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Abstract

This text serves as an appendix to the paper “Two-Sample Testing for Tail Cop-
ulas with an Application to Equity Indices.” For context, notation and definitions,
see that paper. First, we provide the proofs of Theorems 3.1, 4.1 and 5.1. Then, we
present simulation results under serial dependence.



Proof of Theorem 3.1

By Skorohod’s representation theorem, there is a probability space where probabilistically
equivalent versions of all the random elements in Assumption A1 are defined, those in (8)
independent of those in (9), and the convergences (8) and (9) hold in probability. All
statements in this proof should be understood as statements about random elements in
this probability space.

Given (x,y) € [0,00)?, let us define points (7,7) and (7’,7') by
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It follows from Lemma 1.1 in the Appendix of Can et al. (2015) that

st[(lspT] V(@ — z) — [f(z,m) A1 + g(z,7) By + h(z,71)T1] | o,

sup. VE@ — y) = [f(y,72) A2 + gy, 72) Bz + h(y, 72)Ta] | = 0,
y€|o,

sup [VI(F = @) = [f(2,9) 4 + g(z. 1) Bl + hla, /)T [ 50,

z€[8,T]

up VEG —y) = [F(y.7%) Ay + g(y. 1) By + h(y,75)T4] | 5 0.
ye|o,

Now, let R, and T}, be as defined in (6) and (7), respectively, and let }/%;L, and 1), be

their analogues constructed from the second sample. Note that the probability of the event
{Ru(x,y) = To(2,7) and R, (2,y) = T,,(&,7) for all (x,y) € [5, T’} (S:2)

tends to 1 as n,n’ — oo. Hence, instead of n,,, it will suffice to show convergence for



M (7, 9) = /E[T0(Z,y) — T,,(7', )], which we decompose as follows:

n:z,n’(x7 y) = \/E[TH(L/L'\, /y\) - Rn(i‘\a /y\)] + \/E[RH(L/L'\, /y\) - R(/I\, ?/J\)]
+ VE[R(Z, ) — R(x,y)] — VE[T,(Z,7) — R, (T, 7))
— VE[RL,(Z,7) - R(@,7)] — VER@,T) — R(z,y)]

= N (T, ) + 12, (2, ) + 03, (7, y) — N4 (2, 9) — 05,0 (2, y) — 050 (2, 9).

The in-probability convergence (8), (S.1) and the continuity of Vx yield

* P
sup |t (x,y) — VeVa(z,y)| = 0. (S.3)
(2,9)€l6TP2

From Assumption A3 and (S.1) it also follows that

. P
sup |772n(at,y)| — 0. (S.4)
(z,y)€[6,T]2

Moreover, from the Mean Value Theorem we know that

(. y) = VE[RW(Z, )T — ) + R (Z,9) (7 — ),

for some (Z,9) lying on the line segment connecting (x,y) and (Z,y). The convergence

(S.1) in combination with Assumption A2 now yields that

Lo Wi (2,y) — VeRW (z,y) [f (2, 71) A1 + g(z, 1) Bi + h(z,71)T1]
z,y)€[6,T)?

(S.5)
— VeRP (z,y)[f(y.72) A2 + gy, 72) B2 + h(y, 72)T2] | = 0.

The analogues of (S.3), (S.4), (S.5) for n},., ni,, 15, are proved along similar lines. Com-

bining these six results completes the proof.

Proof of Theorem 4.1

This result essentially follows from the general martingale transformation result in Theorem

3.1 of Can et al. (2015). Instead of arbitrary Borel sets B C [d, T]? considered therein, we
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consider rectangles [d,6 + z] x [§,0 + y] for 0 < z,y < T — §. Furthermore, we use the
scanning family A, = [6,7] x [0,(1 —u)d + uT], 0 < w < 1. Then, from (12) under

Assumptions A4-A5 confined to the true vi, 72,7, 75, 7, 7V, 7 we obtain that

o+x oty
Wil y) = / / dn(s, 1)
) )

