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1 Proofs in Section 2.2

Proof of Theorem 1. Let (ρ̃, Ã) ∈ P be a set of parameters such that P(g|ρ,A) = P(g|ρ̃, Ã)

for all g. For all i = 1, . . . , nL, k = nL + 1, . . . , n, consider the probability that only i
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appears under parameterizations (ρ,A) and (ρ̃, Ã), respectively

ρ̃i(1− Ãik)
∏

j=1,...,n,j ̸=i,j ̸=k

(1− Ãij) = ρi(1− Aik)
∏

j=1,...,n,j ̸=i,j ̸=k

(1− Aij),

and the probability that only i and k appear

ρ̃iÃik

∏
j=1,...,n,j ̸=i,j ̸=k

(1− Ãij) = ρiAik

∏
j=1,...,n,j ̸=i,j ̸=k

(1− Aij).

As Aij < 1 in condition (i), dividing the second equation by the first, we obtain Ãik/(1 −

Ãik) = Aik/(1− Aik) and hence Ãik = Aik for i = 1, . . . , nL, k = nL + 1, . . . , n.

For any i = 1, . . . , nL, i
′ = 1, . . . , nL, i ̸= i′, suppose that k is the follower such that

Aik ̸= Ai′k. Consider the probability that only i and i′ appear

ρ̃iÃii′(1− Ãik)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) + ρ̃i′Ãi′i(1− Ãi′k)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãi′j)

=ρiAii′(1− Aik)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij) + ρi′Ai′i(1− Ai′k)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ai′j),

and the probability that i, i′ and k appear

ρ̃iÃii′Ãik

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) + ρ̃i′Ãi′iÃi′k

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãi′j)

=ρiAii′Aik

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij) + ρi′Ai′iAi′k

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ai′j).
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As Ãik = Aik for i = 1, . . . , nL, k = nL + 1, . . . , n, the above two equations become

ρ̃iÃii′(1− Aik)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) + ρ̃i′Ãi′i(1− Ai′k)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãi′j)

=ρiAii′(1− Aik)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij) + ρi′Ai′i(1− Ai′k)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ai′j),

(1)

ρ̃iÃii′Aik

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) + ρ̃i′Ãi′iAi′k

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãi′j)

=ρiAii′Aik

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij) + ρi′Ai′iAi′k

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ai′j). (2)

(1) and (2) can be viewed as a system of linear equations with unknown variables

ρ̃iÃii′

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij),

and

ρ̃i′Ãi′i

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãi′j).

By condition (ii), as Aik ̸= Ai′k, the system has full rank and hence has one and only one

solution:

ρ̃iÃii′

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) = ρiAii′

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij),

ρ̃i′Ãi′i

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) = ρi′Ai′i

∏
j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ai′j). (3)
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Combining (3) with

ρ̃i(1− Ãii′)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Ãij) = ρi(1− Aii′)
∏

j=1,...,n,j ̸=i,j ̸=i′,j ̸=k

(1− Aij),

we obtain Ãii′ = Aii′ for i = 1, . . . , nL, i
′ = 1, . . . , nL by a similar argument to that at the

beginning of the proof. It follows immediately that ρ̃i = ρi for i = 1, . . . , nL.

Remark Neither conditions in Theorem 1 can be removed. That is, if either condition is

removed, then there exists (ρ,A) ∈ P such that (ρ,A) is not identifiable. In fact,

ρ = (1/2, 1/2), A =

1 1/2 0

1 1 1/2


and

ρ = (1/4, 3/4), A =

1 0 0

1 1 1/3


give the same probability distribution, which implies condition (i) is necessary.

Moreover,

ρ = (1/2, 1/2), A =

 1 1/2 1/2

1/2 1 1/2


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and

ρ = (1/4, 3/4), A =

 1 0 1/2

2/3 1 1/2


give the same probability distribution, which implies condition (ii) is necessary.

Proof of Theorem 2. Let (ρ̃, Ã) ∈ P be a set of parameters of the hub model with the null

component such that P(g|ρ,A) = P(g|ρ̃, Ã) for all g. Consider the probability that no one

appears:

ρ̃0

n∏
j=1

(1− π̃j) = ρ0

n∏
j=1

(1− πj).

For k = nL + 1, . . . , n, consider the probability that only k appears:

ρ̃0π̃k

∏
j=1,...,n,j ̸=k

(1− π̃j) = ρ0πk

∏
j=1,...,n,j ̸=k

(1− πj).

From the above equations, we obtain

π̃k = πk, k = nL + 1, . . . , n,

ρ̃0

nL∏
j=1

(1− π̃j) = ρ0

nL∏
j=1

(1− πj). (4)

By condition (iii), for i = 1, . . . , nL, let k and k′ be the nodes from {nL+1, . . . , n} such

that πk ̸= Aik and πk′ ̸= Aik′ .

