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S.1. Theoretical background 

S.1.1. Bayes space 

The Bayes space, denoted as ��(�), consists of positive functions defined on the common 

compact interval � = [�, �] with square-integrable logarithms (Van den Boogaart et al. 2014; Hron 

et al. 2016; Petersen et al. 2022), i.e.,  

��(�) = ��: � → ℝ��(�) > 0,   ∀� ∈ � and ∫ |log�(�)|��� < +∞
 

�
� (S-1)  

The Bayes space ��(�) is a separable Hilbert space under the following linear operations and inner 

product (Egozcue et al. 2006; Van den Boogaart et al. 2014; Hron et al. 2016): 

(1) Linear operation 

Perturbation: (�⨁�)(�) =
�(�)�(�)

∫ �(�)�(�)��
 

�

 ,  � ∈ �, and �, � ∈ ��(�) (S-2a) 

Powering:  (�⨀�)(�) =
�(�)�

∫ �(�)���
 

�

 ,  � ∈ � and � ∈ ℝ, � ∈ ��(�) (S-2b) 

where ℝ stands for the set of real numbers. The perturbation and powering are analogous to the 

point-wise addition and scalar multiplication of the ��(�) space. 

(2) Inner product  

〈�, �〉� =
1

2�
� � log

�(�)

�(�)
log

�(�)

�(�)
����

 

�

 

�

,    �, � ∈ ��(�) (S-3) 

where � = � − � is the Lebesgue measure of the compact interval � = [�, �].  

Obviously, the univariate continuous PDF supported on � = [�, �] is an element of the Bayes 

space ��(�). One can easily verify that the space of such PDFs is closed under the linear operations 

defined in Eq.(S-2). Consequently, the univariate continuous PDFs with common finite support can 

naturally embedded into a Bayes space. 

 The Hilbert structure implies that the Bayes space ��(�) is a metric space endowed with the 

Bayes metric (Talská et al. 2018), i.e.,  

��(�, �) = ‖� ⊖ �‖� = ‖�⨁(−1⨀�)‖�,    ∀�, � ∈ ��(�) (S-4) 

where ‖∙‖� = (〈∙,∙〉�)� �⁄  stands for the norm induced by the inner product defined in Eq. (S-3).  

The Bayes space ��(�) is isometrically isomorphic to the ��(�) space with the following 

centered log-ratio (CLR) transformation as the isomorphic mapping (Egozcue et al. 2006; Talská et 

al. 2018): 

CLR[�](�) = log�(�) −
1

�
� log�(�)��

 

�

 , � ∈ �,   � ∈ ��(�) (S-5) 

Then, it follows that 

��(�, �) = ���(CLR[�], CLR[�]),    ∀�, � ∈ ��(�) (S-6) 

where  ���  stands for the ��  distance defined as  ���(��, ��) = (∫(��(�) − ��(�))���)� �⁄ ,

∀��, �� ∈ ��(�). 
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S.1.2. Reproducing kernel Hilbert space (RKHS) 

(1) Real reproducing kernel 

Let �  be an arbitrary set, and let �(��)  be the real RKHS associated with the real 

reproducing kernel ��. According to the real RKHS theory (Wahba 1990; Berlinet and Thomas-

Agnan 2004; Lian 2007a), �(��) is a subspace of {�:  � → ℝ} consisting of functions defined on 

 � . The reproducing kernel ��  is a symmetric semi-definite function defined on � × � , i.e., 

��: � × � → ℝ , satisfying the following properties (Wahba 1990; Berlinet and Thomas-Agnan 

2004; Lian 2007a) 

��(�,⋅) ∈ �(��),  ∀� ∈ � (S-7) 

and 

�(�) = 〈��(�,⋅), �〉�(��),  ∀� ∈ �, � ∈ �(��) (S-8) 

where, 〈⋅,⋅〉�(��) is the inner-product endowed to the RKHS �(��).  

(2) Operator-valued reproducing kernel 

Let � and �� be two arbitrary Hilbert spaces, let ℋ(��) denote the RKHS associated with 

operator-valued reproducing kernel ��. According to the theory of operator-valued kernels (Kadri 

et al. 2016; Lian 2007a), ℋ(��) is a subspace of the operator space ��:  � → ��� consisting of 

mappings from �  to �� . The operator-valued kernel ��  is a symmetric semi-definite mapping 

from the product Hilbert space � × � to the other Hilbert space ��, i.e., ��: � × � → ��, satisfying 

(Kadri et al. 2016; Lian 2007a) 

��(�,⋅) ∈ ℋ(��), ∀ � ∈ � (S-9) 

and 

〈�(�), �〉�� = 〈��(�,⋅)�, �〉ℋ(��),  ∀� ∈ �,  � ∈ ��, � ∈ ℋ(��) (S-10) 

where 〈⋅ ,  ⋅〉��   and 〈⋅ ,  ⋅〉ℋ(��)  are the inner-products endowed to the Hilbert space ��  and the 

RKHS ℋ���(�), respectively.  

S.2. PDF preprocessings for LQD and CLR transformations 

S.2.1. PDF preprocessing for LQD transformation 

Given a PDF �(�) finitely supported on the compact interval [0,1], its log quantile density 

(LQD) transformation (Petersen and Müller 2016) is defined as 

�(�) = log �
��(�)

��
� = −log{�(�(�))} (S-11) 

where �(�) is the quantile function associated with the PDF �(�). 

As pointed out in Subsection 3.1 of the manuscript, the functional data corresponding to the 

LQD node in the transformation tree are independent of the horizontal translations of curves in the 

PDF space. In other words, the LQD transformation is “blind” to the position shift of the PDF. Such 



3 
 

a property makes the LQD transformation to be a powerful tool for revealing the shape outliers 

masked by the “curve net” formed by the variability in horizontal positions of PDFs. However, for 

other applications such as the LQD-RKHS distributional regression (Chen et al. 2019a) involved in 

the regression outlier detection (Subsection 3.2) and the robust distributional regression (Section 4), 

effective measures should be taken to cure such a ‘‘blindness” issue. 

 On the other hand, if the PDF �(�) takes near-zero values, computing the inverse function of 

the CDF �(�) to obtain the quantile function (involved in the LQD transformation) might also 

suffer from a numerical issue in the interpolation process.  

 Fortunately, both the issues raised above can be easily addressed by performing the following 

preprocessing to the PDF �(�) (Chen et al. 2019a) 

�∗(�) = (1 − �)�(�) + �, � ∈ [0, 1] (S-12) 

where � is a prescribed small positive constant referred to as the PDF preprocessing parameter 

throughout this study. Note that the PDF �(�) is finitely supported on the compact interval [0,1], 

thus the above processing is equivalent to mixing the original distribution by a proportion of uniform 

distribution U(0,1). The magnitude of the constant � depends on the specific applications: (1) for 

outlier detection, � should be smaller (e.g., � ∈ [10���, 10�� ]), otherwise it might increase the 

variability of the functional data in the LQD node; (2) however, for the LQD-RKHS distributional 

regression (Chen et al. 2019a), the constant �  should be larger (e.g., � ∈ [0.2, 0.5]  as 

recommended by Chen et al. (2019a)), otherwise the LQD transformation might be ‘‘blind” to the 

horizontal translation of PDFs.  

For illustration purposes, we consider two PDFs (denoted as ��(�) and ��(�)) respectively 

obtained by truncating the densities of norm distributions �(0.4, 0.05�)  and �(0.6, 0.05�) 

within the domain of [0,1], the calculated LQD transformations associated with four different values 

of �  (i.e., � = 10���, 10�� , 0.2 and 0.5) are displayed in Figure S-1. Comparing the LQD 

transformations shown in Figure S-1, one can see that the ‘‘blindness” phenomenon happens to the 

scenarios of � = 10��� and � = 10��, but disappears in the scenarios of � = 0.2 and � = 0.5 

as the corresponding LQD transformations of the two PDFs can be clearly distinguished from each 

other. 

For the distributional regression application, the regression is performed to the preprocessed 

PDF. Therefore, to recover the desired regression prediction associated with the target PDF �(�), 

one should remember to clear the added uniform distribution through performing the following post-

processing (Chen et al. 2019a): 

��(�) =
1

�
�
��∗(�) − �

1 − �
�  with  � = � �

��∗(�) − �

1 − �
� ��

�

�

 (S-13) 

where ��∗(�)  stands for the prediction of �∗(�)  obtained by the regression model. For more 

detailed discussion, readers are referred to Chen et al. (2019a). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S-1. Comparisons of the LQD transformations associated with two truncated normal densities 
after they are preprocessed by using Eq.(S-12) with � taking four different values. (a) Scenario I: � =
10���, (b) Scenario II: � = 10��, (c) Scenario III: � = 0.2, and (d) Scenario IV: � = 0.5. The left 
column corresponds to the PDFs, while the right column corresponds to the LQD transformations. 

S.2.2. PDF preprocessing for CLR transformation 

The CLR transformation given in Eq.(S-5) for a PDF taking near-zero values might suffer from 

a numerical issue in the logarithmic computation or have significant boundary effects, the latter is 

mainly attributed to the sharp change of the logarithmic function log(�) near � = 0. Therefore, 

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

 
   
   

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

3

4

 

   
   

�

��
∗

��
∗

��
∗

��
∗

�

Scenario I:  � = 10���

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

 

   
   

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

3

4

 

   
   

�

��
∗

��
∗

��
∗

��
∗

�

Scenario II:  � = 10��

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

 

   
   

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

 

   
   

�

��
∗

��
∗

��
∗

��
∗

�

Scenario III:  � = 0.2

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

 

   
   

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

 

   
   

�

��
∗

��
∗

��
∗

��
∗

�

Scenario IV:  � = 0.5



5 
 

when calculating the CLR transformations associate with the investigated PDF-valued datasets 

{��(�)}���
� , all the functional samples contained in {��(�)}���

�  will be preprocessed in a unified 

manner as ��(�) = (1 − �)��(�) + �, � = 1,2, ⋯ , � , if the minimum value of the PDFs (i.e., 

min
�����

inf
�∈[�,�]

{��(�)} ) is less than 0.1. Unless otherwise stated, such a PDF-prepressing will be 

performed by default for the CLR transformations involved in this study, and the default value of 

the PDF preprocessing parameter � is 0.1. 

S.3. Supplemental materials for distributional outlier detection 

S.3.1. Modified boxplot-based detectors for scalar outlier detection 

Let {��}���
�  be a scalar dataset, the following two detectors modified from standard boxplot 

will be used to identify the potential outliers contained in {��}���
�  according to specific situations: 

(i) Detector I (two-sided detector):  

OUT�� = {� ∈ {1,2,⋅⋅⋅, �}|�� < ��.��(�) − ��∙IQR   or  �� > ��.��(�) + ��∙IQR} (S-14) 

where OUT�� stands for the index set of the detected outliers, ��.��(�) and ��.��(�) denote the 

25th and 75th percentiles of the dataset {��}���
�  , respectively, IQR  is the interquartile range 

defined as IQR=��.��(�) − ��.��(�), and �� is a user prescribed parameter. 

(ii) Detector II (one-sided detector):  

OUT�� = {� ∈ {1,2,⋅⋅⋅, �}|�� > ��.��(�) + ��∙IQR} (S-15) 

Such a one-sided detector is designed specifically for the scenario that only the one taking 

abnormally large value can be regarded as the outlier, such as the case with the distance-based 

detection approach discussed in this study. 

S.3.2. Supplemental materials for the single-dataset outlier detection method 

S.3.2.1. Illustrations of the two basic transformations: derivative and centralization  

As pointed out in Subsection 3.1 of the manuscript, there are generally two basic 

transformations that have good potential in exposing the abnormal curve patterns of functional data. 

The first one is performing a derivative to the functions, which helps to expose the curve with 

abnormal slope (Dai et al. 2020); see Figure S-2 for an illustration. The other one is centralization 

(i.e., shifting the curves along a direction to make them coincide with each other at a pre-specified 

feature point), which helps to peel away the masking effects caused by the position variability of 

the bulk of the curves (Dai et al. 2020); see Figure S-3 for an illustration. However, these two basic 

operations are not the “panacea” for all situations. For instance, performing the derivative operation 

to the simulated PDF-valued dataset shown in Figure S-4 cannot reveal the shape outliers, 

performing the centralization operation to a real PDF-valued dataset (consisting of 150 PDFs of 

strain measurements investigated in Chen et al. (2019a)) shown in Figure S-5 appears to reveal no 
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outliers. However, a latter investigation using the Tree-Distance detection method proposed in this 

study finds that this real dataset contains several shape outliers as shown in Figure S-6. In practical 

situations, the shape outliers contained in a real distributional dataset usually exhibit various patterns, 

which are generally difficult to be fully exposed by a single transformation. Moreover, according to 

our experience, conducting the transformations only in the PDF space also has limited effects in 

revealing the complicated shape outliers. Thus, it motivates us to propose a more sophisticated 

transformation system consisting of a collection of transformations (on the basis of these two basic 

operations) for exposing the complicated distributional shape outliers in different spaces. 

 

 
(a) 

 
(b) 

Figure S-2. Illustration of the derivative operation in exposing shape outliers. (a) The original PDF-
valued dataset and (b) visualization of the PDFs before and after the derivative operation. 
 

 
(a) 

 
(b) 

Figure S-3. Illustration of the centralization operation in exposing shape outliers. (a) The original PDF-
valued dataset and (b) visualization of the PDFs before and after the centralization operation. The median 
is selected as the feature point for horizontal alignment. 

 

 

Figure S-4. Visualization of the PDFs of a simulated dataset before and after the derivative operation. 
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Figure S-5. Visualization of the PDFs of a real dataset before and after the centralization operation. 
 

 

Figure S-6. Detected outlying PDFs (represented by bold colored curves) in the real dataset (shown in 
the left panel of Figure S-5) using our proposed method described in Subsection 3.1 in the manuscript 
(i.e., the Tree-Distance method). In the outlier detection, the default argument settings listed later in Table 
S-1 are adopted. 

S.3.2.2. Discussion, justification and comparison for the central function selection 

This subsection provides relevant illustrations and justifications for the selected central 

function (i.e., �(�)  in the Eq. (1) of the manuscript) involved in the distance-based functional 

outlier detection procedure described in Subsection 3.1 of the manuscript. Such a central function 

serves as the reference function in quantifying the degrees of outlyingness for the functional samples 

using a user-specified distance. Generally, the reference function is expected to satisfy the following 

basic requirements: (1) it should locate at the central region of the majority of the functional data; 

(2) it should be insensitive to the functional outliers presented in the dataset and (3) if the functional 

data has inherent constraints, the selected central function is also expected to satisfy the constraints.  

The resulting transformed functional data associated with the transformation tree can be 

divided into two categories, namely, the ordinary functional data free from constraints (e.g., the 

LQD-transformed data) and special functional data with additional constraints (e.g., the CLR-

transformed data). Actually, except for the CLR-transformed data, the other functional data 

associated with the leaf nodes of the tree (i.e., nodes nLQD and DIFF) are all ordinary functional 

data without constraints.  
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(a) (b) 

Figure S-7. Visualization of the central function ����(�) computed using the LQD-transformed data 

(left panel) along with its image LQD��������(�) in the PDF space (right panel). The light gray curves 

represent the LQD-transformed data or the PDFs, while the bold red curve represents the computed 

central function. LQD��������(�)  denotes the image of ����(�)  obtained by mapping it into the 

PDF space using the inverse LQD transformation. 
 