- /;ﬂ /:er a(s,t)" (I({%(t) /ET /tT q(s',t) dﬂ(8/7t’))r(s,t) ds dt

is a bivariate Wiener process on [0, 7]2 for any 7 € (5,7 — ), with “time” measure R([d,d +

-] x[0,0 + -]). That is, Wx is a zero-mean Gaussian process with covariance structure
EWr(z,y)Wr(2',y)] = R([6,6 + z A2'] x [0,0 +y Ay)),

for (z,y), («',y") € [0,7]>. Tt then follows from the standard theory of multivariate Gaus-
sian processes (see, e.g., the lemma preceding Theorem 3 in Khmaladze (1988)) that the

normalized process

o+ o4y
W(J;ay) = / 5 —dWR(S7t)
1)

1
\/7r(s,t)

:/:er 55+y\/%
~ /5 " /5 " q(s,t)T(I;;(t) /5 ' /t ") dn(s’,t'))m ds dt

dn(s,t)

is a standard bivariate Wiener process on [0, 7]%.

Proof of Theorem 5.1

We start by establishing the limit relations

sup [Pz, y) — r(z,y)] D0 asn,n — oo, (S.6)
(z,9)€[6,T]?

sup [P (z,y) — v (z,y)| L0 asn,n — oo, (S.7)
(z,y)€[6,T]?

where 712 := 9%7/(0z0y).



Clearly, for (S.6), it is sufficient to show that

sup  |sw(x,y) —r(x,y)| 50 asn— oo
(z,y)€l6, T

We write

Su(, y) r(z,

y*“’/x ) (g;_u) K (%“) d(R,(u,v) — R(u,v))
y+w/ (x—u) < ) ) — r(z,y)) du dv.

Applying bivariate integration by parts (see e.g., Henstock (1973), Theorem 3), we find

(S.8)

that the first term on the right-hand side is equal to

W/ ~ R(u,v))dK <x;“) dK (y;”).

From (S.3), (S.4) and (S.5), this expression is Op((kzl/lo)21<:_1/2)(ffl1 |[dK (u)])? = op(1)

uniformly on [4, T]?. The absolute value of the second term in (S.8) is bounded by
sSup |T(U,U> - T(Iay)|7
(u,w)Elz—w, z+w| X [y—w, y+w]
which by the (uniform) continuity of r tends to 0, uniformly on [6, T]?. The convergence
(S.6) is thereby established.
For (S.7), it is sufficient to show, with so? = 0?5,/ (020y), that
(12) _,.(12) P
sup s, (z,y) —r"¥(z,y)| = 0, asmn — oo.
(z,y)€l6,T]?

We have

81(1}2) (l’, y) - T(IQ) (CC? y)
1 vt

-/ ::UK(D<$;U>K (;U>d(§( v) — R(u,v))
K. (”3_”> (yw> (u, ) dudv — 712 (z, ).

y+w /

(S.9)




Similar as for the first term in (S.8), it can be shown that the first term of (S.9) is

Op((KY10) = 172)( 1 |AK D (u)])? = 0p(1) uniformly on [§, T]?. The second term in (S.9)
is equal to

L W/xw uvdK( )dK( wv)—r‘”)(rv,y)
1 y“”/x ) (x—“>K(y;“> dr(u,v) — r*(z,y)
ytw /Hw <x — u> % (yw U) (r(12)(u,v) _ r(12)(x7y))du dv,

where for the first equality again bivariate integration by parts is used. The absolute value

of the last expression is bounded by

sup ’r(12 (U, U) - T'(12) (337 y)’v
(u,w)Elz—w, z+w| X [y—w, y+w)

which by the (uniform) continuity of r1? tends to 0, uniformly on [§, T]2.

Next, we establish that for j =1, 2,

sup Wj)(x,y) — r(j)(x,y)| B0 as n,n’ — oo, (S.10)
(z,y)€[68,T)?

sup |ﬂj12) (x,y) — r(jlz)(x, y)| 50 as n,n’ — oo, (S.11)
(z,y)€[6,T]

where 7012 := 9271 /(9z0y) and 7?2 = 927 /(9z0y).