Consider the probability that i appears but no other nodes from {1, . . . , nL} appears
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(the rest do not matter)

ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j) + ρ̃i
∏

j=1,...,nL,j ̸=i

(1− Ãij)

=ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj) + ρi
∏

j=1,...,nL,j ̸=i

(1− Aij); (5)

the probability that i and k appear but no other nodes from {1, . . . , nL} appears (the rest

do not matter)

ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j)πk + ρ̃i
∏

j=1,...,nL,j ̸=i

(1− Ãij)Ãik

=ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj)πk + ρi
∏

j=1,...,nL,j ̸=i

(1− Aij)Aik; (6)

the probability that i and k′ appear but no other nodes from {1, . . . , nL} appears (the rest

do not matter)

ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j)πk′ + ρ̃i
∏

j=1,...,nL,j ̸=i

(1− Ãij)Ãik′

=ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj)πk′ + ρi
∏

j=1,...,nL,j ̸=i

(1− Aij)Aik′ ; (7)

and the probability that i, k and k′ appear but no other nodes from {1, . . . , nL} appears
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(the rest do not matter)

ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j)πkπk′ + ρ̃i
∏

l=1,...,nL,j ̸=i

(1− Ãij)ÃikÃik′

=ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj)πkπk′ + ρi
∏

l=1,...,nL,j ̸=i

(1− Aij)AikAik′ . (8)

Note that the above equations are not probabilities of a single realization g but are sums

of multiple P(g). Moreover, we put πk, πk′ instead of π̃k, π̃k′ on the LHS of the equations,

since we have proved π̃k = πk, k = nL + 1, . . . , n.

Let

x = ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj),

x̃ = ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j),

y = ρi
∏

j=1,...,nL,j ̸=i

(1− Aij),

ỹ = ρ̃i
∏

l=1,...,nL,j ̸=i

(1− Ãij).

Then (5), (6) (7) and (8) become

x̃+ ỹ = x+ y,

x̃πk + ỹÃik = xπk + yAik,

x̃πk′ + ỹÃik′ = xπk′ + yAik′ ,

x̃πkπk′ + ỹÃikÃik′ = xπkπk′ + yAikAik′ .
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Plugging x̃− x = y − ỹ into the last three equations, we obtain

ỹÃik = ỹπk + y(Aik − πk), (9)

ỹÃik′ = ỹπk′ + y(Aik′ − πk′), (10)

yπkπk′ + ỹÃikÃik′ = ỹπkπk′ + yAikAik′ . (11)

Multiplying (11) by ỹ, and plugging the right hand sides of (9) and (10) into the resulting

equation, we obtain

yỹπkπk′ + ỹ2πkπk′ + ỹπky(Aik′ − πk′) + ỹπk′y(Aik − πk) + y2(Aik − πk)(Aik′ − πk′)

= ỹ2πkπk′ + yỹAikAik′ ,

⇒y(Aik − πk)(Aik′ − πk′) = ỹ(Aik − πk)(Aik′ − πk′).

Therefore, ỹ = y since πk ̸= Aik and πk′ ̸= Aik′ . It follows that x̃ = x, i.e.,

ρ̃0π̃i

∏
j=1,...,nL,j ̸=i

(1− π̃j) = ρ0πi

∏
j=1,...,nL,j ̸=i

(1− πj), i = 1, . . . , nL.

Combining the above equation with (4), we obtain

π̃i = πi, i = 1, . . . , nL,

ρ̃0 = ρ0.

Note that P(g) = P(g|z = 0)P(z = 0) + P(g|z ̸= 0)P(z ̸= 0). So far we have proved
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parameters of P(g|z = 0) and P(z = 0) are identifiable. We only need to prove the

identifiability of P(g|z ̸= 0), which is the case of the asymmetric hub model and has been

proved by Theorem 1.

Remark No conditions in Theorem 2 can be removed. Here we only give a counterexample

when condition (iii) is not satisfied since the other two are similar to the case of Theorem

1. In fact,

ρ = (1/2, 1/2), A =

1/2 0 1/2

1 1/2 1/2


and

ρ = (1/4, 3/4), A =

0 0 1/2

1 1/3 1/2


give the same probability distribution.

2 Proofs in Section 2.3

We start by recalling notations defined in the main text. Recall that z∗ is the true label

assignment, z is an arbitrary label assignment, and ẑ is the maximum profile likelihood

estimator. Furthermore, ti∗ =
∑

t 1(z
(t)
∗ = i), and ti =

∑
t 1(z

(t) = i), tii′ =
∑

t 1(z
(t)
∗ =

i, ẑ(t) = i′).
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Proof of Lemma 1. We first prove a fact: under H1 and H4, for 0 < δ1 < e−c0 ,

P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

})
→ 0.

