr(si)β

∗
r (si)}

σ2
e

+
Σ(ϕα0 )

−1µα01n

σ2
α0

,

where {Σ(ϕα0)}i,i′ = exp{−d(si, si′)/ϕα0} based on the Euclidean distance d(si, si′)

between si and si′ . Here, 1
(i)
n denotes the (n× 1) vector with 1 at ith element and

0 elsewhere, and β∗r (si) = βr(si)γr(si).

(b) Spatially varying coefficients for scalar predictor:

[α| · · · ] ∝ N(Aa,A), where

A =
{∑

k,i I
(i)
n ZkZ

T
k I

(i)
n

σ2
e

+ Σ(ϕα)−1

σ2
α

}−1
,

a =
∑

k,i 1
(i)
n Zk(si){Yi(si)−α0(si)−

∑
r ξkr(si)β

∗
r (si)}

σ2
e

+ Σ(ϕα)−1µα1n

σ2
α

,

where Zk = {Zk(s1), . . . , Zk(sn)}T , {Σ(ϕα)}i,i′ = exp{−d(si, si′)/ϕα}, and I
(i)
n is

the (n× n) matrix with 1 at (i, i)th element and 0 elsewhere.

(c) Spatially correlated FPC scores and corresponding regression coefficients: for r =

1, . . . , p,

i [ξkr| · · · ] ∝ N(Akrakr,Akr), where

Akr =
[∑

i I
(i)
n β∗

r(β
∗
r)

T I
(i)
n

σ2
e

+
∑

l{
In

∑
τ d

T
rlψ(tτ )ψ

T (tτ )drl
Tσ2

ul
}+ Σ(ϕξ)

−1

σ2
ξr

]−1
,

akr =
∑

i 1
(i)
n β∗

r (si){Yk(si)−α0(si)−Zk(si)α(si)−
∑

r′ ̸=r ξkr′ (si)β
∗
r′ (si)}

σ2
e

+∑
l

[∑
i 1

(i)
n

∑
τ ψ

T (tτ )drl{Wkl(si,tτ )−
∑

r′ ̸=r ξkr′ (si)ψ
T (tτ )dr′l}

Tσ2
ul

]
,

where β∗
r = {β∗r (s1), . . . , β∗r (sn)}T and {Σ(ϕξ)}i,i′ = exp{−d(si, si′)/ϕξ}.

ii [βr| · · · ] ∝ N(Arar,Ar), where
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Ar =
{∑

k,i I
(i)
n ξ∗kr(ξ

∗
kr)

T I
(i)
n

σ2
e

+
Σ(ϕβ)

−1

σ2
βr

}−1
,

ar =
∑

k,i 1
(i)
n ξ∗kr(si){Yk(si)−α0(si)−Zk(si)α(si)−

∑
r′ ̸=r ξ

∗
kr′ (si)βr′ (si)}

σ2
e

+
Σ(ϕβ)

−1µβr1n

σ2
βr

,

where ξ∗kr = {ξ∗kr(s1), . . . , ξ∗kr(sn)}T with ξ∗kr(si) = ξkr(si)γr(si) and {Σ(ϕβ)}i,i′ =

exp{−d(si, si′)/ϕβ}.

3. Variance parameters:

(a) Measurement error variance on functional predictors: for l = 1, . . . , q,

[σ2ul| · · · ] ∝ IG
( (∑k nk)T

2 +Au,
1
2

∑
k,i,τ{Wkl(si; tτ )−

∑
r ξkr(si)ψ

T (tτ )drl}2+Bu
)
.

(b) Observation error variance on scalar response:

[σ2e | · · · ] ∝ IG
(∑

k nk

2 +Ae,
1
2

∑
k,i{Yk(si)− α0(si)− Zk(si)α(si)

−
∑

r ξkr(si)[βr(si)1{vr(si)⩾0}]}2 +Be
)
.

(c) Variance on spatial intercept:

[σ2α0
| · · · ] ∝ IG

{
n
2 +Aα0 ,

1
2(α0 − µα01n)

TΣ(ϕα0)
−1(α0 − µα01n) +Bα0

}
.

(d) Variance on spatial coefficients for scalar predictors:

[σ2α| · · · ] ∝ IG
{
n
2 +Aα,

1
2(α− µα1n)

TΣ(ϕα)
−1(α− µα1n) +Bα

}
.