For the ordinary functional data, the central function is selected as the cross-sectional median 

of the curves. Take the LQD-transformed data (denoted as � = {��(�)}���
� ) as an example, the 

central function is computed as 

����(�) = median
�����

{��(�)},  � ∈ [0,1] (S-16) 

The visualization of the computed ����(�) using a simulated dataset is presented in Figure S-7 

(a) as the bold red curve. Such a central function can be mapped into the PDF space by using the 

inverse LQD transformation (Petersen and Müller 2016) defined as follows: 

�(�) = LQD��[�](�) = ��exp�−���(�)��   

with  ���(�) = ��
�� � ��(�)��

�

�

 and  �� = � ��(�)��
�

�

 
(S-17) 

Consequently, the inverse LQD transformation of the computed central function, denoted as 

LQD��������(�), is a density function as shown in Figure S-7 (b). Obviously, the resulting density 

LQD��������(�) locates near the center of the majority of the PDFs. 
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� with �� = CLR[��] being the CLR 
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as the central function, i.e.,  
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computed central function for a given CLR-transformed dataset using this principle is shown in 

Figure S-8(a) as the bold red curve. Such a central function can also be mapped into the PDF space 

by using the inverse CLR transformation (Machalova et al. 2016) defined as follows: 

�(�) = CLR��[�](�) =
exp{�(�)}

∫ exp{�(�)}��
 (S-20) 

Consequently, the inverse CLR transformation of the computed central function, denoted as 

CLR��[����](�), is also a density function as shown in Figure S-8 (b). One can see that the density 

CLR��[����](�)  also locates near the center of the majority of the PDFs. For comparison, 

CLR��[����](�) and LQD��������(�) (computed earlier using the LQD-transformed data) are 

plotted in the same plot as shown in Figure S-9, showing that they are close with each other in the 

PDF space. 

 

  

(a) (b) 

Figure S-8. Visualization of the central function ����(�) computed using the CLR-transformed data 
(left panel) along with its image CLR��[����](�) in the PDF space (right panel). The light gray curves 
represent the CLR-transformed data or the PDFs, while the bold red curve represents the computed 
central function. CLR��[����](�) denotes the image of ����(�) obtained by mapping it into the PDF 
space using the inverse CLR transformation. 
 
 

 

Figure S-9. Comparison of the computed central functions (in the PDF space) using the LQD- and CLR-
transformed data, respectively. 
 

In order to investigate the sensitivity of the computed central functions to outlying PDFs, we 

add ten outlying PDFs to the PDF-valued dataset and recalculate the central functions using the 

same procedure described above. The contaminated PDF-valued dataset is shown in Figure S-10 (a) 

with the outlying PDFs represented by bold pink curves. The new computed central functions using 

the corresponding contaminated LQD- and CLR-transformed data are denoted as ����
# (�) and 

����
# (�) , respectively. After mapping ����

# (�)  (or ����
# (�) ) into the PDF space using the 
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inverse LQD (or CLR) transformation, the resulting PDF, denoted as LQD�������
# �(�)  (or 

CLR�������
# �(�)), is presented in Figure S-10 (b) (or Figure S-10 (c)) as a blue dashed line. For 

comparison, the result calculated earlier using the “good” data is also added to the plot as a red solid 

line. One can see that the computed central functions are insensitive to the outlying PDFs. 

 

        
(a) (b) (c) 

Figure S-10. Comparisons of the computed central functions using the “good” and contaminated data, 
respectively. (a) Visualization of the contaminated PDF-valued dataset with the pink curves representing 
the outlying PDFs; (b) Comparison of the computed central functions (in the PDF space) obtained using 
the LQD-transformed data with and without outliers; (c) Comparison of the computed central functions 
(in the PDF space) obtained using the CLR-transformed data with and without outliers. The red solid 
curves in (b) and (c) represent the computed central functions using the “good” data, while the blue 
dashed curves represent the computed central functions using the contaminated data. 
 

The central function selection procedure described above has advantages in the following 

aspects: (1) simple and highly efficient; (2) the result can satisfy the constraints possessed by the 

associated functional data; (3) insensitive to functional outliers. To further demonstrate its 

advantages, here we consider an alternative central function selection method using the band depth. 

The band depth is one of the most popular functional depth widely used for ranking functions from 

center to outward (López-Pintado and Romo 2009). The functional sample possessing the largest 

computed depth value is defined as the deepest curve in the functional dataset, which can be 

regarded as the central function. Figure S-11 presents the found central functions of the “good” (left 

panel) and contaminated (right panel) PDF-valued datasets based on the ranked PDFs using their 

computed band depths. Unfortunately, in the contaminated dataset, the found central function is an 

outlying PDF; obviously, such outlying PDF cannot represent the center of the PDFs. Such a failure 

case provides further evidence that indiscriminately applying the statistical tools developed for 

ordinary functional data to the PDFs with special constraints can usually lead to misleading results. 

On the other hand, such a band depth-based approach is also computationally intensive; thus, it is 

not used in our proposal.  
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Figure S-11. Visualization of the central function (bold red curve) obtained by ranking the PDFs using 
the band depth. (a) Computed using the “good” data and (b) computed using the contaminated data. 
 

S.3.2.3. Discussion, justification and comparison for distance (metric) selection 

We recommend to perform the distance-based outlier detections for the functional data 

associated with the nLQD, CLR and DIFF nodes on the transformation tree shown in Figure. 2(b) 

of the manuscript. Moreover, the outlier detection is also required to be conducted to the medians 

residing in the MED node, which plays the key role in identifying the horizontal shift outliers. In 

contrast to the functional data in nodes nLQD, CLR and DIFF, the data in the MED node are scalar 

data; thus, the corresponding outliers can be directly detected by using the two-sided boxplot 

detector given in Eq. (S-14). However, for the functional data associated with the nLQD, CLR and 

DIFF nodes, appropriate distances are required to be selected for converting the functional outlier 

detection problem into the scalar outlier detection problem by using Eq. (1) in the manuscript. The 

main idea of the distance-based outlier detection strategy is embedding the functional data into a 

specific metric space, then using the associated metric (i.e., distance) to perform outlier detection. 

Thus, the choice of the distance for outlier detection is mainly determined by the metric space into 

which the investigated functional data can be embedded. In the following, we first discuss how to 

select the distances for the functional data associated with nodes nLQD and DIFF, as the 

corresponding data in both nodes are ordinary functional data. For the CLR node, the corresponding 

data are special functional data and we consider the isometric isomorphism (between the Bayes 

space and the space where the CLR-transformed data reside) to perform outlier detection; thus, the 

distance selection for this node will be provided later on. 

In this study, the processed functional data in nodes nLQD and DIFF for outlier detection are 

both ordinary functional data that can be embedded into the ��(�) space, where � stands for the 

detection interval given in Eq. (1) of the manuscript. The ��(�) space is a functional space formed 

by square integrable real functions on �, and it is a metric space endowed with the �� distance 

defined as 

���(��, ��) = �����(�) − ��(�)�
�

��
�

�

� �⁄

, ∀ ��, �� ∈ ��(�) 

On the other hand, since the detection interval � has a finite Lebesgue measure, we have ��(�) ⊆

��(�) (Royden and Fitzpatrick 2010, p.142), where ��(�) denotes another metric space formed 

by integrable real functions on � and endowed with the �� distance defined as 
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 ���(��, ��) = �|��(�) − ��(�)|��
�

, ∀ ��, �� ∈ ��(�) 

Consequently, the functional data in nodes nLQD and DIFF can also be regarded as elements of the 

��(�) space. Moreover, the considered PDFs in this study are all smooth continuous functions; thus, 

the resulting transformed functional data in nodes nLQD and DIFF are continuous functions. 

Consequently, the data can also be regarded as elements of the metric space �(�) (formed by 

continuous real functions on �) endowed with the sup distance defined as 

����(��, ��) = sup
�∈�

|��(�) − ��(�)|, ∀ ��, �� ∈ �(�) 

In this sense, the �� distance, �� distance and sup distance are all valid for performing outlier 

detection for the functional data in nodes nLQD and DIFF. Generally, the �� and �� distances are 

mainly for quantifying the global dissimilarities of the functional data, while the sup distance is 

mainly for quantifying the local dissimilarities of the functional data (i.e., the deviation of the 

outermost point (with respect to the reference curve) of a curve).  

In practical applications, both the global and local dissimilarity measures have their own 

advantages and shortcomings in functional outlier detection. For instance, when the outlying curve 

only significantly deviates from the majority of the data within a local region (such as the case 

shown in the left panel of Figure S-12 (a)), performing outlier detection using the ��  (or ��) 

distance may yield a disappointed result, namely, the outlying curve cannot be manifested as an 

outlier in the calculated distances as show in Figure S-12 (a) (or Figure S-12 (b)); however, if we 

use the sup distance, a much more satisfactory result can be obtained (see Figure S-12 (c)), and the 

outlying curve can be successfully detected. But, in some situations, the sup distance may also 

become less powerful than the ��  or ��  distance, one representative example is illustrated in 

Figure S-13, where the sup distance performs poorly and only the most outlying curve (i.e., curve 

��� ) has been detected. One can see from Figure S-13 (c) that the calculated sup distances 

associated with the other three outlying curves (i.e., ��� , ��� , ��� ) cannot be isolated from 

several “good” data. To gain insight for such phenomenon, Figure S-14 provides a schematic 

illustration of the sup distances (from the reference function) for one “good” curve and one outlying 

curve. By comparing the results in Figure S-14, one can easily understand why the sup distance fails 

to isolate the three outlying curves from some nonoutlying data. However, if we use the �� (or ��) 

distance to perform outlier detection, the four outlying curves can be successfully detected as shown 

in Figure S-13 (a) (or Figure S-13 (b)). We can therefore, conclude that the global and local 

dissimilarity measures have complementarity in functional outlier detection and they should be used 

together to enhance the performance of outlier detection. Generally, for global dissimilarity 

quantification, the �� distance and �� distance have similar performances. The main simulation 

studies conducted later in Subsection S.5.1 show that the �� distance performs slightly better than 

the �� distance. Hence, in this study, the �� distance and the sup distance are used as the default 

distance combination (one for global dissimilarity quantification and the other for local) to detect 

the outlying curves in nodes nLQD and DIFF. For the same node, the outlier detection using 
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different distances is conducted independently, and then we merge the results. 

 

 

  
(a) 

 

  
(b) 

 

  
(c) 

Figure S-12. Comparisons of the functional outlier detection using the (a) �� distance, (b) �� distance 
and (c) sup distance for a dataset with one outlying curve ��� . The left column corresponds to the 
detection result (the bold colored curve represents the detected outlier), while the right column 
corresponds to the calculated distances. The one-sided detector given in Eq.(S-15) is used for detecting 
the outliers in the dataset of the calculated distances (real-valued data), and the whisker parameter �� is 
set to 2.5. 
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(a) 

  
(b) 

  
(c) 

Figure S-13. Comparisons of the functional outlier detection using the (a) �� distance, (b) �� distance 
and (c) sup distance for a dataset with four outlying curves ���, ���, ��� and ���. The left column 
corresponds to the detection result (the bold colored curves represent the detected outliers), while the 
right column corresponds to the calculated distances. The one-sided detector given in Eq.(S-15) is used 
for detecting the outliers in the dataset of the calculated distances (real-valued data), and the whisker 
parameter �� is set to 2.5. 

 
Figure S-14. Schematic illustration of the sup distances (from the reference function �(�)) for one 
“good” curve �(�) and one outlying curve �(�) (corresponding to curve ��� in Figure S-13). 
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Remark 1. One may argue that the three outlying curves that failed to be detected by using the sup 

distance shown in Figure S-13 (c) can be easily detected by a pointwise detection strategy as follows: 

(1) calculate the following pointwise distances (with the reference function) over a given discretized 

grid for each curve: 

��(�) = |��(�) − �(�)|,  � ∈ {��, ��, ⋯ , ��},   � = 1,2, ⋯ , � 

where �(�) is the pointwise median function served as the reference function, {��, ��, ⋯ , ��} is 

the user-specified discretized grid, ��(�) is called the pointwise distance from the curve ��(�) to 

the reference function �(�) at the point �; (2) independently implement an outlier detection to the 

dataset {��(�)}���
�  at each grid point using the one-sided boxplot detector given in Eq.(S-15); (3) if 

a curve is detected as an outlier at least one grid point, it is regarded as an outlying curve. Of course, 

such a pointwise detection approach can effectively identify all of the four outlying curves shown 

in Figure S-13 (c); however, it may also bring another undesirable issue, i.e., high risk of false 

detection. To illustrate this, a toy detection example using such a detection strategy is presented in 

Figure S-15, where the two bold colored curves (ought to be regarded as “good” curves) are detected 

as outliers. We can therefore, conclude that such a pointwise detection approach is too sensitive in 

functional outlier detection, leading to much higher risk of false detection. Hence, for local anomaly, 

performing outlier detection using the recommended sup distance is a preferable compromise 

between the highly sensitive pointwise detection approach and the less sensitive detection approach 

using the �� or �� distance. 

 
Figure S-15. A toy detection example using the pointwise detection strategy described in Remark 1. The 
bold colored curves represent the detected outlying curves, while the solid circles represent the detected 
outliers at the grid points ���. The one-sided detector given in Eq.(S-15) is used for detecting the outliers 

in the dataset of the calculated pointwise distances, and the whisker parameter �� is set to 2.5. 

 

As pointed out in Section 3.1 of the manuscript that the role of Branch II in the transformation 
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are treated as elements of the Bayes space; thus, the outlier detection is performed in their own space 

of the PDFs. The Bayes space itself is a metric space endowed with the distance �����, ��� defined 

in Eq. (S-4). Moreover, the Bayes space is isometrically isomorphic to the �� space with the CLR 

transformation as the isometric isomorphism. Consequently, it has 

�����, ��� = ����CLR����, CLR[��]�  

Therefore, for the functional data associated with the CLR node, we use �� distance to perform 

outlier detection, so as to be consistent with the original intention that using the �� distance to 

perform outlier detection in the Bayes space. 

S.3.2.4. Default settings for the Tree-Distance outlier detection method 

With the above recommended distances, the default argument settings of outlier detections for 

the resulting transformed data associated with nodes nLQD, CLR, DIFF and MED are summarized 

in Table S-1. The functional data in the nLQD node are computed from the quantile functions, all 

the functional data after the QF node (in the Branch I of the transformation tree) have been naturally 

aligned according to the quantiles; thus, one can choose appropriate detection intervals to conduct 

the curve truncation as shown in Figure S-16 (c). The main reason for performing such a truncation 

is twofold: (1) reduce the boundary effects in disturbing the outlier detection; (2) restrict the outlier 

detection within the region of interested. According to our experience, we recommend to 

independently perform two rounds outlier detections for the functional data in the nLQD node 

respectively using the detection regions [0.2, 0.8] and [0.4, 0.6] for both the �� and sup distances, 

and then the detected outliers are merged to form the final detection result of the nLQD node. 

 

Table S-1 

Default settings of outlier detections using the distance-based method for the transformed data 
associated with nodes nLQD, CLR, DIFF, MED on the transformation tree. The parameter � in 
the second column is the PDF preprocessing parameter described in Section S.2. The detection 
region [�, �] associated with the CLR node is the common support of the translated PDFs in the 
horizontal centralization processing (performed in the H-CENTR node) described in Subsection 
3.1 of the manuscript. Detector I and Detector II stand for the two- and one-sided boxplot-based 
detectors given in Eq. (S-14) and Eq. (S-15), respectively.  

Node � Distance Detector Whisker Detection region 

nLQD 10��� �� and sup Detector II 
��: 2.5IQR  

sup: 3.5IQR 
[0.2, 0.8] and 

[0.4, 0.6] 

CLR 0.1 �� Detector II ��: 2.5IQR [�, �]  

DIFF — �� and sup Detector II 
��: 2.5IQR  

sup: 3.5IQR 
[0, 1] 

MED — — Detector I 1.5IQR — 
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(a) 

 
(b) 

 
(c) 

Figure S-16. Illustration of the curve truncation using detection region � = [�,  1 − �]  for the 
normalized LQD transformations associated with a PDF-valued dataset. (a) The raw PDF-valued dataset, 
(b) the corresponding normalized LQD transformations before curve truncation, and (c) the 
corresponding normalized LQD transformations after curve truncation. The gray lines and the red line 
represent the “good” data and the outlying curve, respectively. 
 

