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Appendix A Monte Carlo Simulations

This section explores the performance of the general calendar-effect estimator (5) through

simulation experiments. The simulation setting is described in Section A.1, while Sections

A.2, A.3 and A.4 are devoted to finite-sample analysis of the functional theory in Theorem

6, the test for nonstationarity in the intraday volatility curve over time, and the pointwise

theory in Corollary 7, respectively.

A.1 The Simulation Setting

The log-price process X, the volatility process σ2, the calendar effect f , and the stationary

component σ̆2 of the volatility process σ2 are given, respectively, by,

X(t) = X(0) +
∫ t

0
σ(s) dW (s) +

∑Ñ(t)
j=1 Zj, σ2(t) = f (t− btc) σ̆2(t),

f(t) = 3
(
t− 1

2

)2
+ 3

4
, t ∈ [0, 1], σ̆2(t) = σ̆2

1(t) + σ̆2
2(t),

σ̆2
1(t) = σ̆2

1(0) +
∫ t

0
λ (η̃ − σ̆2

1(s)) ds +
∫ t

0
ξ σ̆1(s) dW̃ (s),

σ̆2
2(t) = exp(−λ̃t) σ̆2

2(0) +
∫ t

0
exp{−λ̃(t− s)} dz(λ̃s),

(A.1)

where Ñ(t) is a homogeneous Poisson process with constant intensity λJ , {Zj}j≥1 is an iid

sequence of N(0, σ2
J) distributed random variables, the quadratic covariation is given by

[W, W̃ ](t) = ρ t, and z is a nonnegative increasing Lévy process such that the (stationary)

marginal distribution of σ̆2
2 is Γ(νOU, 1/αOU). In the simulation, we exploit the specification

provided by [1], fixing the model parameters as follows,

(X(0), λ, η̃, ξ, λJ , σJ , ρ, λ̃, νOU, αOU) = (1, 4, 0.4068, 1.8, 0.19, 0.9654,−0.5, 0.6930, 1, 0.1).

2



Throughout, we set n = 2,730, corresponding to a sampling frequency of 30 seconds across

22.75 hours, mimicking the trading day for the e-mini S&P 500 futures in our empirical

analysis. For each simulation trial, we generate a series of 1,500-day thirty-second prices.

The following results are based on 1,000 trajectories with T ≤ 1,500. In truncating the

price jumps, we employ the time-varying threshold un = 3
√
BVi ∧RVi ∆3/8 with,

BVi =
π

2

n∑
j=2

∣∣∆n
i,j−1X

∣∣ ∣∣∆n
i,jX

∣∣ and RVi =
n∑
j=1

(
∆n
i,jX

)2
.

A.2 Finite-Sample Evidence for Functional Inference

This section provides a simulation experiment to explore the workings of the feasible (func-

tional) central limit theorem in the L2 metric, i.e., Corollary 3 and Theorem 6. Figure 1

depicts the empirical distribution of T ‖ f̂(κ)− f(κ) ‖2 for ` = 10 and T =1,500 based on

1,000 trials. Because one can not explicitly evaluate the integral T ‖ f̂(κ) − f(κ) ‖2, we

approximate the integral using a Riemann sum with the interval [0, 1] partitioned into 100

equidistant subintervals.

We compare the empirical distribution, obtained as indicated above, with the limiting

distribution of T ‖ f̂(κ) − f(κ) ‖2 (and Z in Corollary 3). As discussed in Section 4,

the distribution of Z may be approximated by that of Ẑ in equation (21), with the latter

obtained through Monte Carlo simulation. This involves computing eigenvalues of the

limiting covariance matrix estimator (Ĉ(κi, κj))1≤i,j≤100 with the entries defined in equation

(18). In this study, we use the average limiting covariance matrix estimates over 1,000

trajectories rather than relying on a single trajectory to compute the eigenvalues associated

with equation (21) and, consistent with the properties of the limiting variable, we retain

only the terms featuring positive eigenvalues. Figure 1 also displays the limiting distribution

of T ‖ f̂(κ) − f(κ) ‖2 obtained in this manner for Ln = 7 (recall, Ln is defined below
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equation (18)). Note that, in Theorem 6, we require Ln � n% for a strictly positive %

satisfying equation (20). In our simulations, $ = 3/8. If one takes b ≈ 9/10 and c ≈ 1/2

for T = 1,500, ` = 10, and n = 2,730, then condition (20) reduces to % < 1/4. For simplicity,

we implement Ln = bmin{T 1/2, n1/4}c in all our numerical illustrations, implying Ln = 7

for T =1,500 and n = 2,730. Figure 1 demonstrates that the limiting distribution (red

curve) approximates the empirical distribution (histogram) of T ‖ f̂(κ) − f(κ) ‖2 quite

well, corroborating the theory developed in Corollary 3 and Theorem 6.
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Figure 1. Approximating the distribution of the limiting variable Z. The his-
togram represents the empirical distribution of T ‖ f̂(κ) − f(κ) ‖2 with ` = 10 based on

1,000 simulation trials. The red curve indicates the density of Ẑ in equation (21) obtained
through Monte Carlo, as described in the main text.
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A.3 Finite-Sample Test Performance

In this section, we seek to investigate the performance of our test (10) for a shift in the

functional characterizing the average intraday volatility pattern for two non-overlapping

periods P and P ′. To ensure we capture the test performance within an empirically relevant

setting, we calibrate the calendar effect to volatility curves obtained for two subsamples in

our empirical study of the e-mini S&P 500 futures contract in Section 6. Specifically, we rely

on the estimated volatility curves for periods covering 2005–2010 and 2015–2020, with the

number of trading days equaling T = 991 and T ′ = 1248, respectively. We generate 1,000

simulated samples from model (A.1), but with the intraday volatility pattern modified to

equal one of those estimated for the above subsamples. The shape of the curves is provided

by the far left and right displays in the bottom panel of Figure 1 in Section 6.2.

The formal setup under the null hypothesis is H0 : fP = fP′ = f05−10, and it takes

the form HA : fP = f05−10 and fP′ = f15−20 under the alternative, where f05−10 and

f15−20 denote the estimated calendar effect functions for the e-mini futures over 2005-

2010 and 2015-2020. That is, under the null hypothesis, we generate samples P and

P ′ that all incorporate the volatility curve for 2005–2010. We then compute the test

statistic, T ‖ f̂P(κ) − f̂P′(κ) ‖2, using a Riemann sum over the same grid employed for

generating the volatility curve (with ` = 10), i.e., the interval [0, 1] is partitioned into

100 equal subintervals. We perform feasible inference following the procedure outlined in

Section 4. Here again we use the average limiting covariance matrix estimates over 1,000

trajectories rather than relying on a single trajectory to compute the eigenvalues associated

with equation (22) and, consistent with the properties of the limiting variable, we retain

only the terms featuring positive eigenvalues.

Table 1 reports empirical rejection rates for the test under the null hypothesis at signif-

icance levels 1%, 5% and 10%. The top row of the table shows that the test is well sized.

5



Under the alternative hypothesis, the data are generated with different underlying volatil-

ity curves. Hence, the universal rejections reported in the second row of Table 1 reflect

high power of the test in detecting the discrepancy between the two functions governing

the respective intraday volatility patterns.

Table 1. Test size and power. The null hypothesis is H0 : fP = fP′ = f05−10, and the
alternative is HA : fP = f05−10 and fP′ = f15−20. The test statistic is T ‖ f̂P(κ)− f̂P′(κ) ‖2,
whose realization is computed using a Riemann sum over the same grid points employed
in generating the calendar effects (` = 10). The limiting distribution of the test statistic
under the null is approximated as described in Section 4. The table reports rejection rates
for the test at significance levels 1%, 5% and 10% using 1000 trials.

Significance level 1% 5% 10%

Size under H0 0.009 0.059 0.116
Power under HA 1.000 1.000 1.000

A.4 Finite-Sample Evidence for Pointwise Inference

Figure 2 illustrates the pointwise feasible central limit theorem of Corollary 7, where we

depict the empirical distribution of the standardized f̂(κ) and associated Normal Q-Q plot

for different values of κ for ` = 10, n =2,730, and T = 1,500. The data are generated from

model (A.1). Note that f̂(κ) is standardized according to Corollary 7 with Ln = 7. It is

apparent that the limiting distribution approximates the empirical distribution well.

We next explore how different values for ` and T affect the performance of the calendar-

effect estimator in finite samples. Without loss of generality, we fix κ = 0.2. Table 2 reports

the finite-sample bias, standard deviation (StDev), and root mean squared error (RMSE)
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κ = 0.2
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Figure 2. Empirical distribution of the standardized calendar-effect estimator.
The empirical distribution of the standardized calendar-effect estimator f̂(κ) and associated
Normal Q-Q plots for different values of κ and ` = 10 with data generated from model
(A.1) by 1,000 simulation trials. f̂(κ) is standardized according to Corollary 7 with Ln = 7.

of the estimator f̂(κ) across different combinations of ` and T based on 1,000 replications.

Two main conclusions emerge. First, when ` is fixed, larger T leads to a smaller standard

deviation and root mean squared error. Note that the convergence rate of the calendar-

effect estimator is
√
T . Second, for fixed T , the rows with ` ranging from 5 to 30 show that

a large value of ` leads to a larger bias and smaller standard deviation. This finite-sample

bias-variance tradeoff is also evident from the associated RMSE values. This is in line with

our theoretical analysis in Section 5.
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Table 2. Finite-sample performance of the calendar-effect estimator. Finite-
sample statistics for the f̂(κ) estimator with κ = 0.2. The data are generated from model
(A.1) with n = 2730 over 1,000 trials. “Bias”, “StDev” and “RMSE” refer to the bias,
standard deviation and root mean squared error. The true value of f(0.2) is 1.02.

`
T = 500 T = 1000 T = 1500

Bias StDev RMSE Bias StDev RMSE Bias StDev RMSE

1 -0.0036 0.0873 0.0873 -0.0034 0.0630 0.0631 -0.0006 0.0497 0.0497
5 0.0022 0.0461 0.0461 0.0010 0.0325 0.0325 0.0016 0.0270 0.0270
10 0.0042 0.0368 0.0370 0.0023 0.0268 0.0268 0.0025 0.0222 0.0223
15 0.0047 0.0338 0.0341 0.0038 0.0247 0.0250 0.0042 0.0204 0.0208
20 0.0070 0.0316 0.0324 0.0060 0.0229 0.0236 0.0061 0.0189 0.0199
25 0.0084 0.0304 0.0315 0.0076 0.0221 0.0233 0.0078 0.0182 0.0198
30 0.0100 0.0300 0.0316 0.0093 0.0217 0.0236 0.0094 0.0179 0.0202

Appendix B Additional Theoretical Results

B.1 Accommodating rough volatility and infinite jump activity

This section provides an extension to our functional CLT for f̂(κ) accommodating more

general volatility and price jump settings. For the price process, we retain the setup of the

main text, except that we replace the finite activity jump condition F (R) <∞ with,∫
R
(|x|r ∨ |x|)F (dx) <∞, for some r ∈ [0, 1]. (B.1)

8



We then define the jump component of the price process as follows,

XJ(t) := X(t)−Xc(t) =

∫ t

0

∫
R
xν(ds, dx), (B.2)

where Xc is the continuous part of the latent price process X, given by,

Xc(t) := X(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s).

Condition (B.1) allows for XJ(t) to be of infinite activity, with the parameter r controlling

the concentration of small jumps.

Turning to the latent volatility process, we impose the following generic assumption,

E|σ2(t)− σ2(s)|2 ≤ C|t− s|2H , (B.3)

for any s, t > 0, some 0 < H ≤ 1, and a generic constant C. If σ2(t) is an Itô semi-

martingale, as stipulated in the main text, the above condition applies with H = 1/2.

The assumption also allows for general volatility jump processes of infinite activity. When

(B.3) holds with H < 1/2, our setup accommodates the so-called rough volatility models

in which volatility is driven by fractional Brownian motion, see e.g., [4] and [12].

The next theorem presents the CLT for the calendar effect estimator under the above

extended setup. It demonstrates explicitly how the jump activity index r and the volatility

roughness index H affect the rate at which T , and hence `, diverges.

Theorem 8. Assume the same setup and assumptions as in Theorem 2, except for F being

subject to condition (B.1) and σ2(t) being a rough process satisfying condition (B.3). Let

T � nb and ` � nc for some nonnegative exponents b and c subject to the conditions,

9



0 < b < min{2− 2$, 1 + (1− r)$, (4− 2r)$} and 1−$(4− r) < c < 1− b/(2H),

(B.4)

where 0 < $ < 1/2. Then, as n→∞,

√
T
(
f̂(κ)− f(κ)

)
d−→ GK in L2,

where GK is an L2-valued zero-mean Gaussian process with covariance operator K defined

through the kernel C(κ, κ′) in equation (8) as follows,

K y(κ′) =

∫
[0,1]

C(κ, κ′) y(κ) dκ, ∀y ∈ L2 .

We close this section by investigating how the price jump activity index r and volatility

roughness index H affect the bias-variance tradeoff for `. The difference between Theorems

2 and 8 is that the feasible regions of b and c given by condition (9) is replaced with that

given by condition (B.4). The `-related terms II and III in Section 5 now have orders,

term II = OP

(
1

n(b+c)/2

)
and term III = OP

(
1

n(1−c)H

)
.

We now provide the optimal choice of c, copt, for each configuration of $, r, H and b, which

minimizes the order of the sum of terms II and III. It is readily established that, for each

configuration of $, r and H, the feasible values of b are given by the interval (0, bU), where,

bU := min{2− 2$, 1 + (1− r)$, (4− 2r)$, 2H};

and the feasible values of c consist of the interval (cL, cU), where.

cL := max{1−$(4− r), 0} and cU := 1− b

2H
.

10



By similar arguments to those in Section C.8, we obtain the following exhaustive list of

distinct cases with corresponding optimal c values,

copt =



2H
2H+1

− b
2H+1

, for b ∈ (0, bU) when cL = 0 ,

2H
2H+1

− b
2H+1

, for b ∈ (0, bU) when cL ∈ (0, 2H
2H+1

) and bU ≤ 2H − (2H + 1)cL,

2H
2H+1

− b
2H+1

, for b ∈ (0, 2H − (2H + 1)cL] when cL ∈ (0, 2H
2H+1

)

and bU > 2H − (2H + 1)cL,

cL+, for b ∈ (2H − (2H + 1)cL, bU) when cL ∈ (0, 2H
2H+1

)

and 2H − (2H + 1)cL < bU ≤ 2H − 2HcL,

cL+, for b ∈ (2H − (2H + 1)cL, 2H − 2HcL] when cL ∈ (0, 2H
2H+1

)

and bU > 2H − 2HcL,

cL+, for b ∈ (0, 2H − 2HcL] when cL ≥ 2H
2H+1

and bU > 2H − 2HcL,

cL+, for b ∈ (0, bU) when cL ≥ 2H
2H+1

and bU ≤ 2H − 2HcL,

where cL+ indicates a value of c as close to cL as possible from above.

We note that both r and H affect the feasible choices for b and the optimal value of

c. In particular, higher jump activity restricts the range of b. We note, however, that if r

is close to 1 and the threshold parameter $ is taken very close to 1/2, then a value of b

slightly below 1 is feasible. Similarly, lower levels of H < 1/2, which correspond to rougher

volatility paths, restrict the maximum possible value of b. This is intuitive as, for rougher

volatility paths, the approximation error due to the discretization of the volatility path is

higher.

11



B.2 Uniform confidence regions

This section provides a joint confidence region and band for the calendar effect function

f(κ). Confidence regions and bands for functional parameters are less studied than other

core concepts and tools in the functional data analysis literature, because they, in general,

are nontrivial to construct and visualize due to the infinite dimensional nature of the

parameter. Nonetheless, under specific conditions on the covariance kernel of the limiting

distribution, [2] develop and visualize confidence regions with the desired confidence level.

We adapt their approach to our setting here.

Recall that (πi)i≥1 are the eigenvalues (in descending order) of the covariance operator

K with kernel C(κ, κ′) in Theorem 2 and (8). Let (ψi)i≥1 be the corresponding orthonormal

eigenfunctions. We then have the following confidence region of hyper-ellipsoid form,

Ef̂ :=

{
h ∈ L2 :

∞∑
j=1

〈
√
T (f̂ − h), ψj〉2

c2
j

≤ υ

}
,

where (ci)i≥1 are predefined weights depending on (πi)i≥1 and υ is a generic number. If

one takes υ to be the 1 − α quantile of a weighted sum of chi-squared random variables

(X 2
i )i≥1, i.e.,

∑∞
j=1 πjX 2

j /c
2
j , it then follows immediately from Theorem 2 that

P (f ∈ Ef̂ ) −→ 1− α.

That is, the confidence region Ef̂ has the desired asymptotic confidence level 1 − α. To

visualize the region Ef̂ , we propose the following symmetric confidence band due to [2],

Bf̂ :=
{
h ∈ L2 : |h(κ)− f̂(κ)| ≤ r(κ), for κ ∈ [0, 1] almost everywhere

}
, (B.5)
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where,

r(κ) :=

√√√√ υ

T

∞∑
j=1

c2
jψj(κ)2. (B.6)

The following proposition is a direct consequence of our Theorem 2 and Theorem 1 of [2].

Proposition 9. Suppose all assumptions and conditions of Theorem 2 hold. If
∑∞

j=1 c
2
j <

∞ and
∑∞

j=1 πjc
−2
j <∞, then r(κ) ∈ L2 and Ef̂ ⊂ Bf̂ . Therefore, P (f ∈ Bf̂ ) ≥ 1−α+o(1).

This proposition shows that the simultaneous confidence band Bf̂ has the desired level

of coverage. However, these bands are infeasible, as (πj)j≥1 and (ψj)j≥1 are unknown.

