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S1 Proof of Proposition 1

In this Section 3.1 we state that we can find the set of L particles with largest posterior by

finding a variational approximation of the tempered posterior Πλ. Here we restate Proposi-

tion 1 and provide the proof.

Remember that we denote with ΓL = {γ(1), . . . ,γ(L)} the set of L particles with largest

posterior mass, with q(·|Γ,w) the discrete distribution that places probability w` on the

particle γ` and with QL the collection of all such distributions supported on at most L

particles. Moreover, for each λ > 0, let πλ be the mass function of the tempered marginal

posterior Πλ, where πλ(γ) ∝ π(γ|y)
1
λ .

Proposition 1. Suppose that π(γ|y) is supported on at least L distinct particles and that

πλ(γ) 6= πλ(γ
′) for γ 6= γ ′. Let q?λ(·|Γ?(λ),w?(λ)) be the distribution in QL that is closest to

Πλ in a Kullback-Leibler sense:

q?λ = arg min
q∈QL

{∑
γ

q(γ) log
q(γ)

πλ(γ)

}
.

Then Γ?(λ) = ΓL and for each ` = 1, . . . , L, w?` (λ) ∝ π(γ(`)|y)
1
λ

Proof. Denote the optimal particles Γ?(λ) = {γ?1, . . . ,γ?L?} . Straightforward calculus verifies
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that w?` (λ) ∝ πλ(γ
?
`). We thus compute

KL(q? ‖ πλ) =
∑
γ

q?(γ) log
q?(γ)

πλ(λ)
= − log Πλ(Γ

?(`))

Since Πλ is supported on at least L models, we see from this computation that if Γ? contained

fewer than L particles, we could achieve a lower Kullback-Leibler divergence by adding

another particle γ̃ not currently in Γ? that has positive Πλ-probability to the particle set

and updating the importance weights w accordingly.

Now if Γ? contains L models but Γ?(λ) 6= ΓL, we know Πλ(Γ
?(λ)) < Πλ(ΓL). Thus, replacing

Γ?(λ) by ΓL and adjusting the importances weights accordingly would also result in a lower

Kullback-Liebler divergence.

S2 Various hyper-parameter choices

The main model described in Section 2 depends on several hyper-parameters, which need

to be fixed by the practitioner: the parameters for the prior for σ2 (νσ and λσ) and the

multiplicative constants to specify within and between cluster variance (a1, a2, b1 and b2).

We will now describe the data-dependent approach to specify such values.

Let us consider each neighborhood separately and fit a linear regression model for each one:

let α̂i and β̂i be the least square estimates and σ̂2
i be the estimated residual variance for

neighborhood i.

We can use the collection of σ̂2
i ’s to specify the prior for σ2: by matching mean and variance,

we can recover νσ = 2m
2

v
+ 4 and λσ = m(1 − 2

νσ
), where we denote with m and v the

empirical mean and variance of the σ̂2
i ’s.

To specify the within and between cluster variance parameters we use a two-step heuristic:

at a high level, we first find a temporary estimate of the hyperparameters a1, a2, b1 and b2,

based on the MLE estimate of αi and βi and on the expected number of clusters; we then

recover the maximum a posteriori (MAP) partition under these values and find the empirical

Bayes estimate of a1 and b1 given the MAP. These values are finally used to run our full

Particle Optimization procedure, which can be initialized from the MAP partition recovered

in the first step of the heuristic.
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Specifically, we consider the least square estimates α̂i, β̂i, which can be thought of as an

approximation of αi, βi given the partition with N clusters γN , since they do not incorporate

any prior information or sharing of information; in fact under such configuration the coef-

ficients are exchangeable and the only shrinkage induced is through the common variance

parameter. Given this, one heuristic desideratum is that the marginal prior on α|γ = γN

should assign substantial probability to range of the α̂i, assuming symmetry around zero.

Specifically, we will make sure that this conditional prior places 95% of its probability over

the range of the α̂i’s. Since α|γ = γN ∼ N(0, σ2(a1/(1− ρ) + a2)In), we constrain a1 and a2

so that
a1

1− ρ
+ a2 =

maxi |α̂i|2

4σ̂2
.

When the MLE’s are not symmetric around zero the prior probability on the range of α̂i’s

will be smaller than 95%, but at least each point in the range has prior density higher than

φ(2).

In order to determine each of a1 and a2, we need a second constraint. To this end, consider

the highly stylized setting in which we have K overlapping clusters with equal variance σ2
cl

whose means are equally spaced at distance 2σcl. The idea of this second heuristic is to

match such a stylized description to the observed distribution of α̂i. In essence, this involves

covering the range of α̂i with K + 1 “chunks” of length 2σcl. While the exact value of σcl

is unknown, we have found it useful to approximate it a1σ
2/(1 − ρ). This approximation

tends to produce smaller values of a1, which in turn encourages a relatively larger number

of clusters.

With these two constraints we can find the temporary values:

a1 =
(max(α̂i)−min(α̂i))

2

4(K + 1)2σ̂2/(1− ρ)

a2 =
maxi |α̂i|2

4σ̂2
− a1

1− ρ
.

Similarly for the β̂i’s we find:

b1 =
(max(β̂i)−min(β̂i))

2

4(K + 1)2σ̂2/(1− ρ)

b2 =
maxi |β̂i|2

4σ̂2
− b1

1− ρ
.
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In order to operationalize these heuristics, we must specify an initial guess at K. We have

found in our experiments, setting K = blogNc works quite well. It, moreover, accords with

the general behavior of the Ewens-Pitman prior.