S.3.3. Supplemental materials for the abnormal association detection method 

S.3.3.1. Illustrations of representative abnormal PDF-pairs 

This subsection provides illustrations for some representative outlying PDF-valued two-tuples. 

Consider � PDF-valued two-tuples, denoted as � = {��(�), ��(�) }���
� , formed by elements from two 

correlated PDF-valued datasets {��(�)}���
�  and {��(�)}���

� . Representative examples of such correlated 

PDF-valued datasets are shown in Figure S-17 (or Figure S-18), where the PDFs from the same two-

tuple are represented by the curves in the same color. We say that the association of a PDF-valued two-

tuple is abnormal if it significantly violates the dependence pattern followed by the majority of the data. 

A PDF pair with an abnormal association can behave as either abnormal or normal in their respective 

datasets. Figure S-17 illustrates a representative abnormal PDF-valued two-tuple denoted as ���, ���, 

where �� is a “good” curve in the dataset of {��}���
�  while �� is an outlying curve in the dataset of 

{��}���
�  . Figure S-18 illustrates another representative abnormal PDF-valued two-tuple denoted as 

{��, ��}, where both �� and �� are “good” curves in their respective datasets.  

 

 
(a) PDF-valued dataset {��}���

�  
 

(b) PDF-valued dataset {��}���
�  

Figure S-17. Visualization of an outlying PDF-valued two-tuple ���, ��� (represented by bold black 

curves) with �� being a functional outlier in its own dataset. The PDFs from the same two-tuple are in 

the same color. 
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(a) PDF-valued dataset {��}���

�  
 

(b) PDF-valued dataset {��}���
�  

Figure S-18. Visualization of an outlying PDF-valued two-tuple {��, ��} (represented by bold black 
curves) with �� and �� both normally behaved in their own datasets. The PDFs from the same two-
tuple are in the same color. 

 
For the case shown in Figure S-17, the outlying PDF-pair ���, ��� can be detected by performing 

an outlier detection to the dataset {��(�)}���
�  using an appropriate single-dataset distributional outlier 

detection method; however, for the case shown in Figure S-18, single-dataset outlier detection methods 

are no longer suitable for detecting the outlying PDF-pair {��, ��}. 

S.3.3.2. Residual calculation using the CLR transformation 

The regression error is inevitable, which means the fitted PDF (obtained by the regression 

model) may deviate from the target PDF. Note that the regression outlier detection is based on 

residual outlier detection. The horizontal deviation of the predicted PDFs usually will lead to large 

residual for the PDFs, especially for the “slim” PDF (will be illustrated later). Such a phenomenon 

can significantly increase the risk of false detection. In this study, we adopt a median alignment 

strategy to remedy this issue. Specifically, let �� denote the target PDF defined on the compact 

interval [0,1], and let med(��) denote the median defined as 

med(��) = inf ��� ∈ [0,1]:  � ��(�)�� ≥
1

2

�

�

�� (S-21) 

Moreover, let ��� denote the fitted result of �� obtained by the distributional regression model. If 

�� and ��� are close enough in the horizontal direction (i.e., |med(��) − med�����| ≤ �� with �� 

being a pre-specified threshold), the residual of ��  (with respect to ��� ) will be calculated after 

horizontally translating �� to ��� to make their median points coincide with each other as illustrated 

in Figure S-19, where ��
# stands for the result of �� after movement. Based on such a median 

alignment strategy, the implementation of PDF-residual calculation using the Bayes distance is 

outlined in Algorithm S.1.  
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Figure S-19. Illustration of median alignment for two PDFs. 

 
 

Algorithm S.1: Calculation for ��
� = ������, �����, ����

� � 

Input: PDF pairs ����, �� �, threshold ��, PDF preprocessing parameter ����
�  

Output: Residual ��
� 

1: Calculate the medians med(��) and med����� 

2: If |med(��) − med�����| ≤ �� then 

a: Horizontally translate �� to ��� to make their median points coincide with each other, denote 

the translated PDF as ��
# 

b: Find the common support of ��
# and ���, denote the common support as [��, ��] 

    c: Set ��
#∗(�) = �1 − ����

� ���
#(�)�[��,��](�) + ����

�   

                     ���
∗(�) = �1 − ����

� ����(�)�[��,��](�) + ����
�  

where �[��,��](∙) denote the indicator function 

d: Compute ��
� = �����

#∗, ���
∗ � = ��2�CLR���

#∗�, CLR����
∗� � 

else  

a: Set ��
∗(�) = �1 − ����

� ���(�) + ����
� , ���

∗(�) = �1 − ����
� ����(�) + ����

�  

b: Compute ��
� = �����

∗, ���
∗ � = �

�2�CLR[��
∗], CLR����

∗� � 

  end if 

3: Output ��
� 

 
In the following, we use an example to illustrate the negative effects (in regression outlier 

detection) caused by the horizontal-shift error, as well as to validate the effectiveness of the 

recommended remedy. We select 50 PDF-valued samples (corresponding to the response variable) 

in a regression outlier detection test for demonstration, of which 3 PDFs indexed by � =

17, 39 and 42  are synthetic abnormal PDFs with their shapes significantly differing from the 

majority of the data to serve as the regression outliers. After fitting the regression model, we first 

calculate the residuals for the PDFs without considering the treatment of the median alignment. This 

can be easily achieved by setting �� = 0 in Algorithm S.1 (the PDF preprocessing parameter ����
�  

is set to 0.1) and the results are shown in Figure S-20. The comparison of the fitted results for eight 

selected PDF-valued samples (marked in Figure S-20 by � = 6, 17, 18, 22, 27, 39, 42 and 49) are 

visualized in Figure S-21. Except the three outlying PDFs (i.e., ��� , ���  and ��� ), two non-

outlying PDFs (i.e., �� and ���) also have high residuals which behave like outliers in the residual 

plot shown in Figure S-20. It can be seen from Figure S-21 that the shapes of the fitted PDFs of �� 

and ��� are highly similar to the target PDFs. Obviously, the high residuals of �� and ��� are 
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attributed to the horizontal shift, which will adversely affect the outlier detection in terms of 

increasing the risk of false detection. Then, we set �� = 0.2 and rerun Algorithm S.1, the resulting 

residuals are shown in Figure S-22. As expected, the negative effects induced by the horizontal-shift 

error have disappeared, only the three outlying PDFs still hold high residuals.  

 

 

Figure S-20. Residual series ���
��

���

��
 calculated by Algorithm S.1 with �� = 0 and ����

� = 0.1. 

 

 

 
Figure S-21. Comparisons for eight selected PDF samples, the solid line represents the observed PDF to 
be detected, while the dashed line represents the fitted PDF obtained by the regression model. 

 

 

 

Figure S-22. Residual series ���
��

���

��
 calculated by Algorithm S.1 with �� = 0.2 and ����

� = 0.1. 
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S.3.3.3. Residual calculation using the LQD transformation 

The residuals calculated using the LQD-transformed PDFs are denoted as ���
���

�
���

�
, and the 

computational procedure is outlined in Algorithm S.2. As pointed out in Subsection 3.1 of the 

manuscript, the LQD transformation is insensitive to the horizontal translation of PDFs; thus, we 

do not consider the aforementioned median alignment in the residual calculation when using the 

LQD transformation.  

 

Algorithm S.2: Calculation for ��
���

= �
�1�LQD����|����

���
�, LQD���|����

���
�� 

Input: PDF pairs ����, �� �, PDF preprocessing parameter ����
���

 

Output: Residual ��
���

 

1: Set ��
∗(�) = �1 − ����

���
���(�) + ����

���
, ���

∗(�) = �1 − ����
���

����(�) + ����
���

 

2: Compute ��
∗(�) = −log{��

∗(��
∗(�))} , ���

∗(�) = −log����
∗����

∗(�)�� , where ��
∗  and ���

∗  are the 

quantile functions associated with ��
∗ and ���

∗, respectively 

3: Compute ��
���

= ∫ ���
∗(�) − ���

∗(�)���
�

�
 

4: Output ��
���

 

 

S.4. Supplemental materials for robust distributional regression 

S.4.1. Weight design for robust regression operator estimation 

This subsection discusses how to design the weights used in Eq. (6) (of the manuscript) for 

dampening the impacts of functional outliers on the distributional regression operator estimation. 

Let ��� = {��, ��,⋅⋅⋅, ��}  and ℱ�� = {��, ��,⋅⋅⋅, ��}  denote the PDF-valued training samples 

(corresponding to the predictor and response variables, respectively) used for fitting the distribution-

to-distribution regression model. As described in the manuscript, the robustness of the regression 

model is achieved by downweighting the detected outliers. For this purpose, we perform a two-stage 

outlier detection to the training samples: 

(i) Single dataset outlier detection: outlier detections for the datasets ���  and ℱ��  are 

conducted independently by using the proposed Tree-Distance method described in 

Subsection 3.1 of the manuscript;  

(ii) Regression outlier detection: the outlier detection for the datasets ���  and ℱ��  is 

conducted jointly by using the distributional regression-based approach described in 

Subsection 3.2 of the manuscript after the outliers detected in the first stage have been 

removed. 

For convenience, the outliers detected in the first and second stages are called Type I and Type 

II outliers, respectively. The weights associated with these two types of outliers are designed 

independently, then combine them to form the final weights, to which we now turn.  
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S.4.1.1. Weight design for Type I outliers  

We consider using the degrees of anomalies computed based on the LQD and CLR 

transformations to design the desired weights for Type I outliers. 

We select dataset ��� = {��, ��,⋅⋅⋅, ��} to illustrate the weight design procedure, the weights 

associated with the other dataset (i.e., ℱ�� = {��, ��,⋅⋅⋅, ��}) can be designed in a similar way. 

 Let Ψ� = ���
�

, ��
�

,⋅⋅⋅, ��
�

� be the functional dataset composed of the LQD transformations 

(computed using Eq. (S-11), and the PDF preprocessing parameter � described in Subsection S.2.1 

is set to 10���) of the elements in ���. As discussed in Subsection S.3.2.2, the LQD-transformed 

data are ordinary functional data without constraints, thus the central function of the functional 

dataset Ψ�  can be selected as the cross-sectional median function denoted as ��
�(�) =

median
�����

���
�

(�)�,  ∀� ∈ [0,1].Then, the dissimilarity of the curve ��
�

 w.r.t. the central function ��
�

 

is quantified by the �� distance, and the result is denoted as ��
�

= ���(��
�

, ��
�

).  

Similarly, let ���
��� = ���

���, ��
���,⋅⋅⋅, ��

����  be the functional dataset composed of the CLR 

transformations (computed using Eq.(S-5) with the default PDF preprocessing described in 

Subsection S.2.2) of the elements in ��� , i.e., ��
��� = CLR[��], � = 1,2, ⋯ , � . As discussed in 

Subsection S.3.2.2, the CLR-transformed data are special functional data with the inherent 

constraint of integrating to zero. To ensure that the selected central function of the functional dataset 

���
���  can satisfy this constraint, the central function is selected as ��

���(�) =

argmin
����∈���

���
 ���(����, ��

���), where �� stands for the �� distance and ��
���(�) = median

�����
���

���(�)� is 

the cross-sectional median function of the functional data in ���. Then, the dissimilarity of the curve 

��
��� w.r.t. the corresponding central function ��

��� is quantified by the �� distance, and the result 

is denoted as ��
�

= ���(��
���, ��

���). 

Let ��(�) ⊂ {1,2, ⋯ , �} stand for the index set of the detected Type I outliers contained in 

���. Then, the weight associated with the PDF �� can be designed as 

��(��) = ��1 +
���

�
− �(��)�

MAD(��)
�

���

�1 +
���

�
− �(��)�

MAD(��)
�

���

,   � ∈ ��(�)

       1,                                                                                    otherwise 

 (S-22) 

where �(��) = median
�����

���
�

� is the median of the scalar dataset ���
�

�
���

�
, and MAD(��) stands 

for the median absolute deviation (MAD) calculated by MAD(��) = � ∙ median
�����

����
�

− �(��)�� 

(� is a constant, and we set it to be its default value 1.4826 throughout this study), �� is a user 

prescribed tuning factor, �(��)  and MAD(��)  have the similar meanings with �(��)  and 

MAD(��), respectively. The tuning parameter �� controls the decay rate of the weight function as 

illustrated in Figure S-23. 

Similarly, we can design the weight associated with the PDF �� based on the Type I outliers 

detected in ℱ�� , and the result is denoted as ��(��) . The final weight associated with the �th 
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training sample {��, ��} for downweighting the effect of Type I outliers can be obtained by fusing 

��(��) and ��(��) as follows (similar to that in Martínez-Hernández et al. (2019)): 

��
� = ��(��) ∙ ��(��),    � = 1,2, ⋯ , � (S-23) 

 

 
Figure S-23. Schematic illustration of the function w(�) = (1 + �)�� with different decay parameters. 
 

S.4.1.2. Weight design for Type II outliers 

We select the dataset ℱ�� = {��, ��,⋅⋅⋅, ��}  to illustrate the weight design procedure, the 

weights associated with the other dataset (i.e., ��� = {��, ��,⋅⋅⋅, ��}) can be designed in a similar 

way. 

Let ��
� and ��

���
 be the calculated residuals associated with the PDF �� ∈ ℱ�� by using the 

Algorithm S.1 and Algorithm S.2, respectively. It is worth noting that the results of ��
� and ��

���
 

actually have been calculated in the residual diagnosis of the regression outlier detection stage. 

Before using the residuals to design the desired weights, we perform a normalization processing to 

them as follows: 

��̃
� =

��
� − min

�����
��

�  

max
�����

��
� − min

�����
��

�
,    � = 1,2, ⋯ , � 

��̃
���

=
��

���
− min

�����
��

���
 

max
�����

��
���

− min
�����

��
��� ,    � = 1,2, ⋯ , � 

(S-24) 

where min
�����

��  and max
�����

��  stand for the minimum and maximum values of the dataset 

{��, ��, ⋯ , ��}, respectively.  

Let ���(ℱ) ⊂ {1,2, ⋯ , �} stand for the index set of the type II outliers detected in the PDF-

valued two-tuples {��, ��}���
� , �� ∈ ���, �� ∈ ℱ��. Then, the weight associated with the PDF �� can 

be designed as follows: 

���(��) = �
�1 +

|��̃ − �(�̃)|

MAD(�̃)
�

���

,   � ∈ ���(ℱ)

      1,                                    otherwise 

 (S-25) 

where ��̃ = ���̃
� + ��̃

���
� 2⁄ , �(�̃) = median

�����
{��̃}, and MAD(�̃) is the associated median absolute 

deviation calculated similarly with its counterpart in Eq.(S-22). 
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Similarly, we can design the weight associated with the PDF �� ∈ ��� based on the Type II 

outliers, and the result is denoted as ���(��). Then, the final weight associated with the �th training 

sample {��, ��} for downweighting the effect of Type II outliers can be also obtained by fusing 

���(��) and ���(��) as follows: 

���
� = ���(��) ∙ ���(��),    � = 1,2, ⋯ , � (S-26) 

S.4.1.3. Final weight 

On the basis of the weights associated with the Type I and Type II outliers designed above, the 

final weights used in Eq. (6) (of the manuscript) for downweighting the impacts of detected 

distributional outliers can be obtained as follows: 

�� = ��
� ∙ ���

� ,    � = 1,2, ⋯ , � (S-27) 

S.4.2. Proof of proposition 1 

Proposition 1 can be proofed in a similar way with Theorem 1 in Lian (2007b). 

