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A EXPLORATORY TABLES AND FIGURES

This appendix contains several tables and figures that are useful for understanding the data
that were referenced in the main text.

Bins
≥10 ≥15 ≥25 ≥35 ≥50 ≥750 ≥100 ≥150 ≥200

Tract <10 <15 <25 <35 <50 <75 <100 <150 <200
2 9.8 9.3 25.8 13.7 20.4 14.3 4.0 2.8 0.0 0.0
3 31.9 16.0 21.1 12.4 3.3 6.8 4.1 1.9 1.1 1.4
5 46.6 8.3 19.5 6.4 10.3 3.8 1.7 0.9 2.5 0.0
6 7.2 3.2 4.4 3.6 16.1 17.3 14.2 23.0 5.8 5.4
7 10.5 10.8 15.3 15.7 16.6 18.9 9.1 2.7 0.4 0.0
9 17.6 10.3 21.5 14.6 18.4 10.4 4.9 2.2 0.0 0.0

Table A.1: Bin estimates for selected tracts in PUMA 600 (Boone County) in MO. All
estimates are 2015 ACS 5-year period estimates, and come from ACS Table S1901. Each bin
estimate is the percentage of households in that tract with an income within a set of bounds,
including the lower bound but excluding the upper bound. Both bounds are denominated
in $1,000. The ACS tables also include an associated margin of error for each estimate (not
displayed here).
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Figure A.1: An example PUMA with nested tracts: PUMA 600 (Boone County) in MO.
Tracts are shaded according to 2015 ACS 5-year estimates of median household income.

Figure A.2: True tract-level means, medians, and standard deviations of income for the
synthetic population. The first two exhibit a noticeable inside-out spatial pattern, while the
third is a bit different but still appears to have spatial dependence.
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Figure A.3: Maps of each PUMA used in the main text with each of the census tracts. Each
tract within each PUMA is shaded according to the 2015 ACS 5-year period estimate of
median household income.
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B LATENT PRLN DENSITY FUNCTIONALS

The latent PRLN density is given by

π(x) =
K∑
k=1

pkfk(x).

Let k∗ denote the largest knot which is less than an available estimate of the median. Then

fk(x) =
1

κk+1 − κk
× 1(κk < x ≤ κk+1) if k∗ ≤ k∗ ,

=
αkκ

αk
k x

−αk−1

1−
(

κk
κk+1

)αk
× 1(κk < x ≤ κk+1) if k∗ < k < K ,

= αkκkx
−αk−1 × 1(κK < x) if k = K .

For the kth bin, let µk denote its mean, σ2
k denote its variance, Fk(x) denote its CDF,

and F−1
k denote its quantile function, and Ik denote its integrated Lorenz curve. Then the

following sections derive formulas for several functionals in terms of these basic building
blocks.

B.1 Mean

Let µ = Eπ[x]. Then

µ =
K∑
k=1

pkµk.

Note that this requires that each µk exist.

B.2 Variance

Let σ2 = varπ[x]. Then the conditional variance formula yields

σ2 =
K∑
k=1

pkσ
2
k +

K∑
k=1

pk(µk − µ)2.

Note that this requires that each σ2
k exist.
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B.3 CDF

Let Π(x) denote the CDF corresponding to π(x). Then

Π(x) =



0, if x ≤ κ1

F1(x), if κ1 < x ≤ κ2

p1 + p2 ∗ F2(x), if κ2 < x ≤ κ3

...
...∑j−1

k=1 pk + pjFj(x), if κj < x ≤ κj+1

...
...∑K−1

k=1 pk + pKFK(x), if κK < x ≤ κK+1

1, if κK+1 ≤ x.

Note that bin probabilities are given by a difference in the CDF evaluated at two knots, i.e.

pk = Π(κk)− Π(κk−1).

B.4 Quantile function

Let Π−1 denote the quantile function associated with π(x). Then

Π−1(τ) =



F−1
1

(
τ
p1

)
, if 0 ≤ τ ≤ p1

F−1
2

(
τ−p1
p2

)
, if p1 < τ ≤ p1 + p2

...
...

F−1
j

(
τ−

∑j−1
k=1 pk
pj

)
, if

∑j−1
k=1 pk < τ ≤

∑j
k=1 pk

...
...

F−1
K

(
τ−

∑K−1
k=1 pk
pK

)
, if

∑K−1
k=1 pk < τ ≤ 1.

Note that Π−1 is not everywhere differentiable as a function of the pks.

B.5 Integrated Lorenz curve

The Lorenz curve for a PDF f with associated CDF F and mean µ is defined as

L(τ) =
1

µ

∫ F−1(τ)

−∞
yf(y)dy.

The integrated Lorenz curve is given by

I =

∫ 1

0

L(τ)dτ =

∫ ∞
−∞

L[F (x)]f(x)dx.
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Let Lk denote the Lorenz curve for the kth bin. Let κk∗ denote the largest knot such that
κk∗ ≤ x = Π−1(τ) and note that for any Lorenz curve L(0) = 0 and L(1) = 1. Then we can
express the Lorenz curve for the latent PRLN density as

L[Π(x)] =
1

µ

∫ x

−∞
yπ(y)dy

=
1

µ

[
k∗−1∑
j=1

pjµj + pk∗

∫ x

κk∗

yfk∗(y)dy

]

=
1

µ

[
k∗−1∑
j=1

pjµj + pk∗µk∗Lk∗ [Fk∗(x)]

]

=
1

µ

K∑
k=1

pkµkLk[Fk(x)].

This implies that if we state the Lorenz curve in its original form as a pure function of τ , we
have

L(τ) =
1

µ

K∑
k=1

pkµkLk{Fk[F−1(τ)]}.

Then the integrated Lorenz curve can be written as

I =
1

µ

K∑
k=1

pkµk

∫ ∞
−∞

Lk[Fk(x)]π(x)dx

=
1

µ

K∑
k=1

pkµk

K∑
j=1

pj

∫ κj+1

κj

Lk[Fk(x)]fj(x)dx

=
1

µ

K∑
k=1

pkµk

[
pk

∫ κk+1

κk

Lk[Fk(x)]fk(x)dx+
K∑

j=k+1

pj

]

=
1

µ

K∑
k=1

pkµk

[
pkIk +

K∑
j=k+1

pj

]
.

