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Abstract

The presence of income inequality is an important problem to demographers, policy
makers, economists, and social scientists. A causal link has been hypothesized between
income inequality and income segregation, which measures how much households with
similar incomes cluster. The information theory index is used to measure income seg-
regation, however critics have suggested the divergence index instead. Motivated by
this, we construct both indices using American Community Survey (ACS) estimates
of features of the income distribution. Since the elimination of the decennial census
long form, methods of computing these indices must be updated to interpolate ACS
estimates and account for survey error. We propose a novel model-based method to do
this which improves on previous approaches by using more types of estimates, and by
providing uncertainty quantification. We apply this method to estimate U.S. census
tract-level income distributions, and in turn use these to construct both income seg-
regation indices. We find major differences between the two indices and find evidence
that the information index underestimates the relationship between income inequality
and income segregation. The literature suggests interventions designed to reduce in-
come inequality by reducing income segregation, or vice versa, so using the information
index implicitly understates the value of these interventions. Supplementary materi-
als for this article, including a standardized description of the materials available for
reproducing the work, are available as an online supplement.

Keywords: Bayesian methods, Density estimation, Functional data, Income distribution,
Pareto-linear procedure.
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1 INTRODUCTION

Sociologists theorize that peer or neighborhood effects of income segregation can exacerbate

the impacts of income inequality (Reardon and Bischoff, 2011, and references therein) –

households are segregated by income to the extent that households with similar incomes live

near each other. To study this, Reardon (2011) and Reardon and Bischoff (2011) develop the

rank-order information theory index of income segregation in metro areas, which essentially

compares the metro area income distribution to the census tract-level income distributions

for each tract in the metro area. They then fit various regression models to the index using

decennial census data. More recently, Roberto (2015) notes that the information theory index

can give results that conflict with our intuitions about the meaning of income segregation,

and suggests an alternative index based on the Kullback–Leibler (KL) divergence, called the

divergence index.

Both of these indices require as inputs tract-level income distributions for each census

tract within a given metro area. The Reardon and Bischoff (2011) analysis relied on decennial

census data, which provides detailed distributional information at the tract level and has

no associated survey error. Since the elimination of the decennial census long form, this

information is no longer available, and instead data users must rely on American Community

Survey (ACS) estimates with associated standard errors. The ACS provides fairly detailed

information about tract-level income distributions in the form of bin estimates ; i.e., estimates

of the proportion or number of households in a given census tract with an income in a small

number of income bins. For example, Table A.1 in Appendix A of the Supplementary

Materials contains 2015 ACS 5-year period bin estimates for several census tracts in Boone

County, MO.

Our goal is to use these and other estimates of features of the tract-level income distribu-

tions to estimate each tract-level income distribution. Then, in turn, we use these distribu-

tions to construct both income segregation indices and reproduce a portion of the Reardon

and Bischoff (2011) analysis using both indices and more recent ACS data. Specifically, we as-

sess the degree to which the Gini index, a measure of income inequality, predicts income seg-

regation as measured by both indices at the household level, and at the household-race level.
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The regressions we fit to study this relationship must account for the uncertainty in the ACS

estimates we use as covariates, as well as in the estimated indices we use as responses. We fit

error-in-variables (EIV) regressions to account for this uncertainty and find that the two in-

dices substantially disagree about the relative ranking of U.S. metro areas in terms of income

segregation. Additionally, we find that the information theory index tends to understate the

relationship between income inequality and income segregation relative to the divergence

index. Ultimately, understating the negative effects of having a low income may impact the

degree to which desegregation with respect to income could solve problems of inequality (e.g.,

see https://www.census.gov/library/stories/2018/10/opportunity-atlas.html and

the references therein).

Our methodological contribution is to construct tract-level income distributions using

only ACS estimates of features of those distributions. Many authors use a method called

the “Pareto-linear procedure” (PRLN) to construct these distributions using bin estimates,

typically as an intermediate step to obtain an estimate of the Gini index, e.g., Jargowsky

(1996); Nielsen and Alderson (1997); Hipp (2007a,b); Moller et al. (2009); Hipp et al. (2013);

Braithwaite (2015), among others. PRLN assumes that income is uniformly distributed

within bins that include or are below the median, and Pareto distributed in bins above the

median, with some exceptions to handle special cases. The methodology is well-established,

and is effective for income distributions (Miller, 1966; Aigner and Goldberger, 1970; Kakwani

and Podder, 1976; Spiers, 1977; Henson and Welniak, 1980; Welniak, 1988).

However, PRLN suffers from several limitations, especially with respect to our problem.

First, PRLN does not quantify uncertainty about the income distribution – it only provides a

point estimate. Thus, confidence intervals and standard errors are not available for estimates

of the Gini index or segregation indices based on PRLN. Second, PRLN is only able to use

bin estimates. The ACS provides many other estimates of features of the income distribution

including quantiles, income shares, and the Gini index. Taking these into account should

result in more accurate estimates of the income distribution of interest. Third, PRLN does

not take into account the standard error associated with the estimates that it does use. This

is understandable given that PRLN was designed to be used with decennial census data.
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However, if data users ignore the standard errors in ACS data, their analyses will understate

uncertainty (to the extent they quantify uncertainty at all) and potentially be biased.

We solve these three issues with PRLN by taking a latent density estimation approach

based on PRLN, which we call latent PRLN (L-PRLN). This approach is able to take into

account multiple diverse types of estimates associated with a given distribution, and naturally

accounts for the inherent uncertainty associated with the estimates used by the model.

These estimates are estimates of functionals of the latent tract-level income distributions,

so our model borrows elements from functional data analysis (FDA) – see e.g., Ramsay

and Silverman (2005), Ferraty and Vieu (2006), and Kokoszka and Reimherr (2017) for

overviews. However, our case differs from the usual FDA case because the latent functions

we are attempting to estimate are probability distribution functions (PDFs), or equivalently

any function that uniquely determines the latent probability distribution such as a cumulative

distribution function (CDF) or quantile function. This puts constraints on the latent function

that are not typical for FDA, and necessarily implies a different modeling strategy. There

are several small area estimation (SAE) approaches concerned with estimation of income

and other related quantities (such as poverty or per capita household expenditures etc.)

Nevertheless, these are typically unit-level models that directly use income (or other proxy

variable) (e.g., see Battese et al., 1988; Elbers et al., 2003; Marchetti et al., 2012; Molina

and Rao, 2010; Tarozzi and Deaton, 2009; Tzavidis et al., 2008, among others) or area-level

models (e.g., see Fay III and Herriot, 1979) that use a direct estimator of income as the model

inputs. In contrast, our model uses features of the income distribution as the model inputs

rather than income (or another proxy variable) directly. Specifically, we can not fit the SAE

models previously listed based on the information that encompasses our model inputs.

Similarly, our approach is also related to the literature on density estimation. The most

popular approach is kernel density estimation (e.g. Scott, 2015), but this approach does not

directly apply to our setting since we do not have observations drawn from the distribution

of interest. Another approach is log splines (Kooperberg and Stone, 1992; Stone et al., 1994),

which is subject to the same criticism for our problem. In essence, however, our model is

fundamentally inspired by PRLN and can be motivated from that perspective. The choice
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of PRLN as a starting point for our model was in part based on computational convenience

as well as its semiparametric specification. Nevertheless, other parametric alternatives could

also be considered, e.g., see Singh and Maddala (1976) and Dagum (1977) among others.

