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Abstract

This text serves as an appendix to the paper “Two-Sample Testing for Tail Cop-
ulas with an Application to Equity Indices.” For context, notation and definitions,
see that paper. First, we provide the proofs of Theorems 3.1, 4.1 and 5.1. Then, we
present simulation results under serial dependence.
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Proof of Theorem 3.1

By Skorohod’s representation theorem, there is a probability space where probabilistically

equivalent versions of all the random elements in Assumption A1 are defined, those in (8)

independent of those in (9), and the convergences (8) and (9) hold in probability. All

statements in this proof should be understood as statements about random elements in

this probability space.

Given (x, y) ∈ [0,∞)2, let us define points (x̂, ŷ) and (x̂′, ŷ′) by

x̂ =

[(
1 + γ1

(
x−γ̂1 − 1

γ̂1
· â1
a1

+
b̂1 − b1
a1

))
∨ 0

]−1/γ1
,

ŷ =

[(
1 + γ2

(
y−γ̂2 − 1

γ̂2
· â2
a2

+
b̂2 − b2
a2

))
∨ 0

]−1/γ2
,

x̂′ =

[(
1 + γ′1

(
x−γ̂

′
1 − 1

γ̂′1
· â
′
1

a′1
+
b̂′1 − b′1
a′1

))
∨ 0

]−1/γ′1
,

ŷ′ =

[(
1 + γ′2

(
y−γ̂

′
2 − 1

γ̂′2
· â
′
2

a′2
+
b̂′2 − b′2
a′2

))
∨ 0

]−1/γ′2
.

It follows from Lemma 1.1 in the Appendix of Can et al. (2015) that

sup
x∈[δ,T ]

∣∣√k(x̂− x)−
[
f(x, γ1)A1 + g(x, γ1)B1 + h(x, γ1)Γ1

]∣∣ P→ 0,

sup
y∈[δ,T ]

∣∣√k(ŷ − y)−
[
f(y, γ2)A2 + g(y, γ2)B2 + h(y, γ2)Γ2

]∣∣ P→ 0,

sup
x∈[δ,T ]

∣∣√k′(x̂′ − x)−
[
f(x, γ′1)A

′
1 + g(x, γ′1)B

′
1 + h(x, γ′1)Γ

′
1

]∣∣ P→ 0,

sup
y∈[δ,T ]

∣∣√k′(ŷ′ − y)−
[
f(y, γ′2)A

′
2 + g(y, γ′2)B

′
2 + h(y, γ′2)Γ

′
2

]∣∣ P→ 0.

(S.1)

Now, let R̂n and Tn be as defined in (6) and (7), respectively, and let R̂′n′ and T ′n′ be

their analogues constructed from the second sample. Note that the probability of the event

{R̂n(x, y) = Tn(x̂, ŷ) and R̂′n′(x, y) = T ′n′(x̂′, ŷ′) for all (x, y) ∈ [δ, T ]2} (S.2)

tends to 1 as n, n′ → ∞. Hence, instead of ηn,n′ , it will suffice to show convergence for
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η∗n,n′(x, y) :=
√
κ[Tn(x̂, ŷ)− T ′n′(x̂′, ŷ′)], which we decompose as follows:

η∗n,n′(x, y) =
√
κ[Tn(x̂, ŷ)−Rn(x̂, ŷ)] +

√
κ[Rn(x̂, ŷ)−R(x̂, ŷ)]

+
√
κ[R(x̂, ŷ)−R(x, y)]−

√
κ[T ′n′(x̂′, ŷ′)−R′n′(x̂′, ŷ′)]

−
√
κ[R′n′(x̂′, ŷ′)−R(x̂′, ŷ′)]−

√
κ[R(x̂′, ŷ′)−R(x, y)]

=: η∗1n(x, y) + η∗2n(x, y) + η∗3n(x, y)− η∗4n′(x, y)− η∗5n′(x, y)− η∗6n′(x, y).