B.6 Distribution shares

The Lorenz curve represents the proportion of aggregate income that goes to the lower p
proportion of the income distribution, for any 0 < p < 1. So for an income distribution,
distribution shares (income shares) are given by differences in the Lorenz curve evaluated at
two points. For 0 ≤ τ1 < τ2 ≤ 1 the aggregate income that goes to the distribution between
τ1 and τ2 is given by

s(τ1, τ2) = L(τ2)− L(τ1).
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B.7 Gini index

The Gini index for a continuous distribution can be expressed in terms of the Lorenz curve
as

G = 1− 2

∫ 1

0

L(τ)dτ = 1− 2I

B.8 Applying to the latent PRLN density

To apply this to the latent PRLN density, we need to find all of the building blocks for each
bin type: uniform, truncated Pareto, and Pareto distributed.

B.8.1 Uniform bins

For uniform bins:

µk =
1

2
(κk+1 + κk)

σ2
k =

1

12
(κk+1 − κk)2

Fk(x) =
x− κk

κk+1 − κk
for κk ≤ x ≤ κk+1

F−1
k (τ) = κk + τ(κk+1 − κk).

Then the Lorenz curve is

Lk[Fk(x)] =
1

µk

∫ x

κk

yfk(y)dy

=
1

2µk

x2 − κ2
k

κk+1 − κk
.

8



The integrated Lorenz curve is

Ik =

∫ κk+1

κk

1

2µk

x2 − κ2
k

(κk+1 − κk)2
dx

=
1

2µk(κk+1 − κk)2

[
κ3
k+1

3
− κ3

k

3
− (κk+1 − κk)κ2

k

]
=

1

µk

[
(κk+1 − κk)(κ2

k+1 + κk+1κk + κ2
k)

6(κk+1 − κk)2
− κ2

k

2(κk+1 − κk)

]
=

1

µk

κ2
k+1 + κk+1κk + κ2

k − 3κ2
k

6(κk+1 − κk)

=
κk+1 + 2κk

6µk

=
κk+1 + 2κk

3(κk+1 + κk)

=
1

3

(
1 +

κk
κk + κk+1

)
.

B.8.2 Pareto bins

For Pareto distributed bins

µK =
αKκK
αK − 1

if αK > 1

σ2
K =

κ2
KαK

(αK − 1)2(αK − 2)
if αK > 2

FK(x) = 1−
(κK
x

)αK

for κK ≤ x

F−1
K (τ) =

κK
(1− τ)1/αK

.

Then the Lorenz curve is given by

LK [FK(x)] =
1

µK

∫ x

κK

αKκ
αK
K y−αKdy

=
αKκ

αK
K

µK

(
− 1

αK − 1
y−αK+1

)x
κK

=
1

µK

αK
αK − 1

(
κK − καK

K x1−αK
)
.
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Then the integrated Lorenz curve is

IK =

∫ ∞
κK

LK [FK(x)]fK(x)dx

=
1

µk

αK
αK − 1

(
κK − καK

K

∫ ∞
κK

x1−αKαKκ
αK
K x−αK−1dx

)
=

1

µk

αK
αK − 1

(
κK −

1

2

∫ ∞
κK

2αKκ
2αK
K x−2αKdx

)
=

1

µK

αK
αK − 1

(
κK −

1

2

2αK
2αK − 1

κK

)
= 1− αK

2αK − 1
.

B.8.3 Truncated Pareto bins

For truncated Pareto bins

µk =
αkκk
αk − 1

1−
(

κk
κk+1

)αk−1

1−
(

κk
κk+1

)αk
if αk > 1

σ2
k =

αk
αk − 2

κ2
k

1−
(

κk
κk+1

)αk−2

1−
(

κk
κk+1

)αk
− α2

k

(αk − 1)2
κ2
k

[
1−

(
κk
κk+1

)αk−1
]2

[
1−

(
κk
κk+1

)αk
]2 if αk > 2

Fk(x) =
1−

(
κk
x

)αk

1−
(

κk
κk+1

)αk
for κk ≤ x ≤ κk+1

F−1
k (τ) =

κk{
1− τ

[
1−

(
κk
κk+1

)αk
]}1/αk

.

The formulas for means and variances can be extended to αk > 0 so long as care is taken to
account for special cases when αk = 1 and αk = 2.

10



Next, the Lorenz curve is given by

Lk[Fk(x)] =
1

µk

∫ x

κk

αkκ
αk
k y
−αk

1−
(

κk
κk+1

)αk
dy

=
1

µk

αkκ
αk
k

1−
(

κk
κk+1

)αk

[
− 1

αk − 1
(x1−αk − κ1−αk

k )

]

=
1

µk

αk
αk − 1

καk
k

1−
(

κk
κk+1

)αk

[
κ1−αk
k − x1−αk

]
=
κk
µk

αk
αk − 1

1−
(
κk
x

)αk−1

1−
(

κk
κk+1

)αk
.

Then the integrated Lorenz curve is given by

Ik =

∫ κk+1

κk

Lk[Fk(x)]fk(x)dx

=
1

µk

αk
αk − 1

καk
k

1−
(

κk
κk+1

)αk

∫ κk+1

κk

[
κ1−αk
k − x1−αk

] αkκ
αk
k

1−
(

κk
κk+1

)αk
x−αk−1dx

=
1

µk

αk
αk − 1

1

1−
(

κk
κk+1

)αk

κk − 1

2

1−
(

κk
κk+1

)2αk

1−
(

κk
κk+1

)αk

∫ κk+1

κk

2αkκ
2αk
k

1−
(

κk
κk+1

)2αk
x−2αkdx


=

1

µk

αk
αk − 1

1

1−
(

κk
κk+1

)αk

κk − 1

2

1−
(

κk
κk+1

)2αk

1−
(

κk
κk+1

)αk

2αk
2αk − 1

κk
1−

(
κk
κk+1

)2αk−1

1−
(

κk
κk+1

)2αk


=
κk
µk

αk
αk − 1

1

1−
(

κk
κk+1

)αk

1−
1−

(
κk
κk+1

)2αk−1

1−
(

κk
κk+1

)αk

αk
2αk − 1


= 1− αk

2αk − 1

1−
(

κk
κk+1

)2αk−1

1−
(

κk
κk+1

)αk

= 1−
αkκ

1−αk
k+1

2αk − 1

κ2αk−1
k+1 − κ2αk−1

k

καk
k+1 − κ

αk
k

.