We estimate them by the eigenvalues (π̃j)j≥1 and orthonormal eigenfunctions (ψ̃j)j≥1 of

the integral operator K̂ with kernel Ĉ(κ, κ′) defined in (19) and (18), respectively. Define

L2
J := span{(ψ̃j)1≤j≤J} ⊂ L2, where J ≤ T. A feasible confidence region is then given by,

Êf̂ :=

{
h ∈ L2

J :
J∑
j=1

〈
√
T (h− f̂), ψ̃j〉2

c2
j

≤ υ

}
,

where one may take υ to be the 1 − α quantile of a weighted sum of chi-squared ran-

dom variables with weights (π̃jc
−2
j )1≤j≤J . As argued by [2], because f̂ lies outside the

span{ψ̃1, . . . , ψ̃J} almost surely, Êf̂ has zero-coverage. However, we shall show below that

Êf̂ converges to Ef̂ , which has the desired asymptotic level of confidence, at a rate faster

than 1/
√
T in Hausdroff distance. Note that the infeasible region Ef̂ shrinks to a point at

the rate 1/
√
T , suggesting that Êf̂ is a feasible proxy for Ef̂ .

We denote the confidence band associated with Êf̂ as B̂f̂ , which is defined analogously

13



to (B.5) and (B.6), i.e.,

B̂f̂ :=
{
h ∈ L2

J : |h(κ)− f̂(κ)| ≤ rJ(κ), for κ ∈ [0, 1] almost everywhere
}
, (B.7)

where

rJ(κ) :=

√√√√ υ

T

J∑
j=1

c2
j ψ̃j(κ)2. (B.8)

We next present the convergence results about Êf̂ . To this end, we need some additional

notation and an assumption. We denote the Hausdroff distance dH(S1, S2) between two

subsets S1 and S2 of L2 as

dH(S1, S2) := max{Ψ(S1, S2),Ψ(S2, S1)}, where Ψ(S1, S2) = sup
x∈S1

inf
y∈S2

‖ x− y ‖ .

Moreover, define

q̃ :=

(
min{c/2, (1− c)/4, 2$ − 3(1− c)/4, b/2, 2$ − 7/8 + 7(b+ c)/8} − %

)2

∧ (9%2).

Under condition (20) of Theorem 6, it follows directly from Lemma 17 in Section C.6 that,

‖ K̂ − K ‖2
HS= OP (n−q̃), (B.9)

where q̃ > 0. The following explicit assumption (cf. Assumption 3 of [2]) on the eigenvalues

πj and weights c2
j is needed.
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Assumption UB. There exist constants ε > 1 and ϑ > 0 such that,

πj �
1

jε
, πj − πj+1 �

1

jε+1
, and c2

j �
1

j2ϑ
,

where 2ϑ < ε− 1.

The first condition above controls the rate at which the eigenvalues πj shrink to zero.

The second one controls the gaps between the eigenvalues, πj − πj+1, which in turn affect

the accuracy of eigenfunction estimation. The last condition controls the rate at which

c2
j shrinks to zero, ensuring the convergence of

∑∞
i=j πjc

−2
j and the compactness of the

confidence region. Similar assumption is imposed by [10].

We may now provide the convergence results for Êf̂ . The following proposition is a

straightforward consequence of (B.9) and Theorem 4 and Corollary 1 of [2]. It shows that

the distance between the feasible region Êf̂ and the infeasible region Ef̂ converges to zero

at a rate faster than 1/
√
T under the conditions of our Theorem 6 and Assumption UB.

Proposition 10. Suppose that all the assumptions and conditions of Theorem 6 hold. If

Assumption UB and J � T q̃/(2ε+2ϑ+3) hold, then

dH(Êf̂ , Ef̂ )
2 = OP

(
T−(2− 2ε+3+2ϑ(1−q̃)

2ε+3+2ϑ )
)
.

We implement the feasible simultaneous band B̂f̂ defined in (B.7) and (B.8) with c2
j =

(
∑J

k=j π̃k)
1/2 in our numerical studies. This version of the confidence band is denoted B̂Ec .

It is in accordance with the ideal (infeasible) choice of c2
j = (

∑∞
k=j πk)

1/2, which ensures

that
∑∞

j=1 πjc
−2
j <∞. In our implementation, we compute eigenvalues and eigenfunctions

of Ĉ(κ, κ′) using the same matrix scheme as that adopted in Section 3.2 of [1].

Using the setup in Section A.1, we investigate the empirical coverage rate of the pro-
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posed uniform confidence band B̂Ec via simulations. The performance of B̂Ec is quite robust

for 50 ≤ J ≤ 100, so we provide results for J = 50 only. Based on 1000 trials, the simul-

taneous coverage rate of B̂Ec with 95% nominal level is 100%. By contrast, the confidence

bounds, constructed using the pointwise theory in Corollary 7 with a 95% nominal level,

only have a simultaneous coverage rate of 2%. The left panel of Figure 3 displays pointwise

coverage rates for both the uniform confidence band and the pointwise confidence bounds.

We also provide the calendar effect function estimate along with 95% confidence bounds

for a particular simulation trial in the right panel of Figure 3. It illustrates the moderately

wider width of the uniform confidence band B̂Ec relative to the pointwise bounds.
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Figure 3. Comparison between B̂P and B̂Ec based on 1000 simulation trials. The
results rely on data generated from the setup in Section A.1. B̂P indicates the pointwise
95% confidence intervals constructed using Corollary 7 with Ln = 7. B̂Ec refers to the si-
multaneous 95% confidence bands constructed using the theory in Section B.2. Left panel:
Local empirical coverage rates. As indicated in the legend, the simultaneous coverage rates
for B̂P and B̂Ec are 2% and 100%, respectively. Right panel: Calendar effect estimates
together with 95% confidence bounds for a particular sample path.
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An application of B̂Ec to the e-mini over the subsamples is presented in Figure 4.

Not surprisingly, the simultaneous confidence bounds are wider than the pointwise ones.

In practice, B̂Ec may occasionally produce negative lower bounds for real data, e.g., the

subsamples covering periods 2005–2010 and 2015–2020, especially the period 2015–2020.

If this is the case, we suggest using a log transformation and functional Delta method to

ensure positiveness. To be precise, under mild conditions, by Theorem 2 and the functional

Delta method, one would obtain

√
T
(

log
(
f̂(κ)

)
− log (f(κ))

)
d−→ GKlog

in L2,

where GKlog
is an L2-valued zero-mean Gaussian process with covariance operator Klog

that has C(κ, κ′)/(f(κ)f(κ′)) as its kernel function. Therefore, the previous method of

constructing uniform confidence bounds of f(κ) applies straightforwardly for constructing

that of log(f(κ)). The simultaneous confidence bounds of f(κ) then readily follows by

applying the natural exponential function to both the upper and lower confidence bounds

of log(f(κ)). Figure 4 also displays simultaneous confidence bounds thus obtained for the

three subsamples.
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Figure 4. Intraday volatility curves for the e-mini over subsamples. B̂P indicates
the pointwise 95% confidence intervals constructed using Corollary 7 with Ln = 7. B̂Ec

indicates the simultaneous 95% confidence bands constructed as in Section B.2. B̂Ec with
log transformation indicates the simultaneous confidence bands constructed based on log
transformation which ensures positiveness of the lower confidence bounds.

Appendix C Proofs

Throughout this section, without further mention, we shall focus on κ ∈ [`∆, 1] in the

derivations of upper bounds for moments of various terms involving σ̂2
i,κ. The same results

and proofs as that for κ ∈ [`∆, 1] obviously apply to the case κ ∈ [0, `∆).

Recall that Xc is the continuous part of the latent price process X, defined as,

Xc(t) := X(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s).

In the proofs below, we rely on the calendar-effect estimator f̂ c(κ) for Xc given by,

f̂ c(κ) :=
1

T

T∑
i=1

σ̂2,c
i,κ

/
η̂c ,
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where,

σ̂2,c
i,κ :=

1

`∆

jκ∑
k=jκ−`+1

(
∆n
i,kX

c
)2

and η̂c :=
1

T

T∑
i=1

n∑
j=1

(
∆n
i,jX

c
)2
.

Throughout the proofs, C denotes a generic positive constant and ς > 0 is an arbitrarily

small number. Both may change value from line to line.

Furthermore, we will use the following notation throughout the proofs below,



ζ1(κ) := 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

[∫ ti,k
ti,k−1

µ(t)dt
]2

,

ζ2(κ) := 2
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

∫ ti,k
ti,k−1

µ(t)dt
∫ ti,k
ti,k−1

σ(t)dW (t),

ζ3(κ) := 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

{[∫ ti,k
ti,k−1

σ(t)dW (t)
]2

−
∫ ti,k
ti,k−1

σ2(t)dt

}
,

ζ4(κ) := 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

∫ ti,k
ti,k−1

[σ2(t)− σ2(i− 1 + κ)] dt,

ζ5(κ) := 1
T

∑T
i=1 σ

2(i− 1 + κ)− f(κ)
T

∑T
i=1

∫ i
i−1

σ2(t)dt, and

ζ6(κ) := f(κ)
[

1
T

∑T
i=1

∫ i
i−1

σ2(t)dt− η̂c
]
,

(C.1)

where κ ∈ [0, 1] and note that, by the definition of σ̂2
1,κ for κ ∈ [0, `∆), the inner summation

variable k of the first four terms always takes values from 1 to ` when κ ∈ [0, `∆) and the

outer summation variable i = 1 (i.e., jκ is fixed at ` in this case). Recalling the definition

of Ai(κ) in equation (7), one readily sees that ζ5(κ) =
∑T

i=1 Ai(κ)/T .

The following lemma will be repeatedly used in the proofs of Theorems 1 and 2.

Lemma 11. Suppose that Assumption I(ii) holds. Then,

E |ζ1(κ)|m ≤ C

nm
, E |ζ2(κ)|m ≤ C

nm/2
and E |ζ3(κ)|m ≤ C

(T`)m/2

for any m ≥ 2 and any κ ∈ [0, 1].
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Proof of Lemma 11. For term ζ1(κ), we have,

E |ζ1(κ)|m ≤ E

 1

T`∆m

T∑
i=1

jκ∑
k=jκ−`+1

(∫ ti,k

ti,k−1

µ(t)dt

)2m


≤ ∆m−1

T`

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

E (µ(t))2m dt ≤ C

nm
,

where the first two inequalities follow from Jensen’s inequality, and the last inequality is

implied by Assumption I(ii).

For the term ζ2(κ), by Cauchy-Schwarz inequality, Jensen’s inequality, Itô isometry and

Assumption I(ii), we obtain,

E |ζ2(κ)|m ≤ 1

T`∆m

T∑
i=1

jκ∑
k=jκ−`+1

E

∣∣∣∣∣
∫ ti,k

ti,k−1

µ(t)dt

∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
m

≤ 1

T`∆m

T∑
i=1

jκ∑
k=jκ−`+1

E ∣∣∣∣∣
∫ ti,k

ti,k−1

µ(t)dt

∣∣∣∣∣
2m

E

∣∣∣∣∣
∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
2m
1/2

≤ ∆m/2−1

T`

T∑
i=1

jκ∑
k=jκ−`+1

[∫ ti,k

ti,k−1

E |µ(t)|2m dt
∫ ti,k

ti,k−1

E (σ(t))2m dt

]1/2

≤ C

nm/2
.

We now deal with term ζ3(κ). We first define the following continuous martingale,

M1(t) :=
1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1


[∫ t∧ti,k

t∧ti,k−1

σ(s)dW (s)

]2

−
∫ t∧ti,k

t∧ti,k−1

σ2(s)ds


on the interval [0, T ]. One readily sees ζ3(κ) = M1(T ). The quadratic variation of M1(t) is
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takes the form,

[M1,M1] (t) =
4

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

∫ t∧ti,k

t∧ti,k−1

(
σ(u)

∫ u

ti,k−1

σ(s)dW (s)

)2

du,

following the method in Section 2.3.3 on page 136 of [9]. Then we obtain,

E |ζ3(κ)|m ≤ CE

 4

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

(
σ(t)

∫ t

ti,k−1

σ(s)dW (s)

)2

dt

m/2

≤ C

(T`)m/2+1∆m

T∑
i=1

jκ∑
k=jκ−`+1

E

∫ ti,k

ti,k−1

(
σ(t)

∫ t

ti,k−1

σ(s)dW (s)

)2

dt

m/2

≤ C

(T`∆)m/2+1

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

E

∣∣∣∣∣σ(t)

∫ t

ti,k−1

σ(s)dW (s)

∣∣∣∣∣
m

dt

≤ C

(T`∆)m/2+1

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[
E

(∫ t

ti,k−1

σ2(s)ds

)m

E
(
σ2m(t)

)]1/2

dt

≤ C

(T`∆)m/2+1

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[
∆m−1

∫ t

ti,k−1

E
(
σ2m(s)

)
ds

]1/2

dt ≤ C

(T`)m/2
,

where the second and third inequalities follow from Jensen’s inequality, the fourth inequality

follows from the Cauchy-Schwarz inequality and the Burkholder-Davis-Gundy inequality,

and the last inequality follows from Jensen’s inequality and Assumption I(ii).

In what follows, we use the shorthand notation

N(t) :=

∫ t

0

∫
R
ν(ds, dx) and ∆n

i,jN :=

∫ ti,j

ti,j−1

∫
R
ν(dt, dx).

The following two lemmas are repeatedly used in the proofs of Theorems 1, 2 and 6.
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Lemma 12. Let j be a positive integer. Suppose that im ∈ {1, 2, . . . , T} and km ∈

{1, 2, . . . , n} for m ∈ {1, 2, . . . , j}, and without loss of generality that 0 < ti1,k1 < ti2,k2 <

· · · < tij ,kj ≤ T. Then, under Assumption I(ii), we have that E
(

1{∆n
i1,k1

N>0}

)
≤ C∆ and,

E
(

1{∆n
i1,k1

N>0}1{∆n
i2,k2

N>0} · · · 1{∆n
ij ,kj

N>0}

)
≤ C∆j−ς ,

for j ≥ 2 and arbitrarily small ς > 0.

Proof of Lemma 12. First note that N(t) =
∫ t

0

∫
R ν(dt, dx) is a counting process with in-

tensity χ(t)F (R). Then N(t)−
∫ t

0
χ(s)dsF (R) is a martingale by Assumption I(ii).

When j = 1, the result follows immediately from,

E
(

1{∆n
i1,k1

N>0}

)
≤ E

(
∆n
i1,k1

N
)

= F (R)E

∫ ti1,k1

ti1,k1−1

χ(s)ds ≤ C∆.

When j = 2, we have that, for any ω > 1,

E
(

1{∆n
i1,k1

N>0}1{∆n
i2,k2

N>0}

)
= E

[
1{∆n

i1,k1
N>0}Eti2,k2−1

(
1{∆n

i2,k2
N>0}

)]
≤ CE

[
1{∆n

i1,k1
N>0}Eti2,k2−1

(∫ ti2,k2

ti2,k2−1

χ(s)ds

)]

= CE

{
1{∆n

i1,k1
N>0}

∫ ti2,k2

ti2,k2−1

χ(s)ds

}

≤ C

[
E

(∫ ti2,k2

ti2,k2−1

χ(s)ds

)ω]1/ω [
E
(

1{∆n
i1,k1

N>0}

)]1−1/ω

≤ C

[
∆ω−1

∫ ti2,k2

ti2,k2−1

Eχ(s)ωds

]1/ω

∆1−1/ω ≤ C∆2−1/ω,

where the second inequality follows from Hölder’s inequality, the third inequality follows
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from Jensen’s inequality, and the last inequality follows from Assumption I(ii). Therefore,

we obtain,

E
(

1{∆n
i1,k1

N>0}1{∆n
i2,k2

N>0}

)
≤ C∆2−ς ,

for arbitrarily small ς > 0.

By induction, the lemma holds for any positive integer j > 2.

Lemma 13. Suppose that Assumption I(ii) holds. Then we have

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣ ≤ C∆2$ and E |η̂ − η̂c| ≤ C∆2$.

Proof of Lemma 13. First, for any ω > 2, we rewrite and calculate the stochastic order of∑T
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
/T as follows,

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣
≤ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[
E
∣∣∣(∆n

i,kX
c
)2

1{|∆n
i,kX

c|>un}
∣∣∣

+E
∣∣∣(∆n

i,kX
)2

1{|∆n
i,kX|≤un}1{∆n

i,kN>0}
∣∣∣+ E

∣∣∣(∆n
i,kX

c
)2

1{∆n
i,kN>0}

∣∣∣]
≤ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[(
E
∣∣∆n

i,kX
c
∣∣ω)2/ω

(
E
∣∣∣1{|∆n

i,kX
c|>un}

∣∣∣)1−2/ω

+u2
nP
(
∆n
i,kN > 0

)
+
(
E
∣∣∆n

i,kX
c
∣∣ω)2/ω (

P
(
∆n
i,kN > 0

))1−2/ω
]

≤ C
(
∆(ω−2)(1/2−$) ∨∆2$ ∨∆1−2/ω

)
, (C.2)

where the second inequality follows from Hölder’s inequality and the last inequality follows
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from Markov inequality, Burkholder-Davis-Gundy inequality and Lemma 12. Note that

supt∈R+
E
(
e|µ(t)|)+supt∈R+

E
(
e|σ(t)|) <∞ in Assumption I(ii) implies boundedness of mo-

ments of all orders for |µ(t)| and σ(t). This in turn allows one to apply Hölder’s inequality

with arbitrarily large ω > 0 in obtaining (C.2), where the constant C arises from the upper

bound of higher order moments of |µ(t)| and |σ(t)| and the applications of Burkholder-

Davis-Gundy inequality, the elementary inequality ex ≥ 1 + x + x2/2 + . . . + xm/m! for

x ≥ 0 and any integer m ≥ 1, and Lemma 12. Therefore, one can always choose a large

enough ω such that,

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣ ≤ C∆2$.

Second, by substituting n for ` in the arguments for deriving the result in (C.2), we

obtain,

E |η̂ − η̂c| ≤ C∆2$,

completing the proof.

C.1 Proof of Theorem 1

By triangle inequality, we have,

‖ f̂(κ)− f(κ) ‖≤‖ f̂ c(κ)− f(κ) ‖ + ‖ f̂(κ)− f̂ c(κ) ‖ .

We divide the proof into two steps. We prove ‖ f̂ c(κ) − f(κ) ‖ P−→ 0 in the first step and

‖ f̂(κ)− f̂ c(κ) ‖ P−→ 0 in the second.