We now use these values to find the MAP partition γ(1) (we can run our Particle Optimization

procedure with L = 1) and find the Empirical Bayes estimates of a1 and b1 given γ(1) and

the other hyperparameter estimates, i.e. we find

(â1, b̂1) = arg max
a1,b1

p(Y |a1, b1, a2, b2, νσ, λσ,γ(1))

using a numerical optimization algorithm.

Note that finding the MAP as part of our heuristic procedure does not increase the computa-

tional burden. In fact, even though it requires us to run the Particle Optimization algorithm

twice (the first time with L = 1), the output from the first run can be used as a starting point

in the initialization of the second run - together with the partitions recovered by running

k-means on the maximum likelihood estimates. We empirically see that the MAP recovered

under the temporary hyperparameters has always higher posterior probability than other

initializing partitions. Consequently, when we run our Particle Optimization procedure for

the second time, we start from a point with high posterior probability, harnessing the work

of the initial MAP search.

S3 Additional Results: Synthetic Data Evaluation

S3.1 Synthetic data description

In Section 4, we generated several synthetic datasets based on a 20 grid of spatial units, given

the true partitions γ̃α and γ̃β and with various levels of cluster separations, as displayed in

Figure 3.

We now describe in details how the synthetic data was generated. Each cluster separation

setting corresponds to a pair of values (∆α,∆β), which are set to (∆α,∆β) = (2, 1) in the

high separation setting, to (∆α,∆β) = (1, 0.5) in the moderate separation setting and to

(∆α,∆β) = (0, 0) in the low separation setting. These values are used to construct the

cluster-specific means, αk = 3.5 + ak ·∆α and βk = bk ·∆β, where ak ∈ {−1,−0.5, 0, 0.5, 1}
and bk ∈ {−1, 0, 1}. Within each cluster, we drew the αi’s (respectively βi’s) from a CAR
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model centered at a specified cluster mean with ρ = 0.95, hyper-parameters a1 = b1 = 0.125

and standard deviation 0.25.

Since the values of αk and βk were artificially chosen and not sampled, there are no exact

values for a2 and b2, but we can compute a lower bound for these hyperparameters so that

the prior distributions of αk and βk cover the values artificially chosen. If we require that

the values of αk and βk fall within the 0.025 and 0.975 quantiles of the prior distribution,

we find that a2 ≥ 9 and b2 ≥ 2 for the high separation setting. In the moderate separation

setting we find a2 ≥ 8 and b2 ≥ 1, while for the low separation setting a2 ≥ 7 and b2 ≥ 0.

Note that the larger values of a2 are due to the shift of 3.5 in the construction of αk, which

is important to generate data that mimics the real data which has a positive mean level of

crime.

For each cluster separation setting we generated 100 pairs of vectors (α,β). For each set

of parameters we generated the outcomes yi,t ∼ N(αi + βixt, σ
2), where xt = (t − µT )/σT

is the time index standardized to have mean zero and unit variance. Since we used t =

2006, . . . , 2017, we had µT = 2011.5 and σT = 3.6.

We also considered a second data generating process, in which ci,t ∼ Pois(exp(αi + βixt)).

S3.2 Additional cluster separation settings

In Section 4, we compared the estimation, prediction and partition selection performance

of our method to that of several competitors and we displayed results for the moderate

separation setting. Specifically, for the estimation and prediction performance we displayed

the root mean squared error (RMSE) for estimating the concatenated vector of parameters

(α,β) and the RMSE for the vector of one-step-ahead observations yT+1 generated from the

same model. For the partition selection performance we compared the adjusted Rand index

between the true partitions γ̃α and γ̃β and the recovered one.

We now report the same measures for the additional cluster separation settings in Figure S1

and Figure S2. As in Section 4, we do not show the RMSE and Prediction error for the SCC

method, since they were substantially greater than those of other methods (RMSE ranged

between 3.9 and 4.3 in the high separation setting and between 2.4 and 3.7 in the low

separation setting; prediction error ranged between 7.7 and 8.8 in the former and between

3.2 and 3.7 in the latter).
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Figure S1: The estimation and partition selection performance in the high cluster separation
setting.
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Figure S2: The estimation and partition selection performance in the low cluster separation
setting.

Similarly to the moderate cluster separation setting, we see that PartOpt performs better in

terms of estimation and predictive performance, with no other method consistently achieving

second best. In fact KM performs almost as well as PartOpt in the high separation setting,

while SC achieves second best in the low separation setting. In terms of selection performance,

in the high separation setting, PartOpt recovers the true partitions almost always exactly,

but And and KM also perform quite well; SC and SCC instead recover partitions that are quite

different from the true one. In the low separation setting instead, all method have low
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values for the adjusted Rand index; in fact, when there is no difference between the cluster

means the true partitions γ̃α and γ̃β lose meaning, and we expect the methods to recover

the partitions with only one cluster.

To better investigate some of these issues, we report in Figures S3 some additional measures

of partition selection: the log-posterior of the recovered pair of partitions, computed under

the model described in Section 2, the number of clusters for the recovered γα (K A) and γα

(K B), together with the number of clusters of the true partitions, represented as horizontal

dashed lines.