(e) Variances on spatial FPC scores and corresponding regression coefficients: for

r = 1, . . . , p,

i [σ2ξr | · · · ] ∝ IG
{∑

k nk

2 +Aξ,
1
2

∑
k ξ

T
krΣ(ϕξ)

−1ξkr +Bξ
}
.

ii [σ2βr | · · · ] ∝ IG
{
n
2 +Aβ,

1
2(βr − µβr1n)

TΣ(ϕβ)
−1(βr − µβr1n) +Bβ

}
.

4. Mean parameters:

(a) Mean on spatial intercept:

[µα0 | · · · ] ∝ N(M0m0,M0), where M0 =
{

1
s2α0

+
1T
nΣ(ϕα0 )

−11n

σ2
α0

}−1
and m0 =

1T
nΣ(ϕα0 )

−1α0

σ2
α0

.

(b) Mean on spatial coefficients for scalar predictor:

[µα| · · · ] ∝ N(Mm,M), where M =
{

1
s2α

+ 1T
nΣ(ϕα)−11n

σ2
α

}−1
and m = 1T

nΣ(ϕα)−1α
σ2
α

.

(c) Mean on spatial coefficients for FPC scores: for r = 1, . . . , p,

[µβr | · · · ] ∝ N(Mrmr,Mr), whereMr =
{

1
s2β
+

1T
nΣ(ϕβ)

−11n

σ2
β

}−1
andmr =

1T
nΣ(ϕβ)

−1βr

σ2
β

.
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5. Spatial range parameters on spatial priors: sampling through M-H algorithms as

follows.

(a) Sampling ϕξ at each iteration j:

i Draw ϕ∗ξ from proposal distribution q{ϕ∗ξ |ϕ
(j−1)
ξ } ∼ TN{ϕ(j−1)

ξ , s2prop,ξ; 0,∞},

truncated Normal distribution, and s2prop,ξ is set to achieve the acceptance

rate 25-50%.

ii Calculate acceptance ratio rξ = min
{
1,

p(ϕ∗ξ |·)q{ϕ
(j−1)
ξ |ϕ∗ξ}

p{ϕ(j−1)
ξ |·}q{ϕ∗ξ |ϕ

(j−1)
ξ }

}
.

Here, p(ϕ∗ξ |·) =
∑

k,r f(ξkr|ϕ∗ξ)πϕξ(ϕ∗ξ), where f(·|ϕ∗ξ) is a density from multi-

variate normal distribution for ξkr in (S1.3) conditional on range parameter

ϕ∗ξ , and πϕξ(·) denotes a density from the truncated Normal prior distribution

of range parameter ϕξ in (S1.6).

iii Generate ω ∼ Uniform(0, 1). Then ϕ
(j)
ξ =

 ϕ∗ξ , if rξ > ω.

ϕ
(j−1)
ξ , otherwise.

(b) Sampling ϕβ at each iteration j:

i Draw ϕ∗β from proposal distribution q{ϕ∗β|ϕ
(j−1)
β } ∼ TN{ϕ(j−1)

β , s2prop,β; 0,∞}.

ii Calculate acceptance ratio rβ = min
{
1,

p(ϕ∗β |·)q{ϕ
(j−1)
ξ |ϕ∗β}

p{ϕ(j−1)
β |·}q{ϕ∗β |ϕ

(j−1)
β }

}
.

Here, p(ϕ∗β|·) =
∑

r f(βr|ϕ∗β)πϕβ (ϕ∗β), where f(·|ϕ∗β) is a density from multi-

variate normal distribution for βr in (S1.3) conditional on range parameter ϕ∗β,

and πϕβ (·) denotes a density from the prior distribution of range parameter

in (S1.6).

iii Generate ω ∼ Uniform(0, 1). Then ϕ
(j)
β =

 ϕ∗β, if rβ > ω.

ϕ
(j−1)
β , otherwise.

(c) Sampling ϕα0 and ϕα at each iteration j follows (b) by replacing β with α0 and

α, respectively.

6. Model selection parameters: for r = 1, . . . , p,

(a) [σ2vr | · · · ] ∝ IG
{
n
2 +Av,

1
2(vr − µvr1n)

TΣ(ϕv)
−1(vr − µvr1n) +Bv

}
.