The in-probability convergence (8), (S.1) and the continuity of VR yield

sup
(x,y)∈[δ,T ]2

∣∣η∗1n(x, y)−
√
cVR(x, y)

∣∣ P→ 0. (S.3)

From Assumption A3 and (S.1) it also follows that

sup
(x,y)∈[δ,T ]2

∣∣η∗2n(x, y)
∣∣ P→ 0. (S.4)

Moreover, from the Mean Value Theorem we know that

η∗3n(x, y) =
√
κ[R(1)(qx, qy)(x̂− x) +R(2)(qx, qy)(ŷ − y),

for some (qx, qy) lying on the line segment connecting (x, y) and (x̂, ŷ). The convergence

(S.1) in combination with Assumption A2 now yields that

sup
(x,y)∈[δ,T ]2

∣∣∣∣η∗3n(x, y)−
√
cR(1)(x, y)

[
f(x, γ1)A1 + g(x, γ1)B1 + h(x, γ1)Γ1

]
−
√
cR(2)(x, y)

[
f(y, γ2)A2 + g(y, γ2)B2 + h(y, γ2)Γ2

]∣∣∣∣ P→ 0.

(S.5)

The analogues of (S.3), (S.4), (S.5) for η∗4n′ , η∗5n′ , η∗6n′ are proved along similar lines. Com-

bining these six results completes the proof.

Proof of Theorem 4.1

This result essentially follows from the general martingale transformation result in Theorem

3.1 of Can et al. (2015). Instead of arbitrary Borel sets B ⊂ [δ, T ]2 considered therein, we
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consider rectangles [δ, δ + x] × [δ, δ + y] for 0 ≤ x, y ≤ T − δ. Furthermore, we use the

scanning family Au = [δ, T ] × [δ, (1 − u)δ + uT ], 0 ≤ u ≤ 1. Then, from (12) under

Assumptions A4–A5 confined to the true γ1, γ2, γ
′
1, γ
′
2, r, r

(1), r(2), we obtain that

WR(x, y) =

∫ δ+x

δ

∫ δ+y

δ

dη(s, t)

−
∫ δ+x

δ

∫ δ+y

δ

q(s, t)T
(
I−1δ,T (t)

∫ T

δ

∫ T

t

q(s′, t′) dη(s′, t′)

)
r(s, t) ds dt

is a bivariate Wiener process on [0, τ ]2 for any τ ∈ (δ, T −δ), with “time” measure R([δ, δ+

· ]× [δ, δ + · ]). That is, WR is a zero-mean Gaussian process with covariance structure

E[WR(x, y)WR(x′, y′)] = R([δ, δ + x ∧ x′]× [δ, δ + y ∧ y′]),

for (x, y), (x′, y′) ∈ [0, τ ]2. It then follows from the standard theory of multivariate Gaus-

sian processes (see, e.g., the lemma preceding Theorem 3 in Khmaladze (1988)) that the

normalized process

W (x, y) =

∫ δ+x

δ

∫ δ+y

δ

1√
r(s, t)

dWR(s, t)

=

∫ δ+x

δ

∫ δ+y

δ

1√
r(s, t)

dη(s, t)

−
∫ δ+x

δ

∫ δ+y

δ

q(s, t)T
(
I−1δ,T (t)

∫ T

δ

∫ T

t

q(s′, t′) dη(s′, t′)

)√
r(s, t) ds dt

is a standard bivariate Wiener process on [0, τ ]2.

Proof of Theorem 5.1

We start by establishing the limit relations

sup
(x,y)∈[δ,T ]2

|r̂(x, y)− r(x, y)| P→ 0 as n, n′ →∞, (S.6)

sup
(x,y)∈[δ,T ]2

|r̂(12)(x, y)− r(12)(x, y)| P→ 0 as n, n′ →∞, (S.7)

where r̂(12) := ∂2r̂/(∂x∂y).
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Clearly, for (S.6), it is sufficient to show that

sup
(x,y)∈[δ,T ]2

|sw(x, y)− r(x, y)| P→ 0 as n→∞.