C GENERATING THE SYNTHETIC POPULATION

We construct the population in our simulation study to have the same number of households
per tract as the 2014 ACS 5-year period estimates of household population for the Boone
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County, MO PUMA. We then divide the population into the same 106 strata that exist in
the 2014 Boone County 5-year PUMS – a stratum is defined as all observations with the
same survey weight. The population of each stratum is assumed to be to nsws where ns
is the sample size of stratum s in the PUMS, and ws is the survey weight associated with
stratum s. To fully specify the population we need to know number of households in each
tract/stratum combination, though in reality this is unknown. Nevertheless, we know that
the PUMS strata are based in part on census tracts (U.S. Census Bureau, 2017), so in our
synthetic population we assign the households in a given stratum to a small number of tracts
using an algorithm that produces tract and stratum assignments that are closely related.

Next, an income is generated for each household using a two-component mixture of
lognormals with parameters that depend on both their tract and stratum. The resulting
tract-level distributions are mixtures of lognormals. Figure A.2 in the Supplementary Mate-
rials contains maps of the true tract-level means, medians, and standard deviations of income
for the synthetic population.

The above description omits two important pieces of how the population is generated.
First, how strata are assigned to tracts, and second, how incomes are generated for each
tract/stratum combination. We take these in turn.

C.1 Assigning strata to tracts

Algorithm 1 describes how strata are assigned to tracts. Essentially, for each tract, we
randomly select a stratum, then assign as much of that stratum as we can to the tract. If
the stratum fully fits in the tract (along with the strata already assigned to it), then the
stratum is deleted from the pool of available strata, and a new one is randomly selected to
repeat the process. If the stratum does not fit, then the stratum is returned to the pool of
available strata with its remaining population, and we move on to the next tract.

Algorithm 1 Assign strata to tracts. Assume that tract.popest is the desired population of
the tract, and that stratum.pop is initialized with the assigned population of the stratum.
0:

for all tract do
Initialize tract.pop = 0
while tract.pop < tract.popest do

Randomly select a stratum with stratum.pop > 0
Set P = MIN(stratum.pop, tract.popest - tract.pop)
Assign P members of the stratum to tract
Set target.pop + = P
Set stratum.pop − = P

end while
end for
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C.2 Generating incomes for tract/stratum combinations

Generating the incomes is more complex. For each tract/stratum combination we define a
two-component mixture of lognormal distributions, using the PUMS data as a guide. To do
this, we need several intermediate quantities. First, using the PUMS data, let m̂ denote the
sample mean of z = log(income + 1) and let ŝ denote the sample standard deviation. We
use the offset of one because there are incomes equal to zero in the dataset.

Next for each stratum, we compute the a measure of dispersion of z and a measure of how
far z tends to be away from the the PUMA mean. Let i = 1, 2, . . . , ns index observations in
stratum s, and zis denote log offset income for each of those observations, as in the previous
paragraph. Then define

Ds =
1

ns + 5

ns∑
i=1

(zis − m̂).

This is a measure of how far the stratum tends to be from the PUMA average, regularized
toward zero since many strata have as few as one observation. Similarly, define

H2
s =

ns
ns + 500

1

ns

ns∑
i=1

(zis − zs)2 +
500

ns + 500
ŝ2,

where zs is the mean of zis in stratum s. This is a measure of dispersion in the stratum,
again regularized to be much closer the PUMA level dispersion. Note that we divide by ns
instead ns − 1 to avoid dividing by zero in strata with only one member.

Finally, we need a tract-level and a stratum-level covariate to use these quantities with.
For a tract r, let distr denote the average distance of tract r from the center of the bounding
box containing the PUMA, and let sdistr = (distr − mean(dist1:R))/sd(dist1:R) denote the
scaled distance from the center for r. Next let ws denote the unique weight associated with
stratum s. Finally let Ws = (logws − mean(logw1:S))/sd(logw1:S) denote the scaled log
weight for s.

Using these quantities, we need to choose the mean parameters µ1 and µ2, the standard
deviation parameters σ1 and σ2, and the mixture weight ω, all for a given tract/stratum
combination (r, s). We use the following quantities:

ω =
1

1 + exp[0.2sdistr + 0.2 ∗Ws]

µ1 = 0.87m̂− 0.3sdistr +Ds

µ2 = 1.05m̂− 0.2sdistr + 1.5Ds

σ1 = exp

[
sdistr

5
− logHs

5

]
σ2 = 0.6 exp

[
sdistr

5
− logHs − log 0.6

5

]
.
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We arrived at these settings through exploratory analysis until we found a population of
incomes that looked somewhat like a real income distribution. The distribution includes
natural spatial variation across tracts and variation across strata, in an attempt to mimic
the observed data.
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D EVALUATING POINT ESTIMATES

Estimator 20th 40th 60th 80th 95th Gini
MAD PRLN 1906 2014 2093 4417 7369 0.0176

Mean 2207 1926 2020 5510 8114 0.0123
Median 2200 1915 1981 5641 9172 0.0122

MAPE PRLN 3.44 2.36 1.81 2.78 3.38 4.60
Mean 4.18 2.35 1.72 3.28 3.79 3.48
Median 4.20 2.35 1.69 3.36 4.39 3.39

RMSE PRLN 2203 2614 2813 5584 9998 0.0251
Mean 2591 2332 2629 7371 10550 0.0149
Median 2599 2358 2591 7493 11891 0.0152

RMSPE PRLN 3.86 3.00 2.39 3.53 4.40 6.25
Mean 4.89 2.83 2.28 4.06 4.91 4.17
Median 4.96 2.88 2.22 4.17 5.67 4.07

Table D.1: MAD, MAPE, RMSE, and RMSPE for several estimates of the held out quantiles
and Gini coefficient for the CO PUMA. The estimates are the PRLN estimate (PRLN), and
the posterior predictive mean and median from L-PRLN (Mean and Median).
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Estimator 20th 40th 60th 80th 95th Gini
MAD PRLN 1270 1705 3658 8423 36108 0.066

Mean 2669 2429 3613 5740 15387 0.020
Median 2544 2363 3793 5737 14153 0.022

MAPE PRLN 3.12 2.57 3.13 4.39 16.00 13.12
Mean 8.18 3.29 3.03 3.44 7.64 3.94
Median 7.48 3.28 3.15 3.49 6.98 4.41

RMSE PRLN 1870 2474 4927 13429 48647 0.089
Mean 3545 3119 5306 7212 18034 0.025
Median 3354 3063 5634 7279 16479 0.028

RMSPE PRLN 4.18 3.82 4.09 6.21 20.60 17.45
Mean 11.63 4.08 4.08 4.19 9.04 4.76
Median 10.62 4.17 4.25 4.38 8.20 5.36

Table D.2: MAD, MAPE, RMSE, and RMSPE for several estimates of the held out quantiles
and Gini coefficient for the IL PUMA. The estimates are the PRLN estimate (PRLN), and
the posterior predictive mean and median from L-PRLN (Mean and Median).