It’s clear from these figures that even when the adjusted Rand index is low, the log-posterior

of the partitions recovered by PartOpt is higher than the one of the true partitions. By

examining the number of clusters of the recovered partitions, we see that SC always un-

derestimate the number of clusters, suggesting the reason of the poor performance we had

previously noticed. SCC and And instead often overestimate the number of clusters, but for

different reasons. And in fact does not target spatial partitions, and we have to manually

find the connected components, artificially inflating the number of clusters; however, while

not spatial, the partitions recovered by And are not so distant from the true partitions and

have relatively high log-posterior values. SCC instead targets spatial partitions, so no manual

post-processing is necessary, but it’s highly sensitive to the choice of spanning tree, resulting

in low values of log-posterior.

S3.3 Second data generating process

So far we have compared the behavior of PartOpt, And and the other competitors under

the data generating process suggested by our model in Section 2. However, the method by

Anderson et al. (2017) is developed for count data, generated from a Poisson distribution. So

we also considered a second data generating process, in which the count data ci,t is generated

from a Poisson distribution with mean λi,t = exp(µi,t) and µi,t = αi + βixt, and the counts

are transformed, as in equation (1): yi,t = sinh−1(ci,t) − log(2). In Figure S4 we report the

results for the simulations under this second data generating process.

In high separation settings, And has better estimation performance than PartOpt (lower

RMSE and higher log-posterior), even though the latter recovers the true partitions almost

exactly. However, in moderate to low separation settings, PartOpt performs better than And,

both in terms of estimation performance measures (lower RMSE and prediction error) and of

log-posterior of the selected partitions, suggesting that PartOpt is robust to misspecification
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Figure S3: Additional partition selection measures in several cluster separation settings. Top
row: high cluster separation. Medium row: moderate cluster separation. Bottom row: low
cluster separation.
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Figure S4: The estimation and partition selection performance under the second data generating
process, for several cluster separation settings. Top row: high cluster separation. Medium row:
moderate cluster separation. Bottom row: low cluster separation.
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of the model.

S3.4 Sensitivity to hyperparameter choice

In all our simulation settings and data analysis the spatial autocorrelation hyper-parameter

ρ is fixed and equal to 0.9. This choice is motivated by our search for clusters that display

a large spatial autocorrelation, without having to choose an improper prior for α and β.

We now explore how the results from our synthetic analysis change when we fix a different

value for the hyperparameter ρ. In particular, we consider the moderate cluster separation

setting and we separately fit our model with ρ = 0.1, 0.5, 0.75, 0.95 together with ρ = 0.9

which is the value we used in our main synthetic analysis.

Figure S5 shows the estimation and partition selection performance of PartOpt under the

various values of ρ. We first notice that there is quite some heterogeneity in the partition

selection for different values of the hyperparameter ρ; in fact, for smaller values of ρ, such as

ρ = 0.1 and ρ = 0.5, PartOpt recovers partitions that are very close to the true partitions

(with high adjusted Rand index values), while for larger values of ρ it recovers partitions

that are quite distant from the truth, similarly to what we discovered in our main synthetic

analysis. Remember in fact that for each value of the hyperparameter the posterior distri-

bution changes, and the particles that have largest posterior under different values of the

hyperparameter will most likely not coincide. However, it is reassuring that the particle

recovered by PartOpt under each value of the hyperparameter has almost always larger pos-

terior probability (under such value of ρ) than the particles recovered under different values

of ρ (results not shown). Moreover, for all values of the hyperparameter, PartOpt achieves

similarly good estimation and prediction performance, suggesting robustness with respect to

the choice of ρ.
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Figure S5: The estimation and partition selection performance under the moderate cluster
separation setting, for several specification of the hyperparameter ρ in PartOpt (the labels
report the value of ρ for each specification). The performance of And and KM is also reported
for reference.

S3.5 Recovering equal partitions mean levels and time trends

It is possible to adapt our procedure to the case where one is interested in recovering the

same partition for the mean levels and the time trends, i.e. when γα = γβ = γ. In such

case, our method approximates the posterior distribution π(γ|y) of one random partition

that affects the distribution of both α and β. We have implemented this version of PartOpt
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that constrains the two partitions to be equal (hereafter referred to as “Equal Partition” or

EqualPart) and we have compared its performance to the unconstrained method that we

have presented in the main manuscript, under the same synthetic data simulation described

in Section S3.1. Note that for this simulation study, there two true partitions used to generate

the data were different.

Figure S6: The estimation and partition selection performance of equalPart under the
high cluster separation setting. The performance of PartOpt is also reported for reference.
The panel “Rand Index for γ overlay” plots the adjusted Rand index between the partition
returned by EqualPart and the overlay of the two true latent partitions.

Figure S6 reports the estimation and partition selection performance of EqualPart compared

with the unconstrained PartOpt under the high cluster separation setting.

Interestingly, despite “Equal Partitions” being misspecified, we see that it has comparable

estimation and prediction error as PartOpt. In terms of partition recovery, the adjusted

Rand index between the partition estimated by EqualPart and the two partitions used to

generate the data appears to be quite small. This is somewhat unsurprising: our data was
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generated from a model with two latent partitions and “Equal Partitions” looks only for

one. However, in virtually all of our simulation replications, the top partition recovered by

EqualPart is quite close to the partition formed by “overlaying” the partitions in the top

particle recovered by PartOpt. More specifically, this is the partition whose clusters are found

as the pairwise intersection of clusters in the true partitions γ̃α and γ̃β. In the combinatorics

literature this is known as the meet of the two partitions, which corresponds to the greatest

lower bound of these partitions, under the partial order defined by the “finer than” relation.

The panel “Rand Index for γ overlay” plots the adjusted Rand index between the partition

returned by “Equal Partitions” and the overlay of the two true latent partitions. We see

that the “Equal Partitions” routinely identified partitions close to the true overlay.