We write

sw(x, y)− r(x, y)

=
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
d(R̂n(u, v)−R(u, v))

+
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
(r(u, v)− r(x, y)) du dv.

(S.8)

Applying bivariate integration by parts (see e.g., Henstock (1973), Theorem 3), we find

that the first term on the right-hand side is equal to

1

w2

∫ y+w

y−w

∫ x+w

x−w
(R̂n(u, v)−R(u, v)) dK

(
x− u
w

)
dK

(
y − v
w

)
.

From (S.3), (S.4) and (S.5), this expression is OP ((k1/10)2k−1/2)(
∫ 1

−1 |dK(u)|)2 = oP (1)

uniformly on [δ, T ]2. The absolute value of the second term in (S.8) is bounded by

sup
(u,v)∈[x−w, x+w]×[y−w, y+w]

|r(u, v)− r(x, y)|,

which by the (uniform) continuity of r tends to 0, uniformly on [δ, T ]2. The convergence

(S.6) is thereby established.

For (S.7), it is sufficient to show, with s
(12)
w := ∂2sw/(∂x∂y), that

sup
(x,y)∈[δ,T ]2

|s(12)w (x, y)− r(12)(x, y)| P→ 0, as n→∞.

We have

s(12)w (x, y)− r(12)(x, y)

=
1

w4

∫ y+w

y−w

∫ x+w

x−w
K(1)

(
x− u
w

)
K(1)

(
y − v
w

)
d(R̂n(u, v)−R(u, v))

+
1

w4

∫ y+w

y−w

∫ x+w

x−w
K(1)

(
x− u
w

)
K(1)

(
y − v
w

)
r(u, v) du dv − r(12)(x, y).

(S.9)
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Similar as for the first term in (S.8), it can be shown that the first term of (S.9) is

OP ((k1/10)4k−1/2)(
∫ 1

−1 |dK
(1)(u)|)2 = oP (1) uniformly on [δ, T ]2. The second term in (S.9)

is equal to

1

w2

∫ y+w

y−w

∫ x+w

x−w
r(u, v) dK

(
x− u
w

)
dK

(
y − v
w

)
− r(12)(x, y)

=
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
dr(u, v)− r(12)(x, y)

=
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
(r(12)(u, v)− r(12)(x, y)) du dv,

where for the first equality again bivariate integration by parts is used. The absolute value

of the last expression is bounded by

sup
(u,v)∈[x−w, x+w]×[y−w, y+w]

|r(12)(u, v)− r(12)(x, y)|,

which by the (uniform) continuity of r(12) tends to 0, uniformly on [δ, T ]2.

Next, we establish that for j = 1, 2,

sup
(x,y)∈[δ,T ]2

|r̂(j)(x, y)− r(j)(x, y)| P→ 0 as n, n′ →∞, (S.10)

sup
(x,y)∈[δ,T ]2

|r̂(j12)(x, y)− r(j12)(x, y)| P→ 0 as n, n′ →∞, (S.11)

where r̂(112) := ∂2r̂(1)/(∂x∂y) and r̂(212) := ∂2r̂(2)/(∂x∂y).

For (S.10), it is sufficient to show that

sup
(x,y)∈[δ,T ]2

∣∣∣∣∣ 1

kw3

n∑
i=1

K(1)

(
x− X̂i(n/k)

w

)
K

(
y − Ŷi(n/k)

w

)
− r(1)(x, y)

∣∣∣∣∣ P→ 0 as n→∞.

The expression inside the absolute-value signs is equal to

1

w3

∫ y+w

y−w

∫ x+w

x−w
K(1)

(
x− u
w

)
K

(
y − v
w

)
d(R̂n(u, v)−R(u, v))

+
1

w3

∫ y+w

y−w

∫ x+w

x−w
K(1)

(
x− u
w

)
K

(
y − v
w

)
r(u, v) du dv − r(1)(x, y).