Proof: recall that the regression operator ����  is assumed to reside in the RKHS ℋ(��) , i.e., 

���� ∈ ℋ(��). According to the property of operator-valued reproducing kernel given in Eq.(S-9), 

it follows that �� �⋅, ��
�∗

� ∈ ℋ(��), � = 1,2, ⋯ , �. Thus, ��� �⋅, ��
�∗

� :  � = 1,2, ⋯ , �� can span a 

subspace of ℋ(��) as follows: 

ℋ�(��) = �� �� �⋅, ��
�∗

� ��

�

���

,   �� ∈ �� (S-28) 

where � stands for another Hilbert space. Let ℋ�
�(��) ⊂ ℋ(��) be the orthogonal complement 

of ℋ�(��), then ∀� ∈ ℋ�
�(��), we have for any �� ∈ � that 

〈�� �⋅, ��
�∗

� ��,  � 〉ℋ(��) = 0,  � ∈ {1,2, ⋯ , �} (S-29) 

Moreover, the regression operator ���� ∈ ℋ(��) can be decomposed as 

���� = �� + �,      �� ∈ ℋ�(��), � ∈ ℋ�
�(��) (S-30) 

According to the reproducing property given in Eq.(S-10), it follows that 

〈� ���
�∗

� ,  �� 〉� = 〈�� �⋅, ��
�∗

� ��,  � 〉ℋ(��) = 0 (S-31) 

In view of the arbitrariness of �� , it follows that � ���
�∗

� = 0 , thus ���� ���
�∗

� = �� ���
�∗

� +

� ���
�∗

� = �� ���
�∗

�. Further note that � is orthogonal to ��, it has ������
ℋ(��)

= ‖��‖ℋ(��) +

‖�‖ℋ(��) > ‖��‖ℋ(��) for � ≠ 0. Consequently, it holds the following inequality for the objective 

function in Eq. (6) of the manuscript： 

������� = � �� ���
�∗

− ���� ���
�∗

��
�

�
�

���

+ ��������
ℋ(��)

�
 (S-32) 
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                                    > � �� ���
�∗

− �� ���
�∗

��
�

�
�

���

+ ��‖��‖ℋ(��)
�  

which suggests the optimal solution of the regression operator ���� takes the following general 

form: 

���� = � �� �⋅, ��
�∗

� ��

�

���

 (S-33) 

This completes the proof. 

S.4.3. Proof of proposition 2 

Proof. According to the reproducing properties given in Eqs. (S-8) and (S-10), it follows that 

〈����(�,⋅), ����(�,⋅)〉�(��) = ������(�, �),  ∀��, �� ∈ ℝ, �, � ∈ {1,2,⋅⋅⋅, �} (S-34) 

and   

〈��(��,⋅)��, ��(��,⋅)��〉ℋ(��) = 〈��(��, ��)��, ��〉�(��),  

 ∀��, �� ∈ ��[0,1],  ��, �� ∈ �(��) 
(S-35) 

It is worth noting that ℋ(��) and �(��) are two different Hilbert spaces, ��[0,1] and �(��) 

in Eq. (S-35) corresponds to � and �� in Eq. (S-10), respectively. 

Using the properties given in Eqs. (S-34) and (S-35), the objective function given in Eq.(6) of 

the manuscript can be transformed into the following matrix form by substituting Eqs. (7) and (9) 

of the manuscript into Eq. (6). 

�(�) = ‖�(� − ���)‖�
� + ��trace(�����) (S-36) 

where � , �, �,  and �   are the matrixes defined in Eq. (11) of the manuscript, �  is the Gram 

matrix of the real kernel (see Eq. (10) of the manuscript), and ‖∙‖�
  is the Frobenius norm defined 

as ‖�‖�
 = �∑ ∑ ���

�  �
���

�
��� �

�

�. Let 
��(�)

��
= 0, which yields the following matrix equation: 

������� + ����� = ����� (S-37) 

This matrix equation can be solved using vectorization. Let vec(�) denote the vectorization of the 

matrix � = �����
���

�

���

�
 defined as 

vec(�) = (��� ���  ⋅⋅⋅  ��� ��� ���  ⋅⋅⋅  ��� ⋅⋅⋅ ��� ���  ⋅⋅⋅  ���)T (S-38) 

Noting further the properties of vec(AXC)=(�� ⊗ �)vec(X)  and (��) ⊗ (��) = (� ⊗

�)(� ⊗ �), then Eq.(S-37) can be converted to 

��� ⊗ (��)��� ⊗ (��)� + ��(� ⊗ �)� vec(�) = �� ⊗ (��)�vec(��) (S-39) 

Let �� = � ⊗ (��) and  �� = � ⊗ (��) complete the proof. 
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S.5. Simulation studies 

S.5.1. Simulation study I 

This simulation study is conducted to validate the effectiveness of the proposed Tree-Distance 

outlier detection method, as well as to assess its performance by comparing it to its competitors. We 

employ a mixture distribution model, formed by taking a convex combination of beta distribution 

and truncated generalized Pareto distribution (tGPD) to generate the PDF-valued data. Specifically, 

we consider the following two scenarios: 

Scenario I:   

Scenario II: 

��(�) = (1 − �)�����(�; ��, ��) + ������(�; 2.0, 4.0), � = 1,2, ⋯ , � 

��(�) = (1 − �)�����(�; ��, ��) + ������(�; 0.5, 0.5), � = 1,2, ⋯ , � 
(S-40) 

where � ∈ [0, 1] is the combination coefficient, ����� is the density of the beta distribution, ����� 

is the density of the tGPD obtained as follows 

�����(�; �, �) =
����(�; �, �)

∫ ����(�; �, �)��
�

�

,  � ∈ [0,1]  (S-41) 

where ����(�; �, �) is the density of the generalized Pareto distribution (GPD) defined as  

����(�; �, �) = �
1

�
� �1 + �

�

�
�

���
�
�

  (S-42) 

The parameters ��  and ��  associated with the beta distribution in both scenarios are i.i.d. 

realizations of uniform distributions, i.e., ��~U[10,35] and ��~U[14,20]. In each scenario, we 

consider four different values for the combination parameter �, i.e., � = 0, 0.15, 0.30 and 0.45, 

to yield four different models referred to as Models I, II, III, and IV (listed in Table S-2) throughout 

this simulation study.  

In each scenario, we independently use the four models to generate four different PDF-valued 

datasets, with each dataset consisting of � = 100  curves. We then employ Algorithm S.7 in 

Appendix 2 to introduce 10 outlying PDFs into each simulated dataset (i.e., the contamination ratio 

is 10%). The parameter ��� in Algorithm S.7 is set to 0, meaning that only the shape outliers are 

generated while the horizontal-shift outliers are not considered because the latter is much easier to 

detect. The parameter � in Algorithm S.7 is set to 0.2. Representative simulated data using the 

eight models (listed in Table S-2) are visualized in Figure S-24. 

 
Table S-2 

Considered models for distributional data generation. 

 Model I Model II Model III Model IV 

Scenario I � = 0 � = 0.15 � = 0.30 � = 0.45 
Scenario II � = 0 � = 0.15 � = 0.30 � = 0.45 
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Figure S-24. Representative simulated data associated with the eight models, the gray lines and red lines 
stand for the “good” data and outlying data, respectively. The first row corresponds to Scenario I, while 
the second row corresponds to Scenario II. 

 
We consider three different detection schemes and compare their performances. 

(i) Tree-Distance method 

In this detection scheme, we perform outlier detections on the transformed data associated with 

the nLQD, CLR, DIFF, and MED nodes using the default argument settings listed in Table S-1. The 

outliers detected from the four nodes are merged to form the final detection results. Note that before 

transforming the PDFs to their CLR-representations (corresponding to the CLR node), they should 

be aligned horizontally in the H-CENTR node, and the feature point for such an alignment is 

calculated by the average of the median and mode. 

(ii) QF-FDO method 

In this detection scheme, we consider using the tool of functional directional outlyingness 

(FDO) defined by Dai and Genton (2019) to perform outlier detection in the quantile function (QF)-

space for the simulated distributional data. For convenience, such a detection method is referred to 

as QF-FDO method throughout the rest of this study. The relevant computational details are 

provided in Appendix 4. The detection region is set as [0.2, 0.8]. The outliers in the MO- and VO-

directions are detected by the two- and one-sided boxplot-based detectors (see Eq. (S-14) and Eq. 

(S-15)), respectively. We consider three different whisker parameters, valued at 1.5, 2.0, and 2.5, 

for VO-outlier detection, while the whisker parameter for MO-outlier detection is fixed at 1.5. Such 

settings yield three different detection cases for the QF-FDO method. 

(iii) Warping function-based detection method using the phase distance 

The warping function-based detection strategy considered here essentially belongs to the 

elastic depth-based approach proposed by Harris et al. (2021). The outliers are detected based on 

the phase information of the CDFs captured by the warping functions. The relevant computational 

details and the argument settings are provided in Appendix 4.  

 In the simulated PDF dataset consisting of 100 curves, let ����  and �����  denote the 

number of outlying PDFs and non-outlying PDFs, respectively, and ��
��  and ��

��  denote the 

number of correctly and falsely detected outlying PDFs, respectively. The performance of the 
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detection methods can be assessed based on the correct and false detection rates, defined as follows: 

Correct detection rate:  �� =
��

��

����
×100%  

False detection rate:  �� =
��

��

�����
×100% 

We repeat the above outlier detection experiment for 1000 times using re-simulated functional 

data to calculate the average correct and false detection rates for each detection scheme, and the 

results are reported in Tables S-3~5. For comparison, we also calculate the average correct (false) 

detection rates associated with the outliers detected in the four considered nodes (i.e., MED, nLQD, 

CLR, and DIFF) on the tree of the first detection scheme, and the corresponding results are listed in 

columns 3~6 of Table S-3. It is worth noting that the data-generating processes of Model I are the 

same in Scenarios I and II; thus, the detection results of Model I are only reported for Scenario I. 

 

Table S-3 

The calculated average correct detection rates and false detection rates (in brackets) associated with 
the Tree-Distance detection scheme. The data in the third, fourth, fifth, and sixth columns correspond 
to the results detected in the nodes of MED, nLQD, CLR, DIFF, respectively, while the last column 
corresponds to the merged results detected in the four considered nodes on the tree. Both �� and �� 

(in brackets) are presented in percentage terms. 

Scenario Model 
MED 
��(%) 

(��)(%) 

nLQD  
��(%) 

(��)(%) 

CLR 
��(%) 

(��)(%) 

DIFF 
��(%) 

(��)(%) 

TREE 
��(%) 

(��)(%) 

Scenario I 

Model I 
0.00 

(0.12) 
98.49 
(0.00) 

98.77 
(0.00) 

0.00 
(0.00) 

99.42 
(0.12) 

Model II 
0.00 

(0.14) 
95.87 
(0.00) 

97.76 
(0.00) 

0.00 
(0.00) 

98.60 
(0.14) 

Model III 
0.00 

(0.09) 
93.74 
(0.00) 

97.64 
(0.00) 

0.00 
(0.00) 

98.33 
(0.09) 

Model IV 
0.00 

(0.06) 
87.68 
(0.00) 

97.14 
(0.00) 

0.00 
(0.00) 

97.74 
(0.06) 

Scenario II 

Model I — — — — — 

Model II 
0.00 

(0.10) 
97.47 
(0.05) 

94.97 
(0.00) 

0.00 
(0.00) 

98.60 
(0.14) 

Model III 
0.00 

(0.03) 
97.10 
(0.23) 

85.00 
(0.00) 

0.00 
(0.00) 

97.61 
(0.25) 

Model IV 
0.00 

(0.01) 
82.49 
(0.01) 

70.95 
(0.00) 

0.00 
(0.00) 

88.02 
(0.02) 

 
For the first detection scheme, it can be seen from Table S-3 that the detected outliers are 

mainly from the nodes of nLQD and CLR, and rarely from the nodes of MED and DIFF. In Scenario 

I, the CLR node slightly outperforms the nLQD node, whereas, in Scenario II, the opposite is the 

case. Recall that the outliers detected by the tree are obtained by merging the outliers identified in 

the four considered nodes, the calculated average correct detection rates (false detection rates) 

associated with the tree (listed in the last column of Table S-3) are the final results of the Tree-

Distance detection scheme. It is evident from the results that the average correct detection rates of 

the tree are higher than those associated with the nLQD and CLR nodes, especially for Model IV of 

Scenario II, indicating that the outliers detected in the nLQD and CLR nodes are different. Thus, 

the two transformations have complementarity in outlier detection.  
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Note that the role of the MED node is mainly to detect the horizontal-shift outliers; thus, the 

outliers detected from this node are mainly false positives because the simulated data only contain 

shape outliers with no significant horizontal deviations with respect to the bulk of the data. The 

DIFF node shows almost no contribution to the outlier detection in this experiment; however, we 

cannot conclude that the DIFF node is useless and should be removed from the transformation tree 

considering that it may have its merits in other situations. To demonstrate this, we provide an 

additional simulation study using another simulated PDF-valued dataset in Subsection S.6.1, where 

the DIFF node plays the dominant role in uncovering the outliers.  

 

Table S-4 

The calculated average correct detection rates and false detection rates (in brackets) associated with 
the QF-FDO detection scheme. The data in the third, fourth, and fifth columns correspond to the results 
detected by setting the whisker parameters associated with the VO-outliers to be 1.5, 2.0, and 2.5, 
respectively, while the whisker parameter associated with the MO-outliers is fixed at 1.5. Both �� 
and �� (in brackets) are presented in percentage terms. 

Scenario Model 
1.5IQR (VO) 

��(%) 
(��)(%) 

2.0IQR (VO) 
��(%) 

(��)(%) 

2.5IQR (VO) 
��(%) 

(��)(%) 

Scenario I 

Model I 
61.12 
(2.85) 

54.39 
(1.46) 

48.98 
(0.73) 

Model II 
65.38 
(2.76) 

58.82 
(1.34) 

52.65 
(0.68) 

Model III 
68.04 
(2.13) 

61.55 
(0.97) 

55.26 
(0.44) 

Model IV 
71.00 
(6.21) 

63.06 
(4.56) 

55.67 
(3.40) 

Scenario II 

Model I — — — 

Model II 
63.99 
(2.90) 

57.06 
(1.46) 

51.03 
(0.74) 

Model III 
71.59 
(2.41) 

65.10 
(1.13) 

58.66 
(0.52) 

Model IV 
59.25 

(16.02) 
55.99 

(15.32) 
53.47 

(14.78) 

 
For the second detection scheme (see Table S-4), the calculated average correct detection rates 

are significantly lower than those of the first detection scheme. Comparing the average false 

detection rates between Table S-3 and Table S-4, it appears that the second detection scheme also 

has a higher risk of false detection, especially for Model IV in Scenario II. Reducing the whisker 

parameter of the boxplot associated with the VO-outliers can increase its outlier detection power; 

however, only a slight improvement is observed in this experiment, which also leads to a higher risk 

of false detection.  

The results associated with the third detection scheme, listed in Table S-5, show that the 

average correct detection rates are lower than 50% for the considered cases, meaning that fewer 

than half (on average) of the outliers have been successfully identified by the warping function-

based method. Moreover, the calculated average false detection rates associated with the third 

detection scheme are significantly higher than those of the other two detection schemes for most 

cases.  
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Table S-5 

The calculated average correct detection rates and false detection rates (in brackets) associated with 
the warping function-based detection scheme. Both ��  and ��  (in brackets) are presented in 

percentage terms. 