Step 1. By using the notation in (C.1) and triangle inequality, we can rewrite the
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estimation error of f̂ c(κ), which is built on the continuous part of X, as follows,

‖ f̂ c(κ)− f(κ) ‖ =
1

η̂c
‖ 1

T

T∑
i=1

σ̂2,c
i,κ − f(κ)η̂c ‖≤ 1

η̂c

6∑
i=1

‖ ζi(κ) ‖ . (C.3)

We first show that η̂c converges in probability to η. The difference between η̂c and η is

decomposed as follows,

η̂c − η =

(
1

T

T∑
i=1

n∑
j=1

(
∆n
i,jX

c
)2 − 1

T

T∑
i=1

∫ i

i−1

σ2(t)dt

)
+

(
1

T

T∑
i=1

∫ i

i−1

σ2(t)dt− η

)
. (C.4)

It follows easily from Itô’s lemma and the integrability assumption for µ and σ that the

first term on the right hand side of (C.4) tends to zero in probability as n, T → ∞. We

next deal with the second term on the right hand side of (C.4). Let Ei be conditional

expectation with respect to the sigma field Gi (see Assumption II for definition). Then for

any ω > 2(1 + ι)/ι where ι is given in Assumption II, we have that,

E

(
1

T

T∑
i=1

∫ i

i−1

σ2(t)dt− η

)2

=
2

T 2

T∑
i=1

T∑
j=i+1

E

{(∫ i

i−1

σ2(t)dt− η
)
Ei

(∫ j

j−1

σ2(t)dt− η
)}

+
1

T 2

T∑
i=1

E

(∫ i

i−1

σ2(t)dt− η
)2

=
2

T 2

T∑
i=1

T∑
j=i+1

(
E

∣∣∣∣∫ i

i−1

σ2(t)dt− η
∣∣∣∣ω)1/ω

(
E

∣∣∣∣Ei(∫ j

j−1

σ2(t)dt− η
)∣∣∣∣ω/(ω−1)

)1−1/ω

+
C

T

≤ C

T 2

T∑
i=1

T∑
j=i+1

α
1−2/ω
j−i +

C

T
≤ C

T
,

where the first inequality follows from Assumptions I(ii) and II with q = 1, Hölder’s

inequality and Lemma 3.102 on page 497 of [7]. Hence, we have that the second term on
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the right hand side of (C.4) goes to zero in probability. Therefore, η̂c
P−→ η.

It remains to show that,
6∑
i=1

‖ ζi(κ) ‖ P−→ 0.

To this end, we treat terms ζi(κ), i = 1, 2, ..., 6, one by one. For terms ζ1(κ), ζ2(κ) and

ζ3(κ), applying Lemma 11 with m = 2 and Jensen’s inequality, we obtain,

E ‖ ζi(κ) ‖≤
(∫

[0,1]

E |ζi(κ)|2 dκ
)1/2

≤ C

(
1√
n
∨ 1√

T`

)
,

for i = 1, 2, 3. Thus,

3∑
i=1

‖ ζi(κ) ‖= OP

(
1√
n
∨ 1√

T`

)
. (C.5)

Next, we deal with the term ζ4(κ). By Proposition II.1.28 and Theorem II.1.33 on

pages 72-73 of [7],
∫
R |x|

2F̃ (dx) < ∞ and supt∈R+
E |χ̃(t)|2 < ∞ in Assumption I(ii), we

have that, ∫ t

0

∫
R
xν̃(ds, dx)−

∫ t

0

∫
R
xχ̃(s)dsF̃ (dx)

is a locally square integrable martingale. Then, applying Theorem I.3.17 and Proposi-

tion II.1.28 on pages 32 and 72 of [7],
∫
R |x|

2F̃ (dx) < ∞ and supt∈R+
E |χ̃(t)|2 < ∞ in

Assumption I(ii), we obtain,

E

(∫ t

0

∫
R
x2ν̃(ds, dx)

)
= E

(∫ t

0

∫
R
x2χ̃(s)dsF̃ (dx)

)
.
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Using the above results, we can bound the first moment of ‖ ζ4(κ) ‖ as follows,

E ‖ ζ4(κ) ‖≤
(∫

[0,1]

E |ζ4(κ)|2 dκ
)1/2

≤

(∫
[0,1]

1

T`∆

T∑
i=1

∫ ti,jκ

ti,jκ−`

C

[
E

∣∣∣∣∫ i−1+κ

t

µ̃(s)ds

∣∣∣∣2 + E

∣∣∣∣∫ i−1+κ

t

σ̌(s)dW (s)

∣∣∣∣2
+E

∣∣∣∣∫ i−1+κ

t

σ̃(s)dW̃ (s)

∣∣∣∣2 + E

∣∣∣∣∫ i−1+κ

t

∫
R
xν̃(ds, dx)−

∫ i−1+κ

t

∫
R
xχ̃(s)dsF̃ (dx)

∣∣∣∣2
+E

∣∣∣∣∫ i−1+κ

t

∫
R
xχ̃(s)dsF̃ (dx)

∣∣∣∣2
]
dtdκ

)1/2

≤ C

(∫
[0,1]

1

T`∆

T∑
i=1

∫ ti,jκ

ti,jκ−`

[
(`+ 1)∆

∫ i−1+κ

t

E |µ̃(s)|2 ds+

∫ i−1+κ

t

E
(
σ̌2(s) + σ̃2(s)

)
ds

+E

(∫ i−1+κ

t

∫
R
x2χ̃(s)dsF̃ (dx)

)
+ (`+ 1)∆

∫ i−1+κ

t

E (χ̃(t))2 dt

]
dtdκ

)1/2

≤ C

√
`

n
,

where the first inequality follows from Jensen’s inequality, the third inequality follows from

the Burkholder-Davis-Gundy inequality, and the last inequality follows from Assumption

I(ii). Thus,

‖ ζ4(κ) ‖= OP

(√
`

n

)
.

Turning next to term ζ5(κ), by (7), we can rewrite this term as,

ζ5(κ) =
1

T

T∑
i=1

Ai(κ).
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It follows easily from Assumptions I(ii), II with q = 1 and Corollary 14.3 on page 212 of

[3] that,

E |ζ5(κ)|2 ≤ 1

T

∞∑
h=−∞

|φκ,κ(h)| ≤ C

T

∞∑
h=−∞

α
1−1/a−1/r
|h| (E |A1(κ)|a)1/a (

E
∣∣A1+|h|(κ)

∣∣r)1/r ≤ C

T
,

where a, r > 0 and 1/a+ 1/r < ι/(1 + ι). Then, we immediately obtain,

E ‖ ζ5(κ) ‖≤
(∫

[0,1]

E |ζ5(κ)|2 dκ
)1/2

≤ C√
T
.

Therefore,

‖ ζ5(κ) ‖= OP

(
1√
T

)
.

Finally, for the last term ζ6(κ), it follows from boundedness of f(κ) as defined in (3)

and exactly the same arguments as in calculating the upper bounds of terms ζ1(κ), ζ2(κ)

and ζ3(κ), that,

‖ ζ6(κ) ‖= OP

(
1√
n

)
.

To sum up, we have,
6∑
i=1

‖ ζi(κ) ‖ P−→ 0.

Step 2. We now consider the difference between estimators f̂(κ) and f̂ c(κ) which are

built based on X and Xc, respectively. By triangle inequality, we have,

‖ f̂(κ)− f̂ c(κ) ‖ =‖ 1

η̂T

T∑
i=1

σ̂2
i,κ −

1

η̂cT

T∑
i=1

σ̂2,c
i,κ ‖

≤ 1

η̂
‖ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖ +
|η̂c − η̂|
η̂η̂c

‖ 1

T

T∑
i=1

σ̂2,c
i,κ ‖ . (C.6)
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It then follows easily from (C.4) and Lemma 13 that,

η̂ − η̂c P−→ 0,
1

η̂

P−→ 1

η
, and hence

η̂c − η̂
η̂

P−→ 0. (C.7)

Recall that f̂ c(κ) =
∑T

i=1 σ̂
2,c
i,κ/(η̂

cT ) and ‖ f̂ c(κ) − f(κ) ‖ P−→ 0 by Step 1, we have thus

proved that the second term on the right hand side of (C.6) goes to zero in probability.

It remains to calculate the stochastic order of ‖ 1
T

∑T
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖. On the one

hand, define,

S := {(i, i′, k, k′)|i 6= i′ or k 6= k′, where i, i′ = 1, 2, ..., T and k, k′ = jκ − `+ 1, ..., jκ} ,

we have that, for any ω > 4,

1

(T`∆)2E

{
T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN=0}

}2

≤ 1

(T`∆)2

∑
(i,i′,k,k′)∈S

E

((
∆n
i,kX

c
)2 (

∆n
i′,k′X

c
)2

1{|∆n
i,kX

c|>un}1
{∣∣∣∆n

i′,k′X
c
∣∣∣>un}

)

+
1

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

E
[(

∆n
i,kX

c
)4

1{|∆n
i,kX

c|>un}
]

≤ 1

(T`∆)2

∑
(i,i′,k,k′)∈S

[
E
∣∣∆n

i,kX
c
∣∣ω]2/ω E [∣∣∆n

i′,k′X
c
∣∣ω]2/ω

×
[
E
(

1{|∆n
i,kX

c|>un}
)](1−4/ω)/2

[
E

(
1{∣∣∣∆n

i′,k′X
c
∣∣∣>un}

)](1−4/ω)/2

+
1

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

[
E
∣∣∆n

i,kX
c
∣∣ω]4/ω [E (1{|∆n

i,kX
c|>un}

)]1−4/ω

≤ C∆(ω−4)(1/2−$), (C.8)
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where the second and third inequalities follow by applying Hölder’s, Burkholder-Davis-

Gundy and Markov inequalities. On the other hand, we have that, for any ω > 4,

1

(T`∆)2E

{
T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}

}2

≤ 1

(T`∆)2

∑
(i,i′,k,k′)∈S

E

[
u4
n1{∆n

i,kN>0}1
{

∆n
i′,k′N>0

} + u2
n

(
∆n
i′,k′X

c
)2

1{∆n
i,kN>0}1

{
∆n
i′,k′N>0

}

+u2
n

(
∆n
i,kX

c
)2

1{∆n
i,kN>0}1

{
∆n
i′,k′N>0

} +
(
∆n
i,kX

c
)2 (

∆n
i′,k′X

c
)2

1{∆n
i,kN>0}1

{
∆n
i′,k′N>0

}]
+

1

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

E
∣∣∣(∆n

i,kX
)2

1{|∆n
i,kX|≤un} −

(
∆n
i,kX

c
)2
∣∣∣2 1{∆n

i,kN>0}

≤ 1

(T`∆)2

∑
(i,i′,k,k′)∈S

[
u4
nE

(
1{∆n

i,kN>0}1
{

∆n
i′,k′N>0

})+ u2
n

[
E
∣∣∆n

i′,k′X
c
∣∣ω]2/ω

×
[
E
(
1{∆n

i,kN>0}1
{

∆n
i′,k′N>0

})]1−2/ω

+ u2
n

[
E
∣∣∆n

i,kX
c
∣∣ω]2/ω [E(1{∆n

i,kN>0}1
{

∆n
i′,k′N>0

})]1−2/ω

+
[
E
∣∣∆n

i,kX
c
∣∣ω]2/ω [E ∣∣∆n

i′,k′X
c
∣∣ω]2/ω (E(1{∆n

i,kN>0}1
{

∆n
i′,k′N>0

}))1−4/ω
]

+
1

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

[
u4
nE
(
∆n
i,kN

)
+
(
E
∣∣∆n

i,kX
c
∣∣ω)4/ω [

E
(
∆n
i,kN

)]1−4/ω
]

≤
(

∆4$−ς ∨∆2$−4/ω+1−ς ∨∆2−8/ω−ς ∨ ∆4$−1

T`
∨ ∆1−4/ω

T`

)
, (C.9)

where the second inequality follows from Hölder’s inequality and the last inequality follows

from Burkholder-Davis-Gundy inequality and Lemma 12 for arbitrarily small ς > 0. Based

on the above results, we have that, for any ω > 4 and arbitrarily small ς > 0,

E ‖ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖
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≤

∫
[0,1]

C

(T`∆)2E

{
T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN=0}

}2

dκ

1/2

+

∫
[0,1]

C

(T`∆)2E

{
T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}

}2

dκ

1/2

≤ C

(
∆(ω−4)(1/2−$) ∨∆4$−ς ∨∆2$−4/ω+1−ς ∨∆2−8/ω−ς ∨ ∆4$−1

T`
∨ ∆1−4/ω

T`

)1/2

.

Because supt∈R+
E
(
e|µ(t)|) + supt∈R+

E
(
e|σ(t)|) < ∞ in Assumption I(ii) and by the same

arguments as that immediately following (C.2), one can always choose a large enough ω

and a small enough ς such that,

E ‖ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖ ≤ C

(
∆4$−ς ∨ ∆4$−1

T`

)1/2

.

Therefore, by letting ς be sufficiently close to zero, we have that,

‖ f̂(κ)− f̂ c(κ) ‖= oP (1),

under the conditions 0 < $ < 1/2 and b+ c > 1− 4$ in Theorem 1.

Combining Step 1 and Step 2 leads to ‖ f̂(κ)− f(κ) ‖ P−→ 0, completing the proof.

C.2 Proof of Theorem 2

First, we recall the definition of Ai(κm),

Ai (κm) := σ2 (i− 1 + κm)− f(κm)

∫ i

i−1

σ2(t)dt, for i = 1, 2, ..., T and m = 1, 2, ..., d,
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where d is a positive integer. We introduce some additional notation that will be used in

the proof. Denote with Ei(·) the conditional expectation with respect to the sigma field

Gi (see Assumption II for definition). For each κm and a positive integer l, denote for

i = 1, 2, ..., T ,

Ãi,l (κm) :=
l−1∑
k=0

(Ei (Ai+k (κm))− Ei−1 (Ai+k (κm))) ,

where m = 1, 2, ..., d and d is a positive integer. We will show in the following that under

the conditions of Theorem 2, the limit of Ãi,l (κm) as l→∞ exists a.s. It is denoted by,

Ãi,∞ (κm) := lim
l→∞

Ãi,l (κm) . (C.10)

Moreover, for each κm and a positive integer l, we define the following approximation errors,

RT,l (κm) :=
1

T

T∑
i=1

(
Ai (κm)− Ãi,l (κm)

)
and RT,∞ (κm) :=

1

T

T∑
i=1

(
Ai (κm)− Ãi,∞ (κm)

)
.

(C.11)

The following lemma is used in the proof of the limit result of Theorem 2.

Lemma 14. Suppose that Assumptions I(ii) and II with q = 3 hold. Then,

(
1√
T

T∑
i=1

Ai (κ1) ,
1√
T

T∑
i=1

Ai (κ2) , . . .
1√
T

T∑
i=1

Ai (κd)

)>
d−→ Nd (0,Λ)

as T → ∞, where Nd (0,Λ) denotes the d-dimensional normal distribution with mean

zero and covariance matrix Λ whose entries are given by Λmq =
∑∞

h=−∞ φκm,κq(h) for

m, q ∈ {1, 2, ..., d}.
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Proof of Lemma 14. The proof is based on approximating Ai(κm) by Ãi,∞ (κm), where

Ãi,∞ (κm) is defined in (C.10). Hence, the proof consists of two parts. In the first part, we

show that the error due to the approximation of Ai(κm) is asymptotically negligible. In

the second part, we complete the proof by showing that,

(
1√
T

T∑
i=1

Ãi,∞ (κ1) ,
1√
T

T∑
i=1

Ãi,∞ (κ2) , . . . ,
1√
T

T∑
i=1

Ãi,∞ (κd)

)>
d−→ Nd (0,Λ) . (C.12)

Part 1. It follows from (B.49)-(B.50) in [1] that the average difference RT,l (κm) between

Ai(κm) and Ãi,l (κm) has the following decomposition,

RT,l (κm) =
1

T

T−1∑
i=0

Ei (Ai+l (κm))− 1

T

l−1∑
k=1

[ET (AT+k (κm))− E0 (Ak (κm))] (C.13)

for m = 1, 2, ..., d. Because of Assumptions I(ii) and II with q = 3, and using Lemma 3.102

on page 497 of [7], we have that, for any ω > (3 + ι)/(2 + ι) where ι is given in Assumption

II,

E |Ei (Ai+k (κm))| ≤ Cα
1−1/ω
k (E |Ai+k (κm)|ω)

1/ω
.

This further implies,

E

(
lim
l→∞

l−1∑
k=0

(|Ei (Ai+k (κm))|+ |Ei−1 (Ai+k (κm))|)

)

≤ lim inf
l→∞

l−1∑
k=0

(E |Ei (Ai+k (κm))|+ E |Ei−1 (Ai+k (κm))|) ≤ C.
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Therefore,

Ãi,∞ (κm) := lim
l→∞

Ãi,l (κm) =
∞∑
k=0

(Ei [Ai+k (κm)]− Ei−1 [Ai+k (κm)]) (C.14)

exists almost surely. It follows immediately that,

RT,∞ (κm) = lim
l→∞

RT,l (κm)

exists almost surely. Using similar arguments to those used above and decomposition

(C.13), we obtain that,

E
(√

T |RT,∞(κm)|
)

= E
(√

T
∣∣∣ lim
l→∞

RT,l (κm)
∣∣∣)

≤
√
T lim inf

l→∞

{
1

T

T−1∑
i=0

E |Ei(Ai+l(κm))|+ 1

T

l−1∑
k=1

(E |ET (AT+k (κm))|+ E |E0 (Ak (κm))|)

}

≤ C√
T
.

To sum up, the error from approximating Ai(κm) by Ãi,∞ (κm) is asymptotically negligible.

We only need to prove the central limit theorem with Ai(κm) being replaced with Ãi,∞ (κm).

Part 2. By the dominated convergence theorem, we have,

Ei−1

(
Ãi,∞(κm)

)
= Ei−1

(
lim
l→∞

l−1∑
k=0

[Ei(Ai+k(κm))− Ei−1(Ai+k(κm))]

)

= lim
l→∞

l−1∑
k=0

Ei−1 [Ei(Ai+k(κm))− Ei−1(Ai+k(κm))] = 0.