However, purely parametric approaches may be less flexible across a broad array of applica-

tions.

The remainder of the paper is organized as follows. In Section 2 we begin by describing

the ACS and available estimates of features of the income distribution, then in Section 2.1

we describe PRLN, and use it to motivate L-PRLN in Section 2.2. In Section 3 we compare

L-PRLN and PRLN in a pair of tests. First, in Section 3.1 we conduct a simulation study

where we repeatedly sample from a fixed synthetic population and fit both models to each

sample. Second, in Section 3.2 we fit both models to ACS data and compare model-based

estimates to held-out direct estimates of various features of the income distributions. Next,

in Section 4, we return to the income segregation index problem. Here we describe both

indices, estimate both of them using ACS data, then use both in a partial reproduction

of the analysis of Reardon and Bischoff (2011) using more recent ACS data. Finally, in

Section 5, we discuss our results and conclude. Supplementary material includes several

appendices referenced in the paper.

2 AMERICAN COMMUNITY SURVEY AND MODEL

MOTIVATION

The U.S. Census Bureau administers the ACS to produce a variety of annually released

data products used by public and private institutions. There are two main types of data

products. First, ACS estimates of various quantities are tabulated and published for several

geographies, including census tracts, counties, states, and national. Second, raw data files in

the form of Public-Use Microdata Samples (PUMS) are released to the public. The PUMS are

organized into PUMAs (Public-Use Microdata Areas), and they contain a weighted sample of

households and of residents living in each PUMA; more detailed location information about

these residents and households is not available due to disclosure limitations. Each PUMA is
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designed to contain around 100, 000 people, and census tracts are nested within PUMAs.

The PUMS sample in a given PUMA for a given period is a subset of the full ACS sample

for that same area and period, and the sample weights in the PUMS are not the same as

the weights used to construct the ACS estimates (U.S. Census Bureau, 2017a). Both the

ACS estimates and PUMS are currently published based on one and five years of the survey,

known as 1-year and 5-year period estimates and PUMS, respectively. Though areal units

with less than 65,000 people only have published 5-year period estimates, in previous years

areal units with at least 20,000 people also had published 3-year period estimates (U.S.

Census Bureau, 2014).

At the PUMA level, the PUMS provides detailed distributional information about a wide

variety of variables measured on households and individuals. At the tract level, however, only

a set of specific estimates are available. Many variables only have basic summary statistics

published, such as means. Some variables, such as household income or age of householder,

have more detailed information available, though not necessarily the information a data

user is interested in. In 2015 the ACS published the following 5-year tract-level income

distribution period estimates: mean income, median income, Gini index of income, the 20th,

40th, 60th, 80th, and 95th percentiles of income, income shares of each quintile and the top

5% of the income distribution, and the proportion of households with incomes in 12 income

bins defined by the following breaks: $5, 000, $10, 000, $15, 000, $20, 000, $25, 000, $35, 000,

$50, 000, $75, 000, $100, 000, $150, 000, and $200, 000 (U.S. Census Bureau, 2017d,e,f,g,h).

Each tract-level estimate also has a corresponding margin of error (MOE) so that estimate±

MOE determines a 90% confidence interval, and MOE/1.645 is the standard error of the

estimate.

2.1 The Pareto-linear procedure

The fundamental problem is to estimate a density π using estimates of various features of

that density. PRLN does this by only using the bin estimates. Let k = 1, 2, . . . , K index

bins, and let κ1 = 0 < κ2 < · · · < κK < κK+1 = ∞, denote the bin boundaries, which we
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will refer to as knots. Then the PRLN density is given by

π(x) =
K∑
k=1

pkfk(x). (PRLN density) (1)

where pk is the probability associated with bin k, and fk is the probability density within bin

k, with support (κk, κk+1], except in the uppermost bin where fK has the support (κK ,∞).

Let k∗ denote the index of largest knot below the median according to the bin estimates.

Then the PRLN density defines the fks via

fk(x) =



1
κk+1−κk

× 1(κk < x ≤ κk+1) if k ≤ k∗ ,

αkκ
αk
k x−αk−1

1−
(

κk
κk+1

)αk × 1(κk < x ≤ κk+1) if k∗ < k < K ,

αkκ
αK
k x−αk−1 × 1(κK < x) if k = K .

(2)

The unknown parameters of the model, which need to be estimated, are the knot probabili-

ties, p = (p1, p2, . . . , pK), as well as the Pareto parameters, α = (αk∗+1, αk∗+2, . . . , αK).

PRLN estimates the pks with the associated bin estimates, which we will denote by bk for

k = 1, 2, . . . , K. Then PRLN estimates the Pareto parameters as follows. Let Bk =
∑K

i=k bi

for k = 1, 2, . . . , K. The initial PRLN estimate for αk is given by

α̂k = log(Bk/Bk−1)/ log(κk/κk−1).

If α̂k ≤ 1, then in the truncated Pareto bins, PRLN reverts to a uniform distribution. In the

uppermost bin, which is untruncated Pareto distributed, PRLN instead tries to use α̂K−1,

i.e. the α̂ from the bin just below it, as long as that bin was truncated Pareto distributed.

If α̂K−1 ≤ 1, then it tries to use α̂K−2, and so on, until it reaches the last Pareto distributed

bin. If it runs out of Pareto bins in this manner, then PRLN assumes that the uppermost

bin is a point mass at the lower bound.

The PRLN density a judicious choice because there is not much information about the

income distribution between the boundaries of the bins defining the bin estimates. This

makes it difficult to estimate a large number of pks, or a larger number of parameters as-

sociated with the fks. The chosen knots help to minimize the number of pks as much as

8



possible, and by assuming uniform distributions within the lower bins, PRLN further reduces

the number of parameters to estimate. Additionally, since income distributions are known

to have approximately Pareto right tails the Pareto bins are likely to fit well.

2.2 L-PRLN: A semiparametric latent density model

Despite its effectiveness, PRLN suffers from three major flaws for our purposes. It can-

not quantify uncertainty and only provides point estimates, it cannot take into account all

available estimates of features of the income distribution, and it does not take into account

the standard error associated with the ACS estimates. Our key innovation to solve these

problems is to treat the density as latent, and the published estimates as estimations of

functionals of that density with some associated error.

Let u = 1, 2, . . . , U index the available published estimates, e.g. from the ACS, let qu

denote the estimate and Su its standard error, and let Qu(·) denote the functional that takes

a probability distribution and returns the value of the estimand for that distribution. For

example, if qu is an estimate of the mean, Qu(π) = Eπ[X]. Typically a central limit theorem

applies for the estimates, so we assume

qu|π, Su
ind∼ N(Qu(π), S2

u) (data model) (3)

for u = 1, 2, . . . , U . The estimate errors are correlated, but these correlations are not available

in the ACS, and in general are rarely publicly available. When they are available, (3) can

be modified appropriately to take into account the full error covariance matrix.

