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Abstract

This document consists of three parts. Section [A] presents a Monte Carlo study.
Section [B| contains additional theoretical results that compliment and extend the
ones in the main text. Proofs of the theorems and corollaries in the main article as
well as those in Section [B] of this Appendix are provided in Section [C|
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Appendix A Monte Carlo Simulations

This section explores the performance of the general calendar-effect estimator through

simulation experiments. The simulation setting is described in Section while Sections

|A.2] |A.3| and [A.4] are devoted to finite-sample analysis of the functional theory in Theorem

[0, the test for nonstationarity in the intraday volatility curve over time, and the pointwise

theory in Corollary [7] respectively.

A.1 The Simulation Setting
The log-price process X, the volatility process o2, the calendar effect f, and the stationary
component &2 of the volatility process o2 are given, respectively, by,

;

X(1) = X(0) + [y )+ SN0z, o) = (- [t)F),
ft) = S(t— 1?4 %, tel0,1], &%(t) = d3(t) + d3(t),

F2(t) = )+ TN —52(s))ds + [ €5 (s)dWV(s),

33(t) = exp(=At)53(0) + [y exp{=A(t — s)} dz(\s),

where N(t) is a homogeneous Poisson process with constant intensity A, {Z; }j>p is an iid
sequence of N(0,0%) distributed random variables, the quadratic covariation is given by
W, W] (t) = pt, and z is a nonnegative increasing Lévy process such that the (stationary)
marginal distribution of &3 is I'(vou, 1/aou). In the simulation, we exploit the specification

provided by [I], fixing the model parameters as follows,

(X(0), \, 71, &, Ay, 07, pu N, vous aou) = (1,4, 0.4068, 1.8,0.19, 0.9654, —0.5, 0.6930, 1, 0.1).



Throughout, we set n = 2,730, corresponding to a sampling frequency of 30 seconds across
22.75 hours, mimicking the trading day for the e-mini S&P 500 futures in our empirical
analysis. For each simulation trial, we generate a series of 1,500-day thirty-second prices.
The following results are based on 1,000 trajectories with 7" < 1,500. In truncating the
price jumps, we employ the time-varying threshold w, = 3/BV, A RV; A3/3 with,

T n n n
BV = 5 Y |an X|[anX] and RV = Y (A5X)°

j=2 Jj=1
A.2 Finite-Sample Evidence for Functional Inference

This section provides a simulation experiment to explore the workings of the feasible (func-
tional) central limit theorem in the L? metric, i.e., Corollary [3| and Theorem @ Figure
depicts the empirical distribution of T' || f(x) — f() ||? for £ =10 and T =1,500 based on
1,000 trials. Because one can not explicitly evaluate the integral 7' || f(l-{) — f(K) ||?, we
approximate the integral using a Riemann sum with the interval [0, 1] partitioned into 100
equidistant subintervals.

We compare the empirical distribution, obtained as indicated above, with the limiting
distribution of T || f(/ﬁ) — f(x) ||* (and Z in Corollary . As discussed in Section ,
the distribution of Z may be approximated by that of Z in equation , with the latter
obtained through Monte Carlo simulation. This involves computing eigenvalues of the
limiting covariance matrix estimator (6 (Ki, Kj))1<ij<100 With the entries defined in equation
(18). In this study, we use the average limiting covariance matrix estimates over 1,000
trajectories rather than relying on a single trajectory to compute the eigenvalues associated
with equation and, consistent with the properties of the limiting variable, we retain
only the terms featuring positive eigenvalues. Figure[I|also displays the limiting distribution

~

of T || f(k) — f(k) ||* obtained in this manner for L, = 7 (recall, L, is defined below



equation ([18))). Note that, in Theorem |§|, we require L, =< n? for a strictly positive o
satisfying equation (20). In our simulations, @w = 3/8. If one takes b &~ 9/10 and ¢ ~ 1/2
for T'= 1,500, ¢ = 10, and n = 2,730, then condition (20 reduces to ¢ < 1/4. For simplicity,
we implement L, = [min{T"/2? n'/*}] in all our numerical illustrations, implying L,, = 7
for T'=1,500 and n = 2,730. Figure [l| demonstrates that the limiting distribution (red

~

curve) approximates the empirical distribution (histogram) of T || f(k) — f(x) ||?

quite
well, corroborating the theory developed in Corollary [3] and Theorem [0}
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Figure 1. Approximating the distribution of the limiting variable Z. The his-

~

togram represents the empirical distribution of T || f(k) — f(x) ||* with £ = 10 based on

~

1,000 simulation trials. The red curve indicates the density of Z in equation obtained
through Monte Carlo, as described in the main text.



A.3 Finite-Sample Test Performance

In this section, we seek to investigate the performance of our test for a shift in the
functional characterizing the average intraday volatility pattern for two non-overlapping
periods P and P’. To ensure we capture the test performance within an empirically relevant
setting, we calibrate the calendar effect to volatility curves obtained for two subsamples in
our empirical study of the e-mini S&P 500 futures contract in Section[6] Specifically, we rely
on the estimated volatility curves for periods covering 2005-2010 and 2015-2020, with the
number of trading days equaling T' = 991 and 7" = 1248, respectively. We generate 1,000
simulated samples from model , but with the intraday volatility pattern modified to
equal one of those estimated for the above subsamples. The shape of the curves is provided
by the far left and right displays in the bottom panel of Figure [1] in Section [6.2

The formal setup under the null hypothesis is Hy : fp = fpr = fo5-10, and it takes
the form Hy : fp = fos_10 and fpr = fi5_90 under the alternative, where fy;_10 and
fis—20 denote the estimated calendar effect functions for the e-mini futures over 2005-
2010 and 2015-2020. That is, under the null hypothesis, we generate samples P and
P’ that all incorporate the volatility curve for 2005-2010. We then compute the test
statistic, T || fp(k) — fpr(k) ||?, using a Riemann sum over the same grid employed for
generating the volatility curve (with ¢ = 10), i.e., the interval [0, 1] is partitioned into
100 equal subintervals. We perform feasible inference following the procedure outlined in
Section [l Here again we use the average limiting covariance matrix estimates over 1,000
trajectories rather than relying on a single trajectory to compute the eigenvalues associated
with equation and, consistent with the properties of the limiting variable, we retain
only the terms featuring positive eigenvalues.

Table [I] reports empirical rejection rates for the test under the null hypothesis at signif-
icance levels 1%, 5% and 10%. The top row of the table shows that the test is well sized.



Under the alternative hypothesis, the data are generated with different underlying volatil-
ity curves. Hence, the universal rejections reported in the second row of Table [1] reflect
high power of the test in detecting the discrepancy between the two functions governing

the respective intraday volatility patterns.

Table 1. Test size and power. The null hypothesis is Hy : fp = fpr = fo5-10, and the
alternative is Hy : fp = fos_10 and fpr = fi5_20. The test statistic is T || fe(k) — fpr (k) ||%
whose realization is computed using a Riemann sum over the same grid points employed
in generating the calendar effects (¢ = 10). The limiting distribution of the test statistic
under the null is approximated as described in Section[dl The table reports rejection rates
for the test at significance levels 1%, 5% and 10% using 1000 trials.

Significance level 1% 5% 10%

Size under Hy  0.009 0.059 0.116
Power under H4 1.000 1.000 1.000

A.4 Finite-Sample Evidence for Pointwise Inference

Figure [2] illustrates the pointwise feasible central limit theorem of Corollary [7] where we
depict the empirical distribution of the standardized ]/t\(/i) and associated Normal Q-Q plot
for different values of x for ¢ = 10, n =2,730, and T" = 1,500. The data are generated from
model . Note that f(/{) is standardized according to Corollary |7| with L, = 7. It is

apparent that the limiting distribution approximates the empirical distribution well.

We next explore how different values for £ and T" affect the performance of the calendar-
effect estimator in finite samples. Without loss of generality, we fix £ = 0.2. Table[2reports

the finite-sample bias, standard deviation (StDev), and root mean squared error (RMSE)
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Figure 2. Empirical distribution of the standardized calendar-effect estimator.

~

The empirical distribution of the standardized calendar-effect estimator f(x) and associated
Normal Q-Q plots for different values of x and ¢ = 10 with data generated from model
(A.1]) by 1,000 simulation trials. f(k) is standardized according to Corollary@with L,=T1.

~

of the estimator f(k) across different combinations of ¢ and T" based on 1,000 replications.
Two main conclusions emerge. First, when ¢ is fixed, larger T leads to a smaller standard
deviation and root mean squared error. Note that the convergence rate of the calendar-
effect estimator is v/T'. Second, for fixed T', the rows with ¢ ranging from 5 to 30 show that
a large value of ¢ leads to a larger bias and smaller standard deviation. This finite-sample
bias-variance tradeoff is also evident from the associated RMSE values. This is in line with

our theoretical analysis in Section [5]



Table 2. Finite-sample performance of the calendar-effect estimator. Finite-
sample statistics for the f(k) estimator with x = 0.2. The data are generated from model
(A.1) with n = 2730 over 1,000 trials. “Bias”, “StDev” and “RMSE” refer to the bias,

standard deviation and root mean squared error. The true value of f(0.2) is 1.02.

T = 500 T = 1000 T = 1500
Bias StDev RMSE Bias StDev RMSE Bias StDev RMSE

1 -0.0036 0.0873 0.0873 -0.0034 0.0630 0.0631 -0.0006 0.0497 0.0497
5 0.0022 0.0461 0.0461 0.0010 0.0325 0.0325 0.0016 0.0270 0.0270
10 0.0042 0.0368 0.0370 0.0023 0.0268 0.0268 0.0025 0.0222 0.0223
15 0.0047 0.0338 0.0341 0.0038 0.0247 0.0250 0.0042 0.0204 0.0208
20 0.0070 0.0316 0.0324 0.0060 0.0229 0.0236 0.0061 0.0189 0.0199
25 0.0084 0.0304 0.0315 0.0076 0.0221 0.0233 0.0078 0.0182 0.0198
30 0.0100 0.0300 0.0316 0.0093 0.0217 0.0236 0.0094 0.0179 0.0202

Appendix B Additional Theoretical Results

B.1 Accommodating rough volatility and infinite jump activity

~

This section provides an extension to our functional CLT for f(k) accommodating more
general volatility and price jump settings. For the price process, we retain the setup of the

main text, except that we replace the finite activity jump condition F(R) < oo with,

/R(]a:\’" V|z|)F(dx) < oo, for some r € [0, 1]. (B.1)



We then define the jump component of the price process as follows,

XI() = X(t) - X(t) = /0 /R ww(ds, dz), (B.2)

where X¢ is the continuous part of the latent price process X, given by,

Xe(t) = X(O)+/Otu(s)ds+/0ta(s)dW(s).

Condition ([B.1]) allows for X7 (¢) to be of infinite activity, with the parameter r controlling
the concentration of small jumps.

Turning to the latent volatility process, we impose the following generic assumption,
Blo*(t) — o*(s)]? < Ot — s, (B.3)

for any s,t > 0, some 0 < H < 1, and a generic constant C. If o2(t) is an [t6 semi-
martingale, as stipulated in the main text, the above condition applies with H = 1/2.
The assumption also allows for general volatility jump processes of infinite activity. When
holds with H < 1/2, our setup accommodates the so-called rough volatility models
in which volatility is driven by fractional Brownian motion, see e.g., [4] and [12].

The next theorem presents the CLT for the calendar effect estimator under the above
extended setup. It demonstrates explicitly how the jump activity index r and the volatility

roughness index H affect the rate at which 7', and hence ¢, diverges.

Theorem 8. Assume the same setup and assumptions as in Theorem[3, except for F being
subject to condition (B.1]) and o*(t) being a rough process satisfying condition (B.3)). Let

T = n’ and ¢ < n° for some nonnegative exponents b and c subject to the conditions,



0<b<min{2—-2w,1+(1—-—7)w,(4—-2r)w} and 1—w(d—-r)<c<1l-b/(2H),
(B.4)
where 0 < w < 1/2. Then, as n — oo,

VT (J#) = f(8) % G in £

where G is an L?-valued zero-mean Gaussian process with covariance operator K defined

through the kernel C(k, k') in equation (8)) as follows,

Ky(s') = /[ ]C(K,, k) y(k) dr, Yy € £2.
0,1

We close this section by investigating how the price jump activity index r and volatility
roughness index H affect the bias-variance tradeoff for £. The difference between Theorems
and [§| is that the feasible regions of b and ¢ given by condition @D is replaced with that
given by condition . The f(-related terms II and III in Section |5 now have orders,

1 1
term II = OP (W) and term III = OP (WT)H) .

We now provide the optimal choice of ¢, copt, for each configuration of w, r, H and b, which
minimizes the order of the sum of terms II and III. It is readily established that, for each

configuration of w, r and H, the feasible values of b are given by the interval (0, by), where,
by :=min{2 — 2w, 1+ (1 — r)w, (4 — 2r)w,2H };

and the feasible values of ¢ consist of the interval (cr, cy), where.

b
cp :=max{l —w(4—r),0} and c¢y:=1-— SH

10



By similar arguments to those in Section [C.8] we obtain the following exhaustive list of

distinct cases with corresponding optimal ¢ values,

;

s — sy for b e (0,by) when ¢ =0,
212{111 — FbH? for b € (0, by) when ¢y, € (0, 2H+1) and by < 2H — (2H + 1)cy,

212{111 — ﬁ, for b € (0,2H — (2H + 1)c] when ¢, € (0, 212{111)

and by > 2H — (2H + 1)cy,

cp+, forbe (2H — (2H + 1)cg, by) when ¢ € (0, 577)

and 2H — (2H + 1)cp, < by < 2H —2Hcy,

e+, forbe (2H — (2H + 1)c,,2H — 2Hey] when ¢f, € (0, 5555)
and by > 2H — 2Hcy,
cp+, forbe (0,2H —2Heg] when ¢f, > 2H+1 and by > 2H — 2Hcy,

cp+, forbe (0,by) when ¢, > 55— and by < 2H — 2Hecy,

L 2H+1

where ¢+ indicates a value of ¢ as close to ¢;, as possible from above.