S4 Additional material on the analysis of Crime in

Philadelphia

S4.1 Linearity of crime trends

In our analysis of crime in Philadelphia, we model the change of crime over time for years

between 2006 and 2017 with a linear trend (see Equation (2) of the main manuscript). While

linearity might not perfectly characterize the trend over time, it is the most practical and

common choice when using a relatively small number of time points (see Bernardelli et al.,

1995 and Anderson et al., 2017). In fact, this simple model allows us to detect the general

trend, i.e. whether crime is overall increasing or decreasing in a neighborhood. However,

the careful reader might worry about the validity of such assumption. We analyze here a

representative sample of neighborhoods and their trend over time to check for strong non-

linearities.

To analyze the linearity of crime trends we computed the Pearson correlation coefficient

between time and log crime density and examined the absolute value of their correlation.

Neighborhoods characterized by a correlation coefficient close to 1 (in absolute value) have

trends that are very close to linear. The ones with smaller values of the correlation coeffi-

cient (again, in absolute value) are either not changing over time, or could display non-linear

trend. We note that more than 50% of the neighborhoods have correlation greater than 0.6

(in absolute value) and more than 75% greater than 0.4. Figure S7 shows the trends of the

30 neighborhoods with lowest correlation in absolute value (left panel) and the 30 neigh-

borhoods with highest correlation in absolute value (right panel). While the low correlation
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neighborhoods display much more nonlinear variation than the high correlation ones, we still

believe a linear trend is insightful in describing the time trend in such neighborhoods.

Figure S7: Trace plots for the time trends of the thirty neighborhoods with lowest absolute
value of the correlation coefficient (left panel) and with the highest value of the correlation
coefficient (right panel).

Figure S8: Crime density over time for the six neighborhoods with lowest correlation in
absolute value.
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To study the neighborhoods with low correlation is more detail, Figure S8 displays the

time trends individually for the six neighborhoods with lowest correlation in absolute value,

together with the least square line. Most of these neighborhoods do not display clear non-

linear patters. The only neighborhood for which crime density seems to decrease and then

increase is Census tract 299, where a quadratic term might better describe the trend.

S4.2 Extending PartOpt to accomodate non-linearities

In our particular application, a first-order expansion of the expected transformed crime den-

sity was sufficient to characterize the general neighborhood-level trends in crime. However,

for datasets displaying strong non-linearities, such an approximate may not be appropriate.

We now describe how one might extend PartOpt to accommodate more flexible non-linear

models. To this end, consider a Dth order expansion of the model in Equation 2 of the main

text:

yi,t = αi +
D∑
d=1

βi,dx
d
t + εit, (S1)

where once again xt is the standardized time index. We now must estimate the base-line

transformed crime density αi and a D-vector of regression coefficientsβi = (βi,1, . . . , βi,D)>

for each neighborhood i.

Doing so, however, requires us to make more modeling decision than we had to make with

the first-order model in the main text. Namely, we must decide how much heterogeneity

we would like to allow in the spatial distributions of the coefficients in the expanded model.

At one extreme, we can introduce D underlying partitions, one for each collection β(d) =

(β1,d, . . . , βN,d), that allows different spatial distributions for each coefficient. We could then

place conditionally independent CAR–within–clusters priors on each of these collections in a

manner analogous to the priors on α and β in the main text. At the other extreme, we can

introduce a single underlying partition, implicitly assuming that the spatial variability in,

say, the quadratic coefficients is identical to the spatial variability in the linear coefficients.

We could then place conditionally independent multivariate CAR (Gelfand and Vounatsou,

2003) priors on the vectors of regression coefficient for the neighborhoods in each cluster.

Although there are many possibilities for specifying the latent cluster structure of the inter-

cepts and regression coefficients in the Dth order expansion, we may still run PartOpt so long

as marginalize out the intercepts and regression coefficients. Essentially, so long as we adopt

conditionally conjugate priors within each cluster, we can still compute the log marginal
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likelihoods and conditional posterior expectations needed by PartOpt. We could, in fact,

extend the model even further by using an alternative basis expansion in Equation (S1):

yi,t = αi +
D∑
d=1

βi,dφd(xt) + εi,t,

where φ1, . . . , φD are pre-specified basis functions. Once again, so long as we maintain

conditional conjugacy within cluster, we would be able to run PartOpt.

S4.3 Sensitivity to prior choice

In Section 5, we analyzed the data on crime density in Philadelphia’s census tracts, by

running our Particle Optimization procedure on the model described in Section 2. The

choice of the prior distribution and of some of the hyperparameters could affect the posterior

estimates recovered. In this section, we will analyze sensitivity to prior and hyper-parameter

choices. In particular, we will compare results recovered under the Ewens-Pitman prior with

different η parameters and under the Uniform prior on the space of spatial partitions SP .

We additionally study the sensitivity under different values of the spatial autocorrelation

parameter ρ.

We start by reporting the top particle recovered by our procedure under the Uniform prior

in Figure S9. We first notice that under this prior, the partition of the time trends γβ

presents several clusters, identifying many moderately sized clusters that display a range

of time trends, both increasing and decreasing. Moreover, the parameter estimates under

the uniform prior are almost constant within cluster, in contrast to the ones under Ewens-

Pitman prior that showed much larger levels of within-cluster variation. Interestingly, though

we recover more clusters in the mean level partition γ(α) with a uniform prior, the estimates

of αi arising from both priors show little substantive difference. While it might not be

obvious from visually comparing the two plots, we can easily check by analyzing the linear

correlation between the estimates of the vector of crime trends α under the two priors, which

is equal to 0.999. The same correlation measure on the estimates of β under the two models

is instead 0.931, which suggests the estimates are somewhat different.