Note that ẑ must be feasible (the estimated hub must appear in the group as we assume

Aii ≡ 1), we have

P
(
tii
ti∗

≤ δ1

∣∣∣∣ z∗)

≤P

 1

ti∗

T∑
t=1

1(z(t)∗ = i)
∏

k∈{1,...,nL},k ̸=i

(1−G
(t)
k ) ≤ δ1

∣∣∣∣∣∣ z∗
 . (12)

Now since

E

 ∏
k∈{1,...,nL},k ̸=i

(1−G
(t)
k )

∣∣∣∣∣∣ z(t)∗ = i

 =
∏

k∈{1,...,nL},k ̸=i

(1− Aik) ≥ (1− c0/nL)
nL ≥ e−c0 ,

by Hoeffding’s inequality,

(12) ≤P

 1

ti∗

T∑
t=1

1(z(t)∗ = i)

 ∏
k∈{1,...,nL},k ̸=i

(1−G
(t)
k )−

∏
k∈{1,...,nL},k ̸=i

(1− Aik)

 ≤ δ1 − e−c0

∣∣∣∣∣∣ z∗


≤ exp{−2ti∗(e
−c0 − δ1)

2}.
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Hence

P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

}∣∣∣∣∣ z∗
)

=P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

}
, {ti∗ ≥ cminT/nL, for all i}

∣∣∣∣∣ z∗
)

+ P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

}
, {ti∗ < cminT/nL, for some i}

∣∣∣∣∣ z∗
)

≤
nL∑
i=1

P
(
tii
ti∗

≤ δ1

∣∣∣∣ z∗) 1(ti∗ ≥ cminT/nL)

+ 1(ti∗ < cminT/nL, for some i)

≤nL exp{−2cminT/(nL)(e
−c0 − δ1)

2}+ 1(ti∗ < cminT/nL, for some i).

It follows that

P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

})

=Ez∗

[
P

(
nL⋃
i=1

{
tii
ti∗

≤ δ1

}∣∣∣∣∣ z∗
)]

≤nL exp{−2cminT/(nL)(e
−c0 − δ1)

2}+ P(ti∗ < cminT/nL, for some i) → 0.

Therefore, tii
ti∗

≥ δ1 for i = 1, . . . , nL with probability approaching 1.

Let E = { tii
ti∗

≥ δ1 and ti∗ ≥ cminT/nL, i = 1, . . . , nL}. We have shown P(E) → 1. The

inequalities below are proved within the set E , and thus hold with probability approaching

1.
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For i = 1, . . . , nL, k = 1, . . . , nL, k ̸= i,

tik
tk

=
tik∑nL

k′=1 tk′k
≤ tik

tik + tkk
=

tik/ti∗
tik/ti∗ + tkk/tk∗ · tk∗/ti∗

≤ 1

1 + δ1 · cmin/cmax

= δ2 < 1.

Under H2 and H3, mini,i′=1,...,nL,i ̸=i′,j∈Vi
Aij − Ai′j = τd, where τ is bounded away from 0.

Now we give a lower bound for Aij − Ākj for j ∈ Vi and k ̸= i,

Aij − Ākj =

∑
t(Aij − P

(t)
j )1(ẑ(t) = k)

tk

=

∑nL

k′=1(Aij − Ak′j)tk′k
tk

≥
τd
∑

k′ ̸=i tk′k

tk
≥ τ(1− δ2)d. (13)

Next, we show the following fact: if p = ρ1d, q = ρ2d where ρ1 > ρ2 are fixed positive

numbers, then there exists δ3 > 0 such that KL(p, q) ≥ δ3d, where KL(p, q) = p log p
q
+(1−

p) log 1−p
1−q

.

KL(p, q) = p log
p

q
+ log(1− p− q

1− q
) + p log

1− p

1− q

= −p log
q

p
+

p− q

1− q
+ o(d) + ρ1d o(1)

≥ −p log
q

p
+ (q − p) + o(d)

= p

[
q − p

p
− log

(
1 +

q − p

p

)]
+ o(d)

≥ δ3d.

The last line holds for sufficiently small δ3 because q−p
p

− log(1 + q−p
p
) = cρ1,ρ2 > 0 where
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q−p
p

∈ (−1, 0) and cρ1,ρ2 is a constant depending on ρ1 and ρ2.

As Ākj =
∑

t P
(t)
j 1(z(t)=j)

ti
= [
∑

t Az
(t)
∗ ,j

1(z(t) = j)]/ti ≍ d, combining the above fact and

(13), we have

LP (z∗)− LP (ẑ) =
∑
t

∑
j

KL(P
(t)
j , Āẑ(t),j)

≥
nL∑
i=1

∑
k ̸=i

∑
t:z

(t)
∗ =i,ẑ(t)=k

∑
j∈Vi

KL(Aij, Āẑ(t),j)

≥
nL∑
i=1

∑
k ̸=i

∑
t:z

(t)
∗ =i,ẑ(t)=k

∑
j∈Vi

τ(1− δ2)δ3d

≥ τ(1− δ2)δ3dvnTe/nL.

Letting δ = 1/[τ(1− δ2)δ3],

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

Te

T
,

with probability approaching 1.