Next, we need a model for π. In theory, the class of densities used by log spline density

estimation (Stone et al., 1994) or kernel density estimation (Scott, 2015) could be used here,

but a fundamental constraint is that we need to be able to compute Qu(π) quickly for many

different Qus, including, for example, the mean of the density. Instead we use the PRLN

density defined in (1) and (2). As long as αK > 1, then the CDF, quantile function, mean,

income shares, and Gini coefficient of the PRLN density are all available in closed form.

If αK > 2 then additionally the variance is available in closed form. See Appendix B for

formulas for each of these functionals.
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By treating the PRLN density as latent, we are able to solve all three limitations of PRLN.

We easily take into account the standard errors and propagate that uncertainty into our

estimates of the latent population and any distributional features of interest. Additionally,

we are able to take into account a much wider variety of available estimates of features of

the income distribution.

2.3 Estimation and interpolation

To construct estimates of any feature of the distribution of interest, including interpolating

between the end points of the bins, we will use the Bayesian posterior predictive distribution

for the latent population in the area of interest. This allows us to construct a posterior

distribution for any distributional feature of interest—even when the feature is an intractable

integral with respect to π—so long as it can be easily computed for a finite population and

we can easily simulate from π conditional on its parameters. Additionally, it allows us to

partially take into account the fact that the latent population is finite. We can even relax the

finite population requirement so long as the distributional feature can be easily computed

as a function of the model parameters.

We first must sample from the posterior of θ to be able to sample from the posterior

predictive distribution. We do this using the No-U-Turn Sampler (NUTS; Hoffman and

Gelman, 2014), a variant of Hamiltonian Monte Carlo (HMC; Neal, 2011). One reason for

this choice is that conditional conjugacy in a Gibbs sampler is hopeless due to the form of the

Qus. Additionally, NUTS tends to be more robust and efficient than other MCMC options

even when conjugacy relationships are available (Betancourt and Girolami, 2015). We use

the software package Stan (Gelman et al., 2015; Stan Development Team, 2016) to perform

NUTS. NUTS requires the log-posterior and thus log-likelihood be available in closed form,

up to an additive constant. The log-likelihood is implied by (3) with the Qus defined in

Appendix B.

To construct the posterior predictive distribution of the latent population, let N denote

an estimate of the population of the area of interest, e.g. from the ACS. Let i = 1, 2 . . . , N

index the latent population, let Yi denote the ith latent income, and let θ denote the full
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vector of unknown parameters. Then for each posterior sample θ(m), m = 1, 2, . . . ,M we

generate the latent population via

Y
(m)
i |θ(m) iid∼ πθ(m) (posterior predictive distribution) (4)

for i = 1, 2, . . . , N and m = 1, 2, . . . ,M . This is easily performed in a two step process.

First, generate the bin the observation belongs to using (p
(m)
1 , . . . , p

(m)
K ) where pk denotes

the probability of bin k. Then conditional on bin k being chosen, Y
(m)
i is generated from

the density within that bin, fk, conditional on θ, or more precisely the elements of θ that

determine fk. Then the posterior distribution of any feature of the latent distribution of

income can be obtained as a function of Y (m) = (Y
(m)
1 , Y

(m)
2 , . . . , Y

(m)
N ) for m = 1, 2, . . . ,M .

In principle, the standard error of N can be taken into account by treating the true size

of the population as an unknown, denoted by η, with estimate N and standard error H.

Then for each draw from the MCMC sampler, a new value of η can be drawn via

η(m) iid∼ N(N,H2).

Subsequently, Y
(m)
i can be drawn via (4) for i = 1, 2, . . . , η(m). We do not use this approach

here and, instead, treat the tract-level population estimates as the truth since it is unlikely

to have a major impact on the results, but in cases where the population estimates are near

zero and their standard errors are large, it may be worthwhile.

2.4 Inverted quantile estimates

To be able to use gradient based estimation methods such as NUTS, we use the delta method

to “invert” the quantile data model. Suppose q is an estimate of the τth quantile, Π−1(τ),

with standard error S. We originally assumed that q ∼ N(Π−1(τ), S2). Using the delta

method we obtain (5) as the data model for the corresponding inverted quantile estimate, τ ,

τ |π, q, S ∼ N

(
Π(q),

[
S

π(q)

]2)
. (5)

Since π depends on several unknown parameters, NUTS is more difficult because it creates

hard to eliminate divergences (see e.g. Betancourt and Girolami, 2015). So we plug in an
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estimate of π(q) using a modification of the original PRLN. See Section 2.1 for a description

of PRLN’s estimation process. We modify PRLN in two ways. First, our initial estimate of

αk is

α̂k = log

(
Bk + 0.0001

Bk−1 + 0.0001

)/
log(κk/κk−1)

to prevent bins estimates of zero from causing problems. Second, instead of using a point

mass as a last resort in the uppermost bin, we instead use α̂K = 1.0001. This is more

realistic, and should result in a more accurate standard error, e.g., for τ = 0.95. Note

that for quantiles which are in bins that are uniform distributed, our plug-in estimate is

π̂(q) = bk∗/(κk∗+1 − κk∗) where k∗ is the index of the closest knot from below to q, and bk∗

is the corresponding bin estimate.

2.5 Priors

To complete the model, we need to choose priors for the pks and the αks. An extremely “un-

informative” prior for p can cause problems for MCMC, so we opt for a weakly informative

prior. Note also that the bins are not designed so that we would expect them to be equally

probable a priori. Thus, we center p on the ACS 5-year period bin estimates for the entire

United States, from the same year as the tract-level estimates, using a Dirichlet prior. Let g

denote the country-level estimates, and let t denote a scale hyperparameter, then we assume

p ∼ Dirichlet(g/t).

The value of t encodes the level of prior certainty that g is the true value of p. A value of

t ≥ 1 is ideal since we do not necessarily expect g to be close to p with a high degree of

certainty, but this must be balanced against computational considerations. When an element

of p is close to zero in the posterior, this can cause problems for NUTS. See Section 5 for

a discussion of this issue. As a result, we use a value of t = 1/10 which regularizes p away

from zero.

For the αks, we restrict the prior mass to be above one so that the untruncated Pareto

distribution in the rightmost bin has a well defined mean. Note that αk > 2 is necessary
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to ensure a well defined variance if a user wants to include estimates of the second moment

of the income distribution in the data model. Nevertheless, we assume that the αks are iid

truncated normal distributed as

αk
iid∼ N(2, 12)1(αk > 1).

In practice we have found using PRLN that the tail bins tend to have estimated αks between

around one and three, with smaller values in bins further in the right tail. In general, there

is not much information in the data to learn the Pareto parameters, so this prior provides

some useful regularization to help with model estimation.

3 EVALUATION OF L-PRLN

As mentioned above, the goal of the L-PRLN methodology as presented here is to provide es-

timates of income segregation indices and their uncertainty for ACS data, taking into account

the survey errors and multiple data sources. Although the standard PRLN methodology can-

not account for multiple and uncertain data sources, and only provides point estimates, it

is useful to see how the L-PRLN approach compares to PRLN when considering only point

estimates of income distributions. Thus, we consider two specific cases. First, in Section 3.1,

we design a simulation study using a synthetic population generated over the Boone County,

MO PUMA (Public-use Micro Area) and its census tracts. We repeatedly sample from this

population and create synthetic tract-level ACS estimates, which we use to fit both PRLN

and L-PRLN, and then evaluate them based on predictions of various features of the tract-

level distributions. Then, in Section 3.2, we use our modeling framework to estimate U.S.

census tract-level income distributions using 2015 ACS 5-year period estimates associated

with features of tract-level income distributions, and compare these to held out estimates to

evaluate PRLN and L-PRLN.