(S.12)

From (S.3)–(S.5) again, the first term is now OP ((k1/12)3k−1/2) = oP (1) uniformly on [δ, T ]2.
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The second term in (S.12) is equal to

1

w2

∫ y+w

y−w
K

(
y − v
w

)∫ x+w

x−w
r(u, v) dK

(
x− u
w

)
dv − r(1)(x, y)

=
1

w2

∫ y+w

y−w
K

(
y − v
w

)∫ x+w

x−w
K

(
x− u
w

)
r(1)(u, v) du dv − r(1)(x, y)

=
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
(r(1)(u, v)− r(1)(x, y)) du dv,

which tends to 0, uniformly on [δ, T ]2, by the (uniform) continuity of r(1). The limit relation

(S.10) is thereby established. (S.11) follows by very similar reasoning, using that, with K(2)

the second derivative of K,

1

kw5

n∑
i=1

K(2)

(
x− X̂i(n/k)

w

)
K(1)

(
y − Ŷi(n/k)

w

)

=
1

w5

∫ y+w

y−w

∫ x+w

x−w
K(2)

(
x− u
w

)
K(1)

(
y − v
w

)
d(R̂n(u, v)−R(u, v))

+
1

w2

∫ y+w

y−w

∫ x+w

x−w
K

(
x− u
w

)
K

(
y − v
w

)
(r(112)(u, v)− r(112)(x, y)) du dv.

Now, by Theorem 3.1 and Skorohod’s representation theorem, there is a probability

space where probabilistically equivalent versions of ηn,n′ and η are defined, and these satisfy

‖ηn,n′ − η‖[δ,T ]2 → 0 a.s., with ‖ · ‖S := supS | · | for S ⊂ [0,∞)2. We will show that in this

probability space,

‖Wn,n′ −W‖[0,τ ]2
P→ 0, (S.13)

with W as defined in (15). In view of Theorem 4.1, this will suffice for the proof.

Given a < b ∈ R and a function ϕ : [a, b]2 → R, we will let V HK
[a,b]2(ϕ) denote the

Hardy-Krause variation of this function over the square [a, b]2. That is,

V HK
[a,b]2(ϕ) = V

(2)

[a,b]2(ϕ) + V
(1)
[a,b](ϕ( · , a)) + V

(1)
[a,b](ϕ( · , b)) + V

(1)
[a,b](ϕ(a, · )) + V

(1)
[a,b](ϕ(b, · )),

where V
(1)
[a,b] denotes the univariate total variation over the interval [a, b] and V

(2)
[a,b] denotes the

bivariate Vitali total variation over [a, b]2. Note that if the partial derivatives ϕ(1)(x, a) :=

∂ϕ(x, a)/∂x and ϕ(2)(a, y) := ∂ϕ(a, y)/∂y, as well as the analogously defined ϕ(1)(x, b) and
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ϕ(2)(b, y) exist on [a, b], and the mixed partial derivative ∂ϕ(x, y)/(∂x∂y) exists on [a, b]2,

then

V HK
[a,b]2(ϕ) ≤

∫ b

a

∫ b

a

|ϕ(12)(x, y)| dx dy +

∫ b

a

|ϕ(1)(x, a)| dx+

∫ b

a

|ϕ(1)(x, b)| dx

+

∫ b

a

|ϕ(2)(a, y)| dy +

∫ b

a

|ϕ(2)(b, y)| dy.

We refer to Owen (2005) for an overview of various concepts of multivariate variation.