To prove Theorem 3, we need the following lemma.

Lemma S1.

P(max
z

|LG(z)− LP (z)| ≥ 2η) ≤

nT
L(T/nL + 1)nLne−η + 2nT

L exp

{
− η2/4∑

t

∑
j(log Āij)2Var(G

(t)
j ) + maxij | log Āij|η/6

}

+ 2nT
L exp

− η2/4∑
ij:Āij<1

(
(log(1− Āij))2

∑
t:z(t)=i Var(G

(t)
j )
)
+maxij:Āij<1 | log(1− Āij)|η/6

 .
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Proof of Lemma S1.

LG(z)− LP (z) =

(
nL∑
i=1

ti
∑
j

Âij log Âij + (1− Âij) log(1− Âij)

)

−

(
nL∑
i=1

ti
∑
j

Âij log Āij + (1− Âij) log(1− Āij)

)

+

(
nL∑
i=1

ti
∑
j

Âij log Āij + (1− Âij) log(1− Āij)

)

−

(
nL∑
i=1

ti
∑
j

Āij log Āij + (1− Āij) log(1− Āij)

)

=

nL∑
i=1

ti
∑
j

D(Âij|Āij) +BnL,n,T .

To bound
∑nL

i=1 ti
∑

j D(Âij|Āij), we adopt the approach in Choi et al. (2012), which is

based on a heterogeneous Chernoff bound in Dubhashi and Panconesi (2009). Let ν be any

realization of Â.

P(Âij = νij|z∗) ≤ e−tiD(νij |Āij).

By the independence of Âij conditional on z∗,

P(Â = ν|z∗) ≤ exp

{
−

nL∑
i=1

∑
j

tiD(νij|Āij)

}
.

Let Â be the range of Â for a fixed z. Then |Â| ≤
∏nL

i=1(ti + 1)n ≤
∏nL

i=1(ti + 1)n ≤

(T/nL + 1)nLn, as Âij can only take values from 0/ti, 1/ti, . . . , ti/ti.
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For all η > 0,

P

(
nL∑
i=1

∑
j

tiD(Âij|Āij) ≥ η

∣∣∣∣∣ z∗
)

=
∑
ν∈Â

P

(
Â = ν,

nL∑
i=1

∑
j

tiD(νij|Āij) ≥ η

∣∣∣∣∣ z∗
)

≤
∑
ν∈Â

exp

{
−

nL∑
i=1

∑
j

tiD(νij|Āij)

}
1

{
−

nL∑
i=1

∑
j

tiD(νij|Āij) ≤ −η

}

≤
∑
ν∈Â

e−η ≤ |Â|e−η ≤ (T/nL + 1)nLne−η,

and then

P

(
max

z

nL∑
i=1

∑
j

tiD(Â|Āij) ≥ η

)
≤ nT

L(T/nL + 1)nLne−η. (14)

Next, we bound BnL,n,T . Let BnL,n,T = B1,nL,n,T +B2,nL,n,T , where

B1,nL,n,T =
∑
i

(∑
j

∑
t:z(t)=i

(G
(t)
j − P

(t)
j ) log Āij

)
,

B2,nL,n,T =
∑
i

(∑
j

∑
t:z(t)=i

(G
(t)
j − P

(t)
j ) log(1− Āij)

)
.

As
∣∣∣(G(t)

j − P
(t)
j ) log Āij

∣∣∣ ≤ | log Āij|, by Bernstein’s inequality, we have

P(|B1,nL,n,T | ≥ η/2) ≤ 2 exp

{
− η2/4∑

t

∑
j(log Āij)2Var(G

(t)
j ) + maxij | log Āij|η/6

}
,

P(max
z

|B1,nL,n,T | ≥ η/2) ≤ 2nT
L exp

{
− η2/4∑

t

∑
j(log Āij)2Var(G

(t)
j ) + maxij | log Āij|η/6

}
.

(15)
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In addition, if Āij = 1,
∑

t:z(t)=i(G
(t)
j − P

(t)
j ) ≡ 0, which implies the term

∑
t:z(t)=i(G

(t)
j −

P
(t)
j ) log(1−Āij) in B2,nL,n,T can be dropped. As

∣∣∣(G(t)
j − P

(t)
j ) log(1− Āij)

∣∣∣ ≤ | log(1−Āij)|,

by Bernstein’s inequality,

P(|B2,nL,n,T | ≥ η/2)

≤ 2 exp

− η2/4∑
ij:Āij<1

(
(log(1− Āij))2

∑
t:z(t)=i Var(G

(t)
j )
)
+maxij:Āij<1 | log(1− Āij)|η/6

 ,

P(max
z

|B2,nL,n,T | ≥ η/2)

≤ 2nT
L exp

− η2/4∑
ij:Āij<1

(
(log(1− Āij))2

∑
t:z(t)=i Var(G

(t)
j )
)
+maxij:Āij<1 | log(1− Āij)|η/6

 .