Hence, Ãi,∞(κm) is a martingale difference for fixed κm, m ∈ {1, 2, ..., d}.
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We next show that the third moment of Ãi,∞ (κm) exists for each fixed i ∈ {1, 2, ..., T}

and κm,m ∈ {1, 2, ..., d}. To this end, define,

Di,k := |Ei (Ai+k (κm))− Ei−1 (Ai+k (κm))| .

By Assumptions I(ii), II with q = 3 and applying Lemma 3.102 on page 497 of [7], we have

that, for any ω > 3(3 + ι)/ι where ι is given in Assumption II,

lim
l→∞

l−1∑
k1=0

l−1∑
k2=k1+1

l−1∑
k3=k2+1

E (Di,k1Di,k2Di,k3)

≤ lim
l→∞

l−1∑
k1=0

[
E (Di,k1)

3]1/3 l−1∑
k2=0

[
E (Di,k2)

3]1/3 l−1∑
k3=0

[
E (Di,k3)

3]1/3
≤ C lim

l→∞

l−1∑
k1=0

[(
E |Ei(Ai+k1(κm))|3

)1/3
+
(
E |Ei−1(Ai+k1(κm))|3

)1/3
]

×
l−1∑
k2=0

[(
E |Ei(Ai+k2(κm))|3

)1/3
+
(
E |Ei−1(Ai+k2(κm))|3

)1/3
]

×
l−1∑
k3=0

[(
E |Ei(Ai+k3(κm))|3

)1/3
+
(
E |Ei−1(Ai+k3(κm))|3

)1/3
]

≤ C lim
l→∞

l−1∑
k1=0

[
α

(ω−3)/3ω
k1

(E |Ai+k1(κm)|ω)
1/ω

+ α
(ω−3)/3ω
k1+1 (E |Ai+k1(κm)|ω)

1/ω
]

×
l−1∑
k2=0

[
α

(ω−3)/3ω
k2

(E |Ai+k2(κm)|ω)
1/ω

+ α
(ω−3)/3ω
k2+1 (E |Ai+k2(κm)|ω)

1/ω
]

×
l−1∑
k3=0

[
α

(ω−3)/3ω
k3

(E |Ai+k3(κm)|ω)
1/ω

+ α
(ω−3)/3ω
k3+1 (E |Ai+k3(κm)|ω)

1/ω
]

≤ C lim
l→∞

(
l−1∑
k1=1

(
k
−(ω−3)(3+ι)/3ω
1 + (k1 + 1)−(ω−3)(3+ι)/3ω

)
+ C

)
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×

(
l−1∑
k2=1

(
k
−(ω−3)(3+ι)/3ω
2 + (k2 + 1)−(ω−3)(3+ι)/3ω

)
+ C

)

×

(
l−1∑
k3=1

(
k
−(ω−3)(3+ι)/3ω
3 + (k3 + 1)−(ω−3)(3+ι)/3ω

)
+ C

)
≤ C.

By quite similar arguments, we also have,

lim
l→∞

l−1∑
k1=0

E (Di,k1)
3 ≤ C, lim

l→∞

l−1∑
k1=0

l−1∑
k2=k1+1

E
[
(Di,k1)

2Di,k2

]
≤ C and

lim
l→∞

l−1∑
k1=0

l−1∑
k2=k1+1

E
[
Di,k1 (Di,k2)

2] ≤ C.

Therefore, we have,

E

(
∞∑
k=0

Di,k

)3

≤ lim
l→∞

l−1∑
k1=0

E (Di,k1)
3 + lim

l→∞
C

∑
p1+p2=3

l−1∑
k1=0

l−1∑
k2=k1+1

E [(Di,k1)
p1 (Di,k2)

p2 ]

+ lim
l→∞

C
l−1∑
k1=0

l−1∑
k2=k1+1

l−1∑
k3=k2+1

E (Di,k1Di,k2Di,k3) ≤ C <∞,

where p1, p2 ∈ N+. Now recalling (C.14), we have,

E
∣∣∣Ãi,∞(κm)

∣∣∣3 ≤ E

(
∞∑
k=0

Di,k

)3

<∞. (C.15)

We are now ready to apply the martingale central limit theorem to obtain the limiting

distribution of(
1√
T

T∑
i=1

Ãi,∞ (κ1) ,
1√
T

T∑
i=1

Ãi,∞ (κ2) , . . . ,
1√
T

T∑
i=1

Ãi,∞ (κd)

)>
.

36



The rest of the proof is divided into two steps. In the first step, we calculate the conditional

covariances and find their limits. In the second step, we check the conditional Lyapunov

condition.

Step 1. Conditional covariances. For m, q ∈ {1, 2, ..., d}, by Assumption II with q = 3,

we have,

1

T

T∑
i=1

Ei−1

[
Ãi,∞ (κm) Ãi,∞ (κq)

]
P−→ E

[
Ã1,∞ (κm) Ã1,∞ (κq)

]
.

Next, we derive the explicit formula for the limit E
[
Ã1,∞ (κm) Ã1,∞ (κq)

]
. Because of

E |
∑∞

k=0D1,k|3 <∞ as shown above and Assumption II with q = 3, we have,

E
[
Ã1,∞ (κm) Ã1,∞ (κq)

]
= E

(
lim
l→∞

l−1∑
k=0

(E1 (A1+k (κm))− E0 (A1+k (κm)))
l−1∑
p=0

(E1 (A1+p (κq))− E0 (A1+p (κq)))

)

= lim
l→∞

l−1∑
k=0

l−1∑
p=0

E [A1+k (κm) (E1 (A1+p (κq))− E0 (A1+p (κq)))]

= lim
l→∞

(
l−1∑
k=0

l−1∑
p=0

E [A1+k (κm)E1 (A1+p (κq))]−
l∑

k=1

l∑
p=1

E [A1+k (κm)E1 (A1+p (κq))]

)

= lim
l→∞

(
l−1∑
k=0

E [A1+k (κm)A1 (κq)] +
l−1∑
p=1

E [A1 (κm)A1+p (κq)]

−
l∑

k=1

E [A1+k (κm)E1 (A1+l (κq))]−
l−1∑
p=1

E [A1+l (κm)E1 (A1+p (κq))]

)

=
∞∑
k=0

E [A1+k (κm)A1 (κq)] +
∞∑
p=1

E [A1 (κm)A1+p (κq)] ,
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where the last equality follows from the Cauchy-Schwarz inequality and Assumption II with

q = 3. Then, by applying definition (8) to terms on the right hand side of the last equality,

we obtain,

E
[
Ãi,∞ (κm) Ãi,∞ (κq)

]
=

∞∑
h=−∞

φκm,κq(h) =: Λmq.

Step 2. Conditional Lyapunov condition. In this step, we check the conditional Lya-

punov condition. By (C.15) that E
(
Ãi,∞

)3

<∞, we have that for each m ∈ {1, 2, ..., d},

1

T 3/2

T∑
i=1

Ei−1

∣∣∣Ãi,∞ (κm)
∣∣∣3 P−→ 0,

as T →∞. The conditional Lyapunov condition is satisfied.

Lastly, the martingale central limit theorem (see, e.g., Corollary 3.1 on page 58 of [5]

and Theorem A.1 of [13]) concludes the proof.

Proof of Theorem 2. We divide the proof into two steps. In the first step, we prove that
√
T ‖ f̂(κ) − f(κ) − ζ5(κ)/η̂c ‖ is asymptotically negligible. In the second step, we prove
√
Tζ5(κ)/η̂c

d−→ N(0,K) in L2.

Step 1. By using the notation in (C.1) and triangle inequality, we have,

√
T ‖ f̂(κ)− f(κ)− ζ5(κ)

η̂c
‖≤
√
T

η̂c

∑
i∈{1,2,3,4,6}

‖ ζi(κ) ‖ +
√
T ‖ f̂(κ)− f̂ c(κ) ‖ .

Because 1/η̂c
P→ 1/η by the arguments immediately following (C.4), it remains to show,

√
T

∑
i∈{1,2,3,4,6}

‖ ζi(κ) ‖ +
√
T ‖ f̂(κ)− f̂ c(κ) ‖= oP (1).
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From Lemma 11 with m = 2 and Step 2 in Section C.1, we immediately obtain,

√
T
(
‖ ζ1(κ) ‖ + ‖ ζ3(κ) ‖ + ‖ f̂(κ)− f̂ c(κ) ‖

)
= oP (1),

under the condition (9).

We next determine the stochastic orders of terms
√
T ‖ ζ2(κ) ‖,

√
T ‖ ζ4(κ) ‖ and

√
T ‖ ζ6(κ) ‖. Because for i = 2, 4, 6,

E (‖ ζi(κ) ‖) ≤
(∫

[0,1]

E |ζi(κ)|2 dκ
)1/2

,

it remains to determine the bounds of E |ζ2(κ)|2, E |ζ4(κ)|2 and E |ζ6(κ)|2.

Now we treat ζ2(κ). First, note that, for any ω > 2,

E

∣∣∣∣∣ 2

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[µ(t)− µ(ti,k−1)] dt

∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
2

≤ C

T`∆2

T∑
i=1

jκ∑
k=jκ−`+1

(
E

∣∣∣∣∣
∫ ti,k

ti,k−1

[µ(t)− µ(ti,k−1)] dt

∣∣∣∣∣
ω)2/ω

E ∣∣∣∣∣
∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
2ω
ω−2

1− 2
ω

≤ C

T`∆2

T∑
i=1

jκ∑
k=jκ−`+1

(
∆ω−1

∫ ti,k

ti,k−1

E |µ(t)− µ(ti,k−1)|ω dt

)2/ω
E(∫ ti,k

ti,k−1

σ2(t)dt

) ω
ω−2

1− 2
ω

≤ C

T`∆2

T∑
i=1

jκ∑
k=jκ−`+1

(
∆ω+1

)2/ω

E(∫ ti,k

ti,k−1

σ2(t)dt

) ω
ω−2

1− 2
ω

≤ C∆1+2/ω,

where the first inequality follows from Jensen’s inequality and Hölder’s inequality, the

second inequality follows from Jensen’s inequality and Burkholder-Davis-Gundy inequality,

the third inequality follows from E |µ(t)− µ(ti,k−1)|ω ≤ C|t− ti,k−1| which is a consequence
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of Assumption I(i) and supt∈R+
E exp(|µ(t)|) ≤ ∞ in Assumption I(ii) (note that ω is a

number close to 2 from above), and the last inequality follows from Jensen’s inequality

again. Then, by letting ω be arbitrarily close to 2 from above on both sides of the above

inequality, we obtain that,

E

∣∣∣∣∣ 2

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[µ(t)− µ(ti,k−1)] dt

∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
2

≤ C∆2−ς

for arbitrarily small ς > 0. Second, we define for t ∈ [0, T ],

M2(t) :=
1

T`

T∑
i=1

jκ∑
k=jκ−`+1

∫ t∧ti,k

t∧ti,k−1

µ(ti,k−1)σ(s)dW (s),

which is a continuous martingale on the interval [0, T ]. The quadratic variation of M2(t)

is given by,

[M2,M2] (t) =
1

(T`)2

T∑
i=1

jκ∑
k=jκ−`+1

∫ t∧ti,k

t∧ti,k−1

[µ(ti,k−1)σ(s)]2 ds.

Then by Burkholder-Davis-Gundy inequality, we have,

E |M2(T )|2 ≤ C

(T`)2

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

E (µ(ti,k−1)σ(t))2 dt

≤ C

(T`)2

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[
E (µ(ti,k−1))4E (σ(t))4]1/2 dt ≤ C

nT`
,

where the last two inequalities follow from the Cauchy-Schwarz inequality and Assumption

40



I(ii). Therefore,

E |ζ2(κ)|2 ≤ CE

∣∣∣∣∣ 2

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[µ(t)− µ(ti,k−1)] dt

∫ ti,k

ti,k−1

σ(t)dW (t)

∣∣∣∣∣
2

+ E |M2(T )|2

≤ C

(
1

n2−ς ∨
1

nT`

)
for arbitrarily small ς > 0.

We next deal with ζ4(κ). The following additional notations are needed,



ζ4,1(κ) := − 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

∫ ti,k
ti,k−1

[∫ i−1+κ

t

(
µ̃(s) +

∫
R xF̃ (dx)χ̃(s)

)
ds
]
dt,

ζ4,2(κ) := 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

∫ ti,k
ti,k−1

[∫ t
ti,k−1

σ̌(s)dW (s) +
∫ t
ti,k−1

σ̃(s)dW̃ (s)

+
∫ t
ti,k−1

∫
R x
(
ν̃(ds, dx)− F̃ (dx)χ̃(s)ds

)]
dt,

ζ4,3(κ) := − 1
T`∆

∑T
i=1

∑jκ
k=jκ−`+1

∫ ti,k
ti,k−1

[∫ i−1+κ

ti,k−1
σ̌(s)dW (s) +

∫ i−1+κ

ti,k−1
σ̃(s)dW̃ (s)

+
∫ i−1+κ

ti,k−1

∫
R x
(
ν̃(ds, dx)− F̃ (dx)χ̃(s)ds

)]
dt.

(C.16)

We can then rewrite ζ4(κ) as,

ζ4(κ) =
3∑
i=1

ζ4,i(κ).

For ζ4,1(κ), we have,

E |ζ4,1(κ)|2 ≤ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

E

[∫ i−1+κ

t

(
µ̃(s) +

∫
R
xF̃ (dx)χ̃(s)

)
ds

]2

dt
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≤ C

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

`∆

∫ i−1+κ

t

(
E |µ̃(s)|2 + E |χ̃(s)|2

)
ds ≤ C`2

n2
,

where the first two inequalities follow from Jensen’s inequality and
∫
R |x|

2 F̃ (dx) < ∞ in

Assumption I(ii), and the last inequality follows from Assumption I(ii) again. For ζ4,2(κ),

by applying exactly the same technique used in the proof of Lemma 2.22 on page 144 of [9],

and again Burkholder-Davis-Gundy inequality, Jensen’s inequality, and Assumption I(ii),

we obtain that,

E |ζ4,2(κ)|2 ≤ C

nT`
.

Now turning to ζ4,3(κ), we denote,

M3(t) :=
1

T`

T∑
i=1

[
jκ−1∑

k=jκ−`+1

(∫ t∧ti,k

t∧ti,k−1

(k − jκ + `)σ̌(s)dW (s) +

∫ t∧ti,k

t∧ti,k−1

(k − jκ + `)σ̃(s)dW̃ (s)

+

∫ t∧ti,k

t∧ti,k−1

(k − jκ + `)x
(
ν̃(ds, dx)− F̃ (dx)χ̃(s)ds

))
+

∫ t∧(i−1+κ)

t∧ti,jκ−1

`σ̌(s)dW (s)

+

∫ t∧(i−1+κ)

t∧ti,jκ−1

`σ̃(s)dW̃ (s) +

∫ t∧(i−1+κ)

t∧ti,jκ−1

`x
(
ν̃(ds, dx)− F̃ (dx)χ̃(s)ds

)]
,

which is a continuous-time martingale over the interval [0, T ]. The quadratic variation of

M3(t) is,

[M3,M3] (t) =
1

(T`)2

T∑
i=1

[
jκ−1∑

k=jκ−`+1

(∫ t∧ti,k

t∧ti,k−1

(
|(k − jκ + `)σ̌(s)|2 + |(k − jκ + `)σ̃(s)|2

)
ds

+

∫ t∧ti,k

t∧ti,k−1

|(k − jκ + `)x|2 ν̃(ds, dx)

)
+

∫ t∧(i−1+κ)

t∧ti,jκ−1

(
|`σ̌(s)|2 + |`σ̃(s)|2

)
ds
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+

∫ t∧(i−1+κ)

t∧ti,jκ−1

|`x|2 ν̃(ds, dx)

]
.

It is easy to see that ζ4,3(κ) = −M3(T ). Then by Burkholder-Davis-Gundy inequality,

Assumption I(ii) and the arguments immediately following (C.5), we obtain that,

E |ζ4,3(κ)|2 = E |M3(T )|2 ≤ CE [M3,M3] (T ) ≤ C`

nT
.

Therefore, combining the results for terms ζ4,1(κ), ζ4,2(κ) and ζ4,3(κ), we obtain that,

E |ζ4(κ)|2 ≤ C

[(
`

n

)2

∨ `

nT

]
.

Lastly, for term ζ6(κ), by exactly the same method used in the proof of Lemma 11 for

calculating the orders of ζ1(κ) and ζ3(κ) together with the same method used in calculating

the order of ζ2(κ), simply replacing ` with n in these derivations, we obtain that,

E |ζ6(κ)|2 ≤ C

(
1

n2−ς ∨
1

nT

)
.

for arbitrarily small ς > 0.

Based on the above bounds for terms ζ2(κ), ζ4(κ) and ζ6(κ), by choosing a sufficiently

small ς > 0, we can easily obtain,

√
T (‖ ζ2(κ) ‖ + ‖ ζ4(κ) ‖ + ‖ ζ6(κ) ‖) = OP

(√
T`

n
∨
√
`

n

)
= op(1)

under the conditions c < 1− b/2 in (9) and `∆→ 0.

Step 2. The only dominant term is
√
Tζ5(κ)/η̂c. Recall the definitions of ζ5(κ), Ai(κ),
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Ãi,∞(κ), and RT,∞ in (C.1), (7), (C.10) and (C.11), respectively. It follows easily from the

same arguments as that used in Part 1 of the proof of Lemma 14 that,

√
T ‖ RT,∞(κ) ‖=

(∫ 1

0

TRT,∞(κ)2dκ

)1/2
P−→ 0.

Because of the above result and η̂c
P−→ η which follows from the arguments immediately

following (C.4),
√
Tζ5(κ)/η̂c and 1/(η

√
T )
∑T

i=1 Ãi,∞(κ) have the same limiting law. From

Part 2 of the proof of Lemma 14, {1/(η
√
T )Ãi,∞(κ)}i≥1 is a martingale difference array in

the sense of [8]. We next check the three conditions of Theorem C of [8] which leads to the

desired functional central limit theorem.