Both of these exercises are designed to make a “fair” comparison between PRLN and L-

PRLN. That is, recall that compared to PRLN, L-PRLN is able to use more of the available

estimates, account for the uncertainty in those estimates, and provide uncertainty quantifi-

cation. These are necessary properties to solve our income segregation problem. However,
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it is important to emphasize that here we compare the performance of L-PRLN to PRLN

based only on point estimates, and restrict L-PRLN to use a much more limited subset of

the estimates than it is capable of incorporating.

3.1 Simulation study

We construct a synthetic population for our simulation study, and repeatedly sample from it

using a stratified random sample based on the strata defined by the 2014 PUMS. We do not

fully describe how the synthetic population is generated here; instead, see Appendix C of the

Supplementary Material for a detailed description. Additionally, the R code (R Core Team,

2020) used to generate the population is included in the Supplementary Material. Figure A.2

in the Supplementary Materials contains maps of the true tract-level means, medians, and

standard deviations of income for the synthetic population.

Similar to the real ACS, approximately 10% of the population is sampled without replace-

ment, and the sample size of each stratum is proportional to its sample size in the PUMS.

Then the synthetic ACS estimates are created using the sample and associated weights in

each tract, and the associated standard errors are created using successive difference replica-

tion (Judkins, 1990; Fay and Train, 1995), the method used in the ACS (U.S. Census Bureau,

2017b,c). We construct bin estimates, median estimates, and mean estimates in order to fit

the models. We use the same 12 bin estimates that are available in the ACS, defined by the

following breaks: $5, 000, $10, 000, $15, 000, $20, 000, $25, 000, $35, 000, $50, 000, $75, 000,

$100, 000, $150, 000, and $200, 000. We also construct each fifth percentile estimate (5th,

10th, etc.) as well as the Gini index so that we can compare them to model-based estimates

of the same quantities.

Then we fit L-PRLN using Rstan (Stan Development Team, 2016) to do MCMC via

NUTS with four chains, and after a warm-up of 4,000 iterations per chain for tuning and

burn-in, a further 4,000 iterations per chain were kept as draws from the posterior distri-

bution. Both the mean and the median of the posterior predictive distribution for each

percentile were taken as model-based estimates. Additionally, we fit PRLN on the synthetic

bin estimates. This yields four estimates of each percentile: the mean and median of the
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L-PRLN posterior predictive distribution, constructed as in Section 2.3; the PRLN estimate;

and the direct estimate. We computed the following four metrics for all four estimates: root

mean square error (RMSE), mean absolute deviation (MAD), root mean square percentage

error (RMSPE), and mean absolute percentage error (MAPE). All four metrics were com-

puted over all iterations of the simulation study and all tracts of the synthetic population

simultaneously.

Estimator P5 P10 P15 P20 P25 P30 P35 P40 P45 P50

MAD P. Mean 8.58 15.38 17.86 15.24 14.80 11.08 -2.00 -10.45 -11.25 -7.21

P. Median 6.67 10.64 12.02 10.20 11.20 9.51 0.91 -6.27 -8.25 -5.63

PRLN 1.55 -1.41 -2.31 -4.80 -2.94 -1.80 -3.03 -4.81 -4.00 -1.15

MAPE P. Mean 3.90 12.99 15.37 12.14 13.17 10.51 -0.43 -7.98 -9.96 -6.44

P. Median 3.50 8.40 9.60 6.86 9.98 8.44 2.25 -4.01 -6.84 -4.69

PRLN -0.83 -1.35 -2.22 -5.62 -2.42 -2.39 -2.73 -4.29 -3.92 -1.02

RMSE P. Mean 7.61 17.94 23.53 20.07 13.43 7.09 -4.98 -11.71 -12.43 -9.78

P. Median 6.43 12.86 17.14 15.59 11.05 7.20 -1.60 -7.32 -9.29 -7.77

PRLN -0.60 -2.98 -2.36 -3.94 -3.75 -2.95 -4.41 -4.76 -3.88 -2.17

RMSPE P. Mean 2.67 14.64 19.55 16.63 12.91 8.11 -1.35 -7.34 -9.91 -8.22

P. Median 2.73 9.82 13.43 11.81 10.24 7.64 1.43 -3.27 -6.74 -6.05

PRLN -3.34 -2.59 -2.10 -4.31 -3.28 -3.18 -3.83 -4.03 -3.68 -1.97

Table 1: Percentage difference in a variety of metrics between several estimates and the direct

estimates for the first half of the income distribution. The estimates considered include the

original Pareto-linear procedure (PRLN) the posterior predictive mean from L-PRLN (P.

Mean), and the posterior predictive median from L-PRLN (P. Median). Negative numbers

indicate that the method is doing better than the direct estimates.

Tables 1 and 2 display each of these metrics, expressed as a percentage of the same

metric for the corresponding direct estimates. For example, PRLN had an RMSE for the

5th percentile 0.60% lower than that of the direct estimate, while it had a MAD for the 5th

percentile 1.55% higher than that of the direct estimate. Note that the direct estimates are

what our hypothetical data user would like the ACS to publish, but they are not available.

In the lower portion of the income distribution, the PRLN estimate does the best accord-
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Estimator P55 P60 P65 P70 P75 P80 P85 P90 P95 Gini

MAD P. Mean -3.95 -0.08 -0.60 0.91 2.56 7.38 3.52 -1.61 -1.71 14.58

P. Median -2.49 1.85 1.75 -0.08 5.03 10.49 6.25 0.87 5.07 12.14

PRLN -1.79 -3.17 -6.32 -4.27 -2.77 -0.00 -2.60 0.45 38.89 9.46

MAPE P. Mean -4.26 -0.75 -0.84 -0.12 1.17 5.93 2.84 -1.68 -1.85 15.19

P. Median -2.80 0.92 1.96 -1.20 3.91 8.59 5.46 0.85 4.93 12.68

PRLN -1.71 -2.85 -5.62 -3.59 -3.43 -0.95 -2.62 0.10 37.59 9.71

RMSE P. Mean -5.62 -2.61 -2.26 -2.66 -3.00 1.48 -2.48 -6.52 -8.79 10.55

P. Median -3.52 -0.20 -0.40 -2.50 -1.25 4.08 0.26 -3.66 -3.91 9.17

PRLN -2.12 -3.63 -5.70 -5.04 -4.68 -2.34 -4.08 5.25 57.91 8.96

RMSPE P. Mean -5.95 -3.69 -2.89 -4.17 -4.57 -0.47 -3.56 -6.66 -9.26 11.19

P. Median -4.05 -1.53 -0.66 -3.90 -2.53 1.70 -1.11 -3.82 -4.36 9.74

PRLN -2.05 -3.12 -4.51 -4.03 -5.43 -3.53 -4.34 3.76 53.92 9.35

Table 2: Percentage difference in a variety of metrics between several estimates and the direct

estimates for the last half of the income distribution and the Gini coefficient. The estimates

considered include the original Pareto-linear procedure (PRLN) the posterior predictive mean

from L-PRLN (P. Mean), and the posterior predictive median from L-PRLN (P. Median).