Throughout the proof, we will let Aδ(x, y) denote the rectangle [δ, δ + x]× [δ, δ + y] for

(x, y) ∈ [0, τ ]2. Note that (S.13) will follow from∥∥∥∥∫
Aδ(x,y)

1√
r̂(s, t)

dηn,n′(s, t)−
∫
Aδ(x,y)

1√
r(s, t)

dη(s, t)

∥∥∥∥
[0,τ ]2

P→ 0 (S.14)

and∥∥∥∥∫
Aδ(x,y)

q̂(s, t)T
(
Î−1δ,T (t)

∫ T

δ

∫ T

t

q̂(s′, t′) dηn,n′(s′, t′)

)√
r̂(s, t) ds dt

−
∫
Aδ(x,y)

q(s, t)T
(
I−1δ,T (t)

∫ T

δ

∫ T

t

q(s′, t′) dη(s′, t′)

)√
r(s, t) ds dt

∥∥∥∥
[0,τ ]2

P→ 0.

(S.15)

We will prove (S.14) first. Define ∆n,n′ := ηn,n′ − η, σ(x, y) := r(x, y)−1/2, σ̂(x, y) :=

r̂(x, y)−1/2, and ∆σ(x, y) := σ(x, y)− σ̂(x, y). Then (S.14) will follow from∥∥∥∥∫
Aδ(x,y)

∆σ(s, t) dη(s, t)

∥∥∥∥
[0,τ ]2

P→ 0,

∥∥∥∥∫
Aδ(x,y)

σ̂(s, t) d∆n,n′(s, t)

∥∥∥∥
[0,τ ]2

P→ 0. (S.16)

Applying bivariate integration by parts to the first integral term in (S.16), we obtain the

following bound:∣∣∣∣ ∫
Aδ(x,y)

∆σ(s, t) dη(s, t)

∣∣∣∣ ≤ ∑
(u,v)∈Vδ(x,y)

∣∣∆σ(u, v) η(u, v)
∣∣+ ‖η‖Aδ(x,y)V

HK
Aδ(x,y)

(∆σ)

≤ ‖η‖[δ,T ]2
(
4‖∆σ‖[δ,T ]2 + V HK

[δ,T ]2(∆σ)
)
,

(S.17)

where Vδ(x, y) denotes the set of the four vertices of the rectangle Aδ(x, y). Now, Assump-

tion A2 ensures that η is continuous (hence bounded) on [δ, T ]2, (S.6) ensures that |∆σ|

is oP (1) uniformly over [δ, T ]2, and (S.7) together with a similar result for the first-order
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partial derivatives of r̂ (cf. (S.10)) ensures that V HK
[δ,T ]2(∆σ) is oP (1) as well. It follows that

the far right-hand side of (S.17) vanishes in probability, and the first convergence in (S.16)

is proved. The second convergence in (S.16) follows from a similar integration by parts

argument: ∣∣∣∣ ∫
Aδ(x,y)

σ̂(s, t) d∆n,n′(s, t)

∣∣∣∣ ≤ ‖∆n,n′‖[δ,T ]2
(
4‖σ̂‖[δ,T ]2 + V HK

[δ,T ]2(σ̂)
)
,

where the right-hand side is oP (1) since ‖∆n,n′‖[δ,T ]2 is oP (1) and ‖σ̂‖[δ,T ]2 as well as V HK
[δ,T ]2(σ̂)

are OP (1) terms.

We have thus established (S.14), and it remains to prove (S.15). For ease of notation,

we let

H(s, t) = q(s, t)TI−1δ,t (t)

∫ T

δ

∫ T

t

q(s′, t′) dη(s′, t′),

Hn,n′(s, t) = q(s, t)TI−1δ,T (t)

∫ T

δ

∫ T

t

q(s′, t′) dηn,n′(s′, t′),

Ĥ(s, t) = q̂(s, t)TÎ−1δ,T (t)

∫ T

δ

∫ T

t

q̂(s′, t′) dη(s′, t′),

Ĥn,n′(s, t) = q̂(s, t)TÎ−1δ,T (t)

∫ T

δ

∫ T

t

q̂(s′, t′) dηn,n′(s′, t′).