Estimator 20th 40th 60th 80th 95th Gini
MAD PRLN 492 1053 2040 2981 7925 0.021

Mean 1229 1467 2173 3471 10037 0.019
Median 1128 1514 2087 3550 10062 0.020

MAPE PRLN 2.96 2.80 3.35 3.83 5.14 4.30
Mean 6.27 3.72 3.84 4.51 6.14 3.88
Median 5.63 3.80 3.66 4.56 6.10 4.15

RMSE PRLN 714 1561 2826 3867 11217 0.031
Mean 1818 2019 2840 4318 14959 0.026
Median 1609 2072 2807 4577 15089 0.028

RMSPE PRLN 4.07 3.67 4.29 5.32 6.42 5.60
Mean 8.28 4.66 4.86 5.89 7.90 4.82
Median 7.23 4.76 5.00 6.37 7.90 5.13

Table D.3: MAD, MAPE, RMSE, and RMSPE for several estimates of the held out quantiles
and Gini coefficient for the MO PUMA. The estimates are the PRLN estimate (PRLN), and
the posterior predictive mean and median from L-PRLN (Mean and Median).
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Estimator 20th 40th 60th 80th 95th Gini
MAD PRLN 542 1100 1581 2312 6362 0.015

Mean 973 1450 1683 3161 7593 0.012
Median 1015 1381 1725 3194 7561 0.013

MAPE PRLN 2.48 2.76 2.54 2.40 4.24 3.39
Mean 4.63 3.71 2.67 3.34 4.91 2.71
Median 4.76 3.52 2.72 3.36 4.79 2.95

RMSE PRLN 739 1424 2081 3318 8187 0.021
Mean 1235 1869 2370 3893 9107 0.016
Median 1282 1869 2490 3979 9627 0.018

RMSPE PRLN 3.37 3.50 3.26 3.31 5.48 4.63
Mean 5.95 4.80 3.60 4.01 5.71 3.54
Median 5.97 4.80 3.76 4.11 5.82 3.99

Table D.4: MAD, MAPE, RMSE, and RMSPE for several estimates of the held out quantiles
and Gini coefficient for the MT PUMA. The estimates are the PRLN estimate (PRLN), and
the posterior predictive mean and median from L-PRLN (Mean and Median).

Estimator 20th 40th 60th 80th 95th Gini
MAD PRLN 527 479 1687 2372 6118 0.022

Mean 917 865 1850 2587 5698 0.022
Median 831 654 1642 2458 6544 0.023

MAPE PRLN 3.96 1.86 3.87 3.38 5.55 4.42
Mean 7.52 3.60 4.21 3.73 5.13 4.27
Median 6.72 2.73 3.68 3.51 5.86 4.49

RMSE PRLN 709 658 2301 3132 7868 0.039
Mean 1134 1050 2505 3208 7058 0.038
Median 1015 912 2397 3094 7901 0.039

RMSPE PRLN 5.13 2.57 5.21 4.10 7.27 6.86
Mean 9.28 4.40 5.39 4.33 6.28 6.64
Median 8.20 3.89 5.06 4.10 6.98 6.96

Table D.5: MAD, MAPE, RMSE, and RMSPE for several estimates of the held out quantiles
and Gini coefficient for the NY PUMA. The estimates are the PRLN estimate (PRLN), and
the posterior predictive mean and median from L-PRLN (Mean and Median).
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E SEGREGATION INDEX EIV DATA

All of the data used in the income segregation index regressions was sourced from the ACS.
We attempted to construct each variable used by Reardon and Bischoff (2011) in their
Table 4. For this exercise, we obtained metro-level 5-year ACS period estimates for a variety
of variables, for each of the top 100 metro areas by population according to the 2018 5-year
ACS estimates.

For many variables, we had to transform the ACS estimate in order to get it into the
form needed for the model. MOEs and SEs for these “derived estimates” were derived using
Census guidelines in the 2018 ACS general handbook (U.S. Census Bureau, 2018). Note
that these MOEs and SEs are approximations, especially to the extent that they do not take
into account correlation between the errors of multiple input estimates to a derived estimate.
Below are tables describing the various pieces of ACS data needed for this exercise.

The only metro-level variables used by Reardon and Bischoff (2011) that we could not
construct a reasonable analogue for were percent of families with female householder by race
and household income Gini index by race. The former was omitted from the analysis, and
we used L-PRLN to estimate the latter, described in Appendix F. Any metro area which
does not have all necessary estimates available for a given regression is omitted from that
regression. Additionally, if fewer than five census tracts from a metro area were available
to compute the information theory and divergence indices for a given group of households,
then that metro area was omitted from all regressions for that household group. As a result,
N = 83 in the all households and white households regressions, and N = 79 in the black
households regressions.
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Their Variable ACS Variable Notes

Unemployment Rate S2301 C04 001
Also have labor force participation rate (S2301 C02 001) and employ-
ment to population ratio (S2301 C03 001).

Percent below age 18 NA
Constructed via 100 minus S0101 C02 026, which is percent 18 and
up. MOE is the same.

Percent age 65 & up S0101 C02 030
Percent of age 25
and up with at least
a HS degree

S1501 C02 014

Per capita income B19301 001
Percent foreign born DP02 0092P
Percent employed in
manufacturing

NA
Constructed from total employed civilian population age 16 and older
(S2405 C01 001) and total in manufacturing (S2405 C01 004)

Percent employed in
construction

NA
Constructed from total employed civilian population age 16 and older
(S2405 C01 001) and total in construction (S2405 C01 003)

Percent employed in
FIRE (finance, in-
surance, and real es-
tate)

NA
Constructed from total employed civilian population age 16 and older
(S2405 C01 001) and total in FIRE (S2405 C01 009)

Percent employed in
professional / man-
agerial (information,
FIRE, education,
health, other prof,
public admin)

NA

Constructed from total employed civilian population age 16 and older
(S2405 C01 001), total in information (S2405 C01 008), total in FIRE
(S2405 C01 009), total in education and health (S2405 C01 011), to-
tal in other professional (S2405 C01 010), and total in public admin
(S2405 C01 014)

Percent of families
with female house-
holder

NA
Constructed from total families with male householder (B09019 005)
and total families with female householder (B09019 006)

Percent of popula-
tion in the same
house as five years
ago

NA

ACS does not provide this information. However, instead we con-
structed percent of population in the same house as one year ago
with total population (B07204 001) and total population in the same
house one year ago (B07204 002)

Percent of popula-
tion in a different
house from five years
ago, but in the same
county

NA

ACS does not provide this information. However, instead we construct
a similar variable for one year ago with total population (B07204 001),
total population in a different house in the same town and in the same
county (B07204 005), and total population in a different house in a
different town in the same county (B07204 008)

Percent of housing
that was built 1, 5,
and 10 years ago

NA

ACS only provides percent of housing built within certain dates. Vari-
able DP04 0017P is the most recent set of dates, but it is inconsistent
across years. For 2018 5-year estimates, it is the percent of housing
built in 2014 or later, encompassing all 5 years of the period estimates.
We used this variable.