We note that both » and H affect the feasible choices for b and the optimal value of
c. In particular, higher jump activity restricts the range of b. We note, however, that if r
is close to 1 and the threshold parameter w is taken very close to 1/2, then a value of b
slightly below 1 is feasible. Similarly, lower levels of H < 1/2, which correspond to rougher
volatility paths, restrict the maximum possible value of b. This is intuitive as, for rougher
volatility paths, the approximation error due to the discretization of the volatility path is

higher.

11



B.2 Uniform confidence regions

This section provides a joint confidence region and band for the calendar effect function
f(r). Confidence regions and bands for functional parameters are less studied than other
core concepts and tools in the functional data analysis literature, because they, in general,
are nontrivial to construct and visualize due to the infinite dimensional nature of the
parameter. Nonetheless, under specific conditions on the covariance kernel of the limiting
distribution, [2] develop and visualize confidence regions with the desired confidence level.
We adapt their approach to our setting here.

Recall that (m;);>1 are the eigenvalues (in descending order) of the covariance operator
K with kernel C(k, £') in Theorem[2]and (§)). Let (¢;);>1 be the corresponding orthonormal

eigenfunctions. We then have the following confidence region of hyper-ellipsoid form,

b {hw S ARk <U}7

f 2 =
C
Jj=1 J

where (¢;);>1 are predefined weights depending on (7;);>; and v is a generic number. If
one takes v to be the 1 — o quantile of a weighted sum of chi-squared random variables
(X7)iz1, 1., D002 m X7/, it then follows immediately from Theorem [2| that

P(fEEf)—>1—Oé.

That is, the confidence region E; has the desired asymptotic confidence level 1 — a.. To

visualize the region E, we propose the following symmetric confidence band due to 2,

B; = {h e L2 |h(k) — f(r)| < r(k), for k € [0,1] almost everywhere} : (B.5)

12



where,

r(k):=

Nl <

Z (k2. (B.6)

The following proposition is a direct consequence of our Theorem [2/ and Theorem 1 of [2].

Proposition 9. Suppose all assumptions and conditions of Theorem hold. If Z;; c? <

00 and Y 77, 7rjcj_2 < oo, thenr(k) € L? and E; C Bj. Therefore, P(f € Bj) > 1—a+o(1).

This proposition shows that the simultaneous confidence band Bj has the desired level
of coverage. However, these bands are infeasible, as (7;);>1 and (1););>1 are unknown.
We estimate them by the eigenvalues (7;);>1 and orthonormal eigenfunctions (Jj)jzl of

the integral operator K with kernel C (k, k') defined in and , respectively. Define
L2 = span{(@zj)lgg 7} C L% where J < T. A feasible confidence region is then given by,

S~ T Do) }

Ef = {héﬁ%:
&

j=1
where one may take v to be the 1 — a quantile of a weighted sum of chi-squared ran-
dom variables with weights (7;c;?)1<j<s. As argued by [2], because f lies outside the
span{&l, e ,@Z s} almost surely, Ef has zero-coverage. However, we shall show below that
E  converges to E P> which has the desired asymptotic level of confidence, at a rate faster
than 1/v/T in Hausdroff distance. Note that the infeasible region £ 7 shrinks to a point at
the rate 1/ VT, suggesting that Ef is a feasible proxy for Ej.

We denote the confidence band associated with £ 7 as B 7> which is defined analogously

13



to (B.5) and (B.6)), i.e.,
Ef = {h e L2 |h(k) — f(r)| < rs(k), for k € [0,1] almost everywhere} : (B.7)

where

ry(k) =

Nl <

J
Z c?zzj(/@)z. (B.8)

We next present the convergence results about E j- To this end, we need some additional
notation and an assumption. We denote the Hausdroff distance dg(S1,52) between two

subsets S; and S5 of £? as
dy(S1, S2) == max{¥ (S}, S2), U(S2,S1)}, where ¥(Sy,S;) = sup inf ||z —y | .

TEST yeS?

Moreover, define
2
q:= (min{c/Z, (1—0¢)/4,20 —3(1 —¢)/4,0/2,2c0 —T7/8+T7(b+¢)/8} — Q) A (90°).
Under condition of Theorem @ it follows directly from Lemma [17/in Section that,
| K =K |lis= Op(n™), (B.9)

where ¢ > 0. The following explicit assumption (cf. Assumption 3 of [2]) on the eigenvalues

7; and weights ¢ is needed.

14



Assumption UB. There exist constants € > 1 and v > 0 such that,

- o~ 2 -
X —, T 7TJ+1’\je+1’ and CJAJ'219’

where 29 < e — 1.

The first condition above controls the rate at which the eigenvalues 7; shrink to zero.
The second one controls the gaps between the eigenvalues, 7; — 7,41, which in turn affect
the accuracy of eigenfunction estimation. The last condition controls the rate at which

2

c? and the compactness of the

. . o0 —
7 shrinks to zero, ensuring the convergence of > 7. m;c;

J
confidence region. Similar assumption is imposed by [10].
We may now provide the convergence results for E - The following proposition is a
straightforward consequence of and Theorem 4 and Corollary 1 of [2]. It shows that
the distance between the feasible region E 7 and the infeasible region E; converges to zero

at a rate faster than 1/v/7 under the conditions of our Theorem @ and Assumption

Proposition 10. Suppose that all the assumptions and conditions of Theorem [ hold. If
Assumption and J < TYCH243) pold, then

~ (o 2e43+20(1—)
dH(Ef,Ef)Z = OP <T (2 Zef3+20 )) .

We implement the feasible simultaneous band B 7 defined in (B.7) and (B.8) with ¢} =
(Zi: i 7x)'/? in our numerical studies. This version of the confidence band is denoted B B,-
It is in accordance with the ideal (infeasible) choice of ¢§ = (3°;2. m)'/?, which ensures
that Z;; 7TjCj_2 < 00. In our implementation, we compute eigenvalues and eigenfunctions
of C (k, k") using the same matrix scheme as that adopted in Section 3.2 of [I].

Using the setup in Section we investigate the empirical coverage rate of the pro-

15



posed uniform confidence band B g, via simulations. The performance of B £, 1s quite robust
for 50 < J < 100, so we provide results for J = 50 only. Based on 1000 trials, the simul-
taneous coverage rate of B g, with 95% nominal level is 100%. By contrast, the confidence
bounds, constructed using the pointwise theory in Corollary [7] with a 95% nominal level,
only have a simultaneous coverage rate of 2%. The left panel of Figure |3| displays pointwise
coverage rates for both the uniform confidence band and the pointwise confidence bounds.
We also provide the calendar effect function estimate along with 95% confidence bounds
for a particular simulation trial in the right panel of Figure[3| It illustrates the moderately

wider width of the uniform confidence band B g, relative to the pointwise bounds.

1.00
|
1.6

1.2 1.4
|

Pointwise Coverage
0.94
1
Calendar Effect Estimates
1.0

0.92
|

0.8
|

A
Bg, (simult.coverage=1.000)

0.6

[} n .

g — Bp (simult.coverage=0.020)
T T T T T T T T T T T T T T T T T T T T
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09

K K

Figure 3. Comparison between Bp and BE based on 1000 simulation trials. The
results rely on data generated from the setup in Section Bp indicates the pointwise
95% confidence intervals constructed using Corollary |7 Wlth L =T. BE refers to the si-
multaneous 95% confidence bands constructed using the theory in Section[B.2] Left panel:
Local empirical coverage rates. As indicated in the legend, the simultaneous coverage rates
for Bp and Bg, are 2% and 100%, respectively. Right panel: Calendar effect estimates
together with 95% confidence bounds for a particular sample path.
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An application of B\EC to the e-mini over the subsamples is presented in Figure .
Not surprisingly, the simultaneous confidence bounds are wider than the pointwise ones.
In practice, EE may occasionally produce negative lower bounds for real data, e.g., the
subsamples covering periods 2005-2010 and 2015-2020, especially the period 2015-2020.
If this is the case, we suggest using a log transformation and functional Delta method to
ensure positiveness. To be precise, under mild conditions, by Theorem [2| and the functional

Delta method, one would obtain
VT (10g (F(x)) ~ 108 (F(5))) % G, in £%,

where Gy, is an L*-valued zero-mean Gaussian process with covariance operator Kig
that has C'(k,x")/(f(r)f(K')) as its kernel function. Therefore, the previous method of
constructing uniform confidence bounds of f(k) applies straightforwardly for constructing
that of log(f(x)). The simultaneous confidence bounds of f(x) then readily follows by
applying the natural exponential function to both the upper and lower confidence bounds
of log(f(x)). Figure {4 also displays simultaneous confidence bounds thus obtained for the

three subsamples.

17
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Figure 4. Intraday volatility curves for the e-mini over subsamples. B p indicates
the pointwise 95% confidence intervals constructed using Corollary |7| with L =T BEc
indicates the simultaneous 95% confidence bands constructed as in Section B g, with
log transformation indicates the simultaneous confidence bands constructed based on log
transformation which ensures positiveness of the lower confidence bounds.

Appendix C Proofs

Throughout this section, without further mention, we shall focus on x € [(A, 1] in the
derivations of upper bounds for moments of various terms involving Eiz’ﬁ. The same results
and proofs as that for k € [(A, 1] obviously apply to the case k € [0, (A).

Recall that X¢ is the continuous part of the latent price process X, defined as,
t t
Xe(t) := X(0) —|—/ ,u(s)ds—i—/ o(s)dW (s).
0 0

In the proofs below, we rely on the calendar-effect estimator ]/”\C(/-i) for X¢ given by,

TZAQC

18



where,

A27C .
K C

n

T
- = S (AKX and i 3D (A’

—]n*‘e‘i“l =1 j=1

Throughout the proofs, C' denotes a generic positive constant and ¢ > 0 is an arbitrarily

small number. Both may change value from line to line.

Furthermore, we will use the following notation throughout the proofs below,

;

Cl(/{) =
Ca(k) =

Co(K) ==

2
t;,
TKA ZZ 1 _JK_E"_]- |: ti,kk 1 /’L(t)dt] 9

TEA Zz 1

ti, t,
Tm Zz 1 —Jﬁ—z+1 { [ ti,:,l o(t)dW (t) ] — J;fi,:,l gQ(t)dt} ,

TKA Zz 1

yul 41 ftt: t)dt ft W o(t)dW (1),

(C.1)
_JK—Z—H j;fl b1 02@ -1+ KJ)] dta

%Zi:l o?(i—1+kK)— ng) ST z’i—1 o?(t)dt, and

F) |5

z‘T:1 1'2;1 Uz(t)dt - ﬁc] )

where « € [0,1] and note that, by the definition of 57, for s € [0, /A), the inner summation

variable k of the first four terms always takes values from 1 to ¢ when x € [0,¢A) and the

outer summation variable i = 1 (i.e., j, is fixed at ¢ in this case). Recalling the definition
of 4;(x) in equation (7)), one readily sees that (5(k) = ST Ai(R)/T.
The following lemma will be repeatedly used in the proofs of Theorems [I] and [2]

Lemma 11. Suppose that Assumption @(Z’i} holds. Then,

C

EKl(’%)lm < )

nm

C

E|G(r)™ < = Toyr

— nm/2

and FE|G(k)[™

for any m > 2 and any k € [0, 1].
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Proof of Lemmal[11. For term (;(k), we have,

1 T G i 2m
BlGI" < B |z Y ( / Mu(t)dt)

i=1 k=j.—l+1

Am 1 T Jr
nm

i= 1kg4+1 tzkl

where the first two inequalities follow from Jensen’s inequality, and the last inequality is
implied by Assumption [[[ii).
For the term (3(k), by Cauchy-Schwarz inequality, Jensen’s inequality, Itd isometry and

Assumption [[{ii), we obtain,

Blem)" < Tmmz Z

1=1 k=j,—0(+1

2m 1/2

ti K m
/ u(t)dt / o()dW (1)
tik—1 tik—1
tik 2m ti k
/ p(t)dt / o(t)dW (t)
ti k—1 tik—1

E
1/2 o

/ E |u(t) 2mdt/ E(o()™dt| < ——.

tik—1 tik—1 nm

We now deal with term (3(x). We first define the following continuous martingale,

1 T Jr

i=1 k=j.—0+1

Am/Z 1 J'“v

i= lk =j— z+1

My(8) ::ﬁz 3 [ /t a(s)dW(s)] _ /t " o2(s)ds

i=1 k=j,—0+1 Abi k-1 Ati k-1

on the interval [0, 7. One readily sees (3(k) = M;(T). The quadratic variation of M, (t) is
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takes the form,

T

M1, M) 0) = s Z 3 / (a(u) / a(s)dW(s)> du,

=1 k=j.—0+1 " N\ik—1 tik—1

m/2

following the method in Section 2.3.3 on page 136 of [9]. Then we obtain,
E I < C
Gl <08 | sy D

2
t ( / (s)dW(s)> dt
1=1 k=j,—€+1 "7 Vik—1 tik—1

(T0) m/2+1AmZ Z /tk 1 <U(t) /t o(s)dW(s)>2dt

i=1 k=j,—f+1 lik—1

TEA m/2+1 Z Z

=1 k=j,—t+1 "7 tik-1

/ o(s)dW (s)
z k—1
o T G tik r . , m ) 1/2
< W Z Z / E / o (s)ds | E (0 m(t)) dt
i=1 k=j,—0+1 tik—1 | tik—1

o . - - 1 ¢ ) 1/2 C
< - m— m < - -
< (TEA)W/Q-Fl Z Z /t;k 1 A / FE (0' (S)) ds dt >~ (Tg)m/27

i=1 k=jn—t+1 "7 bik=1 | bik—1

m/2

dt

where the second and third inequalities follow from Jensen’s inequality, the fourth inequality
follows from the Cauchy-Schwarz inequality and the Burkholder-Davis-Gundy inequality,

and the last inequality follows from Jensen’s inequality and Assumption (ii). m

In what follows, we use the shorthand notation

t tij
:/ /u(ds,dw) and A}',N ::/ /y(dt,d:v).
0 R ti,j—l R

The following two lemmas are repeatedly used in the proofs of Theorems [I} [2] and [6]
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Lemma 12. Let j be a positive integer. Suppose that i, € {1,2,...,T} and k,, €
{1,2,...,n} form e {1,2,...,7}, and without loss of generality that 0 < t; j, < tiyn, <
- <ty r; <T. Then, under Assumption H(M’), we have that E <1{A?1 k1N>O}> < CA and,

E (1{Al o N>0plar | N0y 1{A;?j,ij>0}> < CN,

for 3 > 2 and arbitrarily small ¢ > 0.