For (S.10), it is sufficient to show that

kw3 ZK <—(”/k)> K (—y - Azl}("/k)> —r(z,y)

The expression inside the absolute-value signs is equal to

Lo “wmn(f”‘“)z(( _”)d< (u, ) — R(u,v))

3
w Yy—w T—w w

R,
y+w/ P (:c—U) ( ) (u,v) dudv —r® (2, y).

From (S.3)—(S.5) again, the first term is now Op((k*/12)3k~1/2) = 0p(1) uniformly on [4, T2

P
sup —0 asn— oo.

(z,9)€[6,T)?

(S.12)




The second term in (S.12) is equal to

1 yt+w _ Tt+w _
— K (y U> / r(u,v) dK (x u) dv — W (z, )
w y—w r—w w

1 vt -
:w2 < ” ) (x u) r (u,v) dudo — r® (z, y)

y+w/x+w (m ) ( ;v) r®(u,v) — rV(z, ) dudv,

which tends to 0, uniformly on [6, T]?, by the (uniform) continuity of 7). The limit relation

(S.10) is thereby established. (S.11) follows by very similar reasoning, using that, with K )

the second derivative of K,
1 & z — Xi(n/k) y —Yi(n/k)
_ K® KO
kwd ; ( w ) w
1 fytw rtw T —u y—v ~
=3 K® ( ) KW ( ) d(R,(u,v) — R(u,v))
y+w _ _
/ ($ u) K <y U) (rM2 (u, v) — rM2 (2, y)) du do.
w

Now, by Theorem 3.1 and Skorohod’s representation theorem, there is a probability

space where probabilistically equivalent versions of 7, ,» and 1 are defined, and these satisfy
e — 0oz = 0 aus., with || - ||s := supg | - | for S C [0,00)?. We will show that in this
probability space,

Wi — VVH[O,T]2 5 0, (S.13)

with W as defined in (15). In view of Theorem 4.1, this will suffice for the proof.
Given a < b € R and a function ¢ : [a,b> — R, we will let V b]z( ) denote the

Hardy-Krause variation of this function over the square [a,b]?. That is,

Vil () = Vi&a(0) + Vi (- @) + V(e b) + Vi (e(a, -)) + Vil (e (b, ),

where V[Slz] denotes the univariate total variation over the interval [a, b] and V[[(fg] denotes the
bivariate Vitali total variation over [a, b]?>. Note that if the partial derivatives oM (z, a) :=

dp(x,a)/0x and @ (a,y) := dp(a,y)/dy, as well as the analogously defined o™ (z,b) and

7



@) (b, y) exist on [a,b], and the mixed partial derivative dp(xz,y)/(0xdy) exists on [a, b]?,

then

b
Vi, (¢ //\sol2>:cy|dxdy+/| Yaa)ldet [ o) do

b
+/ | (a,y)ldy+/ 0@ (b, )| dy.

We refer to Owen (2005) for an overview of various concepts of multivariate variation.
Throughout the proof, we will let As(z,y) denote the rectangle [d, + x| x [d, + y] for

(z,y) € [0,7]%. Note that (S.13) will follow from

1 p
A (s,t) — / dn st Bo (S.14)
H /Ag(x,y) VT(s,1) As(zy) VT ( [0,7]2
and
- T /T
‘ / q(s,t)" (Igilr(t)/ / q(s',t) dnn,n/(s’,t’)> VT(s,t)dsdt
As(zy) 5 Jt
e S (S.15)
_ / q(s,t)T(I&;(w / / als' ) dn(s’,t’))\/r(s,t)dsdt L
As(z,y) 1) t [0,7]2

We will prove (S.14) first. Define A,/ := 9w — 1, o(z,y) = r(z,9)"Y2, &(z,y) =

P(x,y)"Y2, and Ao(z,y) := o(z,y) — 5(z,y). Then (S.14) will follow from

‘ L H/ 5(s,1) A (5,1)
[0,7]2 As(z,y)

Applying bivariate integration by parts to the first integral term in (S.16), we obtain the