First, we have that,

1

η2T

T∑
i=1

Ei−1

(
‖ Ãi,∞(κ) ‖2

)
− Trace(K)

=
1

T

T∑
i=1

∫ 1

0

(
1/η2Ei−1Ãi,∞(κ)2 − C(κ, κ)

)
dκ

= oP (1),

where the last equality follows from the ergodicity Assumption II and the fact that,

E

∣∣∣∣∫ 1

0

(
1/η2Ei−1Ãi,∞(κ)2 − C(κ, κ)

)
dκ

∣∣∣∣ <∞,
and C(κ, κ) is defined in (8). Hence, we obtain that the first condition of Theorem C of

[8], i.e.,

1

η2T

T∑
i=1

Ei−1

(
‖ Ãi,∞(κ) ‖2

)
P−→ Trace(K),
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is satisfied.

Second, we have,

E

[
1

η3T 3/2

T∑
i=1

Ei−1

(
‖ Ãi,∞(κ) ‖3

)]
≤ E

[
1

η3T 3/2

T∑
i=1

Ei−1

∫ 1

0

|Ãi,∞(κ)|3dκ

]

=
1

η3T 1/2

∫ 1

0

E|Ãi,∞(κ)|3dκ ≤ C/
√
T ,

where the last inequality follows from the result that E|Ãi,∞(κ)|3 ≤ C as proved in Part

2 of the proof of Lemma 14. Hence, the conditional Lyapunov condition that is stronger

than the second condition of Theorem C of [8], i.e.,

1

η3T 3/2

T∑
i=1

Ei−1

(
‖ Ãi,∞(κ) ‖3

)
P−→ 0,

is satisfied.

Third, we have that, for an orthonormal basis {ei}i∈N+ in L2,

1

η2T

T∑
i=1

Ei−1

(
〈Ãi,∞(κ), ej〉〈Ãi,∞(κ), ek〉

)
− 〈Kej, ek〉

=
1

T

T∑
i=1

∫ 1

0

∫ 1

0

[(
1

η2
Ei−1Ãi,∞(u)Ãi,∞(v)

)
ej(u)ek(v)− C(u, v)ej(u)ek(v)

]
dudv

= oP (1),

where the last equality follows from again the ergodicity Assumption II and the fact that,

E

∣∣∣∣∫ 1

0

∫ 1

0

[(
1

η2
Ei−1Ãi,∞(u)Ãi,∞(v)

)
ej(u)ek(v)− C(u, v)ej(u)ek(v)

]
dudv

∣∣∣∣ <∞.
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Hence, the third condition of Theorem C of [8], i.e.,

1

η2T

T∑
i=1

Ei−1

(
〈Ãi,∞(κ), ej〉〈Ãi,∞(κ), ek〉

)
P−→ 〈Kej, ek〉, ∀j, k ∈ N+,

is satisfied.

An application of Theorem C of [8] then yields,

1/(η
√
T )

T∑
i=1

Ãi,∞(κ)
d−→ N (0,K) in L2.

Combining Step 1 and Step 2 leads to the desired result of Theorem 2, completing the

proof.

C.3 Proof of Corollary 3

The result follows from the arguments in Section A.5 of the supplementary appendix to [1].

C.4 Proof of Theorem 4

Without loss of generality, we assume that P and P′ are two consecutive time periods with

trading days being labeled as 1, 2, . . . , T, T + 1, T + 2, . . . , T + T ′. It suffices to prove that

random vectors defined in (C.12) for the two periods P and P′ are uncorrelated which is

obvious. This implies that
√
T (f̂P(κ)−fP(κ)) and

√
T ′ (f̂P′(κ)−fP′(κ)) are asymptotically

independent. The results of the theorem then follow straightforwardly from Theorem 2 and

the continuous mapping theorem.
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C.5 Proof of Theorem 5

We shall adopt the same notation as that used at the beginning of Section C. Moreover,

define,

k∗1 := b(τ − εn)T c and k∗2 := b(τ + εn)T c.

It is readily seen that k∗1/T → τ and (T − k∗2)/T → 1− τ since
√
Tεn → 0.

We first establish the consistency of η̂c which is repeatedly used in the following. This

can be easily seen as follows. First, by the assumption that σ̆2(t) is ergodic, α-mixing with

q = 3 and has finite moments of all orders, it follows that,

1

T

k∗1∑
i=1

(∫ i

i−1

g(t− btc)σ̆2(t)dt−
∫ 1

0

g(u)du

)
= oP (1)

and

1

T

T∑
i=k∗2+1

(∫ i

i−1

(g(t− btc) + γ(t− btc))σ̆2(t)dt−
∫ 1

0

(g(u) + γ(u))du

)
= oP (1).

Second,

E

∣∣∣∣∣∣ 1

T

k∗2∑
i=k∗1+1

∫ i

i−1

(g(t− btc) + hτ,n(i/T )γ(t− btc))σ̆2(t)dt

∣∣∣∣∣∣
≤ C

k∗2 − k∗1
T

= O(εn).

Third,

k∗1
T

∫ 1

0

g(u)du+
T − k∗2
T

∫ 1

0

(g(u) + γ(u))du− η
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=

(
k∗1
T

+
T − k∗2
T

− 1

)∫ 1

0

g(u)du+

(
T − k∗2
T

− (1− τ)

)∫ 1

0

γ(u)du

= O(εn).

Therefore, by the above results, we have that,

1

T

T∑
i=1

∫ i

i−1

σ2(t)dt− η

=
1

T

k∗1∑
i=1

(∫ i

i−1

g(t− btc)σ̆2(t)dt−
∫ 1

0

g(u)du

)

+
1

T

k∗2∑
i=k∗1+1

∫ i

i−1

(g(t− btc) + hτ,n(i/T )γ(t− btc))σ̆2(t)dt

+
1

T

T∑
i=k∗2+1

(∫ i

i−1

(g(t− btc) + γ(t− btc))σ̆2(t)dt−
∫ 1

0

(g(u) + γ(u))du

)

+
k∗1
T

∫ 1

0

g(u)du+
T − k∗2
T

∫ 1

0

(g(u) + γ(u))du− η

= oP (1).

Lastly,

η̂c − η =
1

T

T∑
i=1

n∑
j=1

(
∆n
i,jX

c
)2 − η

=
1

T

T∑
i=1

n∑
j=1

(
∆n
i,jX

c
)2 − 1

T

T∑
i=1

∫ i

i−1

σ2(t)dt+
1

T

T∑
i=1

∫ i

i−1

σ2(t)dt− η

= oP (1),

which follows from the classical theory of quadratic variation and the results derived above.
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We have thus proved η̂c
P→ η.

Now note that,

√
T
(
f̂(κ)− f(κ)

)
=
√
T
(
f̂(κ)− f̂ c(κ)

)
+
√
T
(
f̂ c(κ)− f(κ)

)
and

√
T
(
f̂ c(κ)− f(κ)

)
=

√
T

η̂c

6∑
j=1

ζj(κ).

By using the same arguments as that used in Step 2 of the proof of Theorem 1, we obtain

that
√
T ‖ f̂(κ) − f̂ c(κ) ‖= oP (1) under the conditions of Theorem 5. Similarly, by the

same arguments as that used in the proof of Theorem 2, we also have that
√
T (‖ ζ1(κ) ‖

+ ‖ ζ2(κ) ‖ + ‖ ζ3(κ) ‖ + ‖ ζ6(κ) ‖) = oP (1) under the conditions of Theorem 5. It

remains to deal with
√
Tζ4(κ)/η̂c and

√
Tζ5(κ)/η̂c, whose treatments differ from those in

Section C.2.

We treat
√
Tζ4(κ)/η̂c first. Because η̂c

P→ η, it suffices to consider
√
Tζ4(κ). Recall

that,

ζ4(κ) :=
1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[
σ2(t)− σ2(i− 1 + κ)

]
dt.

By Assumption I-NS, we have that, instead of σ2(t), σ̆2(t) follows,

σ̆2(t) = σ̆2(0) +

∫ t

0

µ̃(s) ds +

∫ t

0

σ̌(s) dW (s) +

∫ t

0

σ̃(s) dW̃ (s) +

∫ t

0

∫
R
x ν̃(ds, dx),

where the rest notations have the same interpretations as that in the main text. Using the

shorthand notation g̃(t) = g(t − btc) and γ̃(t) := γ(t − btc) as given in Assumption I-NS,
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for 0 ≤ dte ≤ k∗1, by Itô’s formula, we have,

dσ2(t) = d(g̃(t)σ̆2(t)) = g̃′(t)σ̆2(t)dt+ g̃(t)dσ̆2(t)

= (g̃′(t)σ̆2(t) + g̃(t)µ̃(t)) dt + g̃(t)σ̌(t) dW (t) + g̃(t)σ̃(t) dW̃ (t) + g̃(t)

∫
R
x ν̃(dt, dx).

Similarly, we have, for k∗2 + 1 ≤ dte ≤ T,

dσ2(t) = ((g̃′(t) + γ̃′(t))σ̆2(t) + (g̃(t) + γ̃(t))µ̃(t)) dt + (g̃(t) + γ̃(t))σ̌(t) dW (t)

+ (g̃(t) + γ̃(t))σ̃(t) dW̃ (t) + (g̃(t) + γ̃(t))

∫
R
x ν̃(dt, dx).

Moreover, by the same arguments as above, when t ∈ (i − 1, i] for each k∗1 + 1 ≤ i ≤ k∗2,

σ2(t) follows,

dσ2(t) =((g̃′(t) + hτ,n(i/T )γ̃′(t))σ̆2(t) + (g̃(t) + hτ,n(i/T )γ̃(t))µ̃(t)) dt

+ (g̃(t) + hτ,n(i/T )γ̃(t))σ̌(t) dW (t) + (g̃(t) + hτ,n(i/T )γ̃(t))σ̃(t) dW̃ (t)

+ (g̃(t) + hτ,n(i/T )γ̃(t))

∫
R
x ν̃(dt, dx).

Therefore, because of the boundedness of hτ,n, g̃, γ̃, g̃
′ and γ̃′, σ2(t) follows an Itô semi-

martingale of the same type as (2) whenever 1 ≤ dte ≤ k∗1 or k∗2 +1 ≤ dte ≤ T or t ∈ (i−1, i]

for each k∗1 + 1 ≤ i ≤ k∗2. Hence, by the same arguments as that used in dealing with term

ζ4(κ) in Step 1 of the proof of Theorem 2, we obtain that,

E|ζ4(κ)|2 ≤ C

((
`

n

)2

∨ `

nT

)
.

This implies that
√
T ‖ ζ4(κ) ‖ /η̂c = oP (1) under the conditions of Theorem 5.
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We now turn to the dominant term
√
Tζ5(κ)/η̂c. Recall that,

ζ5(κ) :=
1

T

T∑
i=1

σ2(i− 1 + κ)− f(κ)

T

T∑
i=1

∫ i

i−1

σ2(t)dt.

First, note that,

E

∣∣∣∣∣∣ 1

T

k∗2∑
i=k∗1+1

σ2(i− 1 + κ)

∣∣∣∣∣∣
2

≤ Cε2n

and

E

∣∣∣∣∣∣f(κ)

T

k∗2∑
i=k∗1+1

∫ i

i−1

σ2(t)dt

∣∣∣∣∣∣
2

≤ Cε2n.

Second, it is easy to see that,∣∣∣∣k∗1T g(κ) +
T − k∗2
T

(g(κ) + γ(κ))− (g(κ) + (1− τ)γ(κ))

∣∣∣∣ ≤ Cεn.

Therefore, we obtain that

ζ5(κ)

=
1

T

k∗1∑
i=1

(σ2(i− 1 + κ)− g(κ)) +
1

T

T∑
i=k∗2+1

(σ2(i− 1 + κ)− (g(κ) + γ(κ)))

+

(
k∗1
T
g(κ) +

T − k∗2
T

(g(κ) + γ(κ))− (g(κ) + (1− τ)γ(κ))

)
+ g(κ) + (1− τ)γ(κ)−

f(κ)

 1

T

k∗1∑
i=1

(∫ i

i−1

σ2(t)dt−
∫ 1

0

g(u)du

)
+

1

T

T∑
i=k∗2+1

(∫ i

i−1

σ2(t)dt−
∫ 1

0

(g(u) + γ(u))du

)
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+

(
k∗1
T

∫ 1

0

g(u)du+
T − k∗2
T

∫ 1

0

(g(u) + γ(u))du−
∫ 1

0

(g(u) + (1− τ)γ(u))du

)
+

∫ 1

0

(g(u) + (1− τ)γ(u))du

]
+

1

T

k∗2∑
i=k∗1+1

σ2(i− 1 + κ) +
f(κ)

T

k∗2∑
i=k∗1+1

∫ i

i−1

σ2(t)dt

=
1

T

k∗1∑
i=1

Ai(κ) +
1

T

T∑
i=k∗2+1

Bi(κ) +O(εn) +OP (εn),

where O(εn) and OP (εn) are in the L2 norm, and Ai(κ) and Bi(κ) are given by (15) and

(16), respectively. Because of η̂c
P→ η,

√
Tεn → 0, and the above results,

√
Tζ5(κ)/η̂c has

the same limiting distribution as that of

1

η
√
T

k∗1∑
i=1

Ai(κ) +
1

η
√
T

T∑
i=k∗2+1

Bi(κ).

Following the same method as that used in Section C.2, we approximate Ai(κ) and Bi(κ)

by Ãi,∞(κ) and B̃i,∞(κ), where Ãi,∞(κ) = liml→∞ Ãi,l(κ), B̃i,∞(κ) = liml→∞ B̃i,l(κ),

Ãi,l(κ) :=
l−1∑
k=0

(EiAi+k(κ)−Ei−1Ai+k(κ)), and B̃i,l(κ) :=
l−1∑
k=0

(EiBi+k(κ)−Ei−1Bi+k(κ)).

By the same arguments as that used in Part 1 of the proof of Lemma 14, we easily obtain

that,

E

∣∣∣∣∣∣ 1

η
√
T

k∗1∑
i=1

(Ai(κ)− Ãi,∞(κ))

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣ 1

η
√
T

T∑
i=k∗2+1

(Bi(κ)− B̃i,∞(κ))

∣∣∣∣∣∣
2 ≤ C/T.
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Therefore, we only need to establish the L2 functional limit theorem for

1

η
√
T

k∗1∑
i=1

Ãi,∞(κ) +
1

η
√
T

T∑
i=k∗2+1

B̃i,∞(κ),

where Ãi,∞(κ) and B̃i,∞(κ) are martingale differences by again the same arguments as that

used in Part 2 of the proof of Lemma 14. It follows from the same arguments as that used

in Step 1 of Part 2 of the proof for Lemma 14 that,

1

η2T

k∗1∑
i=1

Ei−1

[
Ãi,∞(κ)Ãi,∞(κ′)

]
P−→ τ

η2
E
[
Ã1,∞(κ)Ã1,∞(κ′)

]
,

where
1

η2
E
[
Ã1,∞(κ)Ã1,∞(κ′)

]
= CA(κ, κ′);

and
1

η2T

T∑
i=k∗2+1

Ei−1

[
B̃i,∞(κ)B̃i,∞(κ′)

]
P−→ 1− τ

η2
E
[
B̃1,∞(κ)B̃1,∞(κ′)

]
,

where
1

η2
E
[
B̃1,∞(κ)B̃1,∞(κ′)

]
= CB(κ, κ′).

An application of the same arguments as that used in Step 2 of the proof of Theorem 2

concludes the proof of the theorem.

C.6 Proof of Theorem 6

We first present a series of lemmas that are used in proving Theorem 6.

Lemma 15. If Assumptions I(ii) and II with q = 4 hold. Moreover, suppose un = β∆$
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for some β > 0 and 0 < $ < 1/2. Then, we have,

E

∣∣∣∣∣ 1

T

T∑
i=1

Ai(κ)

∣∣∣∣∣
8

≤ C

T 4
, (C.17)

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣
8

≤ C

(
u16
n ∆−7

(T`)7
∨ u16

n ∆−ς
)
, (C.18)

E |η̂ − η̂c|8 ≤ Cu16
n ∆−ς , (C.19)

for sufficiently small ς > 0.

Proof of Lemma 15. First, we show (C.17). Note that summands of (
∑T

i=1Ai(κ))8 in gen-

eral take the following form,

Ae1i1 (κ)Ae2i2 (κ) · · ·Aejij (κ),

where j ∈ {1, 2, . . . , 8}, em ∈ {1, 2, . . . , 8} for m = 1, 2, . . . , j such that
∑j

m=1 em = 8, and

im ∈ {1, 2, . . . , T} for m = 1, 2, . . . , j such that i1 < i2 < ... < ij.

For 1 ≤ j ≤ 4, by Hölder’s inequality and Assumption I(ii), we immediately obtain

that, for any ω > 7,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

ij=ij−1+1

E
∣∣∣Ae1i1 (κ)Ae2i2 (κ) · · ·Aejij (κ)

∣∣∣
≤ 1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

ij=ij−1+1

(E |Ai1(κ)ω|)e1/ω (E |Ai2(κ)ω|)e2/ω

× · · · ×
(
E
∣∣∣Aij(κ)ωej/(ω−

∑j−1
k=1 ek)

∣∣∣)(ω−
∑j−1
k=1 ek)/ω

≤ C

T 4
.

We shall only provide detailed calculations for the representative case j = 6 in what
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follows. The rest of the cases can be treated similarly. When j = 6, (e1, e2, ..., e6) can only

be one of the two combinations (1, 1, 1, 1, 1, 3) and (1, 1, 1, 1, 2, 2) and their permutations.