Proof of Lemma[13. First note that N (¢ fo fR v(dt,dz) is a counting process with in-
tensity x(¢)F'(R). Then N(t fo s)dsF(R) is a martingale by Assumption! ii .

When j = 1, the result follows immediately from,

big ky
B (L n00)) < B (A, N) = FR)E / x(s)ds < CA.

Lig k-1

When j = 2, we have that, for any w > 1,

E <1{A?1’k1N>0}1{Af27k2N>0}> =k [1{A?1’k1N>O}Et¢2,k2_1 (1{Af27k2N>0}>]

Lig ko
1{A?1,k-1N>O}Eti2,k2—1 / X(S)ds
t.

i9,kg—1

tig ey
=CE 1{A?1 k1N>0}/ x(s)ds
’ Lig,kog—1

1/w

<CFE

[ tig kg v 1-1/w
<C|E / X(s)ds 2 (Liag, vo0) |
Lig,kog—1
r iy kg 1/w
< C Aw—l/ EX(S)wdS Al—l/w < C«AQ—I/w7
L ti2,k271

where the second inequality follows from Holder’s inequality, the third inequality follows
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from Jensen’s inequality, and the last inequality follows from Assumption (ii). Therefore,
we obtain,
E <1{A?1 1N>0}1{A?2,k21v>0}) < CAT,

k

for arbitrarily small ¢ > 0.

By induction, the lemma holds for any positive integer j > 2. O

Lemma 13. Suppose that Assumption [](ii) holds. Then we have

23 @)

< CA*™ and E|n-17°| < CA™.

Proof of Lemma[13 First, for any w > 2, we rewrite and calculate the stochastic order of

Zz‘T:1 (3‘2 - 31-2 C) /T as follows,

b
1K K

T

S A

=1

1 T Ik
STRY 2 |B|(ALX) L x

i=1 k=j.—0+1

E

>un}
n 2 n (& 2
+E )(Ai,kX) 1{’AZkX|SUn}1{AZkN>O}’ + B ’(Ai,kX ) 1{A;§kN>0}H

1 T Jr b el@ 2/
SrEd X |EAXTY (B[t o)

i=1 k=j.—l+1

1-2/w

FULP (TN > 0) + (BJALXT) (P (A0 > 0)) ]

<C (A(w—2)(1/2—w) v AQw v Al—Q/w) , (CQ)

where the second inequality follows from Hoélder’s inequality and the last inequality follows
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from Markov inequality, Burkholder-Davis-Gundy inequality and Lemma [I2] Note that
Sup;eg, B (e'“(t”) +Supser, F (e“’(t”) < o0 in Assumption (ii) implies boundedness of mo-
ments of all orders for |u(t)| and o(t). This in turn allows one to apply Hélder’s inequality
with arbitrarily large w > 0 in obtaining , where the constant C' arises from the upper
bound of higher order moments of |u(t)| and |o(¢)| and the applications of Burkholder-
Davis-Gundy inequality, the elementary inequality e* > 1+ x + 2%/2 + ... + 2™ /m! for
x > 0 and any integer m > 1, and Lemma [I2] Therefore, one can always choose a large

enough w such that,

< CA*Z,

23 @)

=1

Second, by substituting n for ¢ in the arguments for deriving the result in (C.2)), we
obtain,

E ’ﬁ_ ﬁc‘ S CAQW?

completing the proof. O

C.1 Proof of Theorem [1]
By triangle inequality, we have,

~ ~

I F(R) = F() I FER) = FCR) I+ 1| F ) = Fo(R)

We divide the proof into two steps. We prove || fc(/f) — f(r) Hi> 0 in the first step and
| J?(/i) — fAC(/f) ||i> 0 in the second.

Step 1. By using the notation in (C.1) and triangle inequality, we can rewrite the
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estimation error of J/‘\C(/@), which is built on the continuous part of X, as follows,

| fo(x) — f(x) Z Z I Gir) Il - (C.3)

d)l

We first show that 7° converges in probability to n. The difference between 7° and 7 is

decomposed as follows,

_n—( Y (A7) __z/ ) ( 2/ dt—).(C.4)
=1 j5=1

It follows easily from Ito’s lemma and the integrability assumption for p and o that the
first term on the right hand side of (C.4]) tends to zero in probability as n,T — oo. We
next deal with the second term on the right hand side of (C.4)). Let E; be conditional
expectation with respect to the sigma field %; (see Assumption [lI| for definition). Then for

any w > 2(1 4 ¢)/¢ where ¢ is given in Assumption [II, we have that,

— %Zi: | T lE{(/i_il(ﬂ(t)dt—n) E; <£102(t)dt—n)}+%2ZT:E(/;02(t)dt—n)2

=1 ]:7,+ —

2 T T i w 1/w y w/(w—1)\ 1-1/w c
) 2 — . 2 B c
R 2@':1:3-:%“ (E /¢_1U (t)dt —n ) (E E; (/j_lg (t)dt 77) > ‘e

where the first inequality follows from Assumptions (ii) and [II] with ¢ = 1, Holder’s

inequality and Lemma 3.102 on page 497 of [7]. Hence, we have that the second term on
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the right hand side of (C.4]) goes to zero in probability. Therefore, 7 N 7.

It remains to show that,
6
Z | Gi(x)
i=1

To this end, we treat terms (;(k), i = 1,2,...,6, one by one. For terms ((k), (2(k) and
(3(k), applying Lemma [11{ with m = 2 and Jensen’s inequality, we obtain,

Bl G0 < /[ J}E!Wﬂ?dn)mw( V)

for ¢ = 1,2,3. Thus,

Next, we deal with the term (4(k). By Proposition I1.1.28 and Theorem II1.1.33 on
pages 72-73 of [1], [, |z|>F(dz) < oo and sup,er, £ [X(t )|* < oo in Assumption (ii), we

have that, . .
/ /:cﬂ(ds,dq:) —/ /x;Z(s)dsF(dx)
o Jr o Jr

is a locally square integrable martingale Then, applying Theorem 1.3.17 and Proposi-
tion 11.1.28 on pages 32 and 72 of [7], [, |7|*F(dz) < oo and sup,cg, F[X(t > < oo in

Assumption [[{ii), we obtain,

E (/Ot/Rg;%(ds,dx)) —F (/Ot/Ra;%z(s)dsF(dx)) :
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Using the above results, we can bound the first moment of || (4(x) || as follows,

Bl 1< /[ ) Bl dx) "

1 T tije i—1+k 2 i—14k 2
< C|E / pa(s)ds| +FE / 5(s)dW
/MMZ/M[ (5 5()W (s)
=14k i—1+k i—1+k
+E / &(s)dW (s +E xl/ (ds,dx) / /xx )dsF(dx)
i—1+4+kK
+E xx dsF(dx) dtdk

1 tijw i—1+k i14n
SC/ — / {€+1A/ Eﬂs2ds+/ B (52(s) + 52(5)) ds
( 0.1] TZA; . (E+1)A | |f(s)] t (52(s) + 5%(s))

+E (/j‘“"‘/szX(s)dsF(dx)) L+ 1A /ti_lﬂE()Z(t))zdt} dtd/{)l/Q

where the first inequality follows from Jensen’s inequality, the third inequality follows from

the Burkholder-Davis-Gundy inequality, and the last inequality follows from Assumption

(). Thus,
6 = 0 (\/%) |

Turning next to term (5(k), by , we can rewrite this term as,
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It follows easily from Assumptions (ii), with ¢ = 1 and Corollary 14.3 on page 212 of
[3] that,

2 & COO 1-1/a—1/r ay1l/a r\1/r C
BlGWE < 50 3 el < 20 3 al ™ (BRI (B A (n)][) " < 7

h=—o00 h=—o00

where a,r > 0 and 1/a+ 1/r < /(1 +¢). Then, we immediately obtain,

1/2 C
FE k) |I< / FE K 2d/~£) < —.
66l (Bl v
Therefore,

1
k)|[|=0p | —=].
I G:te) = 0n (7= )
Finally, for the last term (g(r), it follows from boundedness of f(x) as defined in

and exactly the same arguments as in calculating the upper bounds of terms (;(k), (2(k)

and C3(k), that,
H@@H#OPQ%).

6
Zl@

Step 2. We now consider the difference between estimators f(/ﬁl) and f°(k) which are

To sum up, we have,

built based on X and X°¢, respectively. By triangle inequality, we have,

T
-~ . ]. ~92 _ ]_ ~2.c
I 70 = Fo) I =l 5 303 — o 22K

=1
1,1 sl -
<= G2 52 | + —N 5. C.6
1 ONCAL AT = LA BICE
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It then follows easily from (C.4) and Lemma [13| that

-~
n—n° N 0, N and hence !

)| =

dlb—

: C.7
0 (C.7)
Recall that fc(,@) — ZT ~2.c

100/ @°T) and || f¥(r) —

(k) Hi> 0 by Step 1, we have thus
proved that the second term on the right hand side of (C.6) goes to zero in probability.

It remains to calculate the stochastic order of || # >

I (@2, - 5.<) ||l On the one
hand, define,
S :={(i,i', k,K)|i #1 or k# kK, wherei,/ =1,2,..,T and k, k' = j. — 0+ 1,....js},
we have that, for any w > 4
2
n 2 n c\2
TKA {;k ]Z€+1 [(Ai,kX) 1{\Agkxygun} - (Ai,kX ) ] 1{M N:O}}
1 < )
< ATXE) T (AT X)) LTrian xelon
(TKA)2 (”/kz];)es ( .k ) ( K ) {lA Xe|> n} {’A,k, ‘>un}
B | (A" g x|
i=1 k=j,—l+1
1
<

(TUA)?

Z (2 |Apxe[]" B [|a7 0 X°]"]

w2/w
(i,i' kK ES

1-4/w)/2 (1-4/0)/2
s )
Tm Z Z [E|A7X7| Tw[ (1{!m Xcm}ﬂu/w

Az X

i=1 k=j,—Ll+1
< C«A(u.)—4)(1/2—w)7

(C.8)
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where the second and third inequalities follow by applying Hélder’s, Burkholder-Davis-
Gundy and Markov inequalities. On the other hand, we have that, for any w > 4,

{Z Z [ sz 1{|A"X|<u} (szC)z} 1{A;§kN>o}}

i=1 k=j,.—0(+1

1
= (TUA)? Z b {u 1{An N>0} {ap ,N>0} +up (A e X ) 1{A” N>0} {an >0}
(3,7 ,k,k")eS

+u? (AZkXC)Q 1{A N>o} {A N>0} + (AZkXc)Q (A;{k/XC)z 1{A N>0} {A y k,N>O}}

/kl

¢\ 2 2
E’ AjX) 1{|A" X|<u} — (A0X°) ) Liar nso
i=1 k=j.,—0+1 '

1 n clwy2/w
S@mf S [0t (tagonplpag ) ) + 02 (B 182X
(4,4 k,k")ES

/kl

N>o})] o

0 sy )] IR [0 g

» o 1—4/w
+ [E|AZkXC|w} / [E‘A?,k/XC| } / (E(l{A WN>0} {A,k,N>0})> ]

Y BN+ (BlALXT) (B (anm) ]

i=1 k=j.—0+1

(TUA)?

(C.9)

Ad@—1 A1—4/w
< A4w—g vV AQw—4/w+1—§ vV A2—8/w—§ v/ v/
= ( 0 v )

where the second inequality follows from Holder’s inequality and the last inequality follows
from Burkholder-Davis-Gundy inequality and Lemma [12| for arbitrarily small ¢ > 0. Based

on the above results, we have that, for any w > 4 and arbitrarily small ¢ > 0,
L I
~ ~2,c
Ellz) @G =50 |

=1
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1/2

/ (TeA)? {Z Z [(AZkX)21{\AszISun}—(AZkXC)z] 1{A;¢kN:o}} dk

i=1 k=j.—(+1

/[0,1] TA) {Z Z [ ALX) 1{|A" X|<un} (“fXC)Z} 1{AgkN>0}} dt

i=1 k=j,.,—0(+1

1/2

(w—4)(1/2-w) 4 /w1 2 g) Adm—1 Al-4/w /2
< O [ AL=D0/2=2) y Adm=cy AZm—tfwtlocy A2-8/w—c v

- ( T¢ T¢ )

Because sup,cg, £ (e\u(t)l) + sup;er, B (e\a(t)l) < 0o in Assumption (ii) and by the same

arguments as that immediately following (C.2)), one can always choose a large enough w

and a small enough ¢ such that,

T

1 /\2 oy e A4w—1 /
EHfZ(UM—U )ch(A Vv Tg) .

i=1

Therefore, by letting ¢ be sufficiently close to zero, we have that,

I F(k) = F(r) l|= op(1),

under the conditions 0 < @ < 1/2 and b+ ¢ > 1 — 4w in Theorem

Combining Step 1 and Step 2 leads to || f(/ﬁ) — f(K) Hi> 0, completing the proof.