While the partition under this prior can be seen as more interpretable, it is associated with

worse predictive performances: it’s out of sample predictive error is 0.2344, which is larger

than the error under the Ewens-Pitman prior, but smaller than the one achieved by running

And or by finding separate MLE’s (see Table 1).
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Figure S9: Top particle identified by our procedure under the Uniform prior on SP . The
thick lines highlight the border between the clusters, and the color represents the posterior
mean of the parameters α and β conditional on the displayed particle.

We now analyze the particles recovered by our procedure under the Ewens-Pitman prior with

different values for the concentration hyperparameter η. This hyperparameter regulates the

probability of a units joining a new cluster, with higher values inducing a larger number

of clusters in expectation. Specifically we compared values η = 1, 3, 5. We find that the

partition of the mean level γα in the top particle differs for different values of η, with the

partition recovered under η = 5 displayed in Figure S10 and the one under η = 3 being

very similar to it. We notice instead that the partition of the time trends γβ does not

change substantially, still showing one cluster but also recovering several singleton clusters

for neighborhoods with extreme values of the time trend βi. The change in the partition γα

is likely caused by the local nature of our algorithm, which can get stuck in local modes.

In fact, we found that the particle recovered under η = 5 has a larger posterior probability

under the model with η = 1, compared to the top particle recovered under η = 1.

Finally, we considered sensitivity to the choice of the spatial autocorrelation hyperparameter

ρ. In our analysis and simulation, it was chosen equal to 0.9, which induces a strong degree

of spatial autocorrelation, without causing the prior distributions of α and β to be improper

(this happens when ρ = 1). To test the sensitivity of our procedure to this value, we ran

our method with different values of ρ, ranging from low prior autocorrelations with ρ = 0
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Figure S10: Top particle identified by our procedure under the Ewens-Pitman prior with
concentration hyperparameter η = 5.

to very strong prior autocorrelation with ρ = 0.99. We analyzed the top particle recovered

by our procedure. For the mean levels of crime, our procedure recovered two sets of similar

partitions for different values of ρ. One set corresponds to partitions that look like the top

particle displayed in Figure 5 of our main manuscript, and it was recovered for ρ = 0.9 and

for ρ = 0.85. The other set of partitions (recovered for ρ = 0.99, 0.95, 0.80, 0.75, 0.50, 0.25, 0)

is similar to the partition reported in Figure S11, which corresponds to the top particle for

ρ = 0.99. Similarly to what we discussed previously, the difference between these two sets

is likely caused by the local nature of our algorithm, which can get stuck in local modes.

This seems to be the case in this example, as the partition recovered by our procedure with

ρ = 0.99 has a higher posterior probability under the model with ρ = 0.9, suggesting that

the algorithm with ρ = 0.9 and ρ = 0.85 got stuck in a local mode. While this is not ideal,

the positive aspect is that the estimate for the α values is robust to these changes, and

does not show differences; in fact, the linear correlation between any pair of estimates under

different ρ values is always greater than 0.99.

Instead, the partition of the time trends recovered in the top particle is always equal to the

partition with one large cluster (with one exception where a singleton cluster is recovered

too). In this case the estimate of the β values changes slightly, but not substantially: the

linear correlation between the estimate found under ρ = 0 and the one under ρ = 0.99 is
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Figure S11: Top particle identified by our procedure when the spatial autocorrelation hy-
perparameter ρ = 0.99. Many of the top particles recovered in our sensitivity analysis for
other values of ρ looked similar to this.

0.95 but is greater than 0.98 for any two pairs of parameters found with positive values of

ρ. This effect is not surprising, as we expect the CAR prior to have stronger effects when

the partition recovered is formed by only one large cluster, rather than when it is formed by

many smaller clusters, as it’s the case for γα.
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S5 Derivation of Closed Form Expressions

Recall from Section 2 that our full model is:

γ(α), γ(β) ∼ EP(η;SP)

σ2 ∼ IG

(
νσ
2
,
νσλσ

2

)
(αk)k

iid∼ N(0, a2σ
2)

(βk′)k′
iid∼ N(0, b2σ

2)

(αk)k
ind∼ CAR(αk, a1σ

2,W
(α)
k )

(βk′)k′
ind∼ CAR(βk′ , b1σ

2,W
(β)
k′ )

(yi,t)i,t
ind∼ N(αi + βixt, σ

2)

We exploit the conditional conjugacy present in this model in several places. First, we have

closed form expressions for the conditional posterior means E[α|y,γ] and E[β|y,γ], which

we use in our particle optimization procedure to propose new transitions. Second, we can

compute the marginal likelihood p(y|γ) in closed form, which we use to evaluate the opti-

mization objective and pick between multiple transitions. Below, we carefully derive these

closed form expressions, noting that in several places, we can avoid potentially expensive

matrix inversions. In particular, the choice to center the time variable, thereby ensuring an

orthogonal design matrix within each neighborhood, facilitates rapid likelihood evaluations.