We shall show that,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i6=i5+1

∣∣E (Aei1i1 (κ)A
ei2
i2

(κ) · · ·Ae6i6 (κ)
)∣∣ ≤ C

T 4
. (C.20)

Again, we only deal with two representative cases and the remaining cases can be treated

by quite similar arguments. We first consider the case where (e1, e2, ..., e6) = (1, 1, 1, 1, 1, 3),

by applying Hölder’s inequality, Lemma 3.102 on page 497 of [7] and Assumption I(ii), we

have that, for any ω > 2(4 + ι)/(2 + ι) where ι is given in Assumption II,

∣∣E (Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3
i6

(κ)
)∣∣

=
∣∣E {Ai1(κ)

[
Ei1
(
Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3

i6
(κ)
)
− E

(
Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3

i6
(κ)
)]}∣∣

≤ (E |Ai1(κ)|ω)
1/ω

(
E
∣∣Ei1 (Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3

i6
(κ)
)

− E
(
Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3

i6
(κ)
)∣∣ω/(ω−1)

)1−1/ω

≤ Cα
1−2/ω
i2−i1

and

∣∣E (Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3
i6

(κ)
)∣∣

≤
∣∣E {Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)

[
Ei5
(
A3
i6

(κ)
)
− E

(
A3
i6

(κ)
)]}∣∣

+ C |E (Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ))|

≤ C
(
α

1−2/ω
i6−i5 + α

1−2/ω
i5−i4

)
.
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Then, we have that, for any ω > 2(4 + ι)/(2 + ι) where ι is given in Assumption II,

∣∣E (Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3
i6

(κ)
)∣∣

≤ C
(
α

1−2/ω
i2−i1 ∧

(
α

1−2/ω
i6−i5 + α

1−2/ω
i5−i4

))
≤ C

(
α

(1−2/ω)/2
i2−i1 α

(1−2/ω)/2
i6−i5 + α

(1−2/ω)/2
i2−i1 α

(1−2/ω)/2
i5−i4

)
.

Thus, by Assumption II with q = 4, we obtain that, for any ω > 2(4 + ι)/(2 + ι) where ι

is given in Assumption II,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i6=i5+1

∣∣E (Ai1(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A3
i6

(κ)
)∣∣

≤ C

T 6

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/2
i2−i1

T∑
i5=1

T∑
i6=i5+1

α
(1−2/ω)/2
i6−i5 +

C

T 6

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/2
i2−i1

T∑
i4=1

T∑
i5=i4+1

α
(1−2/ω)/2
i5−i4

=
2C

T 4

(
T − 1

T
α

(1−2/ω)/2
1 +

T − 2

T
α

(1−2/ω)/2
2 + · · ·+ 1

T
α

(1−2/ω)/2
T−1

)2

≤ C

T 4
.

As to the second case where (e1, e2, ..., e6) = (2, 1, 1, 1, 1, 2), we have that, for any ω >

2(4 + ι)/(2 + ι) where ι is given in Assumption II,

∣∣E (A2
i1

(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2
i6

(κ)
)∣∣

≤
∣∣E {A2

i1
(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)

[
Ei5
(
A2
i6

(κ)
)
− E

(
A2
i6

(κ)
)]}∣∣

+ C
∣∣E (A2

i1
(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)

)∣∣
≤ C

(
α

1−2/ω
i6−i5 + α

1−2/ω
i5−i4

)
and

∣∣E (A2
i1

(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2
i6

(κ)
)∣∣
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≤
∣∣E {A2

i1
(κ)
[
Ei1
(
Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2

i6
(κ)
)
− E

(
Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2

i6
(κ)
)]}∣∣

+ C
∣∣E (Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2

i6
(κ)
)∣∣

≤ C
(
α

1−2/ω
i2−i1 + α

1−2/ω
i3−i2

)
.

Then, we have that, for any ω > 2(4 + ι)/(2 + ι) where ι is given in Assumption II,

∣∣E (A2
i1

(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2
i6

(κ)
)∣∣

≤ C
[(
α

1−2/ω
i6−i5 + α

1−2/ω
i5−i4

)
∧
(
α

1−2/ω
i2−i1 + α

1−2/ω
i3−i2

)]
≤ C

[(
α

(1−2/ω)/2
i6−i5 + α

(1−2/ω)/2
i5−i4

)(
α

(1−2/ω)/2
i2−i1 + α

(1−2/ω)/2
i3−i2

)]
.

Thus, by Assumption II with q = 4, we obtain that, for any ω > 2(4 + ι)/(2 + ι) where ι

is given in Assumption II,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i6=i5+1

∣∣E (A2
i1

(κ)Ai2(κ)Ai3(κ)Ai4(κ)Ai5(κ)A2
i6

(κ)
)∣∣

≤ C

T 6

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/2
i2−i1

T∑
i4=1

T∑
i5=i4+1

α
(1−2/ω)/2
i5−i4 +

1

T 6

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/2
i2−i1

T∑
i5=1

T∑
i6=i5+1

α
(1−2/ω)/2
i6−i5

+
C

T 6

T∑
i2=1

T∑
i3=i2+1

α
(1−2/ω)/2
i3−i2

T∑
i4=1

T∑
i5=i4+1

α
(1−2/ω)/2
i5−i4 +

1

T 6

T∑
i2=1

T∑
i3=i2+1

α
(1−2/ω)/2
i3−i2

T∑
i5=1

T∑
i6=i5+1

α
(1−2/ω)/2
i6−i5

≤ C

T 4
.

The same arguments as above lead to that (C.20) holds for (e1, e2, . . . , e6) taking any

permutation of the six numbers in each of the two vectors (1, 1, 1, 1, 1, 3) and (1, 1, 1, 1, 2, 2).

By applying similar arguments to that used in dealing with the case j = 6, we obtain

that, under Assumptions I(ii) and II with q = 4, for any ω > 2(4 + ι)/ι where ι is given in

57



Assumption II,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i5=i4+1

∣∣E (Ae1i1 (κ)Ae2i2 (κ) · · ·Ae5i5 (κ)
)∣∣ ≤ C

T 4
,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i7=i6+1

∣∣E (Ae1i1 (κ)Ae2i2 (κ) · · ·Ae7i7 (κ)
)∣∣ ≤ C

T 4
,

and in particular,

1

T 8

T∑
i1=1

T∑
i2=i1+1

· · ·
T∑

i8=i7+1

|E (Ai1(κ)Ai2(κ) · · ·Ai8(κ))|

≤ C

T 6

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/4
i2−i1

T∑
i3=i2+1

α
(1−2/ω)/4
i3−i2

T∑
i6=1

T∑
i7=i6+1

α
(1−2/ω)/4
i7−i6

T∑
i8=i7+1

α
(1−2/ω)/4
i8−i7

+
C

T 7

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/4
i2−i1

T∑
i3=i2+1

α
(1−2/ω)/4
i3−i2

T∑
i5=1

T∑
i6=i5+1

α
(1−2/ω)/4
i6−i5

T∑
i7=1

T∑
i8=i7+1

α
(1−2/ω)/4
i8−i7

+
C

T 7

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/4
i2−i1

T∑
i3=1

T∑
i4=i3+1

α
(1−2/ω)/4
i4−i3

T∑
i6=1

T∑
i7=i6+1

α
(1−2/ω)/4
i7−i6

T∑
i8=i7+1

α
(1−2/ω)/4
i8−i7

+
C

T 8

T∑
i1=1

T∑
i2=i1+1

α
(1−2/ω)/4
i2−i1

T∑
i3=1

T∑
i4=i3+1

α
(1−2/ω)/4
i4−i3

T∑
i5=1

T∑
i6=i5+1

α
(1−2/ω)/4
i6−i5

T∑
i7=1

T∑
i8=i7+1

α
(1−2/ω)/4
i8−i7

≤ C

T 4
.

Overall, we have obtained the first result (C.17) of the lemma, i.e.,

E

∣∣∣∣∣ 1

T

T∑
i=1

Ai(κ)

∣∣∣∣∣
8

≤ C

T 4
.

58



Second, we prove inequality (C.18). Note that,

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣
8

≤ E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN=0}

∣∣∣∣∣
8

+ E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}

∣∣∣∣∣
8

≤ E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

(
∆n
i,kX

c
)2

1{|∆n
i,kX

c|≥un}

∣∣∣∣∣
8

+ E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}

∣∣∣∣∣
8

.

We treat the two terms on the right hand side of the last inequality one by one. For

notational convenience, we set,

Bi,k :=
(
∆n
i,kX

c
)2

1{|∆n
i,kX|≥un} and BJi,k :=

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}.

Similar to the situation where we prove (C.17), summands of
(∑T

i

∑jκ
k=jκ−`+1 Bi,k

)8

and(∑T
i

∑jκ
k=jκ−`+1 BJi,k

)8

in general take the forms,

Be1i1,k1B
e2
i2,k2
· · · Bejij ,kj and (BJi1,k1)

e1(BJi2,k2)
e2 · · · (BJij ,kj)

ej ,

respectively, where j ∈ {1, 2, . . . , 8}, em ∈ {1, 2, . . . , 8} for m = 1, 2, . . . , j such that∑j
m=1 em = 8, im ∈ {1, 2, . . . , T} and km ∈ {jκ−`+1, jκ−`+2, . . . , jκ} for m = 1, 2, . . . , j.

First, by Hölder’s inequality, Burkholder-Davis-Gundy inequality, Markov inequality and
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Assumption I(ii), we have that for any j, em’s, im’s, km’s and ω > 16,

E
∣∣∣Be1i1,k1Be2i2,k2 · · · Bejij ,kj ∣∣∣

≤
(
E
∣∣∆n

i1,k1
Xc
∣∣ω)2e1/ω (

E
∣∣∆n

i2,k2
Xc
∣∣ω)2e2/ω · · ·

(
E
∣∣∣∆n

ij ,kj
Xc
∣∣∣ω)2ej/ω

×
(
E1{|∆n

i1,k1
Xc|≥un}

)(1−16/ω)/j (
E1{|∆n

i2,k2
Xc|≥un}

)(1−16/ω)/j

· · ·
(
E1{∣∣∣∆n

ij ,kj
Xc
∣∣∣≥un}

)(1−16/ω)/j

≤ C∆8+(ω−16)(1/2−$).

Thus, we have that, for any ω > 16,

E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

(
∆n
i,kX

c
)2

1{|∆n
i,kX

c|≥un}

∣∣∣∣∣
8

≤ C∆(ω−16)(1/2−$).

Second, by Hölder’s inequality, Burkholder-Davis-Gundy inequality and Lemma 12, for

j > 1, we have that, for any ω > 16 and arbitrarily small ς > 0,

E
∣∣∣(BJi1,k1)e1(BJi2,k2)e2 · · · (BJij ,kj)ej ∣∣∣

≤ CE

{ ∣∣∣u2e1
n +

(
∆n
i1,k1

Xc
)2e1
∣∣∣ ∣∣∣u2e2

n +
(
∆n
i2,k2

Xc
)2e2
∣∣∣ · · · ∣∣∣∣u2ej

n +
(

∆n
ij ,kj

Xc
)2ej

∣∣∣∣
× 1{

∆n
i1,k1

N∆n
i2,k2

N ···∆n
ij ,kj

N>0
}} ≤ C

(
u16
n ∆j−ς ∨∆8+j(1−16/ω)−ς) .

When j = 1, the above inequality holds by setting ς = 0. Thus, by letting ς be sufficiently

close to zero, we have that, for any ω > 16,

E

∣∣∣∣∣ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]

1{∆n
i,kN>0}

∣∣∣∣∣
8
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≤ C

(
u16
n ∆−7

(T`)7
∨ ∆(1−16/ω)

(T`)7
∨ u

16
n ∆−6−ς

(T`)6
∨ ∆2(1−16/ω)−ς

(T`)6
∨ u

16
n ∆−5−ς

(T`)5

∨∆3(1−16/ω)−ς

(T`)5
∨ u

16
n ∆−4−ς

(T`)4
∨ ∆4(1−16/ω)−ς

(T`)4
∨ u

16
n ∆−3−ς

(T`)3
∨ ∆5(1−16/ω)−ς

(T`)3

∨ u16
n ∆−2−ς

(T`)2
∨ ∆6(1−16/ω)−ς

(T`)2
∨ u

16
n ∆−1−ς

T`
∨ ∆7(1−16/ω)−ς

T`
∨ u16

n ∆−ς ∨∆8(1−16/ω)−ς
)

≤ C

(
u16
n ∆−7

(T`)7
∨ ∆(1−16/ω)

(T`)7
∨ u16

n ∆−ς ∨∆8(1−16/ω)−ς
)
.

To summarize, because supt∈R+
E
(
e|µ(t)|)+supt∈R+

E
(
e|σ(t)|) <∞ in Assumption I(ii) and

by the same arguments as that immediately following (C.2), one can always choose a large

enough ω and a small enough ς > 0 such that,

E

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣
8

≤ C

(
u16
n ∆−7

(T`)7
∨ u16

n ∆−ς
)
.

Third, the same arguments as above lead to the bound of E |η̂ − η̂c|8 and are hence

omitted.

Denote

σ2∗
i :=

∫ i

i−1

σ2(t)dt and σ̂2∗
i :=

n∑
j=1

(
∆n
i,jX

)2
1{|∆n

i,jX|≤un}.

Lemma 16. Suppose that all Assumptions in Lemma 15 and
∫
R |x|

8F̃ (dx) < ∞ hold.

Moreover, T � nb and ` � nc for some positive exponents b and c which satisfy c < 1− b/2

and 16$+ 7(b+ c)− 7 > 0, where 0 < $ < 1/2. Then for any κ ∈ [0, 1], we have that, for

sufficiently small ς > 0,

E
∣∣∣f̂(κ)η̂σ̂2∗

i − f(κ)η̂σ2∗
i

∣∣∣4 ≤ C

(
u8
n∆−7/2

(T`)7/2
∨ u8

n∆−ς ∨∆2 ∨ 1

T 2

)
, (C.21)
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E
∣∣∣f̂(κ)η̂σ̂2∗

i

∣∣∣4 ≤ C. (C.22)

Proof of Lemma 16. We prove (C.21) first. By Cauchy-Schwarz inequality and triangular

inequality, we have,

E
∣∣∣f̂(κ)η̂σ̂2∗

i − f(κ)η̂σ2∗
i

∣∣∣4 ≤ C

(
E
∣∣∣f̂(κ)η̂ − f(κ)η̂

∣∣∣8E ∣∣σ2∗
i

∣∣8)1/2

+ C

(
E
∣∣∣σ̂2∗
i − σ2∗

i

∣∣∣8E ∣∣∣f̂(κ)η̂
∣∣∣8)1/2

.

Next, we treat the terms on the right hand side of the last inequality one by one. By

Lemmas 11 and 15, similar arguments to that used in Step 1 of the proof of Theorem

2 in Section C.2, boundedness of f , Assumption I(ii), and conditions c < 1 − b/2 and∫
R |x|

8F̃ (dx) <∞, we have that, for sufficiently small ς > 0,

E
∣∣∣f̂(κ)η̂ − f(κ)η̂

∣∣∣8
≤ CE

∣∣∣∣∣ 1

T

T∑
i=1

σ̂2
i,κ −

1

T

T∑
i=1

σ̂2,c
i,κ

∣∣∣∣∣
8

+ CE

∣∣∣∣∣ 1

T

T∑
i=1

σ̂2,c
i,κ − f(κ)η̂c

∣∣∣∣∣
8

+ CE |f(κ) (η̂c − η̂)|8

≤ CE

∣∣∣∣∣ 1

T

T∑
i=1

σ̂2
i,κ −

1

T

T∑
i=1

σ̂2,c
i,κ

∣∣∣∣∣
8

+ C
6∑
i=1

E |ζi(κ)|8 + CE |η̂c − η̂|8

≤ C

(
u16
n ∆−7

(T`)7
∨ u16

n ∆−ς ∨∆4 ∨ 1

T 4

)
.

By the same arguments as above, we obtain that, for sufficiently small ς > 0,

E
∣∣∣σ̂2∗
i − σ2∗

i

∣∣∣8 ≤ C
(
u16
n ∆−ς ∨∆4

)
. (C.23)
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Next, applying Lemma 15 and condition 16$ + 7(b+ c)− 7 > 0, we immediately have,

E
∣∣∣f̂(κ)η̂

∣∣∣8 ≤ CE

∣∣∣∣∣ 1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)∣∣∣∣∣
8

+ CE

∣∣∣∣∣ 1

T

T∑
i=1

σ̂2,c
i,κ

∣∣∣∣∣
8

≤ C. (C.24)

Lastly, by Jensen’s inequality and Assumption I(ii), we have,

E
∣∣σ2∗
i

∣∣8 ≤ E

∣∣∣∣∫ i

i−1

σ16(t)dt

∣∣∣∣ =

∫ i

i−1

E
(
σ16(t)

)
dt ≤ C.

Second, we derive (C.22). This result is trivial by the Cauchy-Schwarz inequality,

(C.23), (C.24) and condition 16$ + 7(b+ c)− 7 > 0.

The next lemma provides an estimate for the order of magnitude of the Hilbert-Schmidt

norm of the difference between K and K̂.

Lemma 17. Suppose that all Assumptions in Lemma 16 hold, we have that, for sufficiently

small ς > 0,

‖ K̂ − K ‖HS :=

[∫
[0,1]

∫
[0,1]

(
Ĉ(κ, κ′)− C(κ, κ′)

)2

dκdκ′
]1/2

= OP

[(
1

`1/2
∨
(
`

n

)1/4

∨ u
2
n∆−3/4

`3/4
∨ u2

n∆−ς ∨ u
2
n∆−7/8

(T`)7/8
∨ 1√

T

)
Ln ∨

1

L3
n

]
.

Proof of Lemma 17. Observe that,∫
[0,1]

∫
[0,1]

∣∣∣C(κ, κ′)− Ĉ(κ, κ′)
∣∣∣2 dκdκ′

≤ C

∫
[0,1]

∫
[0,1]

1

η4

[(
E (A1(κ)A1(κ′)) +

∞∑
h=1

E (A1(κ)A1+h(κ
′) + A1+h(κ)A1(κ′))

)
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−

(
1

T

T∑
i=1

Ai(κ)Ai(κ
′) +

Ln∑
h=1

1

T − h

T∑
i=1

Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

)]2

dκdκ′

+
C

η̂4

∫
[0,1]

∫
[0,1]

[
1

T

T∑
i=1

Ai(κ)Ai(κ
′) +

Ln∑
h=1

1

T − h

T∑
i=1

Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

− 1

T

T∑
i=1

Âi(κ)Âi(κ
′)−

Ln∑
h=1

1

T − h

T∑
i=1

Âi(κ)
(
Âi+h(κ

′) + Âi−h(κ
′)
)]2

dκdκ′

+
C(η2 − η̂2)2

(ηη̂)4

∫
[0,1]

∫
[0,1]

[
1

T

T∑
i=1

Ai(κ)Ai(κ
′)

+
Ln∑
h=1

1

T − h

T∑
i=1

Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

]2

dκdκ′

=: I + II + III.