Negative numbers indicate that the method is doing better than the direct estimates.

ing to most metrics, while the L-PRLN posterior median outperforms the posterior mean.

In the middle of the distribution this completely reverses: PRLN does the worst, and the

posterior mean outperforms the posterior median. In the upper portion of the distribution

but still under the 90th percentile, PRLN does the best again, but the posterior mean still

outperforms the posterior median. In the 90th percentile, the posterior mean performs the

best, while PRLN performs the worst. In the 95th percentile the same pattern holds, but

PRLN performs disastrously bad. This is because if PRLN cannot guarantee an estimate

for an α that is greater than one in the top bin, it assumes the bin is a point mass on the

bin minimum. See Section 2.1 for details. This can drastically hurt PRLN’s predictions

in the upper tail, which we see here. L-PRLN does not have this problem since each α is

constrained to be greater than one and is regularized away from one by the prior.

So in general, the best performing point-estimate depends on which region of the income
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distribution the data-user cares about. For the middle of the distribution or the far right

tail, L-PRLN is superior, but everywhere else PRLN is superior. PRLN performs the best

for the Gini coefficient, with the posterior median outperforming the posterior mean. For

other measures of inequality and other functionals of the income distributions, which esti-

mate performs best will depend on how much they load on different regions of the income

distribution. Note that this comparison deliberately limited L-PRLN by preventing it from

using all of the available estimates – estimates that PRLN cannot use.

It is also important to emphasize that L-PRLN provides uncertainty estimates, which

are unavailable in PRLN. As an illustration, Table 3 presents the coverage rates of 95%

credible intervals for every fifth percentile, as well as the Gini coefficient. Two coverage

rates were computed, one with the true population as reference values and one with the

PRLN estimates as reference values. The first comparison shows that L-PRLN’s intervals

slightly undercover the truth; i.e., the 95% credible intervals cover about 80-90% of the time,

but with better coverage in the lower portion of the income distribution. Note that L-PRLN

has better coverage precisely where its point estimates do the worst. The second comparison

shows that the PRLN measures in the lower part of the distribution are largely contained

in the L-PRLN’s 95% credible intervals. More precisely, L-PRLN’s estimate and PRLN’s

estimate for a given percentile were statistically indistinguishable at least 60% of the time.

This is an underestimate since it does not account for uncertainty in the PRLN estimates,

but the statistical properties of PRLN are unknown.

3.2 Application to the American Community Survey

We fit PRLN and L-PRLN to 2015 ACS 5-year period estimates of features of tract-level

income distributions for all tracts in five separate PUMAs: PUMA 821 in Colorado (a

wealthy rural PUMA south of Denver), PUMA 3502 in Illinois (a wealthy PUMA in the

northern portion of Chicago), PUMA 600 in Missouri (Boone County, MO, a college town

and rural outlying areas), PUMA 600 in Montana (a sparsely populated rural PUMA), and

3706 in New York (a poor urban PUMA in New York City). Figure A.3 in the Supplementary

Materials contains maps of each PUMA and each of their Census tracts, shaded according
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Estimand Population PRLN Estimand Population PRLN

P5 0.92 0.86 P55 0.79 0.60

P10 0.90 0.81 P60 0.79 0.62

P15 0.89 0.78 P65 0.82 0.69

P20 0.90 0.75 P70 0.80 0.71

P25 0.90 0.74 P75 0.80 0.72

P30 0.89 0.73 P80 0.81 0.73

P35 0.88 0.71 P85 0.85 0.76

P40 0.87 0.69 P90 0.85 0.79

P45 0.85 0.65 P95 0.88 0.75

P50 0.82 0.63 Gini 0.95 0.84

Table 3: Coverage rates of 95% credible intervals from the tract level model for each quantity

of interest, averaged over tracts. Coverage rates are computed taking the true population

value as the reference value (Population), and taking the PRLN estimate as the reference

value (PRLN).

to the 2015 ACS 5-year period estimate of median household income.

We fit the models using each of the bin estimates described in Section 2, as well as the

mean and median estimates. We held out estimates of the 20th, 40th, 60th, 80th, and 95th

percentile, as well as the Gini coefficient to validate the models. To fit each model we used

Rstan (Stan Development Team, 2016) to do MCMC via NUTS with four chains, a warm-up

of 4,000 iterations per chain for tuning and burn-in, and a further 4,000 iterations per chain

were kept as draws from each model’s posterior distribution.

For L-PRLN, we construct the posterior predictive mean and median for each estimand, as

in Section 2.3. We compare each of these estimates as well as estimates from PRLN to each of

the held out estimates using the same four metrics as in Section 3.1: RMSE, RMSPE, MAD,

and MAPE, all computed across tracts. Tables D.1–D.5of the Supplementary Materials

contain these metrics for each of the five PUMAs we considered. Note that for some tracts,

some of the held out estimates were missing – particularly the 95th percentile, and mainly
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in the IL PUMA.

For most estimands in most tracts, and according to most metrics, L-PRLN does about

the same or slightly worse than PRLN. The main exceptions are in either tail of the distri-

bution, where for some tracts the difference between PRLN and L-PRLN is more magnified.

L-PRLN especially has trouble relative to PRLN in the lower tail. On the other hand, L-

PRLN often performs better than PRLN for the Gini coefficient, and in particular in the

IL PUMA it performs much better for the 95th percentile and consequently for the Gini

coefficient. This is due to the phenomenon discussed in Section 3.1, where PRLN sometimes

significantly incorrectly estimates the distribution in the upper bin. Additionally, in the CO

PUMA, the L-PRLN outperforms PRLN in the middle of the distribution.

4 INCOME SEGREGATION INDICES

Now we turn to our motivating problem: estimating income segregation indices using ACS

data. Households are segregated by income to the extent that households with similar

incomes choose to live near each other. To measure this, Reardon (2011); Reardon and

Bischoff (2011) construct the rank-order information theory index. The basic idea of the

index is to construct an entropy measure of the income distribution for an entire metro area,

and then construct the same measure for the income distributions for each census tract in

the metro area. Then the index is a weighted sum of the relative differences in this entropy

measure between each tract and the metro area.

Formally, let Fi(y) denote the CDF of income for census tract i, where i = 1, 2, . . . , I

indexes all census tracts in a given metro area. Then we assume that the income distribution

for the metro area, denoted by F (y) =
∑I

i=1wiFi(y), is a population weighted mixture of the

tract-level income distributions, where wi is the proportion of the metro area’s population

in tract i. Next, define E(G||F ) as the integrated binary entropy from the CDF F to the

CDF G, i.e.

E(G||F ) =

∫ ∞
−∞

e[F (y)]dG(y) (6)
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where e(p) = −p log(p)−(1−p) log(1−p) is binary entropy. Then the rank-order information

theory index, denoted by HR, can be defined as

HR =
I∑
i=1

wi
E(F ||F )− E(F ||Fi)

E(F ||F )
. (7)

Since HR is based on entropy, it is better understood as a measure of the differences in

diversity of the income distributions between the tract-level and metro-level (Roberto, 2015).