Table E.1: Matching metro level variables with ACS variables

Their Variable ACS Variable Notes
Total Population by
race

Table B02001

Unemployment Rate
by race

S2301 C04 012 /
S2301 C04 013

Percent of age 25
and up with at least
a HS degree by race

S1501 C02 029 and
S1501 C02 035

Per capita income NA
Constructed from aggregate income tables B19025A and B19025B and
population estimates, and SEs are adjusted accordingly.

Percent of families
with female house-
holder by race

NA This variable could not be constructed from ACS estimates.

Table E.2: Matching metro level race based variables with ACS variables
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F HOUSEHOLD LEVEL GINI INDEX ESTIMATION

BY RACE

To estimate household level Gini indices by race for each metro area, we employ L-PRLN.
The available income estimates are described in Table F.1. Since metro areas have such
large populations, we do not use the posterior predictive distribution to construct the Gini
indices. Instead we directly use the formula for the Gini index of the latent PRLN density in
Appendix B for every iteration in the posterior sample. Then we use the mean and standard
deviation of the posterior sample of Gini indices for each metro area as the estimate and
standard error in the EIV covariate matrix.

Income Variable ACS Table Notes
Household bin esti-
mates

Table B19001A/B
The table is counts, so we convert to proportions and adjust
the SE appropriately.

Household median
income

Table B19013A/B

Household mean in-
come

Table B19025A/B
The table is aggregate income, so we convert to mean income
and adjust the SE appropriately.

Table F.1: Matching income variables to income variables by race
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G COMPUTING SEGREGATION INDICES

Let i = 1, 2, . . . , I index Census tracts in a metro area, each with population Ni, income
CDF Fi and corresponding PDF fi. Let wi = Ni/

∑I
j=1Nj. Then the income CDF and

PDF, respectively, for the entire metro area are given by (G.1)

F (y) =
I∑
i=1

wiFi(y) f(y) =
I∑
i=1

fi(y). (G.1)

The rank-order information theory index is given by (G.2), while the divergent index is given
by (G.3)

HR =
I∑
i=1

wi
E(F ||F )− E(F ||Fi)

E(F ||F )
, E(G||F ) =

∫ ∞
−∞

e[F (y)]dG(y) (G.2)

D =
I∑
i=1

wiD(fi||f), D(g||f) =

∫ ∞
−∞

log
g(y)

f(y)
g(y)dy. (G.3)

In both cases we approximate the integrals using importance sampling techniques.
Strictly speaking both HR and D are functions of the model parameters for each census

tract in the metro area. The upshot is that we need to approximate these integrals for each
draw from the posterior distribution of the tract-level model parameters and obtain a joint
posterior distribution of D, HR, and both of their associated standard errors.

In a naive Monte Carlo approximation of D given M draws from the posterior, and L
draws for the Monte Carlo simulation, and I tracts, characterizing the posterior of D requires
O(MLI2) tract-level log density evaluations – note that computing f =

∑I
i=1wifi requires

I tract level log density evaluations, and O(MLI) simulations. This can be quite slow.
So we use two approaches to speed this up. First, since the latent PRLN density is piece-

wise defined, we break each integral into K piecewise sub-integrals. In income bins where
all I tracts are uniformly distributed, this allows us to solve the sub-integrals analytically.
Second, for a given income bin, we only simulate one set of incomes that is used to compute
the sub-integrals for all tracts in that bin. This reduces the number of tract-level log density
evaluations to O(MLI) and the number of simulations to O(ML), at the cost of inducing
error correlations between each of the D(fi||f)s. This correlation structure must be taken
into account to compute the correct standard error for our estimate of D. We use the same
basic approach for approximating HR. Details follow in Appendix G.1.

The computational problem for HR is easier, and our approach is simpler – we use a
straightforward importance sampler estimator, again using the same importance samples for
all tracts within a metro area. But we do not separately sample from each bin. Details are
in Appendix G.2.

21



G.1 DIVERGENCE INDEX

Let Di = D(fi||f), and suppose that fi is a latent PRLN density. Then we have

fi(y) =
K∑
k=1

pikfik(y)1(κk < y ≤ κk+1),

where k indexes income bins, pik is the probability the ith tract assigns to the kth bin, and
fiK is the probability density of the ith tract in the kth bin. Then we can plug this into the
formula for Di to obtain

Di =

∫ ∞
−∞

log
fi(y)∑I

j=1wjfj(y)
fi(y)dy

=
K∑
k=1

pik

∫ κk+1

κk

log
pikfik(y)∑I

j=1wjpjkfjk(y)
fik(y)dy

=
K∑
k=1

pikEfik

[
log

pikfik(y)∑I
j=1 wjpjkfjk(y)

]

=
K∑
k=1

Dik.

When k is small enough so that each tract is uniformly distributed in bin k we can solve this
integral analytically. In this case we obtain (G.4)

Dik = pik

∫ κk+1

κk

log
pikfik(y)∑I

j=1wjpjkfjk(y)
fik(y)dy

= pik

∫ κk+1

κk

log

pik
κk+1−κk∑I

j=1wj
pjk

κk+1−κk

1

κk+1 − κk
dy

= pik log
pik∑I

j=1wjpjk
. (G.4)

If any tract is not uniform distributed in a given bin, then we use (G.5) to set up the
importance sampler.

Dik = pikEfik

[
log

pikfik(y)∑I
j=1wjpjkfjk(y)

]

= pikEhk

[
log

pikfik(y)∑I
j=1wjpjkfjk(y)

fik(y)

hk(y)

]
. (G.5)

So, the importance weights for tract i in bin k are given by fik(y)/hk(y) with importance
density hk(y). We choose hk(y) to be the bin k density of the tract with the smallest αik for
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that bin. This ensures that the tails of the importance density dominate the tails of each
tract-level density – this is especially important in the uppermost bin.