(b) [µvr | · · · ] ∝ N(Mrmr,Mr), whereMr =
{

1
s2v
+1T

nΣ(ϕv)−11n

σ2
v

}−1
andmr =

1T
nΣ(ϕv)−1vr

σ2
v

.
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(c) Sampling ϕv at each iteration j by M-H algorithm:

i Draw ϕ∗v from proposal distribution q{ϕ∗v|ϕ
(j−1)
v } ∼ TN{ϕ(j−1)

v , s2prop,v; 0,∞}.

ii Calculate acceptance ratio rv = min
{
1, p(ϕ∗v |·)q{ϕ

(j−1)
v |ϕ∗v}

p{ϕ(j−1)
v |·}q{ϕ∗v |ϕ

(j−1)
v }

}
.

Here, p(ϕ∗v|·) =
∑

r f(vr|ϕ∗v)πϕv(ϕ∗v), where f(·|ϕ∗v) is a density from multivari-

ate normal distribution for vr in (S1.3) conditional on range parameter ϕ∗v,

and πϕv(·) denotes a density from the prior distribution of range parameter in

(S1.6).

iii Generate ω ∼ Uniform(0, 1). Then ϕ
(j)
v =

 ϕ∗v, if rv > ω.

ϕ
(j−1)
v , otherwise.

(d) Sampling vr at each iteration j by M-H algorithm:

i Draw v∗r from proposal distribution q{v∗r |v
(j−1)
r } ∼ N{v(j−1)

r , s2prop,vrIn}.

ii Calculate acceptance ratio rvr = min
{
1, p(v∗r |·)

p(v
(j−1)
r |·)

}
.

Here, p(v∗r |·) =
∑

k,i f{Yk(si)|v∗r}πvr(v∗r), where f(·|v∗r) is a density from

normal distribution for Yk(si) in (S1.1) conditional on v∗r , and πvr(·) denotes

a density from multivariate normal distribution in (S1.3).

iii Generate ω ∼ Uniform(0, 1). Then v
(j)
r =

 vr
∗, if rvr > ω.

vr
(j−1), otherwise.

S3 MCMC Diagnostics

We examine the MCMC convergence on corn yield data analysis using two diagnostics tools;

(i) trace plots and (ii) potential scale reduction factor (PSFR; Gelman and Rubin, 1992).

Figure S1 presents trace plots for posterior samples obtained through MCMC implementation

based on a total of 15,000 iterations, where a posterior sample of size 2500 is acquired by

using the first 5,000 iterations as burn-in and thinning the remaining 10,000 by a factor of

4. Figure S1 shows posterior samples of σ2e , α0(s1), α(s1), β1(s1), ξ11(s1), and ϕα. We then

calculate the PSFR to assess and summarize the convergence of MCMC algorithm, using

the coda package (Plummer et al., 2006) in R. A PSRF close to 1 indicates convergence

of a Markov chain, while a large PSRF means that the chain has not yet converged. The
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Figure S1: Trace plots for σ2e , α0(s1), α(s1), β1(s1), ξ11(s1), and ϕα from corn yield prediction
analysis.

Table S1: Mean and median of potential scale reduction factor (PSRF)
α(si) β1(si) β2(si) β3(si) β4(si) β5(si)

Mean(RSPF) 1.13 1.05 1.06 1.00 1.00 1.02
Median(RSPF) 1.03 1.05 1.06 1.00 1.00 1.02

reference value of 1.1 was recommended by Gelman et al. (2014) and generally adopted by

MCMC practitioners. To calculate the RSRF, we first run three sets of MCMC iterations

for our corn yield data, following the same sampling and burn-in process. We then compute

PSRFs for the regression coefficients, α(si), β1(si), . . . , β5(si), for i = 1, . . . , 403. Table S1

shows the mean and median of PSRFs from the Markov chains of the regression coefficients.