Scenario 
Model I 
��(%) 

(��)(%) 

Model II  
��(%) 

(��)(%) 

Model III 
��(%) 

(��)(%) 

Model IV 
��(%) 

(��)(%) 

Scenario I 
43.08 
(8.11) 

43.15 
(8.35) 

38.09 
(8.48) 

32.33 
(8.79) 

Scenario II — 
42.18 
(8.73) 

38.74 
(9.03) 

35.78 
(9.04) 

 
 

Comparing Tables S-3~5, we see that the first detection scheme (i.e., the proposed Tree-

Distance method) performs excellently with high accuracy and low risk of false detection, while the 

second detection scheme significantly underperforms in comparison, and the third detection scheme 

is the worst performer. 

As mentioned in Subsection 3.1 of the manuscript (detailed in Subsection S.3.2.3 of this 

document), both the ��  and ��  distances are valid for performing outlier detection for the 

functional data associated with nodes nLQD and DIFF (involved in the Tree-Distance method). 

From the demonstrations presented in Subsection S.3.2.3 of this document, we get that the �� and 

�� distances are mainly suited for measuring the global dissimilarity of the functional samples. In 

the performance comparative study conducted above, the Tree-Distance method is executed using 

the default argument settings listed in Table S-1, where the ��  distance is chosen for global 

dissimilarity quantification for the functional data associated with nodes nLQD and DIFF. If we 

replace the �� distance by the �� distance in the default argument settings for nodes nLQD and 

DIFF, we are curious to see how the detection results of the Tree-Distance method would change. 

For this purpose, we re-run the Tree-Distance method to the same 1000 PDF-valued datasets 

generated earlier using the new argument settings (i.e., the �� distance associated with nodes nLQD 

and DIFF in Table S-1 is replaced by the ��  distance, the other argument settings remain 

unchanged), and the re-calculated average correct/false detection rates are reported in Table S-6. 

Comparing the results in Tables S-3 and S-6, one can see that the �� distance and �� distance have 

similar performances in most situations except for the case of Model IV of Scenario II. In the latter 

case, the �� distance performs slightly better than the �� distance. This is also the main reason 

why we select the �� distance as the default distance for global dissimilarity quantification for the 

functional data associated with nodes nLQD and DIFF in this study. Such a default setting does not 

mean that the �� distance would perform better than the �� distance in all situations, one can also 

use the �� distance to perform outlier detection for nodes nLQD or DIFF depending on the specific 

situation. 
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Table S-6 

The re-calculated average correct detection rates and false detection rates (in brackets) associated with 
the Tree-Distance detection scheme using the new argument settings (i.e., the �� distance associated 
with nodes nLQD and DIFF in Table S-1 is replaced by the �� distance, the other argument settings 
remain unchanged). Both �� and �� (in brackets) are presented in percentage terms. 

Scenario Model 
MED 
��(%) 

(��)(%) 

nLQD  
��(%) 

(��)(%) 

CLR 
��(%) 

(��)(%) 

DIFF 
��(%) 

(��)(%) 

TREE 
��(%) 

(��)(%) 

Scenario I 

Model I 
0.00 

(0.12) 
98.51 
(0.00) 

98.77 
(0.00) 

0.00 
(0.01) 

99.42 
(0.13) 

Model II 
0.00 

(0.14) 
96.30 
(0.00) 

97.76 
(0.00) 

0.00 
(0.00) 

98.67 
(0.15) 

Model III 
0.00 

(0.09) 
93.93 
(0.00) 

97.64 
(0.00) 

0.00 
(0.00) 

98.36 
(0.09) 

Model IV 
0.00 

(0.06) 
85.85 
(0.00) 

97.14 
(0.00) 

0.00 
(0.01) 

97.59 
(0.06) 

Scenario II 

Model I — — — — — 

Model II 
0.00 

(0.10) 
97.72 
(0.06) 

94.97 
(0.00) 

0.00 
(0.01) 

98.79 
0.15 

Model III 
0.00 

(0.03) 
97.09 
(0.29) 

85.00 
(0.00) 

0.00 
(0.00) 

97.54 
(0.31) 

Model IV 
0.00 

(0.01) 
75.22 
(0.00) 

70.95 
(0.00) 

0.00 
(0.00) 

84.71 
(0.02) 

S.5.2. Simulation study II 

This simulation study aims to validate the effectiveness of the distributional regression-based 

approach in abnormal association detection (i.e., regression outlier detection).  

 
Algorithm S.3: Generating PDF-valued two-tuples 

Input: Number of two-tuples �  

Output: PDF-valued two-tuples {��, ��}���
�  

1: for � = 1 to � do 

a: Generate parameters for ��(�)  

��~U(10,40),  ��~U(14,40), ��~U(0,0.5) 

b: Generate PDF ��(�) = (1 − ��)BetaPdf(�; ��, ��) + ��BetaPdf(�; 2��, ��) 

c: Generate parameters for ��(�)  

�� ∼ N(0, 5�)  

�� = 2.5�� + ��� − 15 + ��,    �� = 0.5����� + 45 − 0.8�� + ��  

�� = (�� + ��) 2⁄   

d: Generate PDF ��(�) = (1 − ��)BetaPdf(�; ��, ��) + ��BetaPdf(�; ��, ��) 

end for 

2: Output {��, ��}���
�  

 
First, we use Algorithm S.3 to simulate � = 100 groups of correlated PDF-valued two-tuples 

denoted as {��, ��}���
� . The parameters of the distributions corresponding to ��, � = 1,2, ⋯ , � are 

nonlinearly dependent on those corresponding to ��, � = 1,2, ⋯ , � . Representative functional 

samples of the simulated PDF-valued data {��}���
��� and {��}���

��� are visualized in the left column 

of Figure S-25, and the right column presents five typical curves selected from each PDF dataset. 

Both PDF datasets contain unimodal and bimodal curves, and such distributional data are relatively 
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complex from the angle of the curve shapes. The implementation details for generating abnormal 

associations in {��, ��}���
�   based on an intra-element exchange strategy are summarized in 

Algorithm S.9 (in Appendix 3). Note that the intra-element exchange can only rearrange the order 

of the elements. If viewed independently, the curve plots of {��}���
�  and {��}���

�  after processing 

by Algorithm S.9 are the same as those in the upper and lower left panels of Figure S-25, respectively. 

To visualize the simulated abnormal associations, we plot the curves of the abnormal PDF-valued 

two-tuple (denoted as ���, ���) along with the histogram of random samples generated from the 

original distribution (the one before performing the element exchange operation), as shown in 

Figure S-26 (a), where the abnormal PDF can be distinguished as it no longer fits the histogram 

well. For comparison, Figure S-26(b) also illustrates another representative PDF-valued two-tuple 

(denoted as {��, ��}) with a normal association. 

  

  
Figure S-25. Representative simulated functional samples of the PDF-valued datasets {��}���

���  (the 
upper row) and {��}���

��� (the lower row). The left column corresponds to the whole curves contained in 
the functional datasets, while the right column corresponds to five selected representative curves from 
the PDFs shown in the left panel of the same row. 

 

 
(a) 

 
(b) 

Figure S-26. (a) Visualization of a representative simulated abnormal PDF-valued two-tuple and (b) 
visualization for a representative simulated “good” PDF-valued two-tuple. The histogram is drawn based 
on 5000 random samples drawn from the original distribution associated with �� (or ��) before the PDF 

exchange. 
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In the following, the distributional regression-based approach described in Subsection 3.2 of 

the manuscript with implementation details summarized in Algorithm 1 in the manuscript, is 

employed to detect the regression outliers. For the LQD-RKHS distribution-to-distribution 

regression model, the Gaussian kernel given in Eq. (8) (of the manuscript) is selected as the 

reproducing operator kernel, and the related parameter � is determined by the following principle 

(similar to that in Chen et al. (2019a)): 

� = �  � �� ���
�∗

(�) − ��
�∗

(�)�
�

���
� �⁄

�∈����∈���

|���|��  (S-43) 

where ��� stands for the index set of the training data, |���| represents the number of elements 

contained in ���. The other argument settings are listed in Table S-7. Similar to Subsection S.5.1, 

the performance is assessed based on the correct and false detection rates averaged over a series of 

repeated detection experiments. In each repetition, a total of 100 groups of PDF-valued two-tuples 

are simulated using Algorithm S.3, and 10 abnormal associations are generated by Algorithm S.9 to 

contaminate the original distributional data. We set ���, ��� = (0, 5), (2, 3), (4, 1), and (5, 0) in 

Algorithm S.9 to consider four different contamination scenarios. Using the results of 500 repeated 

detection experiments, Table S-8 lists the calculated average correct and false detection rates for the 

four considered contamination scenarios. The correct detection rates are all greater than 80%, with 

92.24% being the best, indicating that the distributional regression-based approach can effectively 

detect regression outliers. The false detection rates are approximately 6%, implying that out of the 

90 “good” curves, approximately six curves will be falsely identified as outliers, on average. At first 

glance, the false detection rate is relatively high, which might be attributed to the regression error. 

Recall that a function-to-function regression model can be generally written as �(�) = Γ��(�)� +

�(�) with Γ and �(�) being the regression operator and functional error term (assumed to be zero 

mean), respectively, and the functional response �(�) is independent of the error term �(�). Thus, 

given a specified predictor ��, only the conditional mean E(��|��) = Γ(��) can be predicted by 

the fitted regression model, whereas the quantity of the error is unpredictable. If the simulated error 

�� in generating the experimental data is considerably large, the corresponding PDF-valued two-

tuple {��, ��} may also be an outlier. Although we have leveraged a horizontal threshold �� in 

Algorithm S.1 to reduce the risk of false detection caused by horizontal shift errors of PDFs (see 

Subsection S.3.3.2 for details), the remaining shape errors may also lead to false detections.  

 

 

Table S-7 

Argument settings for the regression outlier detection. 

�����
���

, ����
� � ���

���
, ��

�� �� �� � ������
���

 

(0.3, 0.1) (1.5, 1.5) 0.15 0.01 5 4 
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Table S-8 

The calculated correct and false detection rates associated with the regression outlier 
detection for four different contamination scenarios. 

���, ��� (0,5) (2,3) (4,1) (5,0) 

�� (%) 92.24 81.76 81.20 84.06 
�� (%) 5.57 7.01 6.81 5.95 

 
In general, with average correct detection rates greater than 80%, the proposed distributional 

regression-based outlier detection method performs well, as the simulated data are quite complex 

(see Figure S-25), and the false detection rates are also acceptable. If we reduce the complexity of 

the simulated data, the detection method can be expected to perform better. For comparison, we also 

conduct an additional simulation study with less complicated PDF-valued data in the next section. 

As expected, the detection performance is much better, and the correct detection rates (averaged 

over 500 replicated detection experiments) are all greater than 98% (see Table S-10 in Subsection 

S.6.2). 

S.6. Additional simulation studies 

S.6.1. Additional simulation study I  

This subsection provides an additional simulation study, and the outlying PDF detection 

method described in Subsection S.5.1 is employed to identify the synthetic outlying curves. Similar 

to that in Subsection S.5.1, the average detection performance of interest is also based on a series 

of repeated experiments. In each simulation run, we first independently generate a functional dataset 

consisting of 100 curves using the following model: 

��(�) = ��sin(2��) + ��cos(2��), � ∈ [0, 1], � = 1,⋅⋅⋅ ,100 (S-44) 

with  �� ~
�.�.�

U(0.012,0.05) and �� ~
�.�.�

U(0.012,0.075). The simulated functional dataset is referred 

to as �� = {��(�)}���
���. After introducing 10 functional outliers by using Algorithm S.4, all functions 

in �� are converted to PDFs through the following principle: 

��(�) =
��(�) − �

∫ (��(�) − �)��
�

�

,    �� ∈ �� and � = min
��∈��

inf
�∈[�,�]

{��(�)} (S-45) 

The resulting PDF-valued dataset is denoted as �� = {��(�)}���
���, representative samples of �� are 

displayed in Figure S-27, where the red lines represent the synthetic outliers. 

Then, we apply the proposed Tree-Distance detection scheme, with the default argument 

settings as those in Subsection S.5.1, to the collection of simulated PDFs in ��. We independently 

repeat such detection experiments for 1000 times, the calculated average values of correct and false 

detection rates are reported in Table S-9. 
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Figure S-27. Representative simulated PDF-valued dataset composed of 90 ‘‘good” densities (gray lines) 
and 10 outlying densities (red lines) using model (S-45) and Algorithm S.4. 
 

Table S-9 

The calculated average correct detection rates and false detection rates in Additional 
simulation study I. The data in the second, third, fourth and fifth columns correspond 
to the results detected in the nodes of MED, nLQD, CLR, DIFF, respectively, while 
the last column corresponds to the merged results detected in the four considered nodes 
on the tree. 

 MED nLQD  CLR DIFF TREE 

��(%) 41.43 45.20 28.17 61.83 99.00 
��(%) 0.00 1.14 0.01 0.00 1.15 

 
 

Algorithm S.4: Generate functional outliers 

Input: Functional dataset �� = {��(�)}���
�  with ��(�) defined on the compact interval [0,1], the 

number of outliers �� 

Output: The contaminated functional dataset 

1: Initialize the set of outliers ���� = ∅ 

2: for � = 1 to �� − 1 do  

Generate � ∼ U(0,1) 

if � < 0.6 then 

   Compute �(�) = �(� − 4) + �� with �~U(−4.5, −2), � ∈ [0,1] 

   Compute ��(�) = ��sin�2��(�)� + ��cos�2��(�)�  

with ��~U(0.02, 0.05) and ��~U(0, 0.075), � ∈ [0,1] 

else 

Compute ��(�) = ��sin(2��) + ��cos(2��) 

with ��~U(0, 0.008) and ��~U(0, 0.008), � ∈ [0,1] 

  end if 

     Put �� into the outlier set ���� ← �� 

end for 

3: Calculate the pointwise median function 

      ����(�) = median
�����

{��(�)}, ∀� ∈ [0,1] 

4: Use the �� distance to find an element in �� closest to ����(�), and denote the found  

element as �� 

5: Compute ��(�) = ��(�) + 0.02sin(20��), � ∈ [0,1], and set ���� ← �� 

6: Randomly select �� elements in �� to be replaced by the generated outliers stored in ���� 

7: Output the outlier contaminated functional dataset �� 
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S.6.2. Additional simulation study II  

This subsection conducts an additional simulation study for regression outlier detection in 

parallel with the one conducted in Subsection S.5.2. 

 
Algorithm S.5: Generating PDF-valued two-tuples for Additional simulation study II 

Input: Number of two-tuples �  

Output: PDF-valued two-tuples {��, ��}���
�  

1: Independently generate parameters for ��(�), � = 1,2, ⋯ , � 

� = {��, ��, ⋯ , ��} with �� being i.i.d. samples of U(14,30) 

� = {��, ��, ⋯ , ��} with �� being i.i.d. samples of U(14,20) 

2: Independently generate the errors 

� = {��, ��, ⋯ , ��} with �� being i.i.d. samples of N(0, 3�) 

3: for � = 1 to � do 

a: Generate PDF ��(�) = BetaPdf(�; ��, ��) 

b: Generate parameters for ��(�)  

�� = 40
������ (�)

��� (�)���� (�)
+ 12 + ��,    �� = ����� + �� + ��  

c: Generate PDF ��(�) = BetaPdf(�; ��, ��) 

end for 

4: Output {��, ��}���
�  

 

Algorithm S.6: Generating abnormal PDF associations by inserting outliers 

Input: PDF-valued two-tuples {��, ��}���
� , the bivariate parameter ���, ���  for controlling the 

number of outliers introduced to {��}���
�  and {��}���

� , respectively, and coefficients ��� and � 

Output: The contaminated PDF-valued two-tuples {��, ��}���
�  

1: Denote the PDF-valued datasets {��}���
�  and {��}���

�  as ����
�

 and ����
�

, respectively 

2: repeat 

   a: Randomly insert �� outlying PDFs into ����
�

 using Algorithm S.7 

�����
�

, IDE��= PDFoutlier_Insert�����
�

, ��, ���, �� 

   b: Randomly insert �� outlying PDFs into ����
�

 using Algorithm S.7 

�����
�

, IDE��= PDFoutlier_Insert�����
�

, ��, ���, �� 

until IDE� ⋂ IDE� = ∅ (∅ denotes the empty set) 

3: Output the contaminated PDF-valued two-tuples, i.e., 

{��, ��}, �� ∈ ����
�

, �� ∈ ����
�

, � = 1,2, ⋯ , �  

 
In each run, 100  groups of correlated PDF-valued two-tuples denoted as {��, ��}���

���  are 

generated by using Algorithm S.5, and the abnormal associations are generated by using Algorithm 

S.6 with ��� = 0  and � = 0.25 . We consider seven different contamination scenarios with 

���, ��� (denoting the associated numbers of outliers introduced to {��}���
�  and {��}���

� ) valued 

at (10, 0), (8, 2), (6, 4), (5, 5), (4, 6), (2, 8) and (0, 10), respectively. In each contamination scenario, 

the distributional regression-based detection method with the same argument settings of those in 

Subsection S.5.2 is employed to detect the abnormal associations (i.e., the regression outliers). 