Let ykl for l = 1, 2, . . . , L index Monte Carlo simulations from hk. Then the estimator
for Dik is given by (G.6).

D̂ik = pik
1

L

L∑
l=1

Dikl,

Dikl = log
pikfik(ykl)∑I

j=1 wjpjkfjk(ykl)

fik(ykl)

hk(ykl)
. (G.6)

Since the same ykls are used for all tracts, we need to account for their error correlations.
Let CDk

denote the error covariance matrix of the D̂iks, with entries defined by (G.7), where

Dik =
∑L

l=1Dikl/L.

(CDk
)a,b =

1

L

1

L− 1

L∑
l=1

(Dakl −Dak)(Dbkl −Dbk). (G.7)

Let k∗ be the largest k such that all tracts are uniformly distributed in bin k. Then our
estimator for Di is given by (G.8)

D̂i =
k∗∑
k=1

Dik +
K∑

k=k∗+1

D̂ik. (G.8)

Again, each D̂i uses the same set of simulations, so this induces error correlation between
the D̂is. Let CD denote the error covariance matrix. Then it is given by (G.9)

CD =
K∑

k=k∗+1

CDk
. (G.9)

Finally, the estimator for D is given by (G.10) with associated standard error given by
(G.11), where w = (w1, w2, . . . , wI)

D̂ =
I∑
i=1

wiD̂i (G.10)

SD =
√
w′CDw. (G.11)
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G.2 INFORMATION THEORY INDEX

First, note that

E(F ||F ) = −
∫ ∞
−∞

F (y) log[F (y)] + [1− F (y)] log[1− F (y)]dF (y)

= −
∫ 1

0

p log p+ (1− p) log(1− p)dp

= −
∫ 1

0

p log pdp

= −2

[
1

2
p2 log p

∣∣∣∣1
0

−
∫ 1

0

1

2
pdp

]

= 0 +
1

2
p2

∣∣∣∣1
0

=
1

2
.

This yields (G.12)

HR = 1− 2
I∑
i=1

wiEi,

Ei = −
∫ ∞
−∞
{F (y) logF (y) + [1− F (y)] log[1− F (y)]} fi(y)dy. (G.12)

To approximate these integrals, we again use importance sampling where the importance
density h(y) is a latent PRLN density, with pk = 1/K for k = 1, 2, . . . , K, and αk set to be
the smallest value of αik for all tracts in the metro area. If no tracts are Pareto distributed
in bin k, then instead that bin is taken to be uniform in h(y).

Let yl for l = 1, 2, . . . , L denote the importance sample from L. Then our estimator for
Ei is given by (G.13)

Êi =
1

L

L∑
l=1

Eil,

Eil = −{F (yl) logF (yl)− [1− F (yl)] log[1− F (yl)]}
fi(yl)

h(yl)
. (G.13)

Again, since the same importance samples were used for each tract, this induces error corre-
lation between the Êis. The error covariance matrix, CE, has entries given by (G.14), where
Ei =

∑L
l=1 Eil/L and

(CE)a,b =
1

L

1

L− 1

L∑
l=1

(Eal − Ea)(Ebl − Eb). (G.14)
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Then our estimator for HR is given by (G.15) with associated standard error (G.16)

ĤR = 1− 2
I∑
i=1

wiÊi (G.15)

SHR
=2
√

w′CEw. (G.16)

G.3 ADDITIONAL COMPUTATIONAL DETAILS

We computed these indices for the top 100 metro areas in the U.S. by population in three
distinct settings: for the household income distribution, for the black households only income
distribution, and for the white households only income distribution. In each case, we used
the following procedure.

For a given metro area, we fit L-PRLN to the relevant household income distribution
for each Census tract within the metro area, using Stan (Stan Development Team, 2017)
on a high performance computing cluster. We use 2000 iterations for tuning and warmup,
and kept M = 2000 iterations for inference, and obtained 4 chains in this manner. Then,
we computed both D and HR for all 2000 iterations of the MCMC sample. For D we set
L = 500, and for HR we set L = 1000. Standard errors for D were typically about 0.3%
of their associated estimates, and the largest was about 1.8%. Standard errors for HR were
typically about 2% of their associated estimates, though the largest was about 24%. Note
that these standard errors were accounted for in the EIV regressions.

These computations were parallelized in two ways. First, we fit L-PRLN and computed
D and HR for each chain in a separate job, so 12 jobs can be run simultaneously – 4 chains
each for all, black, and white households respectively. Second, each job had 28 cores available
to it. These were used to fit the tract-level L-PRLN models in parallel, then to parallelize
the computation of D and HR. Despite this, a single job, representing a single chain for
all 100 metro areas but only one of the three possible household groups, took up to 7 days
to complete. These jobs were also memory constrained because within a metro area, each
Census tract’s MCMC sample needs to be held in memory simultaneously to compute D and
HR. This is particularly constraining for the New York City metro area, which contains over
4,900 Census tracts. The vast majority of the computational effort was spent computing D
and HR, and not on fitting the L-PRLN models.

H SEGREGATION INDEX RESULTS
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Figure H.4: Divergence index vs. information theory index for all households. Box plots
represent the 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distribution of the index.
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Figure H.5: Divergence index vs. information theory index for black households. Box plots
represent the 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distribution of the index.
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Figure H.6: Divergence index vs. information theory index for white households. Box plots
represent the 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distribution of the index.
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H.1 Information Theory Index Regressions

OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept 0.304 0.237 0.087 0.068 0.177 0.236 0.296 0.406

Gini 0.454 0.427 0.058 0.313 0.389 0.427 0.467 0.540
Population 1.4E-09 1.2E-09 2.6E-10 7.0E-10 1.0E-09 1.2E-09 1.4E-09 1.7E-09

Unemp 0.004 0.041 0.097 -0.153 -0.025 0.042 0.108 0.227
Edu -0.031 -0.010 0.043 -0.095 -0.038 -0.010 0.019 0.073

Income -1.5E-03 -1.4E-03 2.6E-04 -1.9E-03 -1.6E-03 -1.4E-03 -1.2E-03 -9.0E-04
AgeOver65 -0.094 -0.104 0.053 -0.208 -0.138 -0.104 -0.068 -0.000

AgeUnder18 -0.218 -0.210 0.059 -0.328 -0.250 -0.210 -0.169 -0.095
Foreign -0.033 -0.032 0.015 -0.061 -0.042 -0.032 -0.022 -0.002