P

— 0. (S.16)

/ Ao(s,t)dn(s,t)
As(z,y)

[0,7]2

following bound:
[ selsnanen] s X (B0 nnn)] + iV (30
As(z,y (u,0)EVs (2,y) (S.17)
< nllpme (4l Acllpre + Vire(A0)),
where Vs(z,y) denotes the set of the four vertices of the rectangle As(z,y). Now, Assump-
tion A2 ensures that 1 is continuous (hence bounded) on [6, 7%, (S.6) ensures that |Ac]|

is 0p(1) uniformly over [4,T]?, and (S.7) together with a similar result for the first-order



partial derivatives of 7 (cf. (S.10)) ensures that WE%Q(AU) is op(1) as well. It follows that
the far right-hand side of (S.17) vanishes in probability, and the first convergence in (S.16)
is proved. The second convergence in (S.16) follows from a similar integration by parts

argument:

/A ( )a(s,t)dAn,n/(s,t) < N Aw sz (415N 572 + Vg2 (3)),
s\Z,Y

where the right-hand side is 0p(1) since || Ay ||5712 1s 0p(1) and [|o][j5 72 as well as V5 T]g( o)
are Op(1) terms.

We have thus established (S.14), and it remains to prove (S.15). For ease of notation,
we let

T ,pT

H(s,t) = q(s, t)"I5; () a(s', t)dn(s',t),

S—
—

T

S

Hy, o (s,1) = q(s, ) "L 1.(2) a(s', ) Ay (s, 1),

T
H(s,t) =q(s, t)TTg}(t) a(s', t)dn(s' ),

T T

a(s', t") dnn (s, ).

S— S S—
— S

j—:{n,n/ (87 t) = a(s7 t)T/I\g,Yl“(t)

Then (S.15) can be written succinctly as

' / (ﬁm,(s,t) s t) — H(s,t)#r(s,t)) dsdt||  Bo,
As (x,y) [0,7]2
which can be proved by showing
|5V =)y 7 0 e = H)VF| () 0 (S.18)

The first convergence in (S.18) follows easily from the continuity (hence boundedness) of H
over As(7,7) and (S.6). As for the second convergence in (S.18), since ”\/?”A(;(T 5= Op(1),

we need to show that ||}AInn/ — Hl|a5¢r,7) 50, We will do this by proving

P = P
”Hn,n’ - H||A5(T,T) — 07 ||Hn,n’ - Hn,n’HAg(T,T) — 0. (819)



Consider the first convergence in (S.19). We have

7
AS(TvT)

T T
[ Homr = Hl| a5y = Hq(s,t)TIa}(t) / / q(s, 1) dAp (s, 1)
0 t

with A, v = 1, — 1, as before. The term |q(s, t)TIgilr(t)| is component-wise bounded on

As(1,7) by continuity, so we need to show that

T T -
/ / q(s',t") dA, (8] =0
s Jt

Applying integration by parts as before, we obtain

T T
‘ / / qi(s' t") dA, (s, )
5 Jt

where the right-hand side is op(1) since ||Ay |52 = op(1), [|Gi|ljsm2 < 0o by continuity,

sup
te[6,0+47]

i=1,...,8. (S.20)

< N[ An o2 (4ll il o + Vi (40))

and V5 T]Q(q,) < 00 by Assumptions A4 and A6. Hence (S.20) is established and it remains
to prove the second convergence in (S.19).
By virtue of the first convergence in (S.19), and an analogous result for _[/‘_\[nm/ and H, it

will suffice to prove ||ﬁ] — H|| as(r,r) £ 0. Note that

ﬁIs,t—Hs,t Sas,tT/I\_lt —q(s,t)"I; 1 q(s’, ) dn(s', ¢
5T sr(t

+ [dls, 0TI \// (s, 1) <',t'>>dn<s',t'>,

where absolute values should be interpreted component-wise, as usual. Consider the first