(16)

Finally, combining (14), (15) and (16), we obtain

P(max
z

|LG(z)− LP (z)| ≥ 2η)

≤ P

(
max

z

nL∑
i=1

∑
j

tiD(Â|Āij) ≥ η

)
+ P(max

z
|B1,nL,n,T | ≥ η/2) + P(max

z
|B2,nL,n,T | ≥ η/2)

≤ nT
L(T/nL + 1)nLne−η + 2nT

L exp

{
− η2/4∑

t

∑
j(log Āij)2Var(G

(t)
j ) + maxij | log Āij|η/6

}

+ 2nT
L exp

− η2/4∑
ij:Āij<1

(
(log(1− Āij))2

∑
t:z(t)=i Var(G

(t)
j )
)
+maxij:Āij<1 | log(1− Āij)|η/6

 .

Proof of Theorem 3. First we show the following fact: under H1−H4, if n
2
L log T/(dTv) →

16



0, (log d)2n2
L log nL/(dnv

2) → 0 and (log T )2n2
L log nL/(dnv

2) → 0, then

max
z

nL

dvnT
|LP (z)− LG(z)| = op(1), as nL → ∞, n → ∞, T → ∞. (17)

Letting η = dvnTϵ/nL, the LHS in Lemma S1 becomes P(maxz
nL

dvnT
|LG(z)−LP (z)| ≥ 2ϵ).

To prove the above fact, we need to show each term in the RHS of Lemma S1 goes to 0.

For the first term, it is easy to check that if nL log nL/(dvn) → 0 and n2
L log T/(dvT ) →

0, then

nT
L(T/nL)

nLne
− dvnTϵ

nL → 0.

Under H2, Aij ≍ d and | log Āij| = O(| log d|) for i ̸= j. We can therefore find a constant

C1 such that

P(|B1,nL,n,T | ≥ dvnTϵ/(2nL)) ≤ 2 exp

{
− d2v2n2T 2ϵ2/(4n2

L)

C2
1Tn(log d)

2d+ C1| log d|dvnTϵ/(6nL)

}
,

and

P(max
z

|B1,nL,n,T | ≥ dvnTϵ/(2nL)) ≤ 2nT
L exp

{
− d2v2n2T 2ϵ2/(4n2

L)

C2
1Tn(log d)

2d+ C1| log d|dvnTϵ/(6nL)

}
.

Then if (log d)2n2
L log nL/(dnv

2) → 0,

P(max
z

|B1,nL,n,T | ≥ dvnTϵ/(2nL)) → 0.

17



For the third term, when Āij < 1, we have

Āij ≤
(ti − 1) + P

(t)
j

ti
,

1− Āij ≥
1− P

(t)
j

ti
≥

1− P
(t)
j

T
,

which imply | log(1− Āij)| ≤ C2 log T for some constant C2 > 0. Therefore,

P(max
z

|B2,nL,n,T | ≥ dvnTϵ/(2nL)) ≤ 2nT
L exp

{
− d2v2n2T 2ϵ2/(4n2

L)

C2
2(log T )

2Tnd+ C2(log T )dnvTϵ/(6nL)

}
.

Furthermore, if (log T )2n2
L log nL/(dnv

2) → 0,

P(max
z

|B2,nL,n,T | ≥ dvnTϵ/(2nL)) → 0.

Combining the inequalities of the above three terms, we have proved (17).

Finally, for all ϵ > 0,

P
(
Te

T
≥ ϵ

)
=P
(
Te

T
≥ ϵ,

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

Te

T

)
+ P

(
Te

T
≥ ϵ,

δnL

dvnT
(LP (z∗)− LP (ẑ)) <

Te

T

)
=P
(

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥ ϵ

)
+ o(1) (by Lemma 1)

=P
(

δnL

dvnT
[(LP (z∗)− LG(z∗)) + (LG(z∗)− LG(ẑ)) + (LG(ẑ)− LP (ẑ))] ≥ ϵ

)
+ o(1)

≤P
(

δnL

dvnT
(|LP (z∗)− LG(z∗)|+ |LG(ẑ)− LP (ẑ)|) ≥ ϵ

)
+ o(1)

→ 0.

18



We now give the result of label consistency for fixed nL. We make the following as-

sumptions similar to H1 – H4.

H ′
1: cminT ≤ ti∗ ≤ cmaxT for i = 1, . . . , nL.

H ′
2: Aij = sijd for i = 1, . . . , nL,j = 1, . . . , n and i ̸= j where sij are unknown constants

satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to 0 as n goes to infinity.

H ′
3: There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL with |Vi| ≥ vn such that

τ = mini,i′=1,...,nL,i ̸=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H ′
4: Aii′ is bounded away from 1 for i = 1, . . . , nL,i

′ = 1, . . . , nL and i ̸= i′.