As we can see, most means and medians of PSRF are all very close to 1, indicating the chains

have converged. The only exception is that the mean RSPF for α(si) is slightly over 1.1,

which might be due to the relatively weak effect of the precipitation on crop yield, as the

regions with good irrigation systems may depend less on the precipitation. The weak signal

leads to slower convergence in those locations, but the inflation of mean RSPF is tiny and the

median RSPF is well below 1.1, so the convergence of α(si) should not be a serious concern.
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S4 Additional Monte Carlo Experiments and Results

S4.1 Performance Evaluation of Parameter Estimation

In the manuscript, we present the superior prediction performance of our proposed model

estimated by MCMC implementation. Besides the prediction, in practice, the parameter

identifiability is also important for the validity of the model interpretation based on the

estimated coefficients. Since model interpretation is heavily centered on the regression coef-

ficients α, β1, and β2, we examined the performance of their estimates in our simulations.

Under the simulation setting described in Section 4.1, with a moderator spatial correlation

range parameter ϕ = 200, we calculated the Pearson correlation between the parameter es-

timates (posterior means) and the true parameters. The Pearson correlations are 0.73, 0.80,

and 0.75 for α, β1, and β2, respectively. Figure S2 displays the scatter plots between the

estimated and true parameters, pooling from five randomly selected simulation runs. We

observe from Figure S2 that most of the points lie around the 45-degree reference line, which

illustrates the desirable performance of our Bayesian estimators.

Figure S2: Scatter plots of estimated coefficients vs. true coefficients from five randomly
selected simulation sets for (a) regression coefficient α for the scalar covariate, (b) regression
coefficient β1 for the first FPC scores, and (c) regression coefficient β2, for the second FPC
scores.
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S4.2 Prediction Performance in High Dimension

We conduct additional Monte Carlo experiments to examine the performance of our model

under a higher dimension setting. Specifically, we double the number of scalar predictors and

the number of functional covariates to h = 2 and q = 4, respectively. We also double the

number of FPC’s to p = 4. Following the same settings of the spatial location si as in Section

4.1, we generate five replicates of the responses process based on

Yk(si) =
2∑
j=1

Zkj(si)αj(si) +
4∑
r=1

ξkr(si){βr(si)γr(si)}+ ek(si),

where k and i are indices for years and counties, respectively, Zkj(si)
iid∼ unif(0, 3), for

j = 1, 2. While the data generation settings for β1, β2, ξk1, ξk2, γ1, and γ2, are kept the same

as specified in Section 4.1, we generate α1 ∼ N{2 · 1n,Σ(ϕ)}, α2 ∼ N{−2 · 1n,Σ(ϕ)}, ξk3 ∼

N{0n, 2Σ(ϕ)}, ξk4 ∼ N{0n,Σ(ϕ)}, β3 ∼ N{1.5 ·1n, 9Σ(ϕ)}, β4 ∼ N{−1.5 ·1n, 4Σ(ϕ)}. The

binary indicator variables γ3 and γ4, defined based on (3) of the manuscript, are generated

by v3 ∼ N{0n,Σ(ϕ)} and v4 ∼ N{0n,Σ(ϕ)}, respectively. The correlation matrix Σ(ϕ) is

governed by a Matérn correlation function with the spatial correlation at a moderate level

ϕ = 200 and smoothness parameter κ = 1. The errors ek(si)
iid∼ N(0, 22). We then generate

the 4-dimensional multivariate functional predictors as

W k(si; t) =

4∑
r=1

ξkr(si)f r(t) + uk(si; t),

where f r(t) = {fr1(t), . . . , fr4(t)}T with fr1(t) = cos(2rπt)/
√
2, fr2(t) = sin(2rπt)/

√
2,

fr3(t) = cos{2(r+4)πt}/
√
2, fr3(t) = sin{2(r+4)πt}/

√
2 , t ∈ [0, 1], for r = 1, . . . , 4, satisfying∫ 1

0 f
T
r (t)f r′(t) = I(r = r′). The measurement errors uk(si; t) = {uk1(si; t), . . . , uk4(si; t)}T

are generated from ukl(si; t)
iid∼ N(0, 12), for l = 1, . . . , 4. Functional trajectories are gener-

ated at a regular grid of 100 points in [0, 1]. By following the same MCMC implementation

steps described in Section 4.1 for 100 simulation sets, we calculate the prediction error based

on randomly selected 20% of observations as the testing data and the rest as training input.
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Figure S3: Box plots of Mean Squared Prediction Errors (MSPE) from the proposed BSVFM
and the competing models, PLFAM, FGAM and FLM (a) when h = 2 and q = 4, and (b)
when h = 1 and q = 2.