C.2 Proof of Theorem [2

First, we recall the definition of A;(k,,),

A (k) =02 (i = 1+ k) — f(/fm)/ o*(t)dt, fori=1,2,...Tandm=1,2,...,d,
i—1
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where d is a positive integer. We introduce some additional notation that will be used in
the proof. Denote with F;(-) the conditional expectation with respect to the sigma field
9 (see Assumption [[I| for definition). For each k,, and a positive integer [, denote for
1=1,2,...,T,

where m = 1,2, ...,d and d is a positive integer. We will show in the following that under

the conditions of Theorem [2| the limit of fli,l (Km) as | — oo exists a.s. It is denoted by,

Ao (k) == llgg Ay (Fom) - (C.10)

Moreover, for each k,, and a positive integer [, we define the following approximation errors,

Re () = — i (As () = Asg (5)) a0 R (i) = %Z (A () = Aioe ()

i=1 =1

(C.11)

The following lemma is used in the proof of the limit result of Theorem [2|
Lemma 14. Suppose that Assumptions[l(ii) and [[] with ¢ = 3 hold. Then,

T

(%Zm(m,%z i<'€2)""%2‘4i(”d)> 45 N4 (0,A)

=1

as T — oo, where Ny (0,A) denotes the d-dimensional normal distribution with mean
zero and covariance matriz A whose entries are given by Npg = Y 0 G, (R) for

m,q € {1,2,...,d}.
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Proof of Lemma[1j The proof is based on approximating A;(km) by Aico (Km), where
fli,oo (Km) is defined in (C.10]). Hence, the proof consists of two parts. In the first part, we
show that the error due to the approximation of A;(k,,) is asymptotically negligible. In

the second part, we complete the proof by showing that,

(i > Aice 1) LT > Aice ) L > i (ﬁd)> N, (0,A). (C.12)

Part 1. 1t follows from (B.49)-(B.50) in [1] that the average difference Ry, (k.,) between

A;i(Ky,) and fli,l (Km) has the following decomposition,

Ry (km) = % Z Ei (Airi (km)) = 7 ) [Br (Ars () = Eo (Ax (k)] (C.13)

-
Il
=
>~
Il
—

form = 1,2, ...,d. Because of Assumptions (ii) and [[I| with ¢ = 3, and using Lemma 3.102
on page 497 of [7], we have that, for any w > (3+¢)/(2+¢) where ¢ is given in Assumption

[}

E|E; (Airx (k)] < Cay 7 (B |Aser (5) ).

This further implies,

E (zliglo ;0 (|1E; (Airk (Bm))| + | Eic1 (Aigk (“m))’))
-1

l—00 =0
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Therefore,
Aio (i) = Jim Ay (i) = (B [Aisk (k)] — Eict [Assk () (C.14)
k=0

exists almost surely. It follows immediately that,
Ry oo (km) = lim Ry (Km)
l—00

exists almost surely. Using similar arguments to those used above and decomposition

(C.13)), we obtain that,
E (\/T |RT,OO(Km)|) —E (ﬁ ‘llggo Rr, (Hm)))

< \/Tliminf{ ZE |Ei(Aipi(km))| + 7{ Z (E|Er (Arir (k)| + E | Eo (A, (’fmm)}

l—00
k=1
<
VT

To sum up, the error from approximating A;(x,,) by /Lpo (Km) is asymptotically negligible.
We only need to prove the central limit theorem with A;(k,,) being replaced with Ai,oo (Km).

Part 2. By the dominated convergence theorem, we have,

-1
E,_, <Ai,oo(ﬁm)> = <hm ; i(Aipr(Bm)) — Ez'—l(Az'Jrk(ﬁm))])

-1

= zlg?o Ei 1 [Eif(Aisk(bm)) — Eic1 (A (km))] = 0.

Hence, /L-po(/fm) is a martingale difference for fixed k,,, m € {1,2,...,d}.
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We next show that the third moment of A; o (k,,) exists for each fixed i € {1,2,..., T}
and K, m € {1,2,...,d}. To this end, define,

Diy = |Ei (Aipr (km)) — Eic1 (Aigr (Km))] -

By Assumptions[[[ii), [ with ¢ = 3 and applying Lemma 3.102 on page 497 of [7], we have
that, for any w > 3(3 + ¢)/¢ where ¢ is given in Assumption [[I}

-1 -1

llgg Z Z E (D iy Di oy Di ey)

k1=0 ko=k1+1 ks=ko+1

-1 -1 -1
. 1/3 1/3 1/3
- lllglok A Di ) Z Dik,) kz:o [E (Dzks)ﬂ
1= 2=0 3=
-1
. 1/3 1/3
< Clim 3 [(BIE( A (5n)*) " + (BB (Asgs () 2)
k1=0
i 3\1/3 3\ 1/3
< [(BIE A () P) " + (BB (A () )
ko=0
L 3\ 1/3 3\ 1/3
x> (BB A (en)) " + (B | Eia(Assia (i) [*)
k3=0
-1
< Clim > [0l (B A (5n) )7 + a2 7% (B | i (o)) |
Ooklzo
-1
7 [l (B vy (o) )M + @l D (B Apgy () )
ko=0
-1
7 [0 (B vy (o) ) + @l (B Ay () )
k3=0
-1
k1=1
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1
<Z ( (w—3)(3+¢) /3w (/{72 + 1)7(w73)(3+L)/3w) + Cf)
<Z ( —(w=3)( 3+L)/3w (k?g + 1)—(w—3)(3+b)/3w> + 0) < C.

By quite similar arguments, we also have,

-1 -1 —
lim Y E (D)’ < lim ) § D;j)? Dig,) <C and
l—00 =00

k1=0 k1=0 ko=k1+1

-1 -
. 2
lim E E zk1 Zkz) } S C.
l—)oo

=0 ko=k1+1

Therefore, we have,

0 3 -1 -
E (Z D%k) S lllIIl E( lkl —|— hm C Z Z Z ”ﬂ (Di7k2)p2]
P T =0 P14p2=3 k1=0 ko—ky1+1
-1 -1

ligloc Z Z E (D;p,D; o, Dig,) < C < 00,

k1=0 ko=kq1+1 ks=ko+1

where p1,p2 € Ny. Now recalling (C.14), we have,

E’Am Kom ’ <E (ZDM) < . (C.15)

We are now ready to apply the martingale central limit theorem to obtain the limiting

distribution of



The rest of the proof is divided into two steps. In the first step, we calculate the conditional
covariances and find their limits. In the second step, we check the conditional Lyapunov
condition.

Step 1. Conditional covariances. For m,q € {1,2,...,d}, by Assumption [llj with ¢ = 3,

we have,

i [ Kim) Aj oo (/fq)] Ny [Alm (i) A1.oc (,{q)] ,

H |

Next, we derive the explicit formula for the limit E [1211,00 (Km) 1211,00 (/Qq)i|. Because of

EY ", Dl,k|3 < oo as shown above and Assumption [[I| with ¢ = 3, we have,

B | A (1) Ar o ()|
- -1
=k <}g}}o (By (Argk () = Eo (Avs (5m))) D (B1 (A (5g) — Eo (Argp ('fq))))
k=0 p=0
= lliglo £ ; E Ak (ki) (B1 (A14p (Kq)) — Eo (Ar4p (Kq)))]
-1 -1

l l
E [Avg (k) By (Argp (5)] = DD E[Avsk (5m) Er (Argy (’%))])

( - -1
|

EfAvr (k) A1 (Kg)] + Z E[A; () A11p (Kq)]

k=0 p=1

= " E[Aip (k5m) By (Arg (5g)] — i ElAiy (Km) Er (A1 ("%))])

= Z E[A1k (km) A1 (Kg)] + Z E[A; (m) A14p (Kg)]
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where the last equality follows from the Cauchy-Schwarz inequality and Assumption [[I] with
q = 3. Then, by applying definition to terms on the right hand side of the last equality,

we obtain,

E [Ai,oo (Fim) Aj o (Kq)} - f: ron o (h) = Ay

h=—00

Step 2. Conditional Lyapunov condition. In this step, we check the conditional Lya-
- 3
punov condition. By (C.15) that F (AZ-,OO) < 00, we have that for each m € {1,2,...,d},

T
1 - 3 p
32 ZEifl Ai oo (Hm)’ — 0,
i=1

as T'— oo. The conditional Lyapunov condition is satisfied.
Lastly, the martingale central limit theorem (see, e.g., Corollary 3.1 on page 58 of [5]
and Theorem A.1 of [13]) concludes the proof. O

Proof of Theorem [ We divide the proof into two steps. In the first step, we prove that
VT || ]?(/41) — f(k) = Gs(k)/m° || is asymptotically negligible. In the second step, we prove
VTG (k) /7° —% N0, K) in £2.

Step 1. By using the notation in (C.1)) and triangle inequality, we have,

VT | ﬂ@—f(m)—%us@ ST G I+VT | Fio) = Fom) |-

i€{1,2,3,4,6}

Because 1/7° S| /n by the arguments immediately following ((C.4)), it remains to show,

VT Y G VT Fk) = fo(R) l|= op(1).

i€{1,2,3,4,6}
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From Lemma [I1] with m = 2 and Step 2 in Section [C.I], we immediately obtain,

VT (11 G ) I+ 1 ) |+ 1| TGk = F(k) 1) = om (1),

under the condition @

We next determine the stochastic orders of terms 7 || (k) ||, VT || Cu(x) || and
VT || ¢s(k) ||. Because for i = 2, 4,6,

Bl ¢s) ) < ( /[ ; E|<@-<n>|2dm) -

it remains to determine the bounds of E |G (k)|?, E [G(x)|* and E [Cs(x)[>.

Now we treat (»(k). First, note that, for any w > 2,

2

Tmz Z / (tig-1)] dt / " o(t)dW (t)

i=1 k=jn—0+1 Y tik—1 tik—1

w\ 2/w
) p

C T Jr ti & 2/w t e
= Tinz > 2 (Aw_l/ Ep(t) = p(tin-1)]" dt) E (/ OQ(t)dt>
‘ / tik—1

2
2w 1*;

C T Jr w—2

i=1 k=j.—0+1

A ) — b)) dt

L t o () AW (1)

i=1 k=jo—l+1 tik—1

w \ 1-2

tik w=2 “
= T£A2 Z Z (A=) | B ( / 02(t)dt> < oA,
tik—1

i=1 k=j.—0+1

where the first inequality follows from Jensen’s inequality and Holder’s inequality, the

second inequality follows from Jensen’s inequality and Burkholder-Davis-Gundy inequality,

the third inequality follows from E |u(t) — p(t;x—1)|" < C|t —t; 41| which is a consequence
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of Assumption (1) and supeg, Fexp(|u(t)]) < oo in Assumption (ii) (note that w is a
number close to 2 from above), and the last inequality follows from Jensen’s inequality
again. Then, by letting w be arbitrarily close to 2 from above on both sides of the above

inequality, we obtain that,

2

S OA27§

Tmz Z / (tik—1)] dt / - o (t)dW (t)

i=1 k=jo—t+17 k-1 bik-1

for arbitrarily small ¢ > 0. Second, we define for ¢ € [0, T,

tAL; i
Ma(t) o= Z Z /m (s 1)o(s)dV (s),
i=1 k=j,—0+1 t,k—1
which is a continuous martingale on the interval [0,7]. The quadratic variation of My(t)

is given by,

[M27 M2

i: / h [H(ti,k—l)a(s)]2ds.

k=j.—b+1 tAE; k1

T
Then by Burkholder-Davis-Gundy inequality, we have,

E |My(T

| /\

Z Z / H(tinr)o(0)? dt

i=1 k=j.—0+1 " tik—1

Z Z / zk1>)4E<o—(t>>4]”2dt§%,

i=1 k=j,—0+1 7 tik—1

| N

where the last two inequalities follow from the Cauchy-Schwarz inequality and Assumption

40



M(ii). Therefore,

2
+ E |My(T)[*

i [ o - e [ omawo

T
2 Z
TeA =1 k=j.—0+1 " tik—1 tih—1

1 1
< _
=€ (n2—< v nT£>

for arbitrarily small ¢ > 0.

E |G(w)]* <

We next deal with (4(x). The following additional notations are needed,

(

Gua() 1=~z T e S, [ () + faF(dn)x(s) ) s
Cualk) = g Ly X0 e 0 )W () + [ G (s)dWT (s)

I e ( (ds, dz) F(dx)fg(s)ds)]dt,
mm:cmzmkh%ﬁmjﬁﬁv N e (s)
\ A ( (ds, dz) — (dx)x(s)ds)]dt.