Distribution of αk Let us first consider the vector of parameters αk in cluster S
(α)
k

given σ2: by marginalizing the distribution of the grand cluster mean αk, we find that its

distribution is a multivariate normal with covariance matrix σ2Σ
(α)
k , where Σ

(α)
k = a1Σ

(α)
k,CAR+

a211> = a1

[
ρ(W

(α)
k )∗ + (1− ρ)I

]−1
+a211>. Note that its precision matrix can be computed

using Woodbury’s formula without having to invert any matrix:

(Σ
(α)
k )−1 = a−11 Ω

(α)
k,CAR − a

−1
1 Ω

(α)
k,CAR1

(
a−11 1>Ω

(α)
k,CAR1 + a−12

)−1
1>a−11 Ω

(α)
k,CAR =

= a−11 Ω
(α)
k,CAR −

a−21 (1− ρ)2

a−11 nk(1− ρ) + a−12

11>
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where Ω
(α)
k,CAR =

(
Σ

(α)
k,CAR

)−1
= ρ(W

(α)
k )∗ + (1 − ρ)I; the second line follows from noticing

that 1 is both a left and right eigenvector of Ω
(α)
k,CAR with eigenvalue 1 − ρ. Similarly this

holds for the distribution of βk′ .

Distribution of α Next, we can write the distribution of the whole vector α given σ2

and γ(α): by combining the distributions of the cluster specific parameters αk’s, and using

the independence between different clusters, we find that the distrubution of α given σ2 and

γ(α) is a multivariate normal with mean zero and covariance matrix that can be found by

combining the Σ
(α)
k ’s. Because of the independence between clusters, there exists an ordering

of the indices of α so that the covariance matrix of α|γα, σ2 has a block-diagonal structure.

We denote such permutation of the indices with π(α), and it can be constructed by mapping

the first n1 elements to the indices in the first cluster ({π(α)(1), . . . , π(α)(n1)} = S
(α)
1 ), the

following n2 elements to the indices in the second cluster ({π(α)(n1 +1), . . . , π(α)(n1 +n2)} =

S
(α)
2 ), and so on. With such ordering, the kth diagonal block of the covariance matrix is

σ2Σ
(α)
k . Similarly, we can find a (potentially different) permutation π(β) for β and derive the

distribution of βπ|σ2, γ(β).

Notation To describe the distributions of interest we can represent our model in the form

of a unique linear model, by combining all the observations in a vector Y , combining the

reodered coefficients in a unique vector θ = (απ,βπ) and appropriately constructing the

covariate matrix X. In the next paragraphs we will provide with the details on how we

constructed such vectors and matrix.

To build the column vector Y we stack the vectors yi with i = 1, . . . , N : Y is a vector of

length N ·T and each block of T rows corresponds to a particular neighborhood; in particular,

the ((i− 1)T + t)th entry of Y corresponds to yi,t.

The vector of coefficients θ is found by concatenating the reordered απ and βπ: for i =

1, . . . , N , elements θi = απ(α)(i) and θN+i = βπ(β)(i).

The matrix of covariates X then has dimensions NT ×2N ; each block of T rows corresponds

to a neighborhood and each column corresponds to an element of θ: the first N columns

correspond to the elements of απ and the second N columns to βπ. The rows of X corre-

sponding to neighborhood i (rows (i− 1)T + t with t = 1, . . . T ) have an element equal to 1

in the (π(α))−1(i)th column, an element equal to xit = (t− t)/sd(t) in the (N+(π(β))−1(i))th

column, and zero elsewhere. With such construction, the (i − 1)T + t row of the equation
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Y = Xθ corresponds to yi,t = θ(π(α))−1(i) + xitθN+(π(β))−1(i) = αi + xtβi.

Marginal likelihood Y |γ(α), γ(β) To recover the marginal likelihood p(Y |γ(α), γ(β)) we

compute ∫ [∫
p(Y |α,β, σ2)p(α|γ(α), σ2)p(β|γ(β), σ2)dαdβ

]
p(σ2)dσ2 =

=

∫ [∫
p(Y |απ,βπ, σ

2)p(απ|γ(α), σ2)p(βπ|γ(β), σ2)dαπdβπ

]
p(σ2)dσ2 =

=

∫ [∫
p(Y |θ, σ2)p(θ|γ(α), γ(β), σ2)dθ

]
p(σ2)dσ2.

Let us first compute p(Y |σ2, γ(α), γ(β)) =
∫
p(Y |θ, σ2)p(θ|γ(α), γ(β), σ2)dθ. Using the nota-

tion for linear regression we can write p(Y |θ, σ2) = N(Xθ, σ2I). The prior for θ is a normal

distribution with mean zero and block covariance matrix Σθ: the first n×n block corresponds

to the covariance matrix of α and the second to the one for β.

By integrating out θ, p(Y |γ(α), γ(β), σ2) = N (0, σ2ΣY ) where ΣY = I+XΣθX
>. Its precision

matrix can be computed using Woodbury’s formula again: Σ−1Y = I−X(Σ−1θ +X>X)−1X>.

Note that X>X is a diagonal matrix, and we derive its form towards the end of this section.

The marginal likelihood can now be derived by integrating out σ2:

p(Y |γ(α), γ(β)) =

∫
p(Y |σ2, γ(α), γ(β))p(σ2)dσ2 =

= π−nT/2det(ΣY )−1/2
(νσλσ/2)νσ/2

Γ(νσ
2

)

∫
(σ2)−

NT+νσ
2
−1e−

Y>Σ−1
Y

Y+νσλσ

2σ2 dσ2 =

= π−nT/2det(ΣY )−1/2
Γ(NT+νσ

2
)

Γ(νσ
2

)

(
νσλσ

2

)νσ/2(νσλσ + Y >Σ−1Y Y

2

)−(NT+νσ)/2
=

= π−nT/2det(ΣY )−1/2
Γ(NT+νσ

2
)

Γ(νσ
2

)

(
νσλσ

2

)−NT/2(
1 +

Y >Σ−1Y Y

νσλσ

)−(NT+νσ)/2
.