We fix p = 4 for our proposed BSVFM. Then we calculate prediction errors for competitors,

PLFAM, FGAM, and FLM. For competing methods involving mFPC scores in the model,

PLFAM and FLM, we determine the number of FPC that recovers at least 99.5% of the total

variation.

Figure S3 (a) shows the MSPE under the new setting from our proposed BSVFM, and

the competing methods including PLFAM, FGAM, and FLM. As we can see, our proposed

method still outperforms the competing methods when the dimensions of the scalar and

functional predictors are higher. For comparison, we present the results for h = 1, q = 2

and ϕ = 200 in Figure S3 (b), which corresponds to Figure 3 (b) in the manuscript. When

comparing the two panels in Figure S3, we observe overall larger MSPE’s among all models

under the high dimension setting. This is because the average marginal variance of Y is

62.1 under the new setting with more scalar and functional predictors, whereas the average

marginal variance of Y is 51.3 under the old setting with h = 1 and q = 2.
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Figure S4: Boxplots of Mean Squared Prediction Errors (MSPE) from the proposed BSVFM
under three data generation settings: ‘Gaussian’ where our model is correctly specified, ‘t-
error’ where the model and measurement errors follow t-distributions with 3 d.f., and ‘t-coef’
where the regression coefficients and FPC scores follow multivariate t-distributions with 3
d.f.

S4.3 Robustness against Distribution Misspecifications

We have conducted additional simulation studies to examine the robustness of our model

to distribution misspecification. Our proposed model, specified in (4)-(6) of the manuscript,

assumes Gaussian distribution on error terms and the coefficients. We therefore consider two

non-Gaussian distribution scenarios in the data generation:

(i) ‘t-error’ - both the model error ek(si) and the measurement error uk(si; t) of the func-

tional covariates follow t distributions with 3 degrees of freedom (d.f.)

(ii) ‘t-coef’ - the FPC scores, ξ1 and ξ2, and the regression coefficients, α, β1, and β2,

follow multivariate t distributions with 3 d.f.

All t distributed variables are re-scaled to have the same variance as their Gaussian coun-

terparts as described in Section 4.1. The remaining settings are the same as Section 4.1,

and we fix the range parameter of the spatial correlations at ϕ = 200 which corresponds to

the moderate spatial correlation considered in Section 4.1. The simulations are repeated 100

times.

Figure S4 shows the Mean Squared Prediction Errors (MSPE) of our method under three
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Figure S5: Boxplots of Mean Squared Prediction Errors (MSPE) from (a) PLFAM and (b)
FLM by using different numbers p of mFPC scores. In each plot, the results are based on
either a fixed p = 2 or a larger p chosen by 99.9% FVE.

data generation settings: the original ‘Gaussian’ data described in Section 4.1, the ‘t-error’

and ‘t-coef’ scenarios described above. Even under the two non-Gaussian settings where

our model is misspecified, our method still achieves comparable MSPE as with the Gaussian

data. Without surprise, we notice that the MSPE’s under the two non-Gaussian settings

show more variability and outliers as Y now follows a heavy-tailed distribution. The median

MSPE under the ‘t-coef’ seems even slightly lower than the ’Gaussian’ setting. We found this

could be because the marginal variances of the response Y under the ‘t-coef’ setting is slightly

lower than under the ’Gaussian’ after re-scaling the t-coefficients to match the variance of

their Gaussian counterparts.

S4.4 Further Experiments on FLM and PLFAM

The true number of FPCs in our simulated data from Section 4.1 is p = 2, and on average

the top 2 FPCs explain 99.3% of the total variation in the functional predictors. Among

the three competing functional data methods, PLFAM and FLM are based on FPC scores.

Following the referee’s suggestion, we have refitted the PLFAM and FLM with the number

of FPCs chosen by 99.9% fraction of variation explained (FVE), which leads to p = 11 on
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average. Figure S5 compares the MSPE of PLFAM and FLM with a fixed p = 2 vs a p chosen

by 99.9% FVE. There seems to be no clear advantage of using a more extensive set of FPCs

in our simulation study. Furthermore, we observe higher variation in the MSPE when using

a larger p, possibly due to the overfitting of the training data.