IndustyConstruct 0.296 0.391 0.122 0.156 0.307 0.391 0.472 0.629
IndustryManuf 0.080 0.085 0.041 0.005 0.058 0.085 0.113 0.165
IndustryFIRE 0.028 0.046 0.046 -0.045 0.016 0.046 0.077 0.136
IndustryProf 0.077 0.067 0.036 -0.002 0.043 0.068 0.091 0.138
FemaleHHer 0.159 0.204 0.051 0.104 0.169 0.203 0.238 0.305
SameHouse 0.087 0.122 0.067 -0.009 0.077 0.121 0.168 0.253

SameCounty 0.234 0.266 0.087 0.098 0.206 0.266 0.325 0.438
NewHouse -0.135 -0.122 0.111 -0.337 -0.198 -0.124 -0.045 0.096

Table H.1: OLS estimates and posterior summaries of EIV regression coefficients for the
information theory index using all households.
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OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept 0.817 0.730 0.191 0.346 0.611 0.729 0.848 1.119

Gini -0.191 -0.079 0.125 -0.328 -0.161 -0.078 0.004 0.164
Population -4.6E-09 -4.4E-09 3.1E-09 -1.1E-08 -6.5E-09 -4.4E-09 -2.3E-09 1.7E-09

Unemp -0.227 -0.203 0.099 -0.398 -0.270 -0.203 -0.138 -0.009
Edu 0.011 0.077 0.053 -0.027 0.041 0.077 0.112 0.180

Income 1.6E-03 1.4E-04 7.7E-03 -1.7E-02 -3.5E-03 2.1E-04 3.8E-03 1.7E-02
AgeOver65 -0.066 -0.097 0.129 -0.352 -0.184 -0.097 -0.009 0.156

AgeUnder18 -0.089 -0.005 0.190 -0.381 -0.133 -0.005 0.123 0.367
Foreign 0.045 0.071 0.025 0.022 0.055 0.071 0.088 0.121

IndustyConstruct -0.054 -0.189 0.225 -0.628 -0.339 -0.190 -0.041 0.263
IndustryManuf -0.058 -0.037 0.064 -0.160 -0.079 -0.037 0.006 0.089
IndustryFIRE 0.142 0.144 0.088 -0.032 0.085 0.144 0.203 0.318
IndustryProf -0.063 -0.037 0.052 -0.138 -0.073 -0.038 -0.003 0.066

SameHouse 0.053 0.038 0.127 -0.214 -0.046 0.038 0.123 0.288
SameCounty -0.068 -0.255 0.194 -0.632 -0.384 -0.256 -0.124 0.124

NewHouse 0.021 0.259 0.243 -0.223 0.096 0.263 0.424 0.728

Table H.2: OLS estimates and posterior summaries of EIV regression coefficients for the
information theory index using only black households.

OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept 0.682 0.955 0.230 0.491 0.813 0.956 1.098 1.415

Gini 0.370 0.145 0.111 -0.072 0.071 0.146 0.220 0.366
Population 1.6E-09 2.0E-09 9.6E-10 1.3E-10 1.4E-09 2.0E-09 2.7E-09 3.9E-09

Unemp -0.203 0.157 0.231 -0.296 0.003 0.156 0.311 0.611
Edu -0.021 -0.243 0.060 -0.361 -0.283 -0.242 -0.202 -0.124

Income -2.5E-03 7.0E-05 5.5E-03 -1.1E-02 -3.0E-03 -8.9E-05 3.1E-03 1.2E-02
AgeOver65 -0.152 0.008 0.073 -0.137 -0.041 0.008 0.056 0.153

AgeUnder18 -0.387 -0.254 0.094 -0.438 -0.317 -0.255 -0.193 -0.069
Foreign -0.057 -0.154 0.026 -0.205 -0.171 -0.154 -0.137 -0.104

IndustyConstruct 0.178 -0.226 0.212 -0.641 -0.369 -0.226 -0.085 0.190
IndustryManuf 0.004 -0.177 0.063 -0.299 -0.220 -0.178 -0.136 -0.054
IndustryFIRE 0.083 -0.008 0.080 -0.166 -0.062 -0.008 0.045 0.149
IndustryProf -0.017 -0.215 0.055 -0.321 -0.252 -0.215 -0.179 -0.106

SameHouse 0.058 0.060 0.129 -0.194 -0.026 0.060 0.146 0.312
SameCounty 0.246 0.557 0.174 0.218 0.441 0.558 0.673 0.897

NewHouse -0.151 0.044 0.199 -0.347 -0.088 0.044 0.177 0.434

Table H.3: OLS estimates and posterior summaries of EIV regression coefficients for the
information index using only white households.
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H.2 Divergence Index Regressions

OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept -0.123 -0.149 0.230 -0.609 -0.299 -0.150 -0.000 0.315

Gini 0.765 0.763 0.157 0.458 0.657 0.762 0.868 1.074
Population 2.9E-09 2.9E-09 9.0E-10 1.1E-09 2.3E-09 2.9E-09 3.5E-09 4.6E-09

Unemp 0.508 0.496 0.292 -0.067 0.298 0.496 0.688 1.068
Edu -0.009 -0.025 0.114 -0.253 -0.101 -0.025 0.052 0.197

Income -7.1E-04 -6.8E-04 7.7E-04 -2.2E-03 -1.2E-03 -6.8E-04 -1.6E-04 8.2E-04
AgeOver65 -0.243 -0.232 0.131 -0.484 -0.321 -0.232 -0.145 0.023

AgeUnder18 0.048 0.053 0.153 -0.252 -0.050 0.053 0.157 0.351
Foreign -0.088 -0.090 0.051 -0.191 -0.125 -0.091 -0.056 0.009

IndustyConstruct 0.341 0.410 0.330 -0.232 0.194 0.404 0.629 1.061
IndustryManuf 0.074 0.084 0.108 -0.125 0.011 0.082 0.157 0.296
IndustryFIRE 0.063 0.066 0.120 -0.171 -0.013 0.064 0.147 0.304
IndustryProf 0.050 0.062 0.095 -0.124 -0.000 0.063 0.125 0.246
FemaleHHer 0.122 0.152 0.133 -0.119 0.065 0.151 0.240 0.406
SameHouse -0.049 -0.038 0.188 -0.407 -0.163 -0.036 0.086 0.336

SameCounty 0.464 0.512 0.259 -0.012 0.341 0.513 0.685 1.020
NewHouse -0.584 -0.581 0.305 -1.185 -0.785 -0.579 -0.376 0.015