Indeed, the following example illustrates the point. Suppose that households in the metro

area only have one of two incomes: y = 30, 000 and y = 100, 000. In the entire metro area

P (y = 30, 000) = 2/3, while in tract i, Pi(y = 30, 000) = 1/3. Then for tract i we have

E(Fi||F ) = −e[Fi(30, 000)]P (y = 30, 000)− e[Fi(100, 000)]P (y = 100, 000)

= −e[1/3]
2

3
− e[1]

1

3
= −e[2/3]

2

3
= E(F ||F )

since e(p) = e(1 − p). So tract i contributes nothing to the metro area’s segregation index

even though it has a much higher concentration of rich households than the entire metro

area.

To remedy this, Roberto (2015) proposes the KL divergence index. Let f denote the

PDF associated with F above, and similarly for fi and Fi. Then the KL divergence index

can be defined as

D =
I∑
i=1

wiD(fi||f), D(g||f) =

∫ ∞
−∞

log
g(y)

f(y)
g(y)dy (8)

where D(g||f) is the KL divergence from the PDF f to the PDF g. In other words, the

divergence index is the population weighted sum of the divergences from the metro-level

income distribution to each of the tract-level distributions.

4.1 Correlates of income segregation

Reardon and Bischoff (2011) investigate the correlates of income segregation as measured

by HR. In particular, they are interested in whether income inequality, as measured by

the Gini index, is correlated with income segregation. They consider the largest 100 metro

20



areas in the U.S. by population, and fit a variety of regression models controlling for various

covariates. We focus on a portion of their Table 4, which reports the results of severale

regression models, of which we focus on three: one for all families, one for black families

only, and one for white families only. In these models they control for the year of the census,

various metro-year and race-metro-year covariates, and include metro fixed effects. They find

a stable positive relationship between the Gini coefficient and HR. Further, the strength of

this relationship is about the same for white families alone as it is for black families alone.

Our aim is to attempt to rerun these regressions using recent ACS data, then run them again

replacing HR with the divergence index.

Since we use ACS data, our controls and data differ in several ways in general. First,

we use the top 100 metro areas by population according to the 2018 ACS 5-year period

estimates of population. This list may not be identical to the list used by Reardon and

Bischoff (2011). Second, we use ACS estimates for households instead of families because

more of the required variables are available, though Reardon and Bischoff (2011) note that

they would have preferred to do a household level analysis, but it was not possible due to

data limitations. Finally, we only use a single year of ACS 5-year period estimates. The ACS

is not old enough to have more than two years of non-overlapping 5-year period estimates.

We use the 2018 5-year period estimates. 2013 5-year period estimates are also available,

though the definitions of several covariates differ across vintages. To avoid this complication,

we only use a single year of estimates. This leaves us with no within-metro variation in any of

the three regression models, so we omit the metro area fixed effects. Otherwise, we attempt

to faithfully include every covariate in the regression of Reardon and Bischoff (2011) in our

own regressions. Appendix E of the Supplementary Materials describes how each covariate

was sourced from the 2018 ACS 5-year period estimates, including how standard errors were

constructed if necessary. For black households and white households, two covariates are not

available: percentage of households with a female householder, and the Gini index. We omit

the female householder covariate in the black households and white households regressions

for this reason. However, we take advantage of L-PRLN to construct the metro-level Gini

index for black households and white households only along with its standard error using
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the available metro-race-level income estimates. See Appendix F for a description of how

this was performed.

To construct both HR and D for a given metro area, we first fit L-PRLN to the household

ACS 5-year period estimates of variations features of the household income distribution

for each tract in that metro area. For the household income distributions, we use bin

estimates with the same boundaries as in Section 3.1, mean and median estimates, estimates

of the 20th, 40th, 60th, 80th, and 95th percentile, estimates of the income shares of the

quintiles of the income distribution as well as the top 5% of the income distribution, and an

estimate of the Gini coefficient (U.S. Census Bureau, 2020a,b,c,d,e). For many tracts, some

of these estimates or their standard errors are not available. For those tracts we proceed with

whichever estimates with standard errors are available. In all cases if the mean estimate or

its standard error was not available for the tract, or if the ACS estimate of the population of

households was less than 100, the tract was omitted from the analysis. The same procedure

was applied to estimating the tract-level income distributions of black households alone, and

of white households alone, again as long as there were at least 100 households of the given

race in the tract according to the ACS. The only available tract-race-level household income

distribution ACS estimates are the bin, mean, and median estimates. The same priors as in

Section 2.5 were used, except in the black households models, country-level bin estimates for

only black households were used to center the prior on the bin probabilities, and similarly

for the white households models.

We cannot use the approach in Section 2.3 to estimate HR and D using the L-PRLN

income distribution estimates because both HR and D will yield nonsensical results if each

tract’s income distribution does not have the same support. So instead we treat both indices

as a function of the underlying tract-level parameters. Then we approximate the integrals

in (6) and (8) for each draw from the posterior distribution using importance sampling

techniques – see Appendix G for details. The result of this process is that for a given metro

area, we obtain a joint posterior sample of the index and the standard error associated with

approximating the integrals. Our approach is the same for computing HR and D by race in

a given metro area.
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4.2 Error-in-variables regression

To fit the regressions, we must contend with two complications that were not present in

Reardon and Bischoff (2011). First, the response and each covariate of each regression is

measured with error, though in each case the standard error is known. Second, instead of

observing the response and its standard error, we observe a sample from the joint posterior

distribution of the response and its standard error.

The solution to the first issue is an EIV regression; e.g., see Carroll et al. (2006), Arima

et al. (2015), and the references therein. But to use that, we first need to solve the second

problem using the variance decomposition formula. Let θ denote all unknown parameters

of the tract-level L-PRLN models for a given metro area, let d∗(θ) denote a segregation

index as a function of those parameters, let d denote our estimate of that index, and let h(θ)

denote the corresponding standard error. Then conditional on the model parameters we have

d|θ ∼ N(d∗(θ), h2(θ)). Then we can write E[d] = E[d∗(θ)] and var[d] = E[h2(θ)]+var[d∗(θ)].

Given a sample {(dm, h2m) : m = 1, 2, . . . ,M} from the joint posterior of (d, h2(θ)), we can

approximate these quantities by

E[d] ≈ d =
1

M

M∑
m=1

dm

var[d] ≈ h
2

=
1

M

M∑
m=1

h2m +
1

M − 1

M∑
m=1

(dm − d)2.

Then for simplicity we assume a simple measurement error model using these quantities:

d ∼ N(d∗, h
2
),

where d∗ is the true underlying index. This approach works for both HR and D, and allows

us to completely reduce the regression problem to EIV regression.

The EIV regression model we employ can be written as follows. Let i = 1, 2, . . . , I index

metro areas, let di denote either segregation index for that metro area, and let hi denote its

associated standard error. Let xi denote a vector of covariates for the metro area, with Si

the associated (diagonal) error covariance matrix. Further, let d∗i and x∗i denote the latent
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true values of the index and covariates, respectively. Then the model is given by (9)

di|xi, d∗i ,x∗i ∼ N(d∗i , h
2

i )

xi|d∗i ,x∗i ∼ N(x∗i ,Si)

d∗i |x∗i ∼ N(α + (x∗i )
′β, τ 2)

x∗ij
ind∼ N(µj, σ

2
j ), (9)

for i = 1, 2, . . . , I, where j = 1, 2 . . . , J indexes covariates. To complete the model we need

priors on α, β, τ 2, the µjs, and the σ2
j s.