Theorem 3′. Under H ′
1−H ′

4, if log T/(dTv) = o(1), (log d)2/(dnv2) = o(1) and (log T )2/(dnv2) =

o(1), then

Te/T = op(1), as n → ∞, T → ∞.

We omit all the proofs for fixed nL because they are trivial corollaries of the results for

growing nL.

Proof of Theorem 4. First we show the following fact: under the conditions in Theorem 4,

nLTe/T = op(1), as nL → ∞, n → ∞, T → ∞.
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According to the proof in Theorem 3, we need

P
(

δn2
L

dvnT
(|LP (z∗)− LG(z∗)|+ |LG(ẑ)− LP (ẑ)|) ≥ ϵ

)
→ 0,

which holds if we can show

max
z

n2
L

dvnT
|LG(z)− LP (z)| = op(1).

As in the proof of Lemma S1, this holds by letting η = dvnTϵ/n2
L.

Then we bound
∣∣∣Âẑ

ij − Âz∗
ij

∣∣∣:
|Âẑ

ij − Âz∗
ij | =

∣∣∣∣∣
∑

t G
(t)
j 1(ẑ(t) = i)

ti
−
∑

tG
(t)
j 1(z

(t)
∗ = i)

ti∗

∣∣∣∣∣
≤

∣∣∣∣∣
∑

t G
(t)
j 1(ẑ(t) = i)

ti
−
∑

tG
(t)
j 1(ẑ(t) = i)

ti∗

∣∣∣∣∣+
∣∣∣∣∣
∑

tG
(t)
j 1(ẑ(t) = i)

ti∗
−
∑

tG
(t)
j 1(z

(t)
∗ = i)

ti∗

∣∣∣∣∣
≤
∣∣∣∣ti∗ − ti

ti∗

∣∣∣∣+
∑

t

∣∣∣1(ẑ(t) = i)− 1(z
(t)
∗ = i)

∣∣∣
ti∗

≤ δnLTe/T,

where δ is a constant. The last line holds by H ′
1.

Furthermore,

P
(
max
ij

∣∣∣Âẑ
ij − Aij

∣∣∣ ≥ ϵ

)
≤P
(
max
ij

∣∣∣Âẑ
ij − Âz∗

ij

∣∣∣ ≥ ϵ/2

)
+ P

(
max
ij

∣∣∣Âz∗
ij − Aij

∣∣∣ ≥ ϵ/2

)
≤P (δnLTe/T ≥ ϵ) + P

(
max
ij

∣∣∣Âz∗
ij − Aij

∣∣∣ ≥ ϵ/2

)
.
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The second term vanishes by Hoeffding’s inequality: for all ϵ > 0,

P
(∣∣∣Âz∗

ij − Aij

∣∣∣ ≥ ϵ/2
∣∣∣ z∗)

=P

(∣∣∣∣∣∑
t

1(z(t)∗ = i)(G
(t)
j − Aij)

∣∣∣∣∣ ≥ ϵti∗/2

∣∣∣∣∣ z∗
)

≤2 exp{−ϵ2ti∗/2}.

Therefore, if nL log n/T → 0,

P
(
max
ij

∣∣∣Âz∗
ij − Aij

∣∣∣ ≥ ϵ/2

)
≤2nnL exp{−ϵ2cminT/(2nL)}+ P(ti∗ < cminT/nL, for some i) → 0.

The following theorem is on estimation consistency for fixed n.

Theorem 4′. Under H ′
1−H ′

4, if log n/T = o(1), log T/(dTv) = o(1), (log d)2/(dnv2) = o(1)

and (log T )2/(dnv2) = o(1), then

max
i∈{1,...,nL},j∈{1,...,n}

∣∣∣Âz∗
ij − Aij

∣∣∣ = op(1), as n → ∞, T → ∞.

Finally, we give the simplest version of the estimation consistency result, which only

considers the rates of n and T but treats nL, d, and v as fixed.

Theorem 4′′. Under H ′
1 −H ′

4, for fixed d and v, if log n/T = o(1) and (log T )2/n = o(1),
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then

max
i∈{1,...,nL},j∈{1,...,n}

∣∣∣Âz∗
ij − Aij

∣∣∣ = op(1), as n → ∞, T → ∞.

The first condition means n can grow faster than T as long as log n/T → 0. Such a

condition is common in the literature of high-dimensional statistics. The second condition

is more of a technical one: for proving the label consistency, we need an upper bound of

the growth rate of T due to the concentration bound in Lemma S1.

Proof of Lemma 2. By the proof of Lemma 1, there exists δ1 > 0 such that

tii + ti0 ≥ δ1ti∗, i = 1, . . . , nL, (18)

t00 ≥ δ1t0∗, (19)

with probability approaching 1.

Therefore1, for i = 1, . . . , nL, j ∈ Vi,

Aij − Ā0j =

∑
t(Aij − P

(t)
j )1(ẑ(t) = 0)

t0

=

∑nL

k=0(Aij − Akj)tk0
t0

≥ (Aij − A0j)t00
t0

≥ τd
t00
T

≥ τd
t00

(nL + 1)t0∗/cmin

≥ τdcminδ1
nL

.