(C.16)

We can then rewrite (4(k) as,
3
Gal(R) =) Caalk).
i=1
For (41(k), we have,

Bl < > > [

i=1 k=j,—0+1 " tik—1

[ / o (ﬂ(s)+ /R oF(d2) K (s )) dsrdt
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S
<_
_TKA

n?’
i=1 k=j.—0+1 "Y1,

m/l " 24 Bx(s)P) ds < 8
k-1

where the first two inequalities follow from Jensen’s inequality and [ z|* F(dz) < oo in
Assumption [[[ii), and the last inequality follows from Assumption [[[(ii) again. For {42(x),
by applying exactly the same technique used in the proof of Lemma 2.22 on page 144 of [9],
and again Burkholder-Davis-Gundy inequality, Jensen’s inequality, and Assumption (ii),

we obtain that,

C
ECia(r) < T

Now turning to (43(k), we denote,

My(1) ;:%Z[ 3 ( /t "k = G+ 06(s)AW (s) + / "k = e+ 05 (s)dV (s)

— k=j.—0+1 At e—1 At -1
EAE; & ~ tA(i—1+k)
+ / (k — o+ O)x (ﬁ(ds,dm)—F(dx)fg(s)ds) + / 05 (s)dW ()
At -1 tAL; o —1

+/tt/\(il+/~:) E&(s)dW(s) . /t/\(i1+n) ‘e (ﬁ(ds,dx) . p(dx)jé(s)dsﬂ )

Abijr—1 tALG G —1

which is a continuous-time martingale over the interval [0,7]. The quadratic variation of

M3 (t) iSJ

My, My] (1) = —— 3

[ > </ 0k = e+ 0P+ |k — Gt O5()]) ds

k=j.—0+1 Abi k-1

t/\ti’k t/\(i*lﬁ’/{)
+/ |(k — j. + E)x]z v(ds,dx) | + / (|€6(s)|2 + |€5(s)|2) ds
¢ AL

At k-1 ijr—1
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tA(i—1+k)
+/ 0| (ds, dx)
¢

Ntijr—1

It is easy to see that (y3(k) = —M;5(7T). Then by Burkholder-Davis-Gundy inequality,
Assumption [[{ii) and the arguments immediately following (C.5)), we obtain that,

ElGus(r)” = E [My(T)* < CE (Mg, My} (T) < .

Therefore, combining the results for terms (41(k), C12(k) and (43(k), we obtain that,

[ANVES
n nT

Lastly, for term (4(k), by exactly the same method used in the proof of Lemma [11] for

ElG(k)* < C

calculating the orders of (;(k) and (3(k) together with the same method used in calculating

the order of (5(k), simply replacing ¢ with n in these derivations, we obtain that,

Bl <€ (Vo).

n2-<s nT

for arbitrarily small ¢ > 0.
Based on the above bounds for terms (2(k), (4(x) and (s(k), by choosing a sufficiently

small ¢ > 0, we can easily obtain,

VI, 5>=%m

VT (|| () [+ [ () | + 1l Go() 1)) = O ( -

n

under the conditions ¢ < 1 —b/2 in (9) and ¢A — 0.
Step 2. The only dominant term is v/7T'C5(k)/7°. Recall the definitions of (5(x), A;i(k),
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A w~(K), and Ry in @ and ((C.11)), respectively. It follows easily from the

same arguments as that used in Part 1 of the proof of Lemma [14] that,

1/2

VT | Rroo(£) ||= ( /0 1 TRT,OO(/Q)Qd/{> 0.

Because of the above result and n° N 1 which follows from the arguments immediately

following (C.4), vT(s(k) /¢ and 1/(nV/T) ZZ . Ai o (k) have the same limiting law. From
Part 2 of the proof of Lemma u, 14, {1/(nVT)A; oo(k)}i>1 is a martingale difference array in
the sense of [§]. We next check the three conditions of Theorem C of [§] which leads to the
desired functional central limit theorem.

First, we have that,
1 « .
7 ; Eit (1| Aielr) |1?) = Trace(K)
1o [ .
= f Z/O <1/772Ei7114i,oo(/£)2 — C(K/, /ﬁ?)) dr
i=1
= op(1),
where the last equality follows from the ergodicity Assumption [T and the fact that,

E

< 00,

/01 (1/772EZ»_1;12-,00(/1)2 — C(k, /-@)) dr

and C(k, k) is defined in (8). Hence, we obtain that the first condition of Theorem C of
18], i.e.,

LTE; (1 Ael) 7)) 2 Trace(K),
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is satisfied.

Second, we have,

T - )

1 _ s 1 ) ;

E n3T3/2 ;Eil (” Aioo(r) | > <FE W ;Eilfo |Ai o (k)] d/i]
1 Lo 5

- T2 /0 E|A; oo (k) Pdr < C/VT,

where the last inequality follows from the result that E|A; . (x)[> < C as proved in Part
2 of the proof of Lemma [14 Hence, the conditional Lyapunov condition that is stronger

than the second condition of Theorem C of [§], i.e.,

T

1 - b

g 0 Bt (| Aisel) I7) 0
i=1

is satisfied.

Third, we have that, for an orthonormal basis {e; };en, in £,

7 Z Eior ({Asoo(r). ) (Asos ), 1)) = (e o)
= %XT; /O 1 /0 1 K%Ei—l&,oo(u)&m@)) e;(w)e(v) — C(u, v)ej(u)ek(v)} dudv
= op(1),

where the last equality follows from again the ergodicity Assumption [[]| and the fact that,

FE < 00.

/01 /01 K%Ei_lﬁivoo(w&,oo(v)) ej(u)er(v) — C(u,v)ej(U)ek(v)} dudv
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Hence, the third condition of Theorem C of [§], i.e.,

— ZEi_l ((121,-700(/1), 6j><14i700(/i),6k>> LN (Kej,er), Vj,keNy,

is satisfied.

An application of Theorem C of [§] then yields,
T ~
1/(VT) Y Aioo(k) =5 N(0,K) i £2
i=1

Combining Step 1 and Step 2 leads to the desired result of Theorem [2, completing the
proof. O]

C.3 Proof of Corollary

The result follows from the arguments in Section A.5 of the supplementary appendix to [1].

C.4 Proof of Theorem [4]

Without loss of generality, we assume that P and P’ are two consecutive time periods with
trading days being labeled as 1,2,..., T, T+ 1,7+ 2,...,T +T". It suffices to prove that
random vectors defined in for the two periods P and P’ are uncorrelated which is
obvious. This implies that /T (fp(/ﬁ) — fp(k)) and VT" (]/C;/(KJ) — fp/(K)) are asymptotically
independent. The results of the theorem then follow straightforwardly from Theorem [2|and

the continuous mapping theorem.
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C.5 Proof of Theorem [5

We shall adopt the same notation as that used at the beginning of Section [Cl Moreover,
define,
k== |(t—€,)T] and kj:=|(T+¢€,)T].

It is readily seen that k*/T — 7 and (T — k})/T — 1 — 7 since v/Te,, — 0.
We first establish the consistency of 77° which is repeatedly used in the following. This
can be easily seen as follows. First, by the assumption that ¢2(t) is ergodic, a-mixing with

g = 3 and has finite moments of all orders, it follows that,

%i (/iilg(t — [t]))F*(t)dt — /Olg(u)du) = op(1)

and
P 3 ([ o= a1 [ i) = o)
Second,
Bz S [ o= 1)+ b/ Tte — )0
_C@%ﬁ:O@)
Third,
%/0 g(u)du+ 1= 5/0 (9(u) + 1(w))du — 7
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E
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|
oy
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|
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|
2
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o\,.
2
—
E
QU
N

iX[;m—meW—A}@m)

k3

+% > /;(g(t— 1)) + (i) Ty (t — [2]))5%(t)dt

i=k7+1

+%Z (/ill(g(t—LtJ)+7(t—LtJ))&Q(t)dt—/o (g(u)+'y(u))du)

1=k3+1
k* 1 T — k* 1
+ [ gtwdu+ 22 [ gta) + @)y
0 0
= op(1)
Lastly,
1 T n )
=n=g ) Y (ALX) =
i=1 j=1
1 T n ) 1 T i T i
=7 o> (Anxe) — = Z/ o (t)dt + Z/ o2(t)dt — 1
i=1 j=1 j=1 Yi—1 i—1 Ji—1
= op(1),

which follows from the classical theory of quadratic variation and the results derived above.
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We have thus proved 7° R 7.

Now note that,

and

By using the same arguments as that used in Step 2 of the proof of Theorem (1, we obtain
that /T || f(/i) - ]/C\C(FL) |= op(1) under the conditions of Theorem . Similarly, by the
same arguments as that used in the proof of Theorem , we also have that vT(|| ¢ () |
+ || (&) | + || G(x) || + || ¢6(k) ||) = op(1) under the conditions of Theorem [5 It
remains to deal with v/7'C4(x)/7¢ and VT(5(k) /¢, whose treatments differ from those in
Section [C21

We treat v/T(y(k)/n° first. Because 7° Ei n, it suffices to consider v/T'(4(k). Recall
that,

Gl = e > 3 / [02(t) — 0%(i — 1 + )] dt.

i=1 k=j,—0+1 7 tik—1

By Assumption we have that, instead of o2(t), 5%(t) follows,

F(1) = #(0) + /Otms) ds + /Ota—(s) A (s) + /Ote;(s) AT (s) + /Ot/Rxﬁ(ds,dx),

where the rest notations have the same interpretations as that in the main text. Using the

shorthand notation g(t) = g(t — |t]) and 3(¢) := (¢t — [t]) as given in Assumption [[[NS]
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for 0 < [t] < k7, by It6’s formula, we have,

do®(t) = d(g(t)o*(t)) = §'(t)o* (t)dt + g(t)do™(t)

= (T ()3 (1) + GOT(E)) dt + G(t)o(t) dW (1) + G(O)F(t) dW (1) + E(t)/R:vﬁ(dtvdx)-

Similarly, we have, for k5 +1 < [t| < T,

do(t) = (@ (1) +7(0)52(0) + (G(0) + FENED) de + @G(0) +5(0))a(6) dW (1)
@) + 305 dV () + G +7(1)) / r(dt, de).

R

Moreover, by the same arguments as above, when ¢ € (i — 1,4 for each kf + 1 < i < k3,

o?(t) follows,

do®(t) =((5'(t) + hen i/ T)F ()57 () + (G(t) + hen i/ T)F(E)7ilt)) dt
+ (G(8) + P i/ TVF)S(£) dW (1) + (G(E) + b (i TYF ()5 (1) AW (1)

+(g(t) + hrn(i/T)3(t)) . zv(dt, dx).

Therefore, because of the boundedness of h,,, ¢, 7, ¢ and ¥/, o*(¢t) follows an Ito semi-
martingale of the same type as (2)) whenever 1 < [t] < kforki+1<[t]<Torte (i—1,i
for each k7 +1 <@ < k3. Hence, by the same arguments as that used in dealing with term

C4(k) in Step 1 of the proof of Theorem [2] we obtain that,

E|lG(r)|* <O ‘ 2\/i
! - n nT’
This implies that v/T || C4(k) || /7° = op(1) under the conditions of Theorem .
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We now turn to the dominant term /7'¢5(x)/7°. Recall that,

Ly HORSWE
— 2 2
G5(k) = T;J (t—1+k)— T;/i10 (t)dt.
First, note that,
1 & 2
El|= Z o?(i—1+k)| <C&
i=ki+1
and
[0 5 [ 2
K
E|—= / o*(t)dt| < Ce.
T i—1
i=k7+1

Second, it is easy to see that,

K T — k3

7 9(R) + ——(9(r) +7(x)) = (9(r) + (1 = T)7(x))| = Cen.
Therefore, we obtain that
Gs(k)
1 k1 1 Z
=72 (0°(i =14 K) = g(K)) + = i:kZ*H(UQ(Z —14r) = (9(r) +7(x)))
k; T -k}




+ (5 [ o+ T2 )+t [ (ot + - T)v(u))dU>

+ [ o+ 0 =] + 1 > rizren+ L 5 /

i=ki+1 i=kj4+1""
i 1 <
= ; Ai(r) + i:;l Bi(k) + O(en) + Op(en),

where O(e,) and Op(e,) are in the L? norm, and A;(k) and B;(k) are given by and
(16), respectively. Because of 7° R 1, VTe, — 0, and the above results, vT(5(k)/7°¢ has

the same limiting distribution as that of

k*
1 1
— Ai(
T Z \/_ i ;1
Following the same method as that used in Section [C.2] we approximate A;(x) and B;(k)
by Aj (k) and B; o (k), where A; oo (k) = limy_oe As 1(K), Bioo(k) = limy_e0 Biy(k),

-1 -

Ai,z(/i) = Z(EiAiJrk(K') — FEi 1 Aiyk(k)), and Bi,l(”’) (EiBiwk(k) — Ei1Biyi(k)).

k=0 0

—

e
Il

By the same arguments as that used in Part 1 of the proof of Lemma [I4] we easily obtain

that,

1 ) 1 _
E m;(Ai(m)—Amm)) + —AZ (Bi(r) — Biso())| | <C/T.
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Therefore, we only need to establish the L? functional limit theorem for

k*
1 oL .
7 2 Aue(R) + Z
\/T i=1 z k3+1
where A; o (r) and B; o (k) are martingale differences by again the same arguments as that

used in Part 2 of the proof of Lemma[14] It follows from the same arguments as that used

in Step 1 of Part 2 of the proof for Lemma [14] that,

1 ~ ~ nl P T
77 2 Bt [Ail0) )] =5 B [Are(0a ()]
where
1
B | Ao (1) Ao ()] = Cal, )
and
R ~ ~ N 5
a7 > B [ Bioe () Biol)]| 25 - | B1oo (k) Brel)]
i=kj+1
where

[ Bio) By ()] = i, ).

An application of the same arguments as that used in Step 2 of the proof of Theorem

concludes the proof of the theorem.

C.6 Proof of Theorem

We first present a series of lemmas that are used in proving Theorem [6]

Lemma 15. If Assumptions m(zz) and |L] with ¢ = 4 hold. Moreover, suppose u, = A%
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for some B >0 and 0 < w < 1/2. Then, we have,

1 & e
E f;Ai(n) < 7o (C.17)
1 . 2. ) u S AT 16 A —¢
E T;(Ufﬁ—azm) gc( (o V ulSA ) (C.18)
E|n—1® < CulA—, (C.19)

for sufficiently small ¢ > 0.