We specify priors on the standardized regression coefficients for ease of interpretation

and elicitation, and on the corresponding standardized versions of all other parameters,

i.e. on β̃j = βjsxj/sd, µ̃j = (µj − xj)/sxj , and σ̃j = σj/sxj for j = 1, 2 . . . , J , and on

α̃ = (α−d+x′β)/sd and τ̃ = τ/sd. Using this parameterization, we employ the independent

priors listed in (10)

α̃ ∼ N(0, 1002)

β̃j
iid∼ N(0, 32) for j = 1, 2, . . . , J

τ̃ ∼ N+(0, 0.82)

µ̃j
iid∼ N(0, 32) for j = 1, 2, . . . , J

σ̃j
iid∼ N+(0, 22) for j = 1, 2, . . . , J. (10)

The priors on the β̃js imply that for any covariate, we are 68% sure that a one standard

deviation change in the covariate will result in no more than a three standard deviation

change in the response. The prior on α̃ implies that we are 68% certain that the intercept

will be within 100 sample standard deviations of the response from the sample mean of the

response. The half-normal prior on τ̃ implies that we are 68% certain that the error variance

will be no more than 0.8 times the the total sample variance of the response. All of these

priors are loose relative to typical expectation of regressions in the social sciences, but still

provide a small amount of regularization.

The priors on the covariate means and standard deviations are similarly loose, and can

be thought of as empirical Bayes priors. The priors on the µjs are loosely centered on the
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sample means of the xjs, and the priors on the σjs allow for a wide range of variation around

the sample standard deviations of the xjs.

4.3 Results

Figures H.4 , H.5 , and H.6 in Appendix H demonstrate that the divergence and information

theory indices substantially disagree about the relative ranking of metro areas in terms of

income segregation. This demonstrates that Roberto (2015)’s criticism of the information

theory index is not merely a theoretical curiosity, but instead that there is significant mis-

measurement of income segregation. As a result, we should expect the EIV regression results

to differ as well.

Table 4 contains posterior summaries of the Gini index EIV regression coefficient for

each model fit — see Appendix H for detailed tables including every covariate. In similar

information index regressions, Reardon and Bischoff (2011, Table 4) found that the regression

coefficient on the Gini index to be 0.56 for all families, 0.47 for black families, and 0.45 for

white families. Our regressions use more recent household-level data, do not have exactly

the same covariates, and do not have metro fixed effects. Despite this, our results for all

households are broadly consistent with the results of Reardon and Bischoff (2011) for all

families. Our results for black and white households are somewhat different. In both cases

the 95% credible intervals are much wider, and contain zero. This is largely due to higher

standard errors for the black households and white households ACS estimates compared to

the standard errors of the all households ACS estimates. The covariates simply contain less

useful information for the black households and white households regressions.

However, the Gini index regression coefficients also appear to be much closer to zero for

black households and white households. The upper end of the 95% credible intervals do

not contain Reardon and Bischoff (2011)’s estimates, and for black households the posterior

mean and median are both negative. This may be due to differences in model specification

since our black households and all households regressions are missing the female head of

household covariate since it is not available in the ACS. Additionally, our regressions do not

include metro area fixed effects since we have only one year of data, though this difference
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Households Mean SD 2.5% 25% 50% 75% 97.5%

Information theory index

All 0.427 0.058 0.313 0.389 0.427 0.467 0.540

Black -0.079 0.125 -0.328 -0.161 -0.078 0.004 0.164

White 0.145 0.111 -0.072 0.071 0.146 0.220 0.366

Divergence index

All 0.763 0.157 0.458 0.657 0.762 0.868 1.074

Black 1.403 0.742 -0.036 0.899 1.402 1.898 2.872

White 0.683 0.240 0.207 0.523 0.683 0.843 1.155

Table 4: Posterior summaries of raw EIV regression coefficients for the Gini index.

is present in the all households regressions as well. That said, we take these regressions as a

baseline to compare with divergence index regressions using the same model specification.

The results for the divergence index are significantly different. The coefficient on the

Gini index is larger in all cases, though for making these comparisons the standardized co-

efficients displayed in Table 5 is more meaningful—we also compute standardized versions

of the regression coefficients from Reardon and Bischoff (2011)’s Table 4 in Appendix H.

In that case, the Gini index regression coefficient is similarly sized in the all households

regressions, though there is more uncertainty in the divergence index regression. The Gini

index coefficients in the black households and white households regressions are once again

smaller than in the all households regressions, but this difference is much less extreme for the

divergence index than for the information theory index. In fact, the 95% credible interval

for white households is strictly above zero, and for black households only just contains zero

inside the lower bound. Notably, the Gini index appears to be positively associated with the

divergence index for black households only and white households only, while the same is not

true for the information theory index. That is, there is enough uncertainty that we cannot

rule out that there is no meaningful difference between the divergence index coefficients and

the information theory index coefficients, but this is evidence that the information index un-

derstates the strength of the relationship between income inequality and income segregation.
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Households Mean SD 2.5% 25% 50% 75% 97.5%

Information theory index

All 0.566 0.076 0.414 0.515 0.565 0.618 0.714

Black -0.100 0.157 -0.412 -0.203 -0.098 0.005 0.207

White 0.138 0.106 -0.069 0.067 0.139 0.209 0.348

Divergence index

All 0.580 0.120 0.348 0.500 0.580 0.661 0.817

Black 0.379 0.200 -0.010 0.243 0.378 0.512 0.775

White 0.399 0.140 0.121 0.306 0.399 0.493 0.675

Table 5: Posterior summaries of standardized EIV regression coefficients for the Gini index.

This finding has significant subject-matter implications. For example, Chetty et al. (2020)

suggest that if elite universities reduced parental income segregation by admitting students

in an income-neutral manner conditional on test scores, this would reduce integenerational

income persistence among college students by about 25%. By using an improper measure of

income segregation that ultimately understates the relationship between income segregation

and income inequality, Reardon and Bischoff (2011) implicitly understate the value of these

interventions.

5 DISCUSSION

L-PRLN serves its purposes well. It interpolates the income distribution nearly as well as the

original PRLN when forced to use a restricted subset of the available estimates. However, it

has several added benefits. First, our L-PRLN is able to take advantage of a wider variety

of tract-level estimates than PRLN, including quantile and moment estimates. PRLN is

fundamentally limited to using only bin estimates. Second, unlike PRLN, L-PRLN takes

into account the standard errors of the tract-level estimates. Finally, while PRLN can only

provide point estimates, L-PRLN provides uncertainty quantification through the posterior

distribution.
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While we employ L-PRLN to construct income segregation indices, it can be used to

construct any other feature of income distributions of interest. For example, sociologists

and economists are interested in a variety of measures of income inequality and income

segregation, and use a variety of methods to estimate them not limited to PRLN (Kennedy

et al., 1996; Jargowsky, 1996; Mayer et al., 2001; Hardman and Ioannides, 2004; Watson,

2009). These approaches tend to suffer from the same limitations as PRLN, and L-PRLN

can be applied to estimating them as well.