1Some inequalities below hold with probability approaching 1. We omit this sentence occasionally.
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Using the same argument in Lemma 1, it follows that

LP (z∗)− LP (ẑ) =
∑
t

∑
j

KL(P
(t)
j , Āẑ(t),j)

≥ max
i=1,...,nL

∑
t:z

(t)
∗ =i,ẑ(t)=0

∑
j∈Vi

KL(Aij, Ā0j)

≥ max
i=1,...,nL

τdcminδ1δ3
nL

vn

nL

ti0

≥ max
i=1,...,nL

τdcminδ1δ3
nL

vn

nL

ti0
ti∗

cminT

nL

≥ max
i=1,...,nL

τϵ
dvnT

n3
L

ti0
ti∗

, (20)

where ϵ is a positive constant and τ is bounded away from 0.

Next, we show the following fact: under the conditions in Lemma 2,

max
z

n3
L

dvnT
|LG(z)− LP (z)| = op(1).

As in the proofs of Lemma S1 and Theorem 3, the above statement holds by letting η =

dvnTϵ/n3
L. Combining (20) and the above fact, by the same argument in Theorem 3, we

have

P
(

max
i=1,...,nL

ti0
ti∗

≤ η

)
→ 1. (21)
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Proof of Theorem 5. Due to (18) and (21), there exists δ2 > 0 such that

tii ≥ δ2ti∗ for i = 0, . . . , nL,

with probability approaching 1. By the same argument in Lemma 1,

LP (z∗)− LP (ẑ) =
T∑
t=1

n∑
j=1

KL(P
(t)
j , Āẑ(t),j)

≥
nL∑
i=1

∑
0≤k≤nL,k ̸=i

∑
t:z

(t)
∗ =i,ẑ(t)=k

∑
j∈Vi

KL(Aij, Ākj)

≥vn

nL

nL∑
i=1

∑
0≤k≤nL,k ̸=i

tikτ(1− δ2)δ3d,

which implies that there exists δ > 0 such that with probability approaching 1,

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

nL∑
i=1

∑
0≤k≤nL,k ̸=i

tik
T
. (22)

By the same argument in Theorem 3, this further implies

nL∑
i=1

∑
0≤k≤nL,k ̸=i

tik
T

= op(1), as nL → ∞, n → ∞, T → ∞, (23)

if n2
L log T/(dvT ) = o(1), n2

L(log T )
2 log nL/(dnv

2) = o(1) and n2
L(log d)

2 log nL/(dnv
2) =

o(1).
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As in the proof of Theorem 4,

nL∑
i=1

∑
0≤k≤nL,k ̸=i

(nL + 1)
tik
T

= op(1), as nL → ∞, n → ∞, T → ∞, (24)

if n3
L log T/(dvT ) = o(1), n4

L(log T )
2 log nL/(dnv

2) = o(1) and n4
L(log d)

2 log nL/(dnv
2) =

o(1).

Now we bound t0i, i = 1, . . . , nL. From (24),
∑

1≤k≤nL,k ̸=i tki = op(T/(nL + 1)). And

from δ2Tcmin/(nL + 1) ≤ δ2ti∗ ≤ tii,
∑

1≤k≤nL,k ̸=i tki ≤ tii, with probability approaching 1.

Moreover, from (19), t0i ≤ (1− δ1)t0∗.

Therefore, there exists δ4 > 0 such that for i = 1, . . . , nL, j ∈ Vi,

Aij − Āij =

∑
t(Aij − P

(t)
j )1(ẑ(t) = i)

ti

≥ (Aij − A0j)t0i
ti

≥ τdt0i
t0i + tii +

∑
1≤k≤nL,k ̸=i tki

≥ τdt0i
(1− δ1)t0∗ + 2tii

≥ τdt0i
(1− δ1)t0∗ + 2ti∗

≥ τdnLt0i
δ4T

.

25



It follows that

LP (z∗)− LP (ẑ) ≥ max
i=1,...,nL

∑
t:z

(t)
∗ =i,ẑ(t)=i

∑
j∈Vi

KL(Aij, Āij)

≥ max
i=1,...,nL

τdnLt0iδ3
δ4T

vn

nL + 1
tii

≥ max
i=1,...,nL

d

δ4

nLt0i
T

vn

nL + 1
τδ2δ3ti∗

≥ max
i=1,...,nL

d

δ4

nLt0i
T

vn

nL + 1
τδ2δ3T

cmin

nL + 1

≥ max
i=1,...,nL

dvnT

n2
L

nLt0i
T

δ, (25)

where δ = τδ2δ3cmin/δ4 is positive constant.