In the following, we estimate the order of each of the three terms on the right hand side of

the last equality.

For term I, we have,

E |I| ≤ C

∫
[0,1]

∫
[0,1]

E

∣∣∣∣∣ 1

T

T∑
i=1

Ai(κ)Ai(κ
′)− E (A1(κ)A1(κ′))

∣∣∣∣∣
2

dκdκ′

+ C

∫
[0,1]

∫
[0,1]

Ln

Ln∑
h=1

E

[
1

T − h

T∑
i=1

Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

− E (A1(κ)A1+h(κ
′) + A1+h(κ)A1(κ′))

]2

dκdκ′

+ C

∫
[0,1]

∫
[0,1]

[
∞∑

h=Ln+1

E (A1(κ)A1+h(κ
′) + A1+h(κ)A1(κ′))

]2

dκdκ′

=: I1 + I2 + I3,
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where the first inequality follows from Jensen’s inequality. We shall treat the three terms

on the right hand side of the last equality one by one. First, for term I1, note that, for any

ω > 2(4 + ι)/(3 + ι) where ι is given in Assumption II,

E

∣∣∣∣∣ 1

T

T∑
i=1

[Ai(κ)Ai(κ
′)− E (Ai(κ)Ai(κ

′))]

∣∣∣∣∣
2

≤ C

T 2

T∑
i=1

T∑
j=i

|Cov (Ai(κ)Ai(κ
′), Aj(κ)Aj(κ

′))|

≤ C

T 2

T∑
i=1

T∑
j=i

α
(ω−2)/ω
j−i

(
E |Ai(κ)Ai(κ

′)|ω
)1/ω (

E |Aj(κ)Aj(κ
′)|ω
)1/ω ≤ C

T
,

where the second inequality follows from Assumption II and applying, e.g., Corollary 14.3

on page 212 of [3], and the last inequality follows from Assumptions I(ii) and II with q = 4.

Thus, I1 = O(1/T ). Similarly, we have I2 = O(L2
n/T ). We now turn to term I3. By

Assumptions I(ii) and II with q = 4, Hölder’s inequality and applying Lemma 3.102 on

page 497 of [7], we have that, for any ω > 2(4 + ι)/ι where ι is given in Assumption II,∣∣∣∣∣
∞∑

h=Ln+1

E (A1(κ)A1+h(κ
′) + A1+h(κ)A1(κ′))

∣∣∣∣∣
≤

∞∑
h=Ln+1

[
(E |A1(κ)|ω)

1/ω
(
E |E1 (A1+h(κ

′))|ω/(ω−1)
)1−1/ω

+
(
E |A1(κ′)|ω

)1/ω
(
E |E1 (A1+h(κ))|ω/(ω−1)

)1−1/ω
]

≤ C
∞∑

h=Ln+1

α
1−2/ω
h ≤ C

L3
n

.

Thus, I3 = O(1/L6
n). To summarize, we obtain I = OP (L2

n/T ∨ 1/L6
n).
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Turning next to term II, by (C.7), we have 1/η̂4 P−→ 1/η4. Hence, it remains to compute

the order of the double integral component of II. To this end, by Jensen’s inequality, we

have,

IIη̂4 ≤ C

∫
[0,1]

∫
[0,1]

{
1

T

T∑
i=1

(
Âi(κ)Âi(κ

′)− Ai(κ)Ai(κ
′)
)2

+
Ln∑
h=1

Ln
T − h

T∑
i=1

[
Âi(κ)

(
Âi+h(κ

′) + Âi−h(κ
′)
)

− Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

]2
}
dκdκ′ =: II1 + II2.

For term II1, we have,

II1 ≤
∫

[0,1]

∫
[0,1]

C

T

T∑
i=1

[(
Âi(κ)− Ai(κ)

)2

(Ai(κ
′))

2

+
(
Âi(κ

′)− Ai(κ′)
)2 (

Âi(κ)
)2
]
dκdκ′

≤ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
σ̂2
i,κ − σ2(i− 1 + κ)

)2
A2
i (κ
′)dκdκ′

+ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
f̂(κ)σ̂2∗

i − f(κ)σ2∗
i

)2

A2
i (κ
′)dκdκ′

+ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
σ̂2
i,κ′ − σ2(i− 1 + κ′)

)2 (
σ̂2
i,κ

)2
dκdκ′

+ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
f̂(κ′)σ̂2∗

i − f(κ′)σ2∗
i

)2 (
σ̂2
i,κ

)2
dκdκ′

+ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
σ̂2
i,κ′ − σ2(i− 1 + κ′)

)2
(
f̂(κ)σ̂2∗

i

)2

dκdκ′
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+ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
f̂(κ′)σ̂2∗

i − f(κ′)σ2∗
i

)2 (
f̂(κ)σ̂2∗

i

)2

dκdκ′

=: II1,1 + II1,2 + · · ·+ II1,6.

In what follows, we only treat two representative cases of the six terms on the right hand

side of the last equality and the remaining terms can be dealt with quite similarly. For

term II1,1, we have that, for sufficiently small ς > 0,

E |II1,1| ≤ C

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
E
∣∣σ̂2
i,κ − σ2(i− 1 + κ)

∣∣4E |Ai(κ′)|4)1/2

dκdκ′

≤ C

(
1

`
∨
(
`

n

)1/2

∨ u
4
n∆−3/2

`3/2
∨ u4

n∆−ς
)
,

where the last inequality follows from decomposition (C.1) and similar arguments to that

used in Step 1 of the proof of Theorem 2 in Section C.2 and in showing (C.18) in the proof

of Lemma 15. For term II1,2, by Lemma 16 and (C.7) that η̂
P−→ η, we obtain that, for

sufficiently small ς > 0,

II1,2 =
C

η̂2

∫
[0,1]

∫
[0,1]

1

T

T∑
i=1

(
f̂(κ)η̂σ̂2∗

i − f(κ)η̂σ2∗
i

)2

A2
i (κ
′)dκdκ′

= OP

(
u4
n∆−7/4

(T`)7/4
∨ u4

n∆−ς ∨∆ ∨ 1

T

)
.

By the same arguments as above, one obtains that terms II1,3 and II1,5 have the same

order estimates as that of term II1,1 and that terms II1,4 and II1,6 have the same order
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estimates as that of term II1,2. To summarize, for sufficiently small ς > 0,

II1 = OP

(
1

`
∨
(
`

n

)1/2

∨ u
4
n∆−3/2

`3/2
∨ u

4
n∆−7/4

(T`)7/4
∨ u4

n∆−ς ∨ 1

T

)
.

By the same arguments as that used above in dealing with II1, we have that, for

sufficiently small ς > 0,

II2 = OP

[(
1

`
∨
(
`

n

)1/2

∨ u
4
n∆−3/2

`3/2
∨ u

4
n∆−7/4

(T`)7/4
∨ u4

n∆−ς ∨ 1

T

)
L2
n

]
.

Therefore, for sufficiently small ς > 0,

II = OP

[(
1

`
∨
(
`

n

)1/2

∨ u
4
n∆−3/2

`3/2
∨ u

4
n∆−7/4

(T`)7/4
∨ u4

n∆−ς ∨ 1

T

)
L2
n

]
.

Lastly, we deal with term III. On the one hand, by the arguments immediately follow-

ing (C.4), (C.7), (C.8) and (C.9) with ` being replaced with n, we have that, for sufficiently

small ς > 0,

(η̂ − η)2 (η̂ + η)2

(ηη̂)4 = OP

(
∆4$−ς ∨∆ ∨ 1

T

)
.

On the other hand, by Assumption I(ii) and applying Jensen’s inequality, we obtain,

∫
[0,1]

∫
[0,1]

E

[
1

T

T∑
i=1

Ai(κ)Ai(κ
′)

+
Ln∑
h=1

1

T − h

T∑
i=1

Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))

]2

dκdκ′
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≤
∫

[0,1]

∫
[0,1]

[
C

T

T∑
i=1

E |Ai(κ)Ai(κ
′)|2 +

Ln∑
h=1

CLn
T − h

T∑
i=1

E |Ai(κ) (Ai+h(κ
′) + Ai−h(κ

′))|2
]

dκdκ′

≤ CL2
n.

Therefore, for sufficiently small ς > 0,

III = OP

[(
∆4$−ς ∨∆ ∨ 1

T

)
L2
n

]
,

and this completes the proof.

We are now ready to present the proof of Theorem 6.

Proof of Theorem 6. We shall apply Theorem 1.8.4 of [11] to prove Theorem 6. This proof

consists of two parts. In the first part, we establish finite-dimensional convergence in law.

In the second part, asymptotic finite-dimensionality (or tightness) is established.

Part I. Finite-dimensional convergence in law.

We shall show that 〈G(K̂), h〉 d−→ 〈G(K), h〉 for every h ∈ L2. For notational conve-

nience, define,

Gn := 〈G(K̂), h〉 and G := 〈G(K), h〉.

Then, Gn’s are, conditionally on F , zero-mean normal random variables with conditional

variances,

σ2
Gn :=

∫ 1

0

∫ 1

0

Ĉ(u, v)h(u)h(v)dudv.
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Similarly, G is a zero-mean normal random variable with variance,

σ2
G :=

∫ 1

0

∫ 1

0

C(u, v)h(u)h(v)dudv.

Hence, it suffices to show σ2
Gn

P→ σ2
G. This follows directly from the following fact,

|σ2
Gn − σ

2
G| ≤

∫ 1

0

∫ 1

0

|Ĉ(u, v)− C(u, v)||h(u)||h(v)|dudv

≤ C

(∫ 1

0

∫ 1

0

|Ĉ(u, v)− C(u, v)|2dudv
)1/2

= C ‖ K̂ − K ‖HS= oP (1),

where the second inequality follows from the Cauchy-Schwarz inequality and that h ∈ L2,

and the last equality follows from Lemma 17 and the conditions, particularly (20), of

Theorem 6.

Part II. Asymptotical finite-dimensionality.

Let (ej)j≥1 be the orthonormal basis of L2 that consists of all eigenfunctions of K. We

shall show that, for all δ, ε > 0, there exists a J such that,

lim sup
n

P

(∑
j≥J

〈G(K̂), ej〉2 > δ

)
< ε.

In what follows, we need to deal with the integrability of 1/η̂. We take care of this issue

by decomposing the above probability as follows,

P

(∑
j≥J

〈G(K̂), ej〉2 > δ

)
≤ P

(∑
j≥J

〈G(K̂), ej〉2 > δ, 1/η̂ < 2/η

)
+ P (1/η̂ ≥ 2/η) .
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The second term on the right hand side of the above inequality can be made arbitrarily

small by letting n be sufficiently large because 1/η̂
P→ 1/η. Hence, we only need to focus

on the first term on the right hand side of the above inequality. We treat it as follows.

Note that,

P

(∑
j≥J

〈G(K̂), ej〉2 > δ, 1/η̂ < 2/η

)
= E

{
1{1/η̂<2/η}P

(∑
j≥J

〈G(K̂), ej〉2 > δ

∣∣∣∣∣F
)}

≤ 1

δ
E

(
1{1/η̂<2/η}E

(∑
j≥J

〈G(K̂), ej〉2
∣∣∣∣∣F
))

≤ 1

δ
E

(
1{1/η̂<2/η}E

(∑
j≥J

〈G(K̂), ej〉2 −
∑
j≥J

〈G(K), ej〉2
∣∣∣∣∣F
))

︸ ︷︷ ︸
(I)

+
1

δ
E

(∑
j≥J

〈G(K), ej〉2
)

︸ ︷︷ ︸
(II)

.

Because

E

(
∞∑
j=1

〈G(K), ej〉2
)

= E
(
‖ G(K) ‖2

)
=

∫ 1

0

C(u, u)du <∞,

term (II) can be made arbitrarily small by letting J be sufficiently large. It remains to

treat term (I). This can be done as follows,

1

δ
E

(
1{1/η̂<2/η}E

(∑
j≥J

〈G(K̂), ej〉2 −
∑
j≥J

〈G(K), ej〉2
∣∣∣∣∣F
))

=
1

δ
E
(

1{1/η̂<2/η}E
(
‖ G(K̂) ‖2 − ‖ G(K) ‖2

∣∣∣F))+

1

δ
E

(
1{1/η̂<2/η}E

( ∑
1≤j<J

〈G(K), ej〉2 −
∑

1≤j<J

〈G(K̂), ej〉2
∣∣∣∣∣F
))

.
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We deal with the two terms on the right hand side of the above equality one by one. First,∣∣∣∣1δE (1{1/η̂<2/η}E
(
‖ G(K̂) ‖2 − ‖ G(K) ‖2

∣∣∣F))∣∣∣∣
≤ 1

δ
E

(
1{1/η̂<2/η}

∫ 1

0

|Ĉ(u, u)− C(u, u)|du
)

= o(1),

because by exactly the same calculations in the proof of Lemma 17 and noting that

1{1/η̂<2/η}(η̂
2 − η2)2/(η4η̂4) ≤ 9/η4, one obtains that, under the conditions of Theorem

6,

E
(
|Ĉ(u, v)− C(u, v)|1{1/η̂<2/η}

)
≤ C/nι,

where ι > 0 and does not depend on u and v. Second,∣∣∣∣∣1δE
(

1{1/η̂<2/η}E

( ∑
1≤j<J

〈G(K), ej〉2 −
∑

1≤j<J

〈G(K̂), ej〉2
∣∣∣∣∣F
))∣∣∣∣∣

=

∣∣∣∣∣1δE
(

1{1/η̂<2/η}
∑

1≤j<J

∫ 1

0

∫ 1

0

(C(u, v)− Ĉ(u, v))ej(u)ej(v)dudv

)∣∣∣∣∣
≤ C

δ

J−1∑
j=1

E

∫ 1

0

∫ 1

0

1{1/η̂<2/η}|C(u, v)− Ĉ(u, v)|2dudv ≤ (J − 1)C

δ
× o(1),

where the first inequality follows from the Cauchy-Schwarz inequality and the second in-

equality follows because by again the same calculations in the proof of Lemma 17 and

noting that 1{1/η̂<2/η}(η̂
2 − η2)2/(η4η̂4) ≤ 9/η4, one obtains that, under the conditions of

Theorem 6,

E
(
|Ĉ(u, v)− C(u, v)|21{1/η̂<2/η}

)
≤ C/nι,
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where ι > 0 and does not depend on u and v. We have thus proved that asymptotical

finite-dimensionality holds.

To sum up, Theorem 1.8.4 of [11] leads to the conclusion of Theorem 6, completing the

proof.

C.7 Proof of Corollary 7

The result follows straightforwardly from Lemma 17 and Theorem 2.

C.8 Derivation of the optimal order of ` in Section 5

Recall that T � nb and ` � nc. As discussed in Section 5, there is a bias-variance tradeoff

related to the choice of the order of ` by minimizing the order of the sum of terms II and

III. To this end, we provide the solution to the optimal choice of c for each fixed b. Note

that,

term II = OP

(
1

n(b+c)/2

)
and term III = OP

(
1

n1−c ∨
1

n(1+b−c)/2

)
.

One readily finds,

term III =

 OP

(
1

n1−c

)
, if b+ c ≥ 1,

OP

(
1

n(1+b−c)/2

)
, if b+ c < 1.

We first give an initial analysis of the optimal choice of c for minimizing the order of

the sum of terms II and III when there is no additional constraint other than b + c ≥ 1

or b + c < 1. When b + c ≥ 1, the order of the sum of terms II and III could achieve its

minimum value at c = (2 − b)/3, which occurs only if b ≥ 1/2 because b + c ≥ 1. When

b+ c ≥ 1 and b < 1/2 which imply (2− b)/3 < 1− b, one should choose c as close to 1− b
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as possible to minimize the order of the sum of terms II and III. Similarly, when b+ c < 1,

the order of the sum of terms II and III could achieve its minimum value at c = 1/2, which

occurs only if b < 1/2 because b + c < 1. When b + c < 1 and b ≥ 1/2 which imply

1− b ≤ 1/2, one should choose c as close to 1− b as possible to minimize the order of the

sum of terms II and III.

We are now ready to present a formal analysis of the optimal choice of c for a given b

under the conditions of Theorem 2. We shall take $ as given. Then feasible values of b

are given by the interval (0, 4$), and feasible values of c are given by the interval (cL, cU),

where,

cL := max {1− 4$, 0} and cU := 1− b

2
.

It is easy to verify that 1 − b < cU for any fixed b ∈ (0, 4$); 1 − b ≤ (2 − b)/3 and

cL < (2 − b)/3 < cU for any fixed b ≥ 1/2 if possible; and 1 − b > cL for any fixed b < 1.

Based on the previous initial analysis, we make the following exhaustive list of different

situations and analyze them one by one.

• Case I. When b ≥ 1/2.

This case can be further divided into the following subcases based on whether (1− b)

lies in the interval (cL, cU), i.e., 1 − b ≤ cL, 1 − b ∈ (cL, cU) and 1 − b ≥ cU . This is

due to that the relation between b+ c and 1 is required to determine the order of the

sum of terms II and III. Nonetheless, only 1− b ≤ cL when b ≥ 1 and cL < 1− b < cU

when b ∈ [1/2, 1) are possible according to the above analysis. Therefore, it is easy

to find that copt = (2− b)/3 in this case.

• Case II. When b < 1/2.
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Similarly, this case is further divided into the following subcases: 1−b ≤ cL, 1−b ≥ cU ,

and cL < 1− b < cU . Nonetheless, only cL < 1− b < cU is possible according to the

above analysis. We need to further consider whether cL < 1/2 or cL ≥ 1/2, because

1− b and hence cU are always greater than 1/2 when b < 1/2. Therefore, it is easy to

find that copt = 1/2 when cL < 1/2; and copt = cL+ when cL ≥ 1/2, where cL+ means

that one should choose a value of c that is as close to cL as possible from above.