(S.21)

summand on the right-hand side of (S.21). Our assumptions about the various estimators
and (S.6) and (S.10) ensure that the difference |a(s,t)T/I\g}(t) - q(s,t)TIg}(t)‘ is op(1)
uniformly over (s,t) € As(7,7). Moreover, an integration by parts argument as before

yields that

T T
‘ /5 / G (s ) dn(s' )| < nllare (Ao + VIS, ().
t

fori =1,...,8, where the right-hand side is Op(1). So the first summand on the right-hand

side of (S.21) is op(1) uniformly over (s,t) € As(7, 7). The second summand there can be

10



handled similarly: the term |q(s, t)ﬁg}(t)‘ is Op(1), and integration by parts yields
T T
[ a0y =ttt < Dl (= Gl + Vi - )
¢

for i = 1,...,8, where the right-hand side is op(1), using (S.6), (S.7), (S.10), and (S.11),
in conjunction with Assumptions A4 and A6.

Both convergences in (S.18) are thereby established, which in turn proves (S.15).

Simulations under serial dependence

In Section 7, we argue that our testing procedure is anticonservative in the presence of
serial dependence, that is, it will make more Type I errors when there is component-wise
serial dependence than when the samples are i.i.d. To provide some empirical support for
this claim, we generate 1000 sample pairs from Model III of Section 6.1, but this time with
component-wise serial dependence in each sample. We observe that the rejection rates
at the 5% level indeed go up for each of the three test statistics, in agreement with our
heuristic argument.

To be more precise, we generate a component-wise serially dependent sample from the
distribution F' in Model III in the following way; the construction is analogous for F’.
First we generate two serially dependent sequences of Uniform(0,1) random variables, say
Uy,...,U, and Vq,...,V,, with n = 1500. These sequences are generated, independently
from each other, following the “sum of uniforms method” described in Section 3 of Wille-
main and Desautels (1993). This ensures the presence of serial dependence in each sequence,
and a parameter ¢ controls the strength of the auto-correlation. We take ¢ = 1/3 for a
rather strong auto-correlation of about 0.95 at lag 1 in both sequences. At this point, we
have a sample (U1, V4), ..., (U,, V,) from the independence copula, with serial dependence
in each component. Next, this sample is transformed into a sample from the Clayton(1)

survival copula via the conditional distribution method as explained in, e.g., Section 2.9 of

11



Nelsen (2006). Finally, the Pareto(3) quantile function is applied component-wise to this
copula sample, to obtain a serially dependent sample from F.

The marginal auto-correlation plots of one sample generated this way from F' can be
seen in Fig. 1 below. Clearly, serial dependence is still present in both components after
the transformation to the Clayton(1) survival copula and the subsequent marginal trans-

formations to Pareto(3).

Figure 1: Marginal auto-correlation plots of a serially dependent sample from F

Computing the three test statistics in (17) from 1000 sample pairs generated this way

2

n’

from Model III, we observe rejection counts of 88, 99, 120 for x,, w2, A2, respectively, at
the 5% level. Thus the empirical sizes are all above the nominal size of 5%, as expected.
The PP-plots for the test statistics are provided in Fig. 2 below. The deviation from the
45-degree line is clearly visible for each statistic, especially in comparison with the i.i.d.
cases in Fig. 6.1. The plots suggest that the test statistics tend to take larger values under
serial dependence than under independence, which means that their critical values would
have to be revised upwards when accounting for serial dependence in the samples. Thus if
the null hypothesis is not rejected under the i.i.d. assumption, it will not be rejected when

serial dependence is taken into account.

We also note that changing the dependence parameter ¢ from 1/3 to 1/4 at the initial
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Figure 2: PP-plots for the three test statistics constructed from 1000 sample pairs with

serial dependence

stage, which leads to even stronger serial dependence in the Uniform(0,1) sequences gener-
ated via the sum of uniforms method, results in higher rejection rates for each of the three
test statistics: 115, 143, 169 out of 1000 for k,, w2, A2, respectively, at the 5% level. This
lends further support to the heuristic idea that higher serial dependence leads to higher

estimation errors and therefore higher critical values for the test statistics.
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