By using the same argument in Theorem 3,

max
i=1,...,nL

nLt0i
T

= op(1), (26)

if n4
L log T/(dvT ) = o(1), (log T )2n6

L log nL/(dnv
2) = o(1) and n6

L(log d)
2 log nL/(dnv

2) =

o(1). It follows that

nL∑
i=1

t0i
T

= op(1).

Combining (23) and (26),

Te

T
= op(1), as n → ∞, T → ∞.
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For label consistency under the hub model with the null component with fixed nL, we

make the following assumptions:

H∗′
1 : Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 0, . . . , nL.

H∗′
2 : Aij = sijd for i = 0, . . . , nL,j = 1, . . . , n and i ̸= j where sij are unknown constants

satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to 0 as n goes to infinity.

H∗′
3 : There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL with |Vi| ≥ vn such that

τ = mini=1,...,nL,i′=0,...,nL,i ̸=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H∗′
4 : Aii′ is bounded away from 1 for i = 0, . . . , nL,i

′ = 1, . . . , nL and i ̸= i′.

Theorem 5′. Under H∗′
1 −H∗′

4 , if log T/(dTv) = o(1), (log d)2/(dnv2) = o(1) and (log T )2/(dnv2) =

o(1), then

Te/T = op(1), as n → ∞, T → ∞.

Proof of Theorem 6. By the same argument in Theorem 4, it is sufficient to show

(nL + 1)Te

T
= op(1), as nL → ∞, n → ∞, T → ∞. (27)

From (24), we have shown

nL∑
i=1

∑
0≤k≤nL,k ̸=i

(nL + 1)tik
T

= op(1), as nL → ∞, n → ∞, T → ∞.
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From (25), there exists δ′ > 0 such that

LP (z∗)− LP (ẑ) ≥ max
i=1,...,nL

dvnT

δ′n3
L

nL(nL + 1)t0i
T

,

which further implies

max
i=1,...,nL

nL(nL + 1)t0i
T

= op(1),

if n5
L log T/(dTv) = o(1), (log d)2n8

L log nL/(dnv
2) = o(1) and (log T )2n8

L log nL/(dnv
2) =

o(1).

It follows that

nL∑
i=1

(nL + 1)t0i
T

= op(1).

Eq. (27) is therefore proved and so is the theorem.

Finally, we give the result for estimation consistency under the hub model with the null

component with fixed nL:

Theorem 6′. Under H∗′
1 −H∗′

4 , if log n/T = o(1), log T/(dTv) = o(1), log T/(dTv) = o(1),

(log d)2/(dnv2) = o(1) and (log T )2/(dnv2) = o(1), then

max
i∈{0,...,nL},j∈{1,...,nL}

|Âẑ
ij − Aij| = op(1), as n → ∞, T → ∞.
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3 Additional Discussion of the Hub Model with the

Null Component and Unknown Hub Set

We give a new identifiability result for the hub model with the null component and unknown

hub set. Recall that V0 is the true hub set with |V0| = nL. Let Ṽ0 be another potential hub

set with the corresponding parameters (ρ̃, Ã) ∈ P such that P(g|ρ,A) = P(g|ρ̃, Ã).

Theorem S1. The parameters (ρ,A) of the hub model with the null component and un-

known hub set are identifiable under the following conditions:

(i′) Aij < 1 for i ∈ V0 ∪ {0} and Ãij < 1 for i ∈ Ṽ0 ∪ {0}, j = 1, . . . , n, j ̸= i;

(ii′) for all i ∈ V0, i
′ ∈ V0, i ̸= i′, there exists k ∈ V \ V0 such that Aik ̸= Ai′k;

(iii′) for all i ∈ V0, there exist k, k′ ∈ V \ V0 and k ̸= k′ such that πk ̸= Aik and πk′ ̸= Aik′;

(iv′) there exists k /∈ V0 ∪ Ṽ0 such that for any i ∈ V0, πk ̸= Aik, and for any l ∈ Ṽ0,

π̃k ̸= Ãlk.

Conditions (i’) - (iii’) are identical to those in Theorem 1 and Theorem 2. Condition

(iv’) requires there exists at least one node that can only play a role as a follower.

Proof of Theorem S1. Theorem 2 shows when V0 = Ṽ0, the parameters in the hub model

with null component are identifiable. Therefore, we only need to show V0 = Ṽ0 if P(g|ρ,A) =

P(g|ρ̃, Ã) for all g.

Suppose there exist (ρ̃, Ã) ̸= (ρ,A) such that P(g|ρ,A) = P(g|ρ̃, Ã) for any g. Let

B1 = Ṽ0 \ V0 and B2 = V \ (V0 ∪ Ṽ0). First, we consider the probability that no node
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appears

ρ0

n∏
j=1

(1− A0j) = ρ̃0

n∏
j=1

(1− Ã0j), (28)

and the probability that only k ∈ B2 appears,

ρ0A0k

n∏
j ̸=k

(1− A0j) = ρ̃0Ã0k

n∏
j ̸=k

(1− Ã0j). (29)

Dividing (29) by (28