Proof of Lemma[T3, First, we show (C.17). Note that summands of (3, A;(x))® in gen-

eral take the following form,

AL (R)AZ () -+ A (),

i
where j € {1,2,...,8}, e, € {1,2,...,8} for m = 1,2,...,j such that an:lem =8, and
im € {1,2,...,T} for m=1,2,...,7 such that i1 < iy < ... <1,
For 1 < j < 4, by Hélder’s inequality and Assumption [[{ii), we immediately obtain

that, for any w > 7,

T

T T
3 Y BlanmAze) AT )
in=lig=i1+1  ij=ij_141

T

S Y Y (EALRD (B A (k)

i1=110=41+1 ijZ’L'j,l-‘rl
1

. w— j— e w
Ay (r)wes/ X en) >< Ticaen)/

J

<C
S T

We shall only provide detailed calculations for the representative case j = 6 in what
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follows. The rest of the cases can be treated similarly. When j = 6, (eq, ea, ..., €6) can only
be one of the two combinations (1,1,1,1,1,3) and (1,1,1,1,2,2) and their permutations.
We shall show that,

%Z > > |E (A?fl(m)AZ?(m)--~A§§<n))}s%. (C.20)

11=119=01+1 ig=i5+1

Again, we only deal with two representative cases and the remaining cases can be treated
by quite similar arguments. We first consider the case where (eq, €9, ..., e6) = (1,1,1,1,1,3),
by applying Holder’s inequality, Lemma 3.102 on page 497 of [7] and Assumption [[(ii), we
have that, for any w > 2(4 +¢)/(2 + ¢) where ¢ is given in Assumption [[]

LB (Auy (1) Asy () Asy () A () Ay () A2 ()|
= |E{ A5 (k) [Biy (As(r)Aig(5) Ai, (5) Aig (1) A3 (R)) = B (Asy () Aig () Aiy (8) iy () A3 (1)) ] }]
< (B A (m)) (E 1By (A (R) Ay (5) Ay () Ay () A2, ()

1-1/w

— B (A () Auy (R) Ay () Ay (1) A2, (1)) |“/<w-1>)

1-2/w
12—11

< Cua
and

| (Aiy (1) Aiy (1) A (

< | B {Ai, (1) A, () Ai, (1) Ay (8) Ais (1) [Ei (A3 (0)) — E (A3 (5))] }]
+ OB (Aiy (8) A () Ay (R) Ay (1) Aig (1) )]

<C (ozl_Q/w + 041_2/“> :

i6—15 i5—14
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Then, we have that, for any w > 2(4 +¢)/(2 4 ¢) where ¢ is given in Assumption [[I]

[ (A () Ay () Ay () A () Ay () A2, ()|
<C (Oé;iz/w A <&1 2/w +a172/w>> < C’( (1— 2/w)/206(17‘2/w)/2 4 a(17'2/w)/2oé(17.2/w)/2> '

12— 1615 15— 12 21 615 12— 15—

Thus, by Assumption [ with ¢ = 4, we obtain that, for any w > 2(4 +¢)/(2 + ¢) where ¢

is given in Assumption [}

% Z Z Z i2(K)Ai:s(K)AM(K)A%(K)A?G(K)) ‘

T T T
C (1-2/w)/2 (1-2/uw)/2 (1-2/w)/2 (1-2/w)/
STEY. DL G Z Z o, TﬁZ Z ap~; Z >
i1=110=01+1 i5=11=15+1 i1=119=41+1 i4=11i5=14+1
20 (T =1 g2y T=2 (-2 L - 2/u)2 ¢
:ﬁ<TOZ1 +T042 ++TOK ST_

As to the second case where (eq,es,...,e6) = (2,1,1,1,1,2), we have that, for any w >

2(4+1¢)/(2 + ¢) where ¢ is given in Assumption [[]
B (A5 ( ) o (F) Ay (1) Ay, (1) Ay (1) A7, () |
< |E{A7 (k) A, (K)Asy () A, (8) Aig (k) [Esy (A (K)) — E (A7 (k)] }]
|

+C }E 7 (k) Ay, (K) Ay (k) Ay (k) Aig (K))
<C (a-l_Q/w + 04-1_2/“>

i6—15 i5—14

and
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< |B{A7 (k) [Biy (Aiy (k) Aiy (5) A, (8) Aiy () A7 (5)) = B (Aiy (1) Aiy (1) Au, (1) Aig (1) A7 (1)) ]
+ OB (Aiy (k) Aiy (1) Ay, (K) Ay (1) A7 (1)) |
<C <0z1__2/w + a{‘f/”) .

i9—11 i3—12

Then, we have that, for any w > 2(4 4 ¢)/(2 + ¢) where ¢ is given in Assumption [[I]

E (A5, 00) A () A1 () A, () Ai ()47 (1))
o) (o 1o 2)]

[( (-2/w)/2 (- 2/w)/2> (a(l—,?/w)/? +a(1‘.2/“’)/2>}.

'56 i5 15 14 22— 13—12

| /\

| /\

Thus, by Assumption [lIj with ¢ = 4, we obtain that, for any w > 2(4 +¢)/(2 + ¢) where ¢

is given in Assumption [I]

il
-Mﬂ
MH

Z 22(K>Ai3(’§)Ai4(’€)Ai5(K>A§6 (’K”')) ‘

11=119=11+1
C T T T T T T
< _Z Z (1— 2/0.))/22 Z (1-2/w)/ 1 Z (1-2/w) /22 Z (1-2/w)/
= T6 (ylg i1 6125 iq jﬁﬁ (yzg i1 (yzg i5
i1=1120=101+1 i4=115=i4+1 i1=1170=11+1 i5=11=t5+1
C T T T T T T
L O Z Z (1-2/w)/2 Z Z (1-2/w)/ 1 Z Z (1-2/w)/2 Z Z (1-2/w)/2
jvﬁ Ckzg 12 15 (7 7”6 (123 12 (yig——i5
io=11i3=i2+1 i4=11i5=iq4+1 i2=1i3=i2+1 i5=11g=ti5+1
< C
=~ ﬁ

The same arguments as above lead to that (C.20)) holds for (e, es, ..., e) taking any
permutation of the six numbers in each of the two vectors (1,1,1,1,1,3) and (1,1, 1, 1,2, 2).
By applying similar arguments to that used in dealing with the case j = 6, we obtain

that, under Assumptions [[(ii) and [[] with ¢ = 4, for any w > 2(4 + ¢)/¢ where ¢ is given in

o7



Assumption [}

1 T T T
B D 3 B - Al
T T T T T T
< Q Z Z (1-2/w)/4 Z (1-2/w)/4 Z Z (1-2/w)/4 Z (1-2/w)/4
— T6 aiz—il 7,3 12 ai7—i6 aig—i7
i1=1142=11+1 i3=io+1 ig=117=tg+1 is*i7+l
T T T T T
~ Z Z (1-2/w)/4 Z (1-2/w)/4 Z Z (1-2/w)/4 Z Z 1-2/w)/
7 i9—11 23 i aza —i5 zg i7
11=119=01+1 i3=10+1 i5=116=t5+1 i7=118=i7+1
T T T T T T

C
7

C a . Y 2/ o
+IT72 Z 2(21 121/ /42 Z a&_i/ )/42 Z 061('71_2-26/ )/4 Z &581 227/ )/4
e

TS

e

e

11=119=01+1 i3=114=i3+1 ig=117=ig+1 ig—i7+1

T T T T T T

T
(1-2/w) /4 (1-2/w) /4 (1-2/w) /4 (1-2/w) /4
_E E : Afyiy E : E : Q) ig E : E : Qe —is E : E : a28 i7
i1=110=11+1 i3=114=i3+1 i5=116=i5+1 i7=118=i7+1

<C
S T

Overall, we have obtained the first result (C.17)) of the lemma, i.e.,
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Second, we prove inequality (C.18]). Note that,

8

1 - = n 2 n ve\2
< Bz > D [A0X) Ljapxjn — (A8XD)] 1apnc)

i=1 k=j.—0+1

TEAZ Z [ sz 1{]An X|<un} (szc)ﬂ 1{A;jkzv>o}

i=1 k=j.—0+1

mz S (anx ) 1]z

=1 k=j,.—0+1

8

8

8

mz 5 (LX) L g ey — (AKX Lo oo

i=1 k=j,.—0(+1

We treat the two terms on the right hand side of the last inequality one by one. For

notational convenience, we set,

Bij = (AZkXCy 1{|A3kX|zun} and By = [(AZkX)Q 1{|A;kx|§un} - (AZkXC)Q} 1{A;f,€N>o}'

‘ 8

Similar to the situation where we prove ((C.17)), summands of <ZlT ol et Biyk) and
. 8

(Z@T ?{’;jfﬂl B;’:k) in general take the forms,

Bl B2y, - B and (B ) (B )2 (B )

i1,k1 7 12,ka ij i,

respectively, where 7 € {1,2,...,8}, e, € {1,2,...,8} for m = 1,2,...,j such that
fn tem =81y, €{1,2,....,T}and ky,, € {j—C+1,j,—C(+2,...,j form=1,2...,j
First, by Holder’s inequality, Burkholder-Davis-Gundy inequality, Markov inequality and
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Assumption (ii), we have that for any 7, e,,’s, i,,’s, k;,’s and w > 16,

Bzell lef; ko ® Biejj,kj
e1/w ea/w wy 2ej/w
(E’A’Ll k1 | )2 v (E’Azz ko ’ )2 ! (E)AZ,MXC ) J

AT X ¢
ijok

(El >(1—16/w)/j< 1 (1-16/w)/j
{ Z1’$1XC|2u"} { >Un}

< CA8+(w—16)(1/2—w) ]

(1-16/w)/j B1
5y kQXC|2un}> e {

Thus, we have that, for any w > 16,

8
< CA(w 16)(1/2— w)

mz S (anx) a2

i=1 k=j,.—0(+1

Second, by Holder’s inequality, Burkholder-Davis-Gundy inequality and Lemma [I2] for

7 > 1, we have that, for any w > 16 and arbitrarily small ¢ > 0,

E|(B] 1) (L) -+ (BL 1"

< CE{ e+ (A

Xc)261 uiez + (AZ ks

XC)QeQ .

i1,k1

2e;
er + <An 5 Xc)

16 AJ—< 8+5(1—16/w)—¢
. 1{A11 klNA:LQ ng"A?.k.N>O}} S C(un A \/A ) .
777

When j = 1, the above inequality holds by setting ¢ = 0. Thus, by letting ¢ be sufficiently
close to zero, we have that, for any w > 16,

8

mz Z (A2 1y ey — (B0X)] Lag von

i=1 k=j,.,—0(+1
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< V V

V V
@07 Y (T Y T (@ (ToF (TOp
A3(1-16/w)—c 16 A—4—  A4(1-16/w)—s 16 A=3—s  AB(1-16/w)—¢
n n v
T @ T @ T @y (T0y
ul6 A—2—¢ A6(1—16/w)—§ w6 A—1—¢ A?(l—lﬁ/w)—c
n AV v 2 V
(T0)? (T0)? ¢ Tt
WOA-T  A(-16/w)
< n \Vi
= ( (107 Ty

WSA-T O AO-16/w) 16 A—6—c  A2(1-16/w)—s ;16 A—5—s
O ( n n n

v/ ulGAfg Vi AS(llG/w)c)

Vi ulGA—q v AS(l—lG/w)—g) )

To summarize, because sup, g, E (e) +sup,cp  E (el?®) < oo in Assumption (ii) and
by the same arguments as that immediately following (C.2)), one can always choose a large

enough w and a small enough ¢ > 0 such that,

8

ulb AT
< n 16 A —¢ )
_C(GW7V%A )

Third, the same arguments as above lead to the bound of E |7 — 7°|® and are hence

omitted. O

Denote
n

o ::/ o?(t)dt and 53\* ::Z(AZjX)Ql{‘Aﬂ.X|<u }
i—1 R

j=1
Lemma 16. Suppose that all Assumptions in Lemma and [, |z[8F(dx) < oo hold.
Moreover, T < n® and { < n° for some positive exponents b and c which satisfy ¢ < 1—b/2
and 16w+ 7(b+¢) —7 >0, where 0 < w < 1/2. Then for any k € [0, 1], we have that, for

sufficiently small ¢ > 0,

4 uS A7/2 1
< = VuBATSVAZY — 21
_0<@va% v VW)’ (C.21)
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4
< C. (C.22)

~

B fwyior

Proof of Lemma[16. We prove (C.21)) first. By Cauchy-Schwarz inequality and triangular

8> 1/2

7).

inequality, we have,

~ o~

B |Fnyic? — o |

<c (E i — fyi| B o

—~

2% 2%

o

Next, we treat the terms on the right hand side of the last inequality one by one. By
Lemmas and [I5] similar arguments to that used in Step 1 of the proof of Theorem
in Section [C.2] boundedness of f, Assumption [[[(ii), and conditions ¢ < 1 — b/2 and

Iz |z[®F(dx) < oo, we have that, for sufficiently small ¢ > 0,

8

1 « 1 &L 1
<CFE|= o2 - — A,z’c CFE|= Az’c_ =c CE ~c =8
T ;U@n T — i,k + T — O-’L,li f(fi)n =+ |f</§) (77 77)‘
1 & 1< ® 6
~2 ~2.c 8 8
< OB |53 0t~ 7 17| + OBl + CEfF =7
ulﬁA_7 1
<C|(|-=2 VullAT vV AT Y — .
- ( (Tor T

By the same arguments as above, we obtain that, for sufficiently small ¢ > 0,

/2\* 2%
g, — 05

E Y < O(ulSA v A, (C.23)
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Next, applying Lemma [15{ and condition 16w + 7(b+ ¢) — 7 > 0, we immediately have,

8 8

/\20
—O‘

+CE (C.24)

N[ =
Mq

—~ 8
E|fuyi| < CE

ﬂ I

=1

Lastly, by Jensen’s inequality and Assumption [[[(ii), we have,

/jl alﬁ(t)dt‘ = /iil E (a'%(t)) dt < C.