Based on 500 repeated detection tests, the calculated average correct and false detection rates are 
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listed in Table S-10 for the seven considered contamination scenarios. 

 
Table S-10 

The calculated average correct and false detection rates associated with the regression outlier detection 
conducted in Additional simulation study II for the seven considered contamination scenarios. 

���, ��� (10, 0) (8, 2) (6, 4) (5, 5) (4, 6) (2, 8) (0, 10) 

�� (%) 99.82 99.22 99.18 98.54 98.90 98.98 99.70 
�� (%) 4.08 4.79 5.22 5.48 5.30 5.00 3.97 

 

S.7. Supplemental materials for the real data study 

S.7.1. The two investigated strain sensors 

 

Figure S-28. Positions of the two strain sensors investigated in the real data study. The cross-section of 
the bridge is the same as that in Chen et al. (2019a). 

S.7.2. Data preprocessing in the real data analysis  

The sample frequency of the strain sensor is 4Hz, thus the 8 days of measurements of each 

sensor include a total of 2764800 data points. Before PDF estimation, a rough pretreatment is 

conducted to the raw data since the data quality of Sensor B is too poor. Specifically, let � and � 

be the vectors of the selected 8 days of time-ordered measurements collected by Sensor A and Sensor 

B (see Figure S-29 (a)), respectively, then the two-tuple (�(�), �(�)) would be removed from 

(�, �) if the following condition is satisfied: 

�(�) = NaN or �(�) = NaN or �(�) > 50 (��) 

where NaN  stands for the missing data. Finally, the remaining data are merged together in the 

original time order and then scaled to [0, 1] (similar to that in Chen et al. (2019a)) for each sensor, 

the resulting data are visualized in Figure S-29 (b). 

For density estimation, the post-processed measurements are divided into 120 segments for 

each sensor. Each segment consists of 11604 data points (equal to around 48 minutes measurement 

amount). The PDFs are estimated by kernel density estimator using the segment data as samples 

(similar to that in Chen et al. (2019a)). The estimated PDFs are denoted as {���}���
��� and �����

���

���
 for 

Sensor A and Sensor B, and visualized in Figures S-30 (a) and (b), respectively. 
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(a) 

 
(b) 

Figure S-29. The investigated strain measurements. (a) Raw data and (b) processed data (eliminating the 
missing or large values (>50��), and then scaled to [0,1]). 

 

 
(a) 

 
(b) 

Figure S-30. The estimated PDFs of post-processed strain measurements: (a) {���}���
���  associated with 

Sensor A and (b) ��������

���
 associated with Sensor B. 

S.7.3. Tables of argument settings involved in the real data study 

Table S-11 

Argument settings for the two-stage initial outlier detection conducted in the real data study in Section 
6 of the manuscript 
Stage I: Single dataset outlier detection 

Detection method The Tree-Distance method described in Subsection 3.1 of the manuscript 

Type of outliers Type I 

Argument setting The default argument settings as used in Simulation study I (presented in Subsection S.5.1 

of this document) 

Stage II: Regression outlier detection 

Detection method The abnormal association detection method described in Subsection 3.2 of the manuscript 

Type of outliers Type II 

Argument setting Same as those listed in Table S-7 except that the whisker parameters ���
���

, ��
�� are set to 

(3.0, 3.0) 
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Table S-12 

Argument settings for the standard and robust LQD-RKHS distributional regression methods 
Common arguments (for both the standard and robust LQD-RKHS methods) 

Operator kernel �� in Eq. (4) (or Eq. (6)) The Gaussian kernel given in Eq. (8) 

� in Eq. (8) Determined according to Eq.(S-43) of this document 

����
���

 in Eq. (2) ����
���

= 0.3 

Truncation order of FPCA � = 5 

Regularization parameter �� Adaptively selected using the generalized cross-validation 
procedure described in Appendix 1 of this document 

Additional arguments for the robust LQD-RKHS method 

Argument settings for Type I and Type II 
outlier detections 

The same as those in Table S-11 

Weights ��s in Eq. (6)  
Determined according to the principles described in Subsection 
S.4.1 of this document, and the relevant parameters �� and �� in 
the weight functions given in Eqs. (S-22) and (S-25) are set to 1 

S.7.4. Additional discussion on the detected Type II outliers 

The outlying PDFs detected in the second stage (i.e., the Type II outliers) are visualized in 

Figure 5 (b) of the manuscript as bold colored curves. Recall that the Type II outliers belong to the 

regression outliers, which correspond to the abnormal associations of the PDF-valued two-tuples. 

The bold curves in the same color shown in Figure 5 (b) of the manuscript belong to the same two-

tuple. The anomaly (with respect to the majority of the data) of the detected Type II outlier can only 

be stand out when viewed in pair. For comparison purposes, Figure S-31 also displays the curves 

w.r.t. the bulk of the curves for six selected PDF pairs with normal associations. Comparing the 

normal PDF pairs in Figure S-31, one can see that their horizontal positions are correlated with each 

other. Obviously, the three detected Type II outlying PDFs shown in Figure 5 (b) of the manuscript 

violate the correlation pattern exhibited in Figure S-31. 

 
Figure S-31. Comparisions for six pairs of PDFs (repesented by bold red curves) with normal 
associations. The first row corresponds to Sensor A, and the second row corresponds to Sensor B. 

S.7.5. Sensitivity analysis 

This subsection provides an in-depth comparative study to check whether the results obtained by 

our proposed robust LQD-RKHS distributional regression method are still relatively robust 
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(compared to the standard LQD-RKHS method) when using different data segmentation schemes. 

In the former study, the post-processed strain monitoring data from the two sensors are divided 

into 120 segments to obtain 120 pairs of PDF-valued samples. If we choose a different data 

segmentation scheme, i.e., the number of segments is not 120, it would lead to a new PDF-valued 

dataset with different sample sizes and different curve shapes. We are curious to see how the 

proposed robust LQD-RKHS method would perform under the new data segmentation scheme and 

whether it is still relatively robust (compared to the standard method). Recall that the robustness of 

the proposed robust regression method is achieved by downweighting the detected outlying PDFs 

contained in the training samples; thus, the main influential factor of the robustness of our method 

is whether the outlying PDFs (affecting the regression model adversely) can be successfully detected 

by the proposed distributional outlier detection methods. The latter (i.e., outlier detection methods) 

are not sensitive to the sample size of the distributional data; thus, the proposed robust distributional 

regression method is also expected to be insensitive to the number of data segments. In the following, 

we will conduct a comparative study to check this. 

 

Table S-13 

The six considered data segmentation schemes 

Segmentation scheme Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

Number of segments 60 90 120 150 200 600 

 

 We consider six different data segmentation schemes (listed in Table S-13) with 60, 90, 120, 

150, 200 and 600 segments. Then, we can obtain six different PDF-valued datasets consisting of 

PDF two-tuples, denoted as ����,�, ���,��
���

��
 , ����,�, ���,��

���

��
 , ����,�, ���,��

���

���
 , ����,�, ���,��

���

���
 , 

����,�, ���,��
���

���
 and ����,�, ���,��

���

���
, associated with the six data segmentation schemes. Next, we take 

the first data segmentation scheme (i.e., Scheme 1) as an example to detail the remaining 

test/training data selection as well as the associated distributional regression analysis. The data 

processing and analysis for other schemes are conducted in a similar way. For convenience, let �� 

denote the sample size of the resulting PDF-valued dataset associated with Scheme 1. After 

implementing the initial distributional outlier detection, a total of [0.3��] (the factor 0.3 is fixed 

for Schemes 1~6) pairs of PDFs are randomly selected from the “good” dataset (i.e., the PDF-valued 

dataset after removing the outlying PDFs detected in the initial outlier detection stage) to serve as 

the test functional samples, and the remaining data (including the detected outliers) are used as the 

training functional samples. This test/training data selection is independently repeated five times, 

yielding five different groups of test/training datasets (which are referred to as Groups 1~5). Then, 

we separately use the standard and robust LQD-RKHS distributional regression methods to predict 

the PDFs (associated with Sensor B) in the test datasets. The regularization parameters involved in 

the regression models are adaptively selected by using the generalized cross-validation method 

described in Appendix 1. The prediction error for each test PDF is also quantified by the integrated 
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absolute error (IAE) similar to that in the manuscript. The boxplots of the prediction errors 

associated with each test/training group are displayed in Figure S-32 for all six considered data 

segmentation schemes. Comparing the results in Figure S-32, one can see that the proposed method 

significantly outperforms the standard method in all the considered test/training groups associated 

with the six segmentation schemes. Since the proposed method can maintain its advantage of 

robustness in a wide range of data segmentation schemes, we can conclude that the robustness of 

our method is insensitive to the number of data segments. 

 
(a) Scheme 1 (60 segments) 

 
(b) Scheme 2 (90 segments) 

 
(c) Scheme 3 (120 segments) 

 
(d) Scheme 4 (150 segments) 

 
(e) Scheme 5 (200 segments) 

 
(f) Scheme 6 (600 segments) 

Figure S-32. Comparisons of the prediction errors of the standard and robust LQD-RKHS distributional 
regression models for different data segmentation schemes. The regularization parameters are adaptively 
selected by the generalized cross-validation method.  
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Remark. It is worth noting that the regularization parameter ��  has a significant impact on RKHS-

based regression. In the comparative study conducted above, such regularization parameters are 

adaptively selected by the generalized cross-validation method, and the resulting parameters can be 

different for the standard and robust LQD-RKHS methods (as the GCV procedure for the robust 

method considers removing the detected outlying PDFs). Consequently, one may argue that the 

better performance of the robust method is probably attributed to a better regularization parameter. 

To settle this doubt, we provide an in-depth comparative study. To avoid the strength of the standard 

version being suppressed by a suboptimal regularization parameter, we consider nine different 

regularization parameters, valued at 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 4.0, and 8.0 (the value of 

the regularization parameter selected using the GCV procedure falls into the range of these 

considered parameters), for the standard LQD-RKHS method. The regularization parameter for the 

robust version is fixed at 0.1. Consequently, 10 different regression models can be constructed. We 

also consider six different data segmentation schemes, as listed in Table S-13, and for each scheme, 

we consider one group of test/training data (independently reselected in a similar way as described 

above). The prediction errors associated with the ten regression models are summarized as boxplots 

as shown in Figure S-33. The proposed robust method also significantly outperforms the standard 

method under all considered regularization parameters. 

 

 
(a) Scheme 1 (60 segments) 

 
(b) Scheme 2 (90 segments) 

 
(c) Scheme 3 (120 segments) 

 
(d) Scheme 4 (150 segments) 
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(e) Scheme 5 (200 segments) 

 
(f) Scheme 6 (600 segments) 

Figure S-33. Comparisons of the prediction errors of the standard and robust LQD-RKHS distributional 
regression models for different data segmentation schemes. Models 1~9 correspond to the standard LQD-
RKHS method with �� = 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 4.0 and  8.0 , respectively, and 
Model 10 corresponds to the robust LQD-RKHS method with �� = 0.1. 
 

S.7.6. Validity validation for the reconstructed distributions 

This subsection provides statistical analysis tests to examine the validities of the reconstructed 

distributions. The distributional regression-based data reconstruction method uses the information 

of the cross-correlation (of the PDF-valued data) between the two sensors to reconstruct the 

distributions of the missing data. Therefore, the validity of the reconstructed distributions depends 

on whether the two PDF-valued datasets associated with the two sensors are correlated or not. 

Generally, the higher degree of correlation between the two distributional datasets associated with 

the two sensors is, the higher reliability of the reconstructed distributions that can be achieved. If 

the two distributional datasets are independent or weakly correlated, the reconstructed distributions 

obtained by the distributional regression method can be regarded as invalid. 

For scalar data, the correlation between two datasets {��}���
�   and {��}���

�   can be easily 

discovered by observing the pattern of the scatter plot of the data points {(��, ��)}���
� . However, 

checking whether two PDF-valued datasets are correlated is not straightforward. One effective 

strategy is to check whether the FPC scores of the curves in one dataset are dependent on the curves 

of the other dataset. Recently, Chen et al. (2020) proposed an approach for scalar-on-function 

dependence analysis. Moreover, they also defined a coefficient to quantify the strength of such a 

dependence. Here, we employ a similar strategy as that in Chen et al. (2020) to examine the 

distributional correlation. 

Recall that in the case study conducted in Section 6 of the manuscript, we have obtained 120 

pairs of PDFs denoted as ����(�), ���(�)�
���

���
, and 97 pairs are classified into the “good” dataset (after 

the initial outlier detection). Here, only the “good” data are used to examine the distributional 

correlation to avoid distorting the analysis results by the outlying PDFs. For convenience, the 97 

pairs of “good” PDFs are denoted as ����(�), ���(�)�
���

�
 (� = 97), and their corresponding LQD 
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representations are denoted as ���
�∗

(�), ��
�∗

(�)�
���

�
(computed using Eq. (2) in the manuscript with 

����
���

= 0.3). Let � ��,�
�∗

�
���

�
be the FPC scores of the functional data ���

�∗

(�)�
���

�
associated with 

the �th FPC. The issue of concern is checking whether the real-valued data � ��,�
�∗

�
���

�
(associated 

with Sensor B) is dependent on the functional data ���
�∗

(�)�
���

�
(associated with Sensor A) or not; 

if the dependence exists, how strong is it? Such a scalar-on-function dependence can be analyzed 

by using the regression-based procedure described in Subsection 2.3 of Chen et al. (2020). The main 

idea of such an approach is first to build an RKHS-based nonlinear function-to-real regression 

model to capture the dependent relationship between the two datasets, and then the strength of the 

dependence can be quantified based on the amount of variability of the data explained by the 

regression model. Specifically, let ��,�
�∗

= �� ���
�∗

(�)� + ��,�,  � = 1,2, ⋯ , �  denote the RKHS-

based nonlinear regression model for relating ���
�∗

(�)�
���

�
 to � ��,�

�∗

�
���

�
  (the FPC scores of 

���
�∗

(�)�
���

�
on the �th FPC). The regularization parameter involved in the RKHS-based regression 

model is determined by using the generalized cross-validation (GCV) procedure described in 

Appendix 3 of Chen et al. (2020). The regularization parameter selected in such a way not only 

effectively avoids the regression model overfitting the data but also helps the regression model to 

reliably capture the underlying dependence of the data (see Section 4 in Chen et al. (2020) for the 

relevant validations). The fitted results of � ��,�
�∗

�
���

�
obtained by the estimated regression model are 

denoted as ���,�
�∗

= ��� ���
�∗

(�)� , � = 1,2, ⋯ , � ; then, the strength of dependence between 

� ��,�
�∗

�
���

�
 and ���

�∗

(�)�
���

�
 can be quantified by using the following coefficient (Chen et al. 2020): 

�� =
std�����,�

∗ ��

std����,�
∗ ��

= �

� ����,�
∗ − mean�����,�

∗ ���
�

���

� ���,�
∗ − mean����,�

∗ ���
�

���

 (S-46) 

where std�����,�
∗ �� and mean�����,�

∗ �� represent the sample standard deviation and sample mean of 

the dataset ����,�
�∗

�
���

�
, respectively. To help readers better understand the mechanism of such an 

approach in scalar-on-function dependence quantification, we also provide a simple example using 

only scalar data to illustrate how the method works (the case of scalar-on-function dependence 

encountered in this case study is analogous) in Appendix 5. 