Table H.4: OLS estimates and posterior summaries of EIV regression coefficients for the
divergence index using all households.
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OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept -0.297 -0.416 1.033 -2.484 -1.082 -0.409 0.254 1.618

Gini 0.699 1.403 0.742 -0.036 0.899 1.402 1.898 2.872
Population -6.2E-08 -5.8E-08 1.6E-08 -9.0E-08 -6.9E-08 -5.8E-08 -4.8E-08 -2.7E-08

Unemp -1.156 -1.545 0.531 -2.584 -1.902 -1.546 -1.195 -0.485
Edu 0.564 0.387 0.256 -0.118 0.216 0.388 0.559 0.894

Income -4.3E-03 -2.6E-03 4.2E-02 -8.8E-02 -2.8E-02 -4.5E-03 2.3E-02 8.6E-02
AgeOver65 0.037 0.214 0.508 -0.773 -0.128 0.210 0.551 1.220

AgeUnder18 -0.153 -0.009 0.809 -1.602 -0.550 -0.014 0.530 1.596
Foreign 0.459 0.402 0.118 0.166 0.323 0.403 0.480 0.633

IndustyConstruct -0.046 -0.475 1.131 -2.711 -1.233 -0.473 0.288 1.722
IndustryManuf 0.313 0.195 0.315 -0.424 -0.016 0.197 0.406 0.819
IndustryFIRE 0.330 0.380 0.402 -0.404 0.107 0.381 0.649 1.168
IndustryProf 0.228 0.044 0.271 -0.483 -0.136 0.043 0.225 0.578

SameHouse -0.049 -0.084 0.647 -1.346 -0.519 -0.086 0.348 1.198
SameCounty 0.079 0.258 0.944 -1.595 -0.371 0.254 0.889 2.122

NewHouse 0.533 0.556 1.098 -1.619 -0.169 0.557 1.286 2.723

Table H.5: OLS estimates and posterior summaries of EIV regression coefficients for the
divergence index using black households only.

OLS Mean SD 2.5% 25% 50% 75% 97.5%
Intercept 0.405 0.188 0.440 -0.660 -0.101 0.179 0.471 1.079

Gini 0.489 0.683 0.240 0.207 0.523 0.683 0.843 1.155
Population 4.5E-09 4.3E-09 2.1E-09 1.4E-10 2.9E-09 4.3E-09 5.7E-09 8.4E-09

Unemp 0.473 0.356 0.497 -0.630 0.024 0.356 0.690 1.326
Edu -0.098 -0.001 0.127 -0.251 -0.087 -0.001 0.084 0.247

Income 1.2E-03 1.4E-03 9.6E-03 -1.9E-02 -4.4E-03 2.5E-03 7.1E-03 2.0E-02
AgeOver65 -0.567 -0.638 0.154 -0.939 -0.741 -0.638 -0.535 -0.338

AgeUnder18 -0.091 -0.146 0.197 -0.531 -0.279 -0.146 -0.014 0.239
Foreign -0.039 0.002 0.055 -0.107 -0.035 0.002 0.039 0.112

IndustyConstruct 0.286 0.530 0.458 -0.374 0.225 0.531 0.835 1.429
IndustryManuf -0.205 -0.104 0.134 -0.366 -0.195 -0.104 -0.014 0.159
IndustryFIRE -0.071 -0.020 0.168 -0.350 -0.131 -0.020 0.093 0.307
IndustryProf -0.158 -0.049 0.118 -0.281 -0.128 -0.049 0.029 0.182

SameHouse -0.200 -0.215 0.277 -0.760 -0.400 -0.217 -0.031 0.327
SameCounty 0.077 -0.067 0.377 -0.806 -0.320 -0.069 0.185 0.675

NewHouse -0.381 -0.492 0.432 -1.347 -0.775 -0.491 -0.207 0.352

Table H.6: OLS estimates and posterior summaries of EIV regression coefficients for the
divergence index using white households only.
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H.3 Standardized Information Index Regression Coefficients

Reardon and Bischoff (2011) report raw information index regression coefficients in their
Table 4. To be able to directly compare these coefficients to our own, especially our diver-
gence index regression coefficients, we need to standardize them. To do this, we need the
sample standard deviations of the information theory index and the Gini coefficient from the
sample used for the regressions in Reardon and Bischoff (2011)’s Table 4. They report basic
summary statistics for each year-race cross section in their Table 2, which we can use to con-
struct the combined-years sample standard deviations needed to standardize the coefficients
in Table 4.

For a particular variable (information index or Gini coefficient) and a particular race
(black, white, or all), we can construct the combined sample standard deviation as follows.
Let N denote the sample size for that variable per year—for white families and all families
N = 100, while for black families N = 61. Additionally, let k = 1, 2, ..., K index years, mk

denote the sample mean for year k, and sk denote the sample standard deviation for year k.
First let

m =
1

K

K∑
k=1

mk

denote the combined mean. Then the combined variance is given by

s2 =

∑K
k=1 [(N − 1)s2

k + nm2
k]−KNm2

KN − 1

and then combined standard deviation is given by s =
√
s2.

Table H.3 contains means and standard deviations for the Gini coefficient and the infor-
mation index from Reardon and Bischoff (2011)’s Table 2, as well as the combined standard
deviations computed with the formula above. Finally, Table H.3 contains the original raw
from Reardon and Bischoff (2011)’s Table 4 as well as the standardized coefficients using the
combined standard deviations computed above.
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Gini Coefficient Means Gini Coefficient SDs
Race 1970 1980 1990 2000 1970 1980 1990 2000 Combined
All 0.352 0.360 0.384 0.400 0.029 0.023 0.026 0.025 0.032
Black 0.376 0.410 0.430 0.436 0.018 0.017 0.030 0.024 0.033
White 0.344 0.341 0.369 0.384 0.028 0.020 0.026 0.025 0.031

Information Index Means Information Index SDs
All 0.124 0.134 0.152 0.157 0.142 0.044 0.052 0.050 0.051
Black 0.099 0.133 0.173 0.170 0.144 0.029 0.036 0.042 0.049
White 0.110 0.117 0.132 0.139 0.125 0.039 0.043 0.043 0.044

Table H.7: Means and standard deviations for the Gini coefficient and the information index
from Reardon and Bischoff (2011).

Raw β̂ Std β̂
Race Beta SE Beta SE
All 0.561 0.085 0.353 0.053
Black 0.470 0.124 0.316 0.083
White 0.450 0.110 0.311 0.076

Table H.8: Raw and standardized coefficients of the Gini coefficient from information index
regressions from Reardon and Bischoff (2011).
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