Second, we derive ((C.22)). This result is trivial by the Cauchy-Schwarz inequality,
(C.23), (C.24) and condition 16w + 7(b+¢) — 7 > 0. O

2% |8
‘Uz‘

<FE

The next lemma provides an estimate for the order of magnitude of the Hilbert-Schmidt

norm of the difference between K and K.

Lemma 17. Suppose that all Assumptions in Lemma[l6 hold, we have that, for sufficiently

small ¢ > 0,

) 1/2
| K=K ||us := {/ / (k, k") — C(k, /i')) dmdm’}
0,1] J[0,1]

/4 2 A-3/4 2 A\-7/8
1 A~ A 1 1
=0Op <—\/(§) \/—\/uA \/u" \Y )Ln\/—].

/172 /3/4 n (TO)/® /T I3

n

Proof of Lemma[17. Observe that,

oo
<c / / L
[0,1 Jjo,11 1

~

2
C(k,k") = C(k,K)| drdr'

(E( —I— ZE A1 A1+h( ) + A1+h(5)A1(’1/))>
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n—n //
[0,1] J10,1]

Ly

T Z T;—h Z; Ai(R) (Aipn (k) + Ai_h(/{,))] drdr’

h=1

= [+ 11+1Il.

In the following, we estimate the order of each of the three terms on the right hand side of
the last equality.

For term I, we have,

E|I|<O//
0,1] J[0,1] izl
+0/[01]/[01 ZE{T hZA Ason() + As_n())
h=1

— E(A1(k)A1n (k) + A1+h(m)A1(/€'))} drdr'

+c/ /
0,1 J[0,1]

= ]1 +]2+Ig,

2

Ai(r)Ai(K) — E (A1(k)AL(K)| drdr

2

Ay (1) Arpn(K) + Aren (k) Ar(K)) | dridr’

hL+1
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where the first inequality follows from Jensen’s inequality. We shall treat the three terms
on the right hand side of the last equality one by one. First, for term I, note that, for any
w>2(4+1)/(34 ¢) where ¢ is given in Assumption [II}

B3 D0 A AK) ~ B (4 ()
< 3 371000 (A A(). 410 4
< TQZ_:Z T (B | AR) AR [) Y (B 14, (r) Ay (=)9) 1 < %

where the second inequality follows from Assumption [[Il and applying, e.g., Corollary 14.3
on page 212 of [3], and the last inequality follows from Assumptions [[[ii) and [ with ¢ = 4.
Thus, I; = O(1/T). Similarly, we have I, = O(L?/T). We now turn to term I3. By
Assumptions [[[ii) and [ with ¢ = 4, Hélder’s inequality and applying Lemma 3.102 on
page 497 of [7], we have that, for any w > 2(4 + )/t where ¢ is given in Assumption

Z E (A1(k)A1sn(K) + A1pn(k)Ar ()
< Z [ E |A )1/‘“ (E |E1 (A1+h(l<&,))|w/(‘“1))1_1/w

o\ 1/w w/ (o 1-1/w
(B A (BIE ) ]
f: 1— 2/w C
<o
h=L,

Thus, I3 = O(1/L8). To summarize, we obtain I = Op (L2/T VvV 1/L8).
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Turning next to term 17, by (C.7)), we have 1/7* L5 1/n%. Hence, it remains to compute
the order of the double integral component of 1. To this end, by Jensen’s inequality, we

have,

It <C /[01 01]{%i< Ai(fi)Ai(li/))z

=1

35 S A0 (At + At

T
1
<o [ LY@ ot 1) At
0.0 Joy T ’

=1
R 2
—{—C’/ / = k)oF — f(k)o?*) A2(K)drdK
MHMT;<( >
1 T
" C/ / =2 (@ =i =14 K)" (57,)" drdw
o Jop T4 |
1=/~ .5 2 2
L A S (e O D WA
0,] Jjoy I ’

T
1 ~ —~\ 2
v [ [ I3 @ - o1+ 0) (Feo?) e
0,1] Jo) T
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o~ —

1 T -~ —_ 2 2
+ C/ / — Z <f(/{/)0'i2* _ f(ﬁl)03*> <f("f)012*> drdr’
T4
1] Jjoa) 4 <=
= [[1,1 +I[1,2 + - _'_[[1,6-
In what follows, we only treat two representative cases of the six terms on the right hand

side of the last equality and the remaining terms can be dealt with quite similarly. For

term I1; 1, we have that, for sufficiently small ¢ > 0,

1/2
E|lL;1| <C / Z E|5}, — o Z—l-}-li’ E|Ai( )|> drdr'
o1 Jo T =
1 NY? A2 .

where the last inequality follows from decomposition (C.1)) and similar arguments to that
used in Step 1 of the proof of Theorem [2[in Section and in showing ((C.18]) in the proof
of Lemma For term 11,5, by Lemma (16| and (C.7)) that i N n, we obtain that, for

sufficiently small ¢ > 0,

C/ / 1
Il = — — 02*—f o) AZ(K)dkdr'
=g [ |7 2 (Faer — s ) 42 )

ut AT/ LA 1
=0Op (( 5)7/4 WA VAVT>

By the same arguments as above, one obtains that terms /7,3 and I/, 5 have the same

order estimates as that of term I/;; and that terms I, 4 and I1; ¢ have the same order
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estimates as that of term /1, 5. To summarize, for sufficiently small ¢ > 0,

1 \? up AT AT ]

By the same arguments as that used above in dealing with Iy, we have that, for

sufficiently small ¢ > 0,

1O\ uAATEE AN T

Therefore, for sufficiently small ¢ > 0,

1 (0N uiAE g AATTA 1

A K vV 2 Vaup A~V — | L2].
(E v (n) v 03/2 (Te)7/4 Un T "
Lastly, we deal with term I71. On the one hand, by the arguments immediately follow-

ing (C.4)), (C.7), (C.8) and (C.9)) with ¢ being replaced with n, we have that, for sufficiently

small ¢ > 0,

[[2 == OP

Il =0p

~ N2 2 1
(n—n) A(Z‘Hﬂ - Op (A‘W*VAV—) -
() T

On the other hand, by Assumption (ii) and applying Jensen’s inequality, we obtain,

Jd?ln

n

Z Z Aiin(s )‘i‘Aih(Hl))] drdr'

1
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ZE!A )+

Cth Z EA;(r) (Ai+h(“/) + Ai—h("i/))'Z

/01/[01]

drdr’
<CL2.

Therefore, for sufficiently small ¢ > 0,

II1 =O0p

bl

1
AV AY — ) L
(ar=vav )

and this completes the proof. O]
We are now ready to present the proof of Theorem [6]

Proof of Theorem[6 We shall apply Theorem 1.8.4 of [11] to prove Theorem[6] This proof
consists of two parts. In the first part, we establish finite-dimensional convergence in law.
In the second part, asymptotic finite-dimensionality (or tightness) is established.
Part I. Finite-dimensional convergence in law.

We shall show that (G(K), h) N (G(K), h) for every h € L% For notational conve-

nience, define,

= (G(K),h) and G :=(G(K),h).

Then, G,,’s are, conditionally on .%#, zero-mean normal random variables with conditional

ol / / (u, v)h(u)h(v)dudv.

variances,
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Similarly, G is a zero-mean normal random variable with variance,

of = /01 /01 C(u,v)h(u)h(v)dudv.

Hence, it suffices to show o L 62 This follows directly from the following fact,

ot = ot < [ [ 1600 = Cluvlinlin)dude

<C (/01 /01 1C(u,v) — C(u,v)]Qdudv) v

= C[| K=K [[us= op(1),

where the second inequality follows from the Cauchy-Schwarz inequality and that h € £2,
and the last equality follows from Lemma and the conditions, particularly , of
Theorem [6l
Part II. Asymptotical finite-dimensionality.

Let (e;);>1 be the orthonormal basis of £? that consists of all eigenfunctions of K. We

shall show that, for all 4, > 0, there exists a J such that,

lim sup P (Z(g(lﬁ),eﬁ > 5) <e.

" j>J

In what follows, we need to deal with the integrability of 1/7. We take care of this issue
by decomposing the above probability as follows,

P (Z<g(/€),ej>2 > 5) <P <Z<g(1€),ej>2 > 5,1/7 < 2/n) +P(1/5>2/n).

jzJ JjzJ



The second term on the right hand side of the above inequality can be made arbitrarily
small by letting n be sufficiently large because 1/7 51 /n. Hence, we only need to focus

on the first term on the right hand side of the above inequality. We treat it as follows.

7))

Note that,

P (Z@(’E),eﬁz >0,1/7 < 2/?7) =E {1{1/ﬁ<2/n}P (Z(g(/%), ej)’ >0

JjzJ e

1 ~

<5k <1{1/ﬁ<2/77}E (Z(g(/C),ej>2 9))

j=>J

1 ~ 1

< 5B (1{1/ﬁ<2/n}E <Z<Q(K)a€j>2 =D _(G(K), e;)? y)) t5E (Z(W’Q&yﬁ)
\ j=J Jj=J | j=J |

i) (1)
Because

E (Z<g</c>,ej>2> =B (1600 ) = | Ol <o,

j=1

term (II) can be made arbitrarily small by letting J be sufficiently large. It remains to

7))
)

treat term (I). This can be done as follows,

%E (1{1/ﬁ<2/n}E (Z@(’%% ej)” — Z<g(l€)’ &)’

j=>J j=>J
ﬁ)) +

§ <1{l/ﬁ<2/n}E( > (G )" = Y (G(K) e)?

1<j<J 1<j<J

E (1paeamE (116K I = 1 GUC) |1

I = S| =
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We deal with the two terms on the right hand side of the above equality one by one. First,

)

1 P
< 1 (tumem [ 1600 - Cluwlin) = o).
0

1 ~
58 (twaamE (160 P = 1 6106)

because by exactly the same calculations in the proof of Lemma and noting that

La <z (M — )2/ (*n*) < 9/n*, one obtains that, under the conditions of Theorem

6,
E (1C(u,v) = Clu,0) 1 jzeam ) < O/,

where ¢ > 0 and does not depend on u and v. Second,

~

%E (1{1/ﬁ<2/n}E< > (G e = D (G(K),e))

1<i<J 1<j<J

ﬁ)>|

CJ ~ J—1)C
<3 Z / / Lim<zmyl C(u,v) = Clu, v)Pdudv < % x o(1),
=1

where the first inequality follows from the Cauchy-Schwarz inequality and the second in-
equality follows because by again the same calculations in the proof of Lemma and
noting that 1y1mca/my(* — 7°)*/(n*7*) < 9/n, one obtains that, under the conditions of
Theorem [6]

E (1C(u,v) = C(u, v)PL gy jaeasmy ) < C/n,
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where ¢+ > 0 and does not depend on u and v. We have thus proved that asymptotical
finite-dimensionality holds.

To sum up, Theorem 1.8.4 of [I1] leads to the conclusion of Theorem [6] completing the
proof. O

C.7 Proof of Corollary

The result follows straightforwardly from Lemma [I7) and Theorem [2

C.8 Derivation of the optimal order of ¢ in Section

Recall that 7' < n® and £ < n°. As discussed in Section [5, there is a bias-variance tradeoff
related to the choice of the order of ¢ by minimizing the order of the sum of terms II and
IIT. To this end, we provide the solution to the optimal choice of ¢ for each fixed b. Note

that,
1

1 1
term II = OP <W) and term III = Op (nlc V n(1+bc)/2) .

One readily finds,

Op (=), ifb+ec>1,

nl—c

term III =
Op (m), ifb+c<1.

We first give an initial analysis of the optimal choice of ¢ for minimizing the order of
the sum of terms II and III when there is no additional constraint other than b +¢ > 1
or b+ c < 1. When b+ ¢ > 1, the order of the sum of terms II and III could achieve its
minimum value at ¢ = (2 — b)/3, which occurs only if b > 1/2 because b + ¢ > 1. When
b+ c¢>1and b < 1/2 which imply (2 — b)/3 < 1 — b, one should choose ¢ as close to 1 — b
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as possible to minimize the order of the sum of terms II and III. Similarly, when b+ ¢ < 1,
the order of the sum of terms II and III could achieve its minimum value at ¢ = 1/2, which
occurs only if b < 1/2 because b+ ¢ < 1. When b+ ¢ < 1 and b > 1/2 which imply
1 —b < 1/2, one should choose ¢ as close to 1 — b as possible to minimize the order of the
sum of terms II and III.

We are now ready to present a formal analysis of the optimal choice of ¢ for a given b
under the conditions of Theorem [2 We shall take w as given. Then feasible values of b
are given by the interval (0, 4w), and feasible values of ¢ are given by the interval (¢, cy),

where,
b
cp:=max{l —4w,0} and cy:=1- 3"

It is easy to verify that 1 — b < ¢y for any fixed b € (0,4w); 1 —b < (2 —b)/3 and
cr < (2—=10)/3 < ¢y for any fixed b > 1/2 if possible; and 1 — b > ¢, for any fixed b < 1.
Based on the previous initial analysis, we make the following exhaustive list of different

situations and analyze them one by one.

e Case I. When b > 1/2.