Taking � = 2 (corresponding to the second FPC) as an example, the FPC scores denoted as 

� ��,�
�∗

�
���

�
  along with their fitted values (obtained by the regression model and denoted as 

� ���,�
�∗

�
���

�
) are plotted in the same figure as shown in Figure S-34; one can see that the variation of 
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the data � ��,�
�∗

�
���

�
can be largely explained by the optimal regression model determined by the GCV 

procedure, indicating that the real-valued data � ��,�
�∗

�
���

�
are strongly dependent on the functional 

data ���
�∗

(�)�
���

�
; the strength of dependence computed using Eq. (S-46) is 0.797. If we randomly 

disorder the data in � ��,�
�∗

�
���

�
, then the dependence disappears. After re-fitting the regression model 

using the disordered data, the results are displayed in Figure S-35; obviously, the regression model 

cannot “explain” any variation of the data, and the strength of dependence computed using Eq. (S-

46) becomes 0.000. 

 
Figure S-34. Visualization of the fitting result for the second FPC. 
 

 
Figure S-35. The fitting result of the regression model estimated using the disordered FPC scores of the 
second FPC. 
 

For the FPC scores associated with other FPCs, the scalar-on-function dependence can be 

analyzed in a similar way, and the results are displayed in Figure S-36 for the 5 considered FPCs 

(including the second FPC investigated earlier). From the results in Figure S-36, one can see that 

the FPC scores of the LQD representations of the PDFs �����
���

�
  from Sensor B are highly 

correlated with the LQD-representations of the PDFs {���}���
�  from Sensor A, indicating that the 

distributions of the strain monitoring data collected by the two sensors are highly correlated; thus, 

it verifies the validity of the reconstructed distributions using the inter-sensor distributional 

correlation information. 
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(a) FPC1 

 
(b) FPC2 

 
(c) FPC3 

 
(d) FPC4 

 
(e) FPC5 

 
Figure S-36. Visualization of the fitting results for the first five FPCs. 
 

Here, the data-on-function dependence analyses for different FPCs are performed separately, 

which enables us to directly check the dependence by plotting the real-valued data sequence along 

with the corresponding fitted sequence (obtained by the regression model) in the same figure. In 

this setting, the data-on-function dependence can be easily discovered through visual inspection. 

However, in the proposed robust distribution-to-distribution regression method, the FPC scores 
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associated with the same functional sample are considered as a whole; otherwise, the integrity of 

the functional data might be destroyed. 

S.7.7. Non-random missing case study 

In the real data study conducted in Section 6 of the manuscript, the training/test data are 

selected using a random split scheme, which corresponds to the case of missing at random. Here, 

we provide an additional case study to consider the non-random missing case. According to the 

initial outlying PDF detection conducted in Section 6 of the manuscript, among the 120 pairs of 

PDFs denoted as ����, ����
���

���
, 23 pairs are classified into the abnormal dataset, and the remaining 97 

pairs are classified into the “good” dataset. For convenience, we denote the “good” dataset as 

�����
����

, ���
����

�: � = 1,2, ⋯ ,97�. In this additional case study, a portion of the “good” PDFs from 

����
����

: � = 1,2, ⋯ ,97�  (i.e., the “good” PDFs associated with Sensor B) are assumed to be 

consecutively missing, and the following two scenarios are considered: 

Scenario I: 20 consecutive “good” PDFs ����
����

: � = 50, 51, ⋯ , 69�  are assumed to be 

missing; 

Scenario II: 30 consecutive “good” PDFs ����
����

: � = 50, 51, ⋯ , 79�  are assumed to be 

missing. 

In Scenario I, the remaining 100 pairs of PDFs (including the 23 pairs of abnormal PDFs) are used 

as the training dataset. Similarly, the training dataset in Scenario II is composed of the remaining 90 

pairs of PDFs. 

 Both the standard and robust LQD-RKHS distributional regression methods are considered for 

reconstructing the missing PDFs. The argument settings for these two methods are the same with 

their counterparts in the real data study conducted in Section 6 of the manuscript. The comparisons 

of the reconstructed PDFs for Scenario I and Scenario II are presented in Figure S-37 and Figure S-

38, respectively. The results show that the proposed robust LQD-RKHS distributional regression 

method works well in the two considered consecutively missing scenarios, and its performance is 

much better than the standard LQD-RKHS method. 
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Figure S-37. Comparisons of the reconstruction results for the 20 consecutively missing PDFs in 
Scenario I.  
 

 
Figure S-38. Comparisons of the reconstruction results for the 30 consecutively missing PDFs in 
Scenario II. 
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S.7.8. Discussion on the practical utility of distribution reconstruction in SHM 

applications 

Structural health monitoring (SHM) systems operate in complex environments, data loss and 

contamination are common and unavoidable under existing technologies. Consequently, data quality 

is of crucial concern in subsequent data modeling, data analysis and data mining involved in various 

SHM applications. As an important measure for improving the quality of SHM data, sensor faults 

correction concerning of correcting the information of distorted or corrupted data (including missing 

data) (Yi et al. 2017) has become an important research topic in the field of SHM. The robust 

distributional regression method developed in this study has wide applications in sensor faults 

correction. 

Firstly, the distributional regression-based data reconstruction method has good potential in 

extreme value analysis of load effects (of bridge structures) under data contamination (Chen et al. 

2018). The strain response investigated in the real data study is one of the most important load 

effects of bridge structures. The extreme value distribution of strain responses is of crucial 

importance in bridge safety condition evaluation, reliability analysis as well as performance-based 

design. If a large portion of the strain monitoring data are missing or severely contaminated (such 

as the case shown in Figure 4 of the manuscript), the extracted extreme value samples (such as the 

block maxima values, the samples exceeding a high threshold (OBrien et al. 2015; Coles 2001)) for 

extreme value distribution modeling would be scarce or distorted. Consequently, the built extreme 

value models would become less reliable and even severely distorted, leading to unreliable or 

misleading analysis results in subsequent bridge safety evaluation or reliability analysis. If we have 

reliable statistical methods to reconstruct (or correct) the distributions of the missing (or 

contaminated) data, we can use the reconstructed (or corrected) distributions to generate the same 

number of samples to impute the missing (or contaminated) data; then, we can use the post-

processed data (after data imputation) to extract the extreme value samples for extreme value 

distribution modeling and relevant extreme value analysis or prediction, see Chen et al. (2018) for 

more details. It is worth noting that the extreme value prediction is based on the distributional 

information of the samples taking large values, therefore the imputed data are required to follow a 

similar distribution of the true missing data. In this sense, the proposed robust distributional 

regression method has great potential in recovering the distributional information of missing data. 

On the other hand, it has long been recognized in the statistical community that the imputation 

model for missing data should account for the underlying distribution as well as the uncertainty of 

missing data (Murray 2018), such requirements are also of great importance for addressing the 

missing data in the SHM field. Recently, Chen et al. (2019b) proposed a two-stage imputation 

framework for missing SHM data by combining distributional regression with the copula-based 

imputation method that can naturally meet these requirements. In this framework, the density 

functions of missing data are firstly reconstructed by a distributional regression method; then, in 
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consideration of uncertainty, the missing measurements are imputed by random samples generated 

from a conditional distribution model (constructed based on the nonparametric copula and the 

reconstructed distributions). A notable advantage of such a strategy is that the imputed data can 

approximately follow the underlying distribution of the lost data. The distribution construction 

technique plays a crucial role in such applications. Moreover, the reconstructed distributions can 

further be used to correct the contaminated time series of the strain monitoring data using the copula-

based imputation approach, see Chen et al. (2019b) for more details. 

 

Appendix 1: Adaptive regularization parameter selection for the 

LQD-RKHS distributional regression model 

The regression operator in the LQD-RKHS distribution-to-distribution regression (DtDR) 

model is estimated by solving a regularized least-squares problem, and the regularization parameter 

�� can be adaptively selected by the generalized cross-validation (GCV) method (Golub et al. 1979; 

Wahba 1990; Lian 2007a). 

According to the theory of the GCV (Wahba 1990; Lian 2007a), the regularization parameter 

for the LQD-RKHS DtDR model can be chosen as follows: 

���� = argmin
����

�

�
‖����(��)����(�)‖�

�

�
�

�
���������(�)��

�   

with �(��): = (�⨂�)[(�⨂�) + ���]�� 

(S-47) 

where �, � and � = ��×� are matrices corresponding to those in Eq. (24) of Chen et al. (2019a), 

� is an identity matrix of size �� × �� (� is the FPC order in the LQD-RKHS DtDR model and 

� is the number of training PDFs). GCV(��) =
�

�
‖����(��)����(�)‖�

�

�
�

�
���������(��)��

�  is also called the GCV statistic. 

Similar to Lian (2007a), we can compute the GCV statistic at a pre-specified grid of �� denoted 

as �(�) = ���,�, ⋯ , ��,��
�, then the regularization parameter can be effectively estimated as 

���� = argmin
��∈�(�)

�GCV���,��, ⋯ , GCV���,��
�� (S-48) 

 For the robust LQD-RKHS distributional regression model developed in Section 4 of the 

manuscript, the regularization parameter �� can be automatically determined by a similar way. The 

only difference is that we recommend to remove the detected outlying PDFs from the training 

dataset before implementing the GCV procedure.  

 In addition to the GCV method, the regularization parameter involved in the RKHS-based 

regression method can also be adaptively selected by using the ordinary leave-one-out cross-

validation procedure as summarized in Appendix 3 of Chen et al. (2019a). Compared to the GCV 

procedure described above, the leave-one-out cross-validation method is much more 

computationally intensive. 
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Appendix 2: Basic outlier generation algorithm 

Algorithm S.7: (����, IDE)=PDFoutlier_Insert(����, ��, ���, �) 

Input: PDF-valued dataset S��� = {��}���
� , number of outliers ��, and coefficients ��� and � 

Output: The contaminated PDF-valued dataset S���, and the index set of outliers denoted as  IDE 

1: Calculate the modes of the �  PDFs {��}���
� , respectively, and denotes the set of modes as 

Π = {��}���
�  with �� = argmax

�
��(�) 

2: Construct two subsets of PDFs  

� = {�� ∈ S���|�� > ����(Π)}, � = {�� ∈ S���|�� < ��(Π)}  

where ��(Π) stands for the (100�)th percentile of the dataset Π 

3: Set Ξ = {1,2, ⋯ , �} and IDE = ∅ 

4: for � = 1 to �� do 

a: Generate �~U(0,1) 

b: if z>��� then (generate shape outlier) 

Randomly select one PDF from �, and denote it as ℎ� ∈ � 

Randomly select one PDF from �, and denote it as ℎ� ∈ � 

Compute ℎ(�) = �ℎ�(�) + (1 − ϱ)ℎ�(�) with   ϱ~U(0.4, 0.6) 

else (generate horizontal-shift outlier) 

      Generate y~U(0,1), �~U(2,5), �~U(13,16), c~U(17,22) and d~U(2,5) 

      Compute ℎ(�) = BetaPdf(�; �, �) ∙ �{���.�}(�) +  BetaPdf(�; �, �) ∙ �{���.�}(�) 

end if 

c: Randomly select an element from Ξ denoted as �� 

d: Perform PDF replacement S���[��] ← ℎ 

e: Set Ξ = Ξ ∖ {��}, and put �� into the index set IDE ← �� 

end for 

5: Output S��� and the index set IDE = ���, ��, ⋯ , ���
� 

 

Appendix 3: Abnormal association-generating process for simulation 

study II 

The PDF-valued two-tuples simulated by Algorithm S.3 in simulation study II can be equally 

written as the following structured data: 

�
��

��
� ,⋅⋅⋅ ,  �

��

��
� ,⋅⋅⋅, �

��

��
� ,⋅⋅⋅ �

��

��
� 

Clearly, ��  dependents on ��  since their corresponding distributional parameters obey the 

relationship given in Line c of Algorithm S.3. If we disorder the matches of the PDF two-tuples via 

performing an intra-set element exchange as illustrated in Figure S-39, it can produce two abnormal 

associations of PDFs. Such a strategy can be used to simulate the abnormal associations for 

validating the effectiveness of the distributional regression-based outlier detection method. 

Algorithm S.8 presents the implementation of element exchange for single dataset based on the peak 

information of PDFs, Algorithm S.9 details the final implementation of the abnormal association 

generation for contaminating the PDF-valued two-tuples. 
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Figure S-39. Illustration of intra-set element exchange 

 

Algorithm S.8: (����, IDE)=Element_Exchange(����, �) 

Input: PDF-valued dataset ���� consisting of � PDFs denoted as {��}���
� , and a parameter � for 

controlling the number of element exchanges in ���� 

Output: ����  after element exchange, and the index set denoted as IDE for locating the places 

where the element exchanges occur 

1: Construct the peak-value set 

Π� = ���
�

, ⋯ , ��
�

� with ��
�

= sup
�∈[�,�]

��(�), � = 1, ⋯ , � 

2: Construct PDF subsets 

�� = ��� ∈ �������
�

≤ ��.�(Π�)�, �� = ��� ∈ �������
�

≥ ��.�(Π�)� 

where ��.�(Π�) and ��.�(Π�) are the 20th and 80th percentiles of the dataset Π� 

3: Randomly select � elements from ��, and denote the selected PDFs as 

�� = ����
, ���

, ⋯ , ���
� with ��, ��, ⋯ , �� being the curve indices in ���� 

4: Randomly select � elements from ��, and denote the selected PDFs as 

�� = ����
, ���

, ⋯ , ���
� with ��, ��, ⋯ , �� being the curve indices in ���� 

5: Perform element exchange in ���� 

���
⇌ ���

, ���
⇌ ���

, ⋯ , ���
⇌ ���

  

6: Output the element-exchanged PDF dataset ����  along with the index set IDE =

{��, ⋯ , ��, ��, ⋯ , ��} 

 
 
 

Algorithm S.9: Generating abnormal PDF associations by exchanging elements 

Input: PDF-valued two-tuples {��, ��}���
� , the bivariate parameter ���, ���  for controlling the 

number of element exchanges in {��}���
�  and {��}���

�  

Output: the contaminated PDF-valued two-tuples {��, ��}���
�  

1: Denote the PDF-valued datasets {��}���
�  and {��}���

�  as ����
�

 and ����
�

, respectively 

2: repeat 

   a: Perform element exchange on ����
�

 using Algorithm S.8 

�����
�

, IDE��=Element_Exchange�����
�

, ��� 

   b: Perform element exchange on ����
�

 using Algorithm S.8 

�����
�

, IDE��=Element_Exchange�����
�

, ��� 

until IDE� ⋂ IDE� = ∅ (∅ denotes the empty set) 

3: Output the contaminated PDF-valued two-tuples, i.e., 

{��, ��}, �� ∈ ����
�

, �� ∈ ����
�

, � = 1,2, ⋯ , �  

 

 

 

 

��

��
,⋅⋅⋅,  

��

��
,⋅⋅⋅,

��

��
,⋅⋅⋅

��

��

Element exchange: �� ⇌ ��
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Appendix 4: Two considered competitors originally for ordinary 

functional outlier detection 

(1) Competing method I: the functional directional outlyingness (FDO)-based 

method 

Computational details 

The functional directional outlyingness (FDO) was defined by Dai and Genton (2019), then it 

has been successfully applied in outlier detection for ordinary functional data with potential for 

uncovering magnitude outliers and shape outliers simultaneously. However, according to our test, 

directly performing outlier detection in the PDF space using the FDO tool usually results in poor 

performance (related illustrations will be given latter). To remedy this embarrassing, we take a 

strategy of applying the FDO tool in the quantile function (QF) space (i.e., the QF node in the 

transformation tree) for outlier detection, which is referred to as the QF-FDO method throughout 

this study. As illustrated in Figures 3(a) and (b) of the manuscript, after converting the PDFs to 

quantile functions, the horizontal-shift outlying PDFs have become the magnitude outliers, while 

the shape outliers are still hidden in the bulk of the data. In contract to the disordered PDFs, the 

quantile functions are in a much more organized pattern as they have been registered according to 

quantiles.  