S5 Additional Corn Yield Data Analysis Results

S5.1 Further Exploration of Machine Learning Methods

Existing machine learning literature on crop yield prediction uses temperature information

in various ways, including (i) daily maximum and minimum temperatures (730 features each

year) (Chu and Yu, 2020), (ii) weekly averages of the maximum of minimum temperatures

(104 features) (Schwalbert et al., 2020; Khaki et al., 2020), or (iii) monthly averages of

the maximum and minimum temperatures (24 features) (Khaki and Wang, 2019). While our

paper followed option (i), we carry out analysis with reduced temperature information for the

exploration. We therefore additionally ran the Neural Network (NN) and XGBoost (XGB)

using weekly and monthly averages of max/min temperatures as input. We further consider

directly using the 5 FPC scores identified in our model fitting as the input for machine

learning methods.

Table S2 presents the MSPE by 10-fold cross-validation from Neural Network (NN) and

XGBoost (XGB) using the daily, weekly, and monthly temperatures and 5 FPC scores as

input. It appears that using reduced temperature information does not result in better

prediction performance. Chu and Yu (2020) empirically illustrated through the real data

Table S2: MSPE and weighted MSPE based on the 10-fold cross validation calculated from
BSVFM, Neural Network (NN), and XGBoost (XGB). The NN, NN(w), NN(m) and NN(fpc)
represent the Neural Network model fitted using daily temperatures, weekly averaged tem-
peratures, monthly averaged temperatures, and five mFPC scores, respectively. The XGB,
XGB(w), XGB(m), and XGB(fpc) are named in the same way.

BSVFM NN NN(w) NN(m) NN(fpc) XGB XGB(w) XGB(m) XGB(fpc)

MSPE 425.5 714.4 925.7 1005.1 817.2 448.3 507.4 448.5 710.8
Weighted MSPE 355.7 586.5 744.7 851.6 681.1 367.9 387.9 445.9 587.9
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Figure S6: Observed corn yield after subtracting the year effect (•) and the fitted corn yield
using our BSVFM (2) and using the SVCM (▽) over years from two randomly selected
counties in (a) and (b).

analysis that the optimal choice for the number of hidden layers in NN could address the

potential overfitting issue. We used cross-validation to choose the number of hidden layers

in the NN, and the lowest MSPE of NN using the daily temperature in our results seems to

corroborate their conclusion. The same phenomenon is observed for the XGBoost approach.

The comparison of all methods using 5 FPCs indicates that our spatial functional regression

approach outperforms the machine learning methods in corn yield prediction given the same

information.

S5.2 Predictive Performance Comparison of BSVFM and SVCM

In Section 5.2, we considered a non-functional spatially varying coefficient Model (SVCM) as

one of competing methods, which simply replaces the functional temperature covariates in our

model by the annual averages of maximum and minimum temperature. Figure S6 illustrates

the comparison of prediction performance between our functional BSVFM and non-functional

SVCM for two randomly selected counties over the years, where the y-axis is the corn yield

after removing the year effects. As discussed in Section 5.1, the year effects in crop yield

can be largely explained by different genetic variants of corn being planted each year and
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land fallows, and we remove these effects to better unveil the effects of temperature. We

observe that our BSVFM outperforms the SVCM by tracking the true trajectory of Y more

closely. This follows our intuition as the FPC scores capture the major modes of temperature

trajectories and thus are likely able to catch the daily temperature influence on crop growth

better than simple summary statistics of temperatures.

S5.3 Additional Figures from the Crop Yield Prediction Application

Figure S7 shows the spatially varying behaviors in posterior mean of coefficients β4(s) and

β5(s) for the fourth and fifth FPC scores. As the model diagnostic, we calculate the autocor-

relation function (ACF) for each county based on the residuals from the fitted yield prediction

model. Figure S8 shows the ACF for randomly selected four counties with the complete corn

yield data over 22 years. All ACF’s fall within the confidence band based on the assumption

of no temporal dependency, which supports the conditional independence assumption that

we make.
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Figure S7: Posterior means of the spatially varying coefficients of (a) β4(si) and (d) β5(si)
over Kansas, Iowa, Illinois, Indiana, and Missouri. Counties with non-null coefficients are
marked by yellow circle. Counties with missing data are colored by grey.

Figure S8: The ACF plot for randomly selected four counties with the complete corn yield
information over 22 years, based on the residuals from the corn yield prediction model.
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