This case can be further divided into the following subcases based on whether (1 — b)
lies in the interval (cp,cy), ie., 1 —=b<e¢p, 1 —b € (cp,cy) and 1 —b > ¢y. This is
due to that the relation between b+ ¢ and 1 is required to determine the order of the
sum of terms II and III. Nonetheless, only 1 —b < ¢, whenb>1land ¢, <1—0 < ¢y
when b € [1/2,1) are possible according to the above analysis. Therefore, it is easy

to find that ¢, = (2 — 0)/3 in this case.

e Case II. When b < 1/2.
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Similarly, this case is further divided into the following subcases: 1—b < ¢, 1—b > ¢y,
and ¢, < 1 —0 < ¢cy. Nonetheless, only ¢, <1 —b < ¢y is possible according to the
above analysis. We need to further consider whether ¢, < 1/2 or ¢, > 1/2, because
1 —b and hence ¢y are always greater than 1/2 when b < 1/2. Therefore, it is easy to
find that ¢, = 1/2 when ¢z, < 1/2; and ¢, = ¢+ when ¢, > 1/2, where ¢+ means

that one should choose a value of ¢ that is as close to ¢, as possible from above.

In summary, we have the following exhaustive list of different cases with the corresponding

optimal ¢ values,

%‘b, when b >1/2 |
Copt = 3, when b <1/2 and ¢ < 1/2,

cp+, when b<1/2 and ¢ > 1/2.

C.9 Proof of Theorem

To prove the theorem, we first introduce some additional notation and establish some

preliminary results. We define,

di = (A?,kX)z 1{|A;ﬁkx|§un} - (AZkXC)Q

n C n n (& 2
= ’Ai,kX +Ai7kXJ’21{|AZ (Ai,kX) )

pX|<un} T

where the last equality follows from (B.2)). By applying the elementary inequality ||z +
yI> = |z?| < C(ly]* + |=|ly]) to cases [A}, X > u,/2 and |A},X| < u,/2 separately, we
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obtain that, for any m, [ > 0,

an )(c 241 an )(02 Z&@ )(an
| i,k ‘ +C’ i,k H i,k ‘

! m
U, Uy

di| < C
+ C(|ANXT] A un)? + CIAT XA X A uy)
= |d5 |+ |+ ||+ (. (C.25)
We next present two lemmas which are used in proving Theorem .

Lemma 18. Under model , assume that Assumption@ and condition (B.1)) hold. Then,

ti,k
By, |ALXT] < C/ By, . x(s)ds, (C.26)
tik—1
tik
Ep o (|ARXT Auy) < Cup” S/ By, x(s)ds, forr <s <1 (C.27)
tik—1

Hence, E|A}X7| < CA and E(|A7X7| ANuyp) < CAul™ forr < s <1.

Proof of Lemma[18 First, because Efo Jg lz|x(t)dt F(dz) < oo for each ¢ > 0, by Proposi-
tion I1.1.28 of [7], we have that [} [, |z[v(ds,dz)— [} [, [2|x(t)dtF(dz) is a local martingale.
Furthermore, since [j [, [2[v(ds,dx) and [ [, [x|x(t)dtF(dz) are increasing and locally in-
tegrable, fot Jg |z|v(ds, dz) — fo Jg lz|x(t)dt F(dzx) is in fact a martingale. Hence, we obtain

/.

1

that,

By, (165X 7)) = B,

i,k—1

/azy (ds, dx)
k—1

<E,, / /mx JdtF(dz)
zk 1

tik
<c [ B

tik—1

Therefore, ((C.26]) follows.
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Second, (C.27) follows from the same arguments as above and the same calculations
used in proving (6.26) of [6] with oy, = u,/VA. O

Lemma 19. Under model , assume that Assumptz’on@l and condition (B.1)) hold. Then,

for any r < s <1 and arbitrarily small ¢ > 0,

A3~
Eld}? <C ( + Auts + A2_§ui_s) , (C.28)
m n A4—§ 3—¢,  1—s—g 2—¢, 4—2s5—¢
E|d} ||y ] < C 2 + A, + AT, , (C.29)

where i £ 1" or k £ k.

Proof of Lemma[19. We prove (C.28)) and (C.29) in Parts I and II, respectively.
Part L.

We first prove (C.28). From (C.25)), we have that,
E|dy|* < C(B|d 1P + Bld P + B3P + Bl ).
We next treat the four terms on the right hand side of the above inequality one by one.
For £ \dZ}jP, by Burkholder-Davis-Gundy inequality, we have,

|AnkXc|4+2l A2+l
i, < Ol
— 2l Y
u

n

E|d > =CE

21
Uy

which can be made arbitrarily small by letting [ be sufficiently large.
For E|dz;f|2, by (C.26)), Holder’s inequality, Burkholder-Davis-Gundy inequality and
Jensen’s inequality, we have that, for any m € (0,1/2) and any w > 1/(1 — 2m) such that
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w
2mm < 1,

A X AL X P

mn,2|2
E|d}?)? = CE e
C n cldw L n m—<— % A2+2m
< o (BIATX)® <E|Ai,kXJ|2 “"1> < Cn—

where C,, is a constant that depends on m. Note that C,, — oo as m — 1/2. Therefore,

for arbitrarily small ¢ > 0, we can always find a m close to 1/2 enough such that,

A3~
E|d2?P < C —.

n

As to E|d"}|?, by using the inequality (|| Au,)? < w21 (|z| Auy,) for p > 1 and (C.27)),
i,k n

we have,
E|d}3 )P = CE(|AYXT| Aun)* < CAul™.

Lastly, for £ |d2}€4|2, by Holder’s inequality and the same arguments as above, we have

that, for any r < s < 1 and any w > 1,

Eyd;j;j|2 = CE|A}XP(IALXT| A uy)?

w—1

< C (BJAnX) % (BIALX| Aw)57) ©

< O A Aul=s) 5

n

where C,, is a constant that depends on w. Note that C, — oo as w — oo. Hence, for
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arbitrarily small ¢ > 0, we can always find a sufficiently large w such that,
E|d [P < CA* w2

forany r <s <1

To sum up, we have that, for arbitrarily small ¢ > 0 and any r < s < 1,

3—¢

A
Eld})? < C ( + At~ + A2_§ui_5) .

n
Part 11.
We now prove . In Part I, we have proved that dz;j can be made arbitrarily small.
Hence, in determining the order of [d}';||d} /|, one only needs to consider the following nine
4551, MRl N

|df,f’|]dﬁi,|, |d§i,]|d2}€4], and |d2;€4]|d2§:i,|. Without loss of generality, we assume that ¢;; <

cross-product terms | |[dps |, [di2|[dp |, [dy | diy |, iy

ti w—1 and deal with these terms one by one.
We deal with |d?k2 |d3?€,| first. For any 0 < m < 1, any w; > 1 and any w, >
1
1-wim/(w1—1)

inequality, Jensen’s inequality and (C.26)), we have,

such that m—--*2- < 1, by Hoélder’s inequality, Burkholder-Davis-Gundy
w1

wo—1

AL XPIATXT|™ AT X2 A, X

E|d2||dyy| = CE

C n cl2wi| AT c|2w1 % n meil n meil %Il
< o (BIALX P AL LX) 5 (BIAL X" A X755 )
n
C«AQ w Cw wifl
S uzm (E{'AZkX”mwlilEti/,k/,1|AZ,k/Xj|m“’11*1 }> .
n
w1 wi—t
CA2A™ Jim=1 1 tir gt wp—1 “1
m_1
< —— | B ALX et Z/ Er, ., x(s)ds
U tir w1
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m wo
CA?A™ Jim_eL w2\ R 1 [l w
<= | (Banx/raat) = (Bl Ey, o x(s)ds
Uy Ly k1
CAZA?™
< 2m ’
un

Therefore, for arbitrarily small ¢ > 0, one can always find a m close to 1 enough such that,

Al

5 -
up,

E]d;f’,f

| < C

As to \dZ}fHdZ:‘z,L for any 0 < m < 1, any r < s < 1 and any w > = such that

1—
m—*5 < 1, by (C.26) and (C.27), we have,

AR XA, X
m

E|d;||dyy| = CF (127w X7 A uy)?

n

< CE{|AnXPIALX " By, (1830 X7 | A un) b

1 ti’,k/
S CAu}v,isE { (Z/ Etl-/’k./_IX(S)dS> ‘AZkXCP‘AZkXJ’m}

ti’,k’fl

1 ti’,k’ “ w " wal
< CAu, (E (Z/ Eti/,k/_1X(3)d3) |AZkXC|2w) (E|AZkXJ|mﬁ>
Lir k-1

< CA2+mU1_8
— n .
Therefore, for arbitrarily small ¢ > 0, one can always find a m close to 1 enough such that,
Bl ||| < Aoyl

for any r < s < 1.
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As to |d,k,||dn |, foranyr<s<1 any 0 < m < 1 and any wy > w; > 77— such that

mgy <mgts <1, by (C.26) and (| -, we have,

|AG o XA, X
Up!

< CE{(|A;kxf| Aun) By, A X ]A/k,X"V”}

E|dy5 ||| = CE (JAZXT| A u,)?

1 w11
SOE{<|A WX A )™ (Eti',kul'A k'XC|2M> (Et"“' |AZ’kIXJ’mﬁ> ) }

1 ti’,k’ m
Z / Eti/7k/71X(S>d$
tir w1

il k!

1 /ti’,k’ E ( )d
= b X(8)ds
A . 1 K —1

il k! —

1

< CA™E {(|AZkXJ| A Un)m (Eti’,k’fl |A;7k1Xc|2w1> wy

1

mUJ2> 72

wg—1

(A7XT| Au,)"50T) 2
x (2 )

w2

< CA™ (E (Et A} X CIQ‘“) "

< CAH—Qmu(l—s)m.
Therefore, for arbitrarily small ¢ > 0, one can always find a m close to 1 enough such that,

for any r < s < 1.
By repeatedly using the same arguments as above, we obtain that, for 0 < m < 1 being
sufficiently close to 1,
A XC?|Ar, XT|™
Bl dy) = cplBu T IRGXT A% XA W X Awy) < CAM IS5,
um ) )

n

|AG e XP|AT X

B|d}3 || = CE |AT X (AT X A wn) < CAM 25y, 57,

n
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E|d |y k,\ = CE(|AXT | Aun)2(|AF o X7 Auy)? < CA*Supy 27,

Bld 2| dyn] = CE(ALXT] Aug) 2| A p XE|(|A% w X7 Auy,) < CAZF 353727
Bldy ||dyy) = CB(AL X 7| A )2 AL X (AR XY | Au,) < CAZF 2537257
E\d} | = CEIATX (AL XT] A w )| AG 0 XN(AF o X[ Awn) < CAP 207

for any r < s <1 and arbitrarily small ¢ > 0.
To sum up, we have proved that, for arbitrarily small ¢ > 0 and any » < s <1,

At
Eld?|dp ] < (J( -

A3§13§+A2§423§)

n

fori #4 or k # k.
[

We are now ready to present the proof of Theorem [§ The proof differs from that of
Theorem [2 in the calculation of the order of term || 7 ST (02, — oy ») |l in Step 2 of Sec-

K

tion and in the calculation of the order of term (4(k). We deal with them separately

in two parts.

Part I. Term || %ZZT: (G — 5 o) Il
Using the same notation as that in Step 2 of Section we define,

S:={0, k, k)i £ or k#K, wherei,i’ =1,2,...,T and k, k' =j, —(+1,....j.} .
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Applying Lemma we have that, for arbitrarily small ¢ > 0 and any r < s <1,

TKA {Z Z [(AZkX)Q l{yAsz‘Sun} - (AZkXC>2} }

i=1 k=j.—0+1

1
a2 PldldD+ oo LSS

(4, ,k,k")eS i=1 k=j.—L+1

A*=s A3~
< < ( 5+ A3 Sylmsme 4 A2_<u4_2s_§) + ¢ ( + Aul=s + Az_gui_s> .
Uy, Up

IN

T A g TUA?

By letting s = r, we obtain that, for arbitrarily small ¢ > 0,

% (n(w71)+§ + nlfw(élfr) + nfw(er)Jrg) .

The same bound is obtained for E|7°—7]?. Therefore, for the same results in Theorem [2| to

hold, in addition to other conditions, one needs to ensure that, for arbitrarily small ¢ > 0,

1

T (n—2+2w+§ + n—l—(l—r)w—l—g _}_n—(4—27')w—|—§)_i_z (n(w—l)—l—g +n1—w(4—r) +n—w(2—r)+g) _ 0(1)

This amounts to

c>1—w(d—r),

and for arbitrarily small ¢ > 0,

b<min{2 —-2w—¢,1+(1—r)w—g,(4—2r)w—c}.
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Hence, it suffices to require that,
b<min{2 —2w, 14+ (1—r)w,(4—2r)w} and c¢>1—w(4—r).

Part II. Term (4(k).
Recall the definition of (4(k),

(k) = ﬁz Z / (02() — (i — 1 + K))dL.

i=1 k=j,—0+1 7 tik—1

Under the assumption that the volatility process o?(t) is rough, we calculate the order of

term (4(k) as follows,

E|<4<H>|QSE(T%AZ > /ti;”:w(t)_am_lm)dt)

i=1 k=j,—0+1

<oy 3 [ B -1 wra

i=1 k=j.—0+1 " tik—1

/ 2H
§C|i—1+fi—ti,jﬁ—z|2H§C<_) ,

n

where the third inequality follows from (B.3)). Therefore, under the conditions (B.4)), we
have VT || Ci(s) [I= op(1).

Combining the above results and the results for the rest terms in the proof of Theorem

completes the proof.
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