Note that if λσ = 1, this is multivariate t-distribution with νσ degrees of freedom.

For this we need to compute the quadratic form

Y >Σ−1Y Y = Y >Y − Y >X(Σ−1θ +X>X)−1X>Y.

Because of the block diagonal structure of Σ−1θ +X>X we can write this as a sum over the
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clusters of the two partitions. Consider the column vector X>Y of length 2N : the first N

elements correspond to the summary statistics related to the απ(i)’s and we will denote the

ones corresponding to cluster S
(α)
k with (X>Y )

(α)
k , while the second N elements are for the

βi’s and we denote with (X>Y )
(β)
k′ the ones for cluster S

(β)
k′ . Now we can write

Y >X(Σ−1θ +X>X)−1X>Y =
K(α)∑
k=1

(X>Y )
(α)>
k ((Σ

(α)
k )−1 + T I)−1(X>Y )

(α)
k

+
K(β)∑
k′=1

(X>Y )
(β)>
k′ ((Σ

(β)
k′ )−1 +

∑
x2t I)−1(X>Y )

(β)
k′

where (Σ
(α)
k )−1 + T I is the diagonal blocks of Σ−1θ + X>X corresponding to cluster S

(α)
k

and (Σ
(β)
k′ )−1 +

∑
x2t I corresponds to S

(β)
k′ ; each of them can be inverted using methods for

symmetric positive definite matrices.

To compute the marginal likelihood we are left we calculating the determinant of ΣY , where

we can use the reciprocal of the determinant of its inverse

det(Σ−1Y ) = det(I−X(Σ−1θ +X>X)−1X>) = det(I− (Σ−1θ +X>X)−1X>X)

where the last equality is given by Sylvester’s formula, and allows us to compute the deter-

minant of a smaller dimensional matrix. Moreover, because of its block diagonal structure,

we can compute the determinant block-wise.

Posterior mean of α,β The calculations for the posterior mean of α,β are very similar:

using the same notation and the results for linear regression, we can find

E
[
θ|Y, γ(α), γ(β), σ−1

]
=
(
X>X + Σ−1θ

)−1
X>Y

and since this does not depend on σ2, it coincides with E
[
θ|Y, γ(α), γ(β)

]
. Because of the block

diagonal structure of the matrices involved, we can compute the estimate of the parameter

for each cluster independently. Moreover, note that the inverse of X>X + Σ−1θ is computed

in the likelihood calculation, so it can be stored and does not need to be computed two

times.

Derivation of X>X Since in our formulation the covariates are orthogonal, i.e.
∑T

t=1 xit =

0 for all i, X>X is a diagonal matrix. Note that column X(π(α))−1(i′) contains T 1’s in rows
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t + (i′ − 1)×T and zeros elsewhere; similarly column XN+(π(β))−1(i′) contains elements (xi′t)

in rows t+ (i′ − 1)× T and zero’s elsewhere. Thus, when we compute (X>X)ij we consider

the cross product of columns Xi and Xj. Depending on the value of i and j, we have the

following cases:

• if i = j ≤ N , then (X>X)ij = T ,

• if i = j ≥ N , then (X>X)ij =
∑

t x
2
π(β)(j−N),t

,

• if i ≤ N and j = N + i, then (X>X)ij =
∑

t xπ(β)(i),t = 0,

• if j ≤ N and i = N + j, then (X>X)ij =
∑

t xπ(β)(j),t = 0,

• for any other i, j, (X>X)ij = 0.

Thus the matrix X>X is a diagonal matrix: the first n × n diagonal block is T I, and the

second diagonal block is a diagonal matrix whose entries are
∑T

t=1 x
2
it; when we have fixed

design, xit = xt = (t − t)/sd(t), then
∑T

t=1 x
2
it =

∑T
t=1((t − t)/sd(t))2 is constant, so the

second diagonal block is
∑
x2itI. Because of the orthogonality of the covariates, the upper-

right and lower-left blocks are zero matrices, since
∑T

t=1 xit = 0.

Note on cluster-wise update of calculations. In our greedy search when we perform

a move only one or two clusters in only one partition is changed: in a split move for γ(·), a

cluster is divided into two sub-clusters, and the original cluster replaced by the first, while

the second creates an additional cluster; in a merge move, one of two clusters is deleted and

the other is replaced to the merge of the two original clusters. In each case, we need to

update the value of the marginal likelihood, of the prior for γ(·) and of the estimate of the

parameters.

Because of the block structure given by orthogonality of covariates and by the reordering

of the parameters, changing the structure of some clusters does not affect the parameter

estimates for other clusters that are not involved in the move. This implies that updates

for updates to S
(α)
k do not affect the parameter estimates αh for h 6= k or βk′ for any

k′. Similarly, since the quadratic form Y >Σ−1Y Y can be written as sum of cluster-specific

quadratic forms, we can update only the quadratic form of the clusters affected and we can

compute the determinant of the blocks of ΣY corresponding to the modified clusters.

This allows us to invert matrices that scale like the size of the clusters, reducing the compu-

tational costs dramatically.
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S6 Extension to Non-Conjugate Models

The proposed particle optimization strategy relies on the ability to compute the marginal

likelihood π(y|γ). This is often straightforward with conjugate models, such as the one

considered for our application. However, it may be challenging or impossible to compute

π(y|γ) in more complicated non-conjugate settings. We can, nevertheless, approximate the

marginal likelihood using, e.g., a Laplace approximation and deploy an approximate particle

optimization strategy. Below, we outline how this works for Poisson regression.

For example, consider a Poisson regression model for count data, cit ∼ Pois (exp {αi + βixt}),
with separate CAR-within-clusters priors on the αi’s and βi’s. That is, similar to model (3)

in the main text, we model

γ(α), γ(β)
iid∼ T -EP

σ2 ∼ IG

(
νσ
2
,
νσλσ

2

)
α1, . . . , αKα|γ(α), σ2 iid∼ N(0, a2σ

2)

β1, . . . , βKβ |γ
(β), σ2 iid∼ N(0, b2σ

2)

αk|αk, σ2, γ(α) ∼ CAR(αk, a1σ
2,W

(α)
k ) for k = 1, . . . , Kα

βk′|βk′ , σ2, γ(β) ∼ CAR(βk′ , b1σ
2,W

(β)
k′ ) for k′ = 1, . . . , Kβ

ci,t|α,β ∼ Pois(exp(αi + βixt))

(S2)

where xt corresponds to the time index standardized to have mean zero and unit variance.

In the main text, we defined a particle to be the pair of partitions (γ(α), γ(β)). Now, we extend

the definition of particle to include σ2; that is, let γ = (γ(α), γ(β), σ2). To approximate the

posterior distribution π(γ|y), we first approximate the marginal likelihood π(y|γ). Using a

Laplace approximation, we can compute

π(γ|y) =
π(γ,α,β|y)

π(α,β|y,γ)
' π(γ,α,β|y)

π̂(α,β|y,γ)

∣∣∣∣
(α,β)=(α̂,β̂)

(S3)

where π̂(α,β|y,γ) is the density of a multivariate normal distribution whose mean is equal

to the conditional MAP estimate (α̂, β̂) = arg maxα,β π(α,β|y,γ) and whose covariance

matrix is equal to the the inverse Hessian of the conditional log-density log π(α,β|y,γ)

evaluated at the conditional MAP (α̂, β̂). The expression on the right-hand side of (S3) is
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evaluated at (α̂, β̂). Computing the MAP and the relevant Hessian is straightforward using

standard optimizers. Note further that the density in the numerator of (S3), π(γ,α,β|y)

can be computed up to normalizing constant (which does not depend on γ or α,β) as

π(y|α,β)π(α,β|γ)π(γ).

The approximate particle optimization algorithm is extremely similar to the one described in

the main text. Namely, we sequentially update each particle in the particle set Γ. To update

a single particle, we sequentially update γ(α) and γ(β) using the same suite of coarse and fine

transitions. To update σ2 we maximize the conditional posterior π(σ2|α̂, β̂, γ(α), γ(β)), where

α̂, β̂ is the conditional MAP corresponding to γ. In these updates, we approximate π(γ|y)

for every candidate particle (γ(α), γ(β), σ2) that we consider.

S6.1 Illustration on synthetic data

To understand the performance of our approximate PartOpt, we performed a simulation

study very similar to that described in Section S3.1. Specifically, we generated observations

cit ∼ Pois(exp{αi + βixt}) where the αi’s and βi’s were drawn from a CAR-within-cluster

distribution. We considered three settings of the αi’s and βi’s, one where the grand cluster

means were highly separated (first row of Figure S12), one where the grand cluster means

were moderately separated (second row of Figure S12), and one where the grand cluster

means were very close in value (third row of Figure S12). We ran our approximate PartOpt

with L = 10 particles and penalties λ = 1, 10, and 100.

For all values of λ, the particle set contained the true partitions γ(α) and γ(β) shown in

Figure S12. Like the simulations reported in the main manuscript for the Gaussian re-

gression setting, we found that when λ = 1, many particles collapsed to the same point.

However, we recovered a much more diverse particle set when we set λ = 10 and λ = 100.

Figure S13 shows the L = 10 particles recovered when we ran the approximate PartOpt

on data generated from (S2) with the αi’s and βi’s from the high separation setting, shown

in the top panel Figure S12. Similarly, Figure S14 shows the recovered particles for the

moderate separation setting, when λ = 10. Finally, Figure S15 shows the recovered particles

for the low separation setting, when λ = 10. In the high and moderate cluster separation

settings, all of the estimated partitions are extremely close to the true partitions and the

corresponding conditional posterior means of αi and βi are quite close to the true values. In

the low separation setting, the particle set recovered partitions quite different from the ones

used to generate the data. The behavior of the approximate PartOpt in the low separation
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Figure S12: The true partition γ(α) and γ(β) used to generate the synthetic data to test
the extension of Particle Optimization to non-conjugate models. First row: high cluster
separation configuration. Second row: moderate cluster separation configuration. Third
row: low cluster separation configuration.

setting is not surprising: when there is little between-cluster variation in parameter values,

the posterior strongly favors a single large cluster instead of several smaller clusters that all

containing similar parameter values.
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Figure S13: The estimate particles (γ(α), γ(β)) recovered for λ = 10 in the high separation
setting, and the weight associated to each one.
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Figure S14: The estimate particles (γ(α), γ(β)) recovered for λ = 10 in the moderate separa-
tion setting, and the weight associated to each one.
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Figure S15: The estimate particles (γ(α), γ(β)) recovered for λ = 10 in the low separation
setting, and the weight associated to each one.
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