Consider a functional dataset denoted as {��(�)}���
�  with each element being a PDF defined 

on the compact interval [0, 1], let ��(�) be the quantile function corresponding to ��(�). Also, let 

median
�����

{��} denote the sample median of the real-valued dataset {��}���
� , �� ∈ ℝ. Note that when 

fixing �  at � = �� , the set of {��(��)}���
�   is a real-valued dataset. Then, the pointwise 

outlyingness of ��(�) at � = �� can be calculated by (Dai and Genton 2019) 

dSDO���(��)� =
��(��) − median

�����
{��(��)}

MAD(�(��))
 (S-49) 

where MAD(�(��))  is the median absolute deviation (MAD) calculated by MAD��(��)� = � ∙

median
�����

����(��) − median
�����

���(��)��� with  � being a constant (we set � to be its default value 

1.4826 throughout this study). 

Based on the FDO theory (Dai and Genton 2019), the magnitude and shape anomalies of a 

given quantile function ��(�) can be respectively measured by the mean outlyingness (MO) and 

the variation of outlyingness (VO) calculated as follows: 

MO(��) = � dSDO���(�)��(�)��
�

�

 

VO(��) = � �dSDO���(�)� − MO(��)�
�

�(�)��
�

�

 

(S-50) 

where �(�)  is the weight function, which is commonly chosen as �(�) = 1 �(�)⁄   with �(�) 
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being the Lebesgue measure of the quantile function’s domain of definition denoted as �.  

Generally, the magnitude outliers and shape outliers in the collection of quantile functions 

would stand out as MO-outliers (abnormal in the MO direction) and VO-outliers (abnormal in the 

VO direction), respectively. The MO- and VO-outliers can be efficiently identified by the two- and 

one-sided boxplot-based detectors given in Eqs. (S-14) and (S-15), respectively. 

A small simulation study 

We conduct a simulation study to examine the detection performance of the FDO-based method. 

To begin with, we generate a PDF-valued dataset composed of 100 functions by using Algorithm 

S.10 with the input arguments setting to � = 100, �� = 36 and �� = 63. Then, we use Algorithm 

S.7 to generate and insert 5 outlying PDFs into the simulated functional dataset by setting �� = 5, 

��� = 0, and � = 0.2. Let �contam = {��}���
�  denote the contaminated PDF dataset, then we use it 

to produce the following four different PDF datasets: 

Model I: Scontam
� = ���

��
���

�
with ��

� = ��, �� ∈ �contam 

Model II: Scontam
�� = ���

���
���

�
with ��

�� = 0.9 ∗ �� + 0.1,   �� ∈ �contam 

Model III: Scontam
��� = ���

����
���

�
with ��

��� = 0.7 ∗ �� + 0.3,   �� ∈ �contam 

Model IV: Scontam
�� = ���

���
���

�
with ��

�� = 0.5 ∗ �� + 0.5,   �� ∈ �contam 

Figure S-40 displays the four simulated datasets.  

 

 
Figure S-40. Simulated PDF-valued datasets, each dataset consists of 100 curves with bold red curves 
standing for synthetic outlying PDFs. 

 
Algorithm S.10: PDF generation procedure 

Input: Number of PDFs �, parameters �� and �� 

Output: PDF-valued dataset {��}���
�  

1: Independently generate ��~U(��, ��),  � = 1,2, ⋯ , � 

2: Sort {��, ��, ⋯ , ��} in ascending order and denote the resulting series as {��, ��, ⋯ , ��} 

3: Generate PDF ��(�) = BetaPdf(�; ��, ��), � = 1,2, ⋯ , �, where BetaPdf stands for the PDF of the 

beta distribution with parameters �� and ��. 

4: Output {��}���
�  

 
The whisker parameters of the boxplot-based detectors for the MO- and VO-outliers are set to 

�� = 1.5 and �� = 2.5, respectively. We first directly apply the FDO-based method to the PDFs 

(just replace the quantile function ��(�)  in Eqs. (S-49) and (S-50) by the corresponding PDF 
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��(�)), the detection results are shown in Figure S-41. Then, we perform the FDO-based outlier 

detection in the QF-space with the same parameter settings, the detection results are shown in Figure 

S-42. Unfortunately, excepting the QF-space detection for Model I exhibits a satisfactory detection 

result, grossly high false detection phenomena occur to the remaining scenarios. Comparing the 

MS-plots (the scatter plot of VO versus MO) as shown in the second row of Figure S-41 and Figure 

S-42 for the eight cases, it is evident that only the QF-space detection for Model I exhibits normal 

pattern. Further investigation found that such a poor performance is mainly attributed to the curve 

overlapping occurred at the lower and upper tails of the collection of the functions (PDFs or QFs).  

 

 
Figure S-41. Outlier detection results for the four datasets presented in Figure S-40 by directly applying 
the FDO-based method to PDFs. First row corresponds to the PDFs with the detected outliers represented 
by red curves, second row corresponds to the associated MS-plots (scatter plots of the MO- and VO-
values). 
 

 
Figure S-42. Same as Figure S-41 except that the outliers are detected by performing the FDO-based 
method in the QF-space.  

 
Fortunately, the curves of quantile functions have been naturally aligned according to their 

quantiles, facilitating us to choose a unified detection interval by truncating the lower and upper 

parts of � (i.e., the domain of definition of the quantile function). Denote the selected detection 

interval as � = [�, 1 − �]; the curves outside this interval are truncated as illustrated in the left 

panel of Figure S-43, which is equivalent to cut off the lower and upper tails of the PDFs as shown 
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in the right panel of Figure S-43. To apply the FDO-based approach to the resulted quantile functions, 

we only need to replace the ��(�) and �(�) in Eq. (S-50) by ��(�)��(�) and �(�) = 1 �(�)⁄ , 

respectively.  

 

(a) （b） 
Figure S-43. Illustration of curve truncation using the selected detection region. (a) in quantile function 
space and (b) in PDF space. 

 

(2) Competing method II: the warping function-based method 

The warping function-based detection strategy considered in this study essentially belongs to 

the elastic depth-based approach proposed by Harris et al. (2021) for ordinary functional data. 

Analogous to the ordinary functional data setting, the distributional outliers can also be detected 

based on the phase information of the CDFs captured by the warping functions. In the following, 

we first present the computational details for the warping functions, followed by the outlier detection 

method. 

Computational details for warping functions 

This subsection provides computational details for the warping functions (used in pairwise 

alignment of cumulative distribution functions (CDFs)) as well as a strategy for dealing with the 

related numerical issue. 

Given two PDFs ��(�)  and ��(�)  defined on the compact interval [0,1] , denote their 

corresponding CDFs as ��(�) and ��(�) (i.e., ��(�) = ∫ ��(�)��
�

��
, � = 1,2 ). The problem of 

interest in this subsection is determining the warping functions, denoted as ���(�) and ���(�), 

subject to 

(�� ∘ ���)(�) = ��(�),  � ∈ [0,1] 

(�� ∘ ���)(�) = ��(�),  � ∈ [0,1] 

(S-51) 

respectively. Theoretically, ���(�) is the inverse element w.r.t. ���(�) and vice versa, thus ��� ∘

��� = ���  with ���  being the identity warping function defined as ���(�) = �, � ∈ [0,1] . The 

warping function ��� represents the phase information of ��(�) w.r.t. ��(�). From the angle of 

curve alignment (also termed curve registration), ���  plays the role of deforming the shape of 
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��(�) to reach the shape of ��(�). In the community of functional data analysis, similar curve 

alignment is widely used in phase-amplitude separation (Srivastava et al. 2011; Srivastava and 

Klassen 2016), and the extracted phase information captured by warping functions can provide a 

useful feature in shape outlier detection (Harris et al. 2021).  

It is worth noting that ordinary functional data have both amplitude and phase variabilities 

(Srivastava and Klassen, 2016), the warping functions used in pairwise alignments usually have to 

be solved by the dynamic programming (DP) algorithm in the square root slope velocity function 

(SRVF) framework described in Srivastava et al. (2011). In contrast, the CDFs only have phase 

variability, the warping functions can also be directly computed as: 

���(�) = (��
�� ∘ ��)(�),  � ∈ [0,1] 

���(�) = (��
�� ∘ ��)(�),  � ∈ [0,1] 

(S-52) 

Compared to the time-consuming DP algorithm, this direct computation approach is much more 

efficient. Denote the computed result of the warping function ��� (or ���) as ���� (or ����). If the 

PDFs take values near zero, ���� and ���� obtained by direct computation may be problematic, that 

is, they may fail to satisfy ���� ∘ ���� = ��� as illustrated in Figure S-44(e).  

 

 
(a) 

 
(b) 

 
(c) 

 

(d) (e) 

 

Figure S-44. CDF alignment of the simulated raw distributional data by using direct computed warping 
function. (a) Original PDFs �� and ��, (b) corresponding CDFs �� and ��, (c) comparison of �� ∘ ���� 
and ��, (d) calculated warping functions, and (e) comparison of ���� ∘ ���� and ���. 
 

According to our experience, such a defect can be remedied by adding a small proportion of 

uniform distribution to the original distributions, that is, the PDFs are recommended to be 

preprocessed as follows: 

��(�) = (1 − �)��(�) + �,  � ∈ [0,1], � = 1,2 (S-53) 

where � is a positive constant (termed PDF preprocessing parameter). By setting � = 0.1, the re-

calculated warping functions by direct computation are shown in Figure S-45 (d). Clearly, the line 

of ���� ∘ ���� agrees well with the line of ��� (see Figure S-45 (e)), indicating the numerical issue 
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has been effectively overcome.  

 

(a) 
 

(b) 
 

(c) 
 

(d) (e) 

 

Figure S-45. CDF alignment of the processed distributional data by using direct computed warping 
function. (a) Processed PDFs ��  and ��  (obtained by using Eq. (S-53) with  � = 0.1  ), (b) 
corresponding CDFs �� and ��, (c) comparison of �� ∘ ���� and ��, (d) calculated warping functions, 
and (e) comparison of ���� ∘ ���� and ���. 

 

Outlier detection method 

As aforementioned, the distributional outliers can be detected based on the phase information 

of the CDFs captured by the warping functions. Given two CDFs ��(�) and ��(�), the warping 

function for extracting the phase difference of ��(�) with respect to ��(�) is calculated using the 

aforementioned direct computation method. Next, the phase distance (defined by Harris et al. (2021)) 

for the two CDFs can be calculated as �����, ��� = arccos〈��, ���〉 with ��(�) = 1 and ���(�) =

�����(�) ��⁄  being the square-root slope functions (SRSFs) of the warping functions ��(�) = � 

(identity warping function) and ���(�) , respectively. With such phase distance at hand, we can 

calculate the phase depth defined by Harris et al. (2021). Then, the shape outliers hidden in the 

CDFs can be identified as phase anomalies by using Algorithm 1 described by Harris et al. (2021), 

only replacing the amplitude depth by the phase depth. The parameter � (in Algorithm 1 of Harris 

et al. (2021)) for controlling the whisker is set to 2.0. As pointed out in the previous, if the PDFs 

take near-zero values, the corresponding warping functions obtained using the direct computation 

method may be problematic. According to our experience, choosing the PDF preprocessing 

parameter � = 0.1 can effectively alleviate the numerical issue; therefore, if the minimum value 

of the PDFs in a dataset is less than 0.1, all the PDFs in the same dataset will be processed using Eq. 

(S-53) with �� = 0.1. 
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Appendix 5: Demonstration of nonparametric regression-based 

dependence quantification 

In Subsection S.7.6 of this document, we employ the nonparametric regression-based 

dependence quantification method described in Chen et al. (2020) to quantify the dependence of the 

FPC scores of the functional data from one sensor to the functional data from the other sensor, which 

is a scalar-on-function dependence quantification problem. In order to help the readers better 

understand the mechanism of such an approach in scalar-on-function dependence quantification, 

this appendix provides a simple example using only scalar data to illustrate how the method work 

(the case of scalar-on-function dependence is analogous). 

We used the following nonlinear model to generate the data: 

� = 3 sin(7��) + 2�� + �,    

where   �~U(0,1), �~�(0, 2.65�) 

Let � = 3 sin(7��) + 2��  represent the noiseless data. We generate 200 samples for 

investigation, and the resulting real-valued datasets are denoted as {��}���
���, {��}���

��� and {��}���
���. 

The data sequences of {��}���
���  and {�}���

���  are visualized in Figure S-46 and Figure S-47, 

respectively. Figure S-48 visualizes the scatter plot of {��, ��}���
���. The main task of this case study 

is to quantify the strength of dependence between �  and � . Using the generated samples 

{��, ��}���
��� , the estimated linear correlation coefficient between �  and �  is ��� = 0.1578, 

obviously the dependence has been underestimated by this dependence measure.  

 

 
Figure S-46. Visualization of the generated data sequence {��}���

��� 
 

 
Figure S-47. Visualization of the generated data sequence {��}���

��� 
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Figure S-48. The scatter plot of {��, ��}���

���. 
 

 
Figure S-49. Visualization of the calculated GCV statistic �(�) on different values of �. 

 

Then, we will re-quantify the dependence between �  and �  using the nonparametric 

regression-based strategy described in Chen et al. (2020). We first use the scalar version of the 

RKHS-based nonparametric regression model (which is similar to the version of function-to-real 

regression presented in Appendix 3 of Chen et al. (2020), the main different is using the scale 

reproducing kernel �(��, ��) = exp �−
�

���
|��(�) − ��(�)|��  instead of the functional 

reproducing kernel �(�, �) = exp �−
�

��� ∫ |�(�) − �(�)|����) to fit the underlying relationship 

between � and �. The regularization parameter � was determined by a similar generalized cross-

validation (GCV) method described in Appendix 3 of Chen et al. (2020), which is selected as 

����� = argmin 
���

�(�) (the calculated function of GCV statistic �(�) is shown in Figure S-49). The 

fitting result under the optimal regularization parameter is shown in Figure S-50, the fitted values 

agree well with the true values (i.e., � = 3 sin(7��) + 2�� ), indicating that the RKHS-based 

nonparametric regression model can well capture the underlying nonlinear relationship between � 

and �. The fitting result can also be visualized in the form of data sequence as shown in Figure S-

51. The sample standard deviations of the observations {��}���
��� and the fitted values {���}���

��� are 

�� = 3.4843  and ��� = 2.1554 , respectively. Finally, the dependence between  �  and �  is 

quantified by the ratio of the sample standard deviations as follows: 

� =
���

 ��
=

2.1554

 3.4843
= 0.6186 
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Compared to the linear correlation coefficient ��� =0.1578, the degree of dependence calculated 

using nonparametric regression-based strategy is much more reasonable in this nonlinear 

dependence case. 

 

 
Figure S-50. Visualization of the fitting result in the form of scatter plot (with respect to x). 

 

 
Figure S-51. Visualization of the fitting result in the form of data sequence. 
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