In summary, we have the following exhaustive list of different cases with the corresponding

optimal c values,

copt =


2−b

3
, when b ≥ 1/2 ,

1
2
, when b < 1/2 and cL < 1/2,

cL+, when b < 1/2 and cL ≥ 1/2.

C.9 Proof of Theorem 8

To prove the theorem, we first introduce some additional notation and establish some

preliminary results. We define,

dni,k :=
(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2

= |∆n
i,kX

c + ∆n
i,kX

J |21{|∆n
i,kX|≤un} −

(
∆n
i,kX

c
)2
,

where the last equality follows from (B.2). By applying the elementary inequality ||x +

y|2 − |x|2| ≤ C(|y|2 + |x||y|) to cases |∆n
i,kX

c| ≥ un/2 and |∆n
i,kX

c| < un/2 separately, we
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obtain that, for any m, l > 0,

|dni,k| ≤ C
|∆n

i,kX
c|2+l

uln
+ C
|∆n

i,kX
c|2|∆n

i,kX
J |m

umn

+ C(|∆n
i,kX

J | ∧ un)2 + C|∆n
i,kX

c|(|∆n
i,kX

J | ∧ un)

=: |dn,1i,k |+ |d
n,2
i,k |+ |d

n,3
i,k |+ |d

n,4
i,k |. (C.25)

We next present two lemmas which are used in proving Theorem 8.

Lemma 18. Under model (1), assume that Assumption I and condition (B.1) hold. Then,

Eti,k−1
|∆n

i,kX
J | ≤ C

∫ ti,k

ti,k−1

Eti,k−1
χ(s)ds, (C.26)

Eti,k−1
(|∆n

i,kX
J | ∧ un) ≤ Cu1−s

n

∫ ti,k

ti,k−1

Eti,k−1
χ(s)ds, for r ≤ s ≤ 1. (C.27)

Hence, E|∆n
i,kX

J | ≤ C∆ and E(|∆n
i,kX

J | ∧ un) ≤ C∆u1−s
n for r ≤ s ≤ 1.

Proof of Lemma 18. First, because E
∫ t

0

∫
R |x|χ(t)dtF (dx) ≤ ∞ for each t > 0, by Proposi-

tion II.1.28 of [7], we have that
∫ t

0

∫
R |x|ν(ds, dx)−

∫ t
0

∫
R |x|χ(t)dtF (dx) is a local martingale.

Furthermore, since
∫ t

0

∫
R |x|ν(ds, dx) and

∫ t
0

∫
R |x|χ(t)dtF (dx) are increasing and locally in-

tegrable,
∫ t

0

∫
R |x|ν(ds, dx)−

∫ t
0

∫
R |x|χ(t)dtF (dx) is in fact a martingale. Hence, we obtain

that,

Eti,k−1
(|∆n

i,kX
J |) = Eti,k−1

∣∣∣∣∣
∫ ti,k

ti,k−1

∫
R
xν(ds, dx)

∣∣∣∣∣ ≤ Eti,k−1

∫ ti,k

ti,k−1

∫
R
|x|χ(t)dtF (dx)

≤ C

∫ ti,k

ti,k−1

Eti,k−1
χ(t)dt.

Therefore, (C.26) follows.
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Second, (C.27) follows from the same arguments as above and the same calculations

used in proving (6.26) of [6] with αn = un/
√

∆.

Lemma 19. Under model (1), assume that Assumption I and condition (B.1) hold. Then,

for any r ≤ s ≤ 1 and arbitrarily small ς > 0,

E|dni,k|2 ≤ C

(
∆3−ς

un
+ ∆u4−s

n + ∆2−ςu2−s
n

)
, (C.28)

E|dni,k||dni′,k′| ≤ C

(
∆4−ς

u2
n

+ ∆3−ςu1−s−ς
n + ∆2−ςu4−2s−ς

n

)
, (C.29)

where i 6= i′ or k 6= k′.

Proof of Lemma 19. We prove (C.28) and (C.29) in Parts I and II, respectively.

Part I.

We first prove (C.28). From (C.25), we have that,

E|dni,k|2 ≤ C(E|dn,1i,k |
2 + E|dn,2i,k |

2 + E|dn,3i,k |
2 + E|dn,4i,k |

2).

We next treat the four terms on the right hand side of the above inequality one by one.

For E|dn,1i,k |2, by Burkholder-Davis-Gundy inequality, we have,

E|dn,1i,k |
2 = CE

|∆n
i,kX

c|4+2l

u2l
n

≤ Cl
∆2+l

u2l
n

,

which can be made arbitrarily small by letting l be sufficiently large.

For E|dn,2i,k |2, by (C.26), Hölder’s inequality, Burkholder-Davis-Gundy inequality and

Jensen’s inequality, we have that, for any m ∈ (0, 1/2) and any ω > 1/(1− 2m) such that
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2m ω
ω−1

< 1,

E|dn,2i,k |
2 = CE

|∆n
i,kX

c|4|∆n
i,kX

J |2m

u2m
n

≤ C

u2m
n

(
E|∆n

i,kX
c|4ω
) 1
ω

(
E|∆n

i,kX
J |2m

ω
ω−1

)ω−1
ω ≤ Cm

∆2+2m

u2m
n

,

where Cm is a constant that depends on m. Note that Cm → ∞ as m → 1/2. Therefore,

for arbitrarily small ς > 0, we can always find a m close to 1/2 enough such that,

E|dn,2i,k |
2 ≤ C

∆3−ς

un
.

As to E|dn,3i,k |2, by using the inequality (|x| ∧un)p ≤ up−1
n (|x| ∧un) for p ≥ 1 and (C.27),

we have,

E|dn,3i,k |
2 = CE(|∆n

i,kX
J | ∧ un)4 ≤ C∆u4−s

n .

Lastly, for E|dn,4i,k |2, by Hölder’s inequality and the same arguments as above, we have

that, for any r ≤ s ≤ 1 and any ω > 1,

E|dn,4i,k |
2 = CE|∆n

i,kX
c|2(|∆n

i,kX
J | ∧ un)2

≤ C
(
E|∆n

i,kX
c|2ω
) 1
ω

(
E(|∆n

i,kX
J | ∧ un)2 ω

ω−1

)ω−1
ω

≤ Cω∆(u
2 ω
ω−1
−1

n ∆u1−s
n )

ω−1
ω ,

where Cω is a constant that depends on ω. Note that Cω → ∞ as ω → ∞. Hence, for
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arbitrarily small ς > 0, we can always find a sufficiently large ω such that,

E|dn,4i,k |
2 ≤ C∆2−ςu2−s

n

for any r ≤ s ≤ 1

To sum up, we have that, for arbitrarily small ς > 0 and any r ≤ s ≤ 1,

E|dni,k|2 ≤ C

(
∆3−ς

un
+ ∆u4−s

n + ∆2−ςu2−s
n

)
.

Part II.

We now prove (C.29). In Part I, we have proved that dn,1i,k can be made arbitrarily small.

Hence, in determining the order of |dni,k||dni′,k′ |, one only needs to consider the following nine

cross-product terms |dn,2i,k ||d
n,2
i′,k′|, |d

n,2
i,k ||d

n,3
i′,k′ |, |d

n,2
i′,k′||d

n,3
i,k |, |d

n,2
i,k ||d

n,4
i′,k′ |, |d

n,2
i′,k′||d

n,4
i,k |, |d

n,3
i,k ||d

n,3
i′,k′ |,

|dn,3i,k ||d
n,4
i′,k′|, |d

n,3
i′,k′||d

n,4
i,k |, and |dn,4i,k ||d

n,4
i′,k′ |. Without loss of generality, we assume that ti,k ≤

ti′,k′−1 and deal with these terms one by one.

We deal with |dn,2i,k ||d
n,2
i′,k′| first. For any 0 < m < 1, any ω1 > 1

1−m and any ω2 >

1
1−ω1m/(ω1−1)

such that m ω1

ω1−1
ω2

ω2−1
< 1, by Hölder’s inequality, Burkholder-Davis-Gundy

inequality, Jensen’s inequality and (C.26), we have,

E|dn,2i,k ||d
n,2
i′,k′ | = CE

|∆n
i,kX

c|2|∆n
i,kX

J |m

umn

|∆n
i′,k′X

c|2|∆n
i′,k′X

J |m

umn

≤ C

u2m
n

(
E|∆n

i,kX
c|2ω1|∆n

i′,k′X
c|2ω1

) 1
ω1

(
E|∆n

i,kX
J |m

ω1
ω1−1 |∆n

i′,k′X
J |m

ω1
ω1−1

)ω1−1
ω1

≤ C∆2

u2m
n

(
E
{
|∆n

i,kX
J |m

ω1
ω1−1Eti′,k′−1

|∆n
i′,k′X

J |m
ω1
ω1−1

})ω1−1
ω1

≤ C∆2∆m

u2m
n

E
|∆n

i,kX
J |m

ω1
ω1−1

∣∣∣∣∣ 1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

∣∣∣∣∣
m

ω1
ω1−1




ω1−1
ω1
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≤ C∆2∆m

u2m
n

(E|∆n
i,kX

J |m
ω1
ω1−1

ω2
ω2−1

)ω2−1
ω2

E ∣∣∣∣∣ 1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

∣∣∣∣∣
m
ω1ω2
ω1−1

 1
ω2


ω1−1
ω1

≤ C∆2∆2m

u2m
n

.

Therefore, for arbitrarily small ς > 0, one can always find a m close to 1 enough such that,

E|dn,2i,k ||d
n,2
i′,k′ | ≤ C

∆4−ς

u2
n

.

As to |dn,2i,k ||d
n,3
i′,k′ |, for any 0 < m < 1, any r ≤ s ≤ 1 and any ω > 1

1−m such that

m ω
ω−1

< 1, by (C.26) and (C.27), we have,

E|dn,2i,k ||d
n,3
i′,k′ | = CE

|∆n
i,kX

c|2|∆n
i,kX

J |m

umn
(|∆n

i′,k′X
J | ∧ un)2

≤ CE
{
|∆n

i,kX
c|2|∆n

i,kX
J |mEti′,k′−1

(|∆n
i′,k′X

J | ∧ un)
}

≤ C∆u1−s
n E

{(
1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

)
|∆n

i,kX
c|2|∆n

i,kX
J |m
}

≤ C∆u1−s
n

(
E

(
1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

)ω

|∆n
i,kX

c|2ω
) 1

ω (
E|∆n

i,kX
J |m

ω
ω−1

)ω−1
ω

≤ C∆2+mu1−s
n .

Therefore, for arbitrarily small ς > 0, one can always find a m close to 1 enough such that,

E|dn,2i,k ||d
n,3
i′,k′| ≤ C∆3−ςu1−s

n

for any r ≤ s ≤ 1.
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As to |dn,2i′,k′||d
n,3
i,k |, for any r ≤ s ≤ 1, any 0 < m < 1 and any ω2 > ω1 >

1
1−m such that

m ω2

ω2−1
< m ω1

ω1−1
< 1, by (C.26) and (C.27), we have,

E|dn,2i′,k′||d
n,3
i,k | = CE

|∆n
i′,k′X

c|2|∆n
i′,k′X

J |m

umn
(|∆n

i,kX
J | ∧ un)2

≤ CE
{

(|∆n
i,kX

J | ∧ un)mEti′,k′−1
|∆n

i′,k′X
c|2|∆n

i′,k′X
J |m
}

≤ CE

{
(|∆n

i,kX
J | ∧ un)m

(
Eti′,k′−1

|∆n
i′,k′X

c|2ω1

) 1
ω1

(
Eti′,k′−1

|∆n
i′,k′X

J |m
ω1
ω1−1

)ω1−1
ω1

}
≤ C∆mE

{
(|∆n

i,kX
J | ∧ un)m

(
Eti′,k′−1

|∆n
i′,k′X

c|2ω1

) 1
ω1

∣∣∣∣∣ 1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

∣∣∣∣∣
m}

≤ C∆m

(
E
(
Eti′,k′−1

|∆n
i′,k′X

c|2ω1

)ω2
ω1

∣∣∣∣∣ 1

∆

∫ ti′,k′

ti′,k′−1

Eti′,k′−1
χ(s)ds

∣∣∣∣∣
mω2
) 1

ω2

×
(
E(|∆n

i,kX
J | ∧ un)

m
ω2
ω2−1

)ω2−1
ω2

≤ C∆1+2mu(1−s)m
n .

Therefore, for arbitrarily small ς > 0, one can always find a m close to 1 enough such that,

E|dn,2i′,k′ ||d
n,3
i,k | ≤ C∆3−ςu1−s−ς

n ,

for any r ≤ s ≤ 1.

By repeatedly using the same arguments as above, we obtain that, for 0 < m < 1 being

sufficiently close to 1,

E|dn,2i,k ||d
n,4
i′,k′ | = CE

|∆n
i,kX

c|2|∆n
i,kX

J |m

umn
|∆n

i′,k′X
c|(|∆n

i′,k′X
J | ∧ un) ≤ C∆3+ 1

2
−ςu−s−ςn ,

E|dn,2i′,k′||d
n,4
i,k | = CE

|∆n
i′,k′X

c|2|∆n
i′,k′X

J |m

umn
|∆n

i,kX
c|(|∆n

i,kX
J | ∧ un) ≤ C∆3+ 1

2
−ςu−s−ςn ,
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E|dn,3i,k ||d
n,3
i′,k′ | = CE(|∆n

i,kX
J | ∧ un)2(|∆n

i′,k′X
J | ∧ un)2 ≤ C∆2−ςu4−2s−ς

n ,

E|dn,3i,k ||d
n,4
i′,k′ | = CE(|∆n

i,kX
J | ∧ un)2|∆n

i′,k′X
c|(|∆n

i′,k′X
J | ∧ un) ≤ C∆2+ 1

2
−ςu3−2s−ς

n

E|dn,3i′,k′||d
n,4
i,k | = CE(|∆n

i′,k′X
J | ∧ un)2|∆n

i,kX
c|(|∆n

i,kX
J | ∧ un) ≤ C∆2+ 1

2
−ςu3−2s−ς

n

E|dn,4i,k ||d
n,4
i′,k′ | = CE|∆n

i,kX
c|(|∆n

i,kX
J | ∧ un)|∆n

i′,k′X
c|(|∆n

i′,k′X
J | ∧ un) ≤ C∆3−ςu2−2s−ς

n

for any r ≤ s ≤ 1 and arbitrarily small ς > 0.

To sum up, we have proved that, for arbitrarily small ς > 0 and any r ≤ s ≤ 1,

E|dni,k||dni′,k′| ≤ C

(
∆4−ς

u2
n

+ ∆3−ςu1−s−ς
n + ∆2−ςu4−2s−ς

n

)
for i 6= i′ or k 6= k′.

We are now ready to present the proof of Theorem 8. The proof differs from that of

Theorem 2 in the calculation of the order of term ‖ 1
T

∑T
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖ in Step 2 of Sec-

tion C.1 and in the calculation of the order of term ζ4(κ). We deal with them separately

in two parts.

Part I. Term ‖ 1
T

∑T
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)
‖.

Using the same notation as that in Step 2 of Section C.1, we define,

S := {(i, i′, k, k′)|i 6= i′ or k 6= k′, where i, i′ = 1, 2, ..., T and k, k′ = jκ − `+ 1, ..., jκ} .
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Applying Lemma 19, we have that, for arbitrarily small ς > 0 and any r ≤ s ≤ 1,

E

{
1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)}2

=
1

(T`∆)2E

{
T∑
i=1

jκ∑
k=jκ−`+1

[(
∆n
i,kX

)2
1{|∆n

i,kX|≤un} −
(
∆n
i,kX

c
)2
]}2

≤ 1

(T`∆)2

∑
(i,i′,k,k′)∈S

E(|dni,k||dni′,k′|) +
1

(T`∆)2

T∑
i=1

jκ∑
k=jκ−`+1

E(|dni,k|2)

≤ C

∆2

(
∆4−ς

u2
n

+ ∆3−ςu1−s−ς
n + ∆2−ςu4−2s−ς

n

)
+

C

T`∆2

(
∆3−ς

un
+ ∆u4−s

n + ∆2−ςu2−s
n

)
.

By letting s = r, we obtain that, for arbitrarily small ς > 0,

E

{
1

T

T∑
i=1

(
σ̂2
i,κ − σ̂

2,c
i,κ

)}2

≤ C
(
n−2+2$+ς + n−1−(1−r)$+ς + n−(4−2r)$+ς

)
+
C

T`

(
n($−1)+ς + n1−$(4−r) + n−$(2−r)+ς) .

The same bound is obtained for E|η̂c− η̂|2. Therefore, for the same results in Theorem 2 to

hold, in addition to other conditions, one needs to ensure that, for arbitrarily small ς > 0,

T
(
n−2+2$+ς + n−1−(1−r)$+ς + n−(4−2r)$+ς

)
+

1

`

(
n($−1)+ς + n1−$(4−r) + n−$(2−r)+ς) = o(1).

This amounts to

c > 1−$(4− r),

and for arbitrarily small ς > 0,

b < min{2− 2$ − ς, 1 + (1− r)$ − ς, (4− 2r)$ − ς}.
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Hence, it suffices to require that,

b < min{2− 2$, 1 + (1− r)$, (4− 2r)$} and c > 1−$(4− r).

Part II. Term ζ4(κ).

Recall the definition of ζ4(κ),

ζ4(κ) :=
1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

(σ2(t)− σ2(i− 1 + κ))dt.

Under the assumption that the volatility process σ2(t) is rough, we calculate the order of

term ζ4(κ) as follows,

E|ζ4(κ)|2 ≤ E

(
1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

(σ2(t)− σ2(i− 1 + κ))dt

)2

≤ 1

T`∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

E(σ2(t)− σ2(i− 1 + κ))2dt

≤ C|i− 1 + κ− ti,jκ−`|2H ≤ C

(
`

n

)2H

,

where the third inequality follows from (B.3). Therefore, under the conditions (B.4), we

have
√
T ‖ ζ4(κ) ‖= oP (1).

Combining the above results and the results for the rest terms in the proof of Theorem

2 completes the proof.
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