L-PRLN can also be generalized and applied to other types of variables. For example,

it could be used to interpolate the age distribution, for which there are often a selection

of bin estimates available. To do this only requires appropriate choices for the fks in (1).

Each fk could be a truncated normal density, though in practice the age distribution should

be investigated to determine an appropriate choice. Many choices will require estimation

of more parameters per bin than in the PRLN density. In order to handle this, it may be

necessary to reduce the number of knots so that there are more bin estimates than knots.

The framework can also be applied to data from sources other than the Census Bureau as

well. The key is that there are a wide variety of available estimates of different distributional

features at the area-level. These will typically be bin estimates, but many other estimate

types could be used.

Based on the simulation study in Section 3.1 and out-of-sample performance on held out

estimates in Section 3.2, neither PRLN nor L-PRLN performed uniformly superior than the

other when L-PRLN was restricted to a subset of available estimates. L-PRLN performed

the best in the middle and far right tail of the distribution, with PRLN typically performing

better elsewhere. This is likely due to how informative the Dirichlet prior is on the knot

probabilities. As noted in Section 2.5, a more informative prior was necessary in this case

to help facilitate NUTS. In particular, note that for some census tracts, the bin estimate for

one or more income categories is zero. Without an informative prior, these probabilities will

be estimated to be close to zero and NUTS will go into the extreme tails of the transformed

space, causing numerical and sampling problems. The informative prior regularizes those

estimates away from zero and prevents the computational problem. This leads to a loss of
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predictive accuracy, although this is reflected in the uncertainty estimates that are provided

by L-PRLN. Further, note the knots in L-PRLN are set equal to the boundaries defining the

bins for the bin estimates. This is done for computational convenience but is not necessary.

Indeed, knot selection is a potential avenue for improving L-PRLN. Naively, it seems as

though spacing the knots roughly equally in the quantile domain would alleviate the problem

with probabilities being estimated close to zero, and improve the quality of the model. In

model fits not reported here, we found that this degrades model performance despite the

looser priors, suggesting that there are other factors important for knot selection. The

number and spread of available tract-level estimates should fundamentally constrain the

optimal number and placement of the knots in some way, but precisely how is an area of

future research.

We turn now to the empirical application constructing income segregation indices and

estimating the association between them and the Gini index. The analysis in Reardon

and Bischoff (2011) cannot be performed for more recent years due to the elimination of

the decennial census long form. Instead, ACS estimates are available, but their standard

error must be taken into account. Because of its deficiencies, PRLN is not suitable for

constructing income segregation indices using ACS data. Unlike PRLN, L-PRLN allows us

to use all available estimates, account for uncertainty in those estimates, and propagate that

and other sources of uncertainty into the estimated indices. Additionally, L-PRLN played a

secondary role by allowing us to construct metro-level Gini indices for black households only

and white households only using ACS estimates, while again propagating uncertainty into

the indices so that it could be accounted for in the EIV segregation index regressions. The

segregation indices themselves disagreed substantially about the relative ranking of metro

areas in terms of income segregation, illustrating that Roberto (2015)’s criticisms of the

information theory index are well-founded.

The results of the regressions were also instructive. Reardon and Bischoff (2011) found a

strong positive relationship between income inequality and income segregation for all families

(b = 0.353, se = 0.053) as well as for black families alone (b = 0.316, se = 0.083) and white

families alone (b = 0.311, se = 0.076). The previous estimates are standardized regression
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coefficients, which we compute from Reardon and Bischoff (2011)’s raw coefficients and

summary statistics in Appendix H. Using more recent ACS household data in a somewhat

different model specification, we were not able to reproduce these results using Reardon

and Bischoff (2011)’s information theory index. For all households, we do reproduce the

strong positive relationship between income inequality and income segregation in Table 5

(b = 0.566, sd = 0.076). However, for black households only (b = −0.100, sd = 0.157) and

white households only (b = 0.138, sd = 0.106) the standardized estimates are attenuated

and not significantly different from zero, suggesting that at least at the subgroup level,

the relationship between income inequality and income segregation has changed in recent

decades.

When we use the more appropriate divergence index, we find that the relationship be-

tween income inequality and income segregation appears stronger, which can be seen using

the standardized coefficient estimates in Table 5. The estimates for all households are similar

(b = 0.580, sd = 0.120), but the estimates for black households alone (b = 0.379, sd = 0.200)

and for white households alone (b = 0.399, sd = 0.140) are much larger using the divergence

index rather than the information index. There is a lot more uncertainty in these estimates,

the 95% credible interval for black households alone does barely contain zero, and the 95%

credible intervals for our divergence index regressions do overlap with the credible intervals

for our information theory index regressions. But with those caveats in mind, our results

do suggest that the information theory index understates the strength of the relationship

between income inequality and income segregation.

Comparing our divergence index regressions to Reardon and Bischoff (2011)’s informa-

tion theory index regressions is more fraught since both the index and the analysis period

are changing at the same time. That said, we reproduce the strong positive relationship

they found between income inequality and income segregation, though our standardized

point estimates are somewhat larger, especially for all households. This again suggests that

the information index understates the relationship between income inequality and income

segregation, though there is much more uncertainty in this comparison so the evidence is

much weaker. But whether we compare our divergence index regressions with our own in-
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formation theory index regressions on the same ACS data, or with Reardon and Bischoff

(2011)’s information theory index regressions on older Census data, we find evidence that

the information theory index is understating the relationship between income inequality and

income segregation.

SUPPLEMENTARY MATERIAL

Online Appendix: Includes several appendices adding relevant detail to the paper.

Appendix A: Exploratory tables and figures. Includes various tables and fig-

ures referenced throughout the paper that are useful, but not necessary, for un-

derstanding the data and results in this paper.

Appendix B: Latent PRLN density functionals. Includes formulas for all of the

relevant functionals of the latent PRLN density referenced in the paper, including

mean, variance, CDF, quantile function, income shares, and Gini index.

Appendix C: Generating the synthetic population. Includes details about how

the synthetic population was generated in the simulation study in Section 3.1.

Appendix D: Evaluating Point Estimates. Includes tables evaluating L-PRLN

and PRLN point estimates on a variety of metrics from comparison using ACS

data in Section 3.2.

Appendix E: Segregation index EIV data. Includes details on how the data for

the segregation index EIV regressions were sourced from the ACS for Section 4.

Appendix F: Household level Gini index estimation by race. Includes details

on metro-level and metro-race-level household income Gini indices were estimated

for use in Section 4.

Appendix G: Computing segregation indices. Includes details on how both the

information theory index and the divergence index were computed as a function

of model parameters in the posterior distribution for use in Section 4.

Appendix H: Segregation index results. Includes detailed tables of regression co-

efficients for each of the income segregation index EIV regressions we performed
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in Section 4, as well as Reardon and Bischoff (2011)’s income index regression

results in raw and standardized form.

Github Repository: https://www.github.com/simpsonm/latentprln Includes all code

for the all models discussed and used in the paper, and for reproducing our results,

including R code for the Pareto-linear procedure, and code for downloading and cleaning

ACS tables.
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