Then (S.15) can be written succinctly as∥∥∥∥∫
Aδ(x,y)

(
Ĥn,n′(s, t)

√
r̂(s, t)−H(s, t)

√
r(s, t)

)
ds dt

∥∥∥∥
[0,τ ]2

P→ 0,

which can be proved by showing

∥∥H(√r̂ −√r)∥∥
Aδ(τ,τ)

P→ 0,
∥∥(Ĥn,n′ −H

)√
r̂
∥∥
Aδ(τ,τ)

P→ 0. (S.18)

The first convergence in (S.18) follows easily from the continuity (hence boundedness) of H

over Aδ(τ, τ) and (S.6). As for the second convergence in (S.18), since ‖
√
r̂
∥∥
Aδ(τ,τ)

= OP (1),

we need to show that ‖Ĥn,n′ −H‖Aδ(τ,τ)
P→ 0. We will do this by proving

‖Hn,n′ −H‖Aδ(τ,τ)
P→ 0, ‖Ĥn,n′ −Hn,n′‖Aδ(τ,τ)

P→ 0. (S.19)
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Consider the first convergence in (S.19). We have

‖Hn,n′ −H‖Aδ(τ,τ) =

∥∥∥∥q(s, t)TI−1δ,T (t)

∫ T

δ

∫ T

t

q(s′, t′) d∆n,n′(s′, t′)

∥∥∥∥
Aδ(τ,τ)

,

with ∆n,n′ = ηn,n′ − η, as before. The term |q(s, t)TI−1δ,T (t)| is component-wise bounded on

Aδ(τ, τ) by continuity, so we need to show that

sup
t∈[δ,δ+τ ]

∣∣∣∣ ∫ T

δ

∫ T

t

qi(s
′, t′) d∆n,n′(s′, t′)

∣∣∣∣ P→ 0, i = 1, . . . , 8. (S.20)

Applying integration by parts as before, we obtain∣∣∣∣ ∫ T

δ

∫ T

t

qi(s
′, t′) d∆n,n′(s′, t′)

∣∣∣∣ ≤ ‖∆n,n′‖[δ,T ]2
(
4‖qi‖[δ,T ]2 + V HK

[δ,T ]2(qi)
)
,

where the right-hand side is oP (1) since ‖∆n,n′‖[δ,T ]2 = oP (1), ‖qi‖[δ,T ]2 <∞ by continuity,

and V HK
[δ,T ]2(qi) <∞ by Assumptions A4 and A6. Hence (S.20) is established and it remains

to prove the second convergence in (S.19).

By virtue of the first convergence in (S.19), and an analogous result for Ĥn,n′ and Ĥ, it

will suffice to prove ‖Ĥ −H‖Aδ(τ,τ)
P→ 0. Note that

|Ĥ(s, t)−H(s, t)| ≤
∣∣q̂(s, t)TÎ−1δ,T (t)− q(s, t)TI−1δ,T (t)

∣∣ · ∣∣∣∣ ∫ T

δ

∫ T

t

q(s′, t′) dη(s′, t′)

∣∣∣∣
+
∣∣q̂(s, t)TÎ−1δ,T (t)

∣∣ · ∣∣∣∣ ∫ T

δ

∫ T

t

(
q̂(s, t′)− q(s′, t′)

)
dη(s′, t′)

∣∣∣∣, (S.21)

where absolute values should be interpreted component-wise, as usual. Consider the first

summand on the right-hand side of (S.21). Our assumptions about the various estimators

and (S.6) and (S.10) ensure that the difference
∣∣q̂(s, t)TÎ−1δ,T (t) − q(s, t)TI−1δ,T (t)

∣∣ is oP (1)

uniformly over (s, t) ∈ Aδ(τ, τ). Moreover, an integration by parts argument as before

yields that ∣∣∣∣ ∫ T

δ

∫ T

t

qi(s
′, t′) dη(s′, t′)

∣∣∣∣ ≤ ‖η‖[δ,T ]2(4‖qi‖[δ,T ]2 + V HK
[δ,T ]2(qi)

)
,

for i = 1, . . . , 8, where the right-hand side is OP (1). So the first summand on the right-hand

side of (S.21) is oP (1) uniformly over (s, t) ∈ Aδ(τ, τ). The second summand there can be
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handled similarly: the term
∣∣q̂(s, t)TÎ−1δ,T (t)

∣∣ is OP (1), and integration by parts yields∣∣∣∣ ∫ T

δ

∫ T

t

qi(s
′, t′)− q̂i(s′, t′) dη(s′, t′)

∣∣∣∣ ≤ ‖η‖[δ,T ]2(4‖qi − q̂i‖[δ,T ]2 + V HK
[δ,T ]2(qi − q̂i)

)
for i = 1, . . . , 8, where the right-hand side is oP (1), using (S.6), (S.7), (S.10), and (S.11),

in conjunction with Assumptions A4 and A6.

Both convergences in (S.18) are thereby established, which in turn proves (S.15).

Simulations under serial dependence

In Section 7, we argue that our testing procedure is anticonservative in the presence of

serial dependence, that is, it will make more Type I errors when there is component-wise

serial dependence than when the samples are i.i.d. To provide some empirical support for

this claim, we generate 1000 sample pairs from Model III of Section 6.1, but this time with

component-wise serial dependence in each sample. We observe that the rejection rates

at the 5% level indeed go up for each of the three test statistics, in agreement with our

heuristic argument.

To be more precise, we generate a component-wise serially dependent sample from the

distribution F in Model III in the following way; the construction is analogous for F ′.

First we generate two serially dependent sequences of Uniform(0,1) random variables, say

U1, . . . , Un and V1, . . . , Vn, with n = 1500. These sequences are generated, independently

from each other, following the “sum of uniforms method” described in Section 3 of Wille-

main and Desautels (1993). This ensures the presence of serial dependence in each sequence,

and a parameter c controls the strength of the auto-correlation. We take c = 1/3 for a

rather strong auto-correlation of about 0.95 at lag 1 in both sequences. At this point, we

have a sample (U1, V1), . . . , (Un, Vn) from the independence copula, with serial dependence

in each component. Next, this sample is transformed into a sample from the Clayton(1)

survival copula via the conditional distribution method as explained in, e.g., Section 2.9 of

11



Nelsen (2006). Finally, the Pareto(3) quantile function is applied component-wise to this

copula sample, to obtain a serially dependent sample from F .

The marginal auto-correlation plots of one sample generated this way from F can be

seen in Fig. 1 below. Clearly, serial dependence is still present in both components after

the transformation to the Clayton(1) survival copula and the subsequent marginal trans-

formations to Pareto(3).
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Figure 1: Marginal auto-correlation plots of a serially dependent sample from F

Computing the three test statistics in (17) from 1000 sample pairs generated this way

from Model III, we observe rejection counts of 88, 99, 120 for κn, ω2
n, A2

n, respectively, at

the 5% level. Thus the empirical sizes are all above the nominal size of 5%, as expected.

The PP-plots for the test statistics are provided in Fig. 2 below. The deviation from the

45-degree line is clearly visible for each statistic, especially in comparison with the i.i.d.

cases in Fig. 6.1. The plots suggest that the test statistics tend to take larger values under

serial dependence than under independence, which means that their critical values would

have to be revised upwards when accounting for serial dependence in the samples. Thus if

the null hypothesis is not rejected under the i.i.d. assumption, it will not be rejected when

serial dependence is taken into account.

We also note that changing the dependence parameter c from 1/3 to 1/4 at the initial
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Figure 2: PP-plots for the three test statistics constructed from 1000 sample pairs with

serial dependence

stage, which leads to even stronger serial dependence in the Uniform(0,1) sequences gener-

ated via the sum of uniforms method, results in higher rejection rates for each of the three

test statistics: 115, 143, 169 out of 1000 for κn, ω2
n, A2

n, respectively, at the 5% level. This

lends further support to the heuristic idea that higher serial dependence leads to higher

estimation errors and therefore higher critical values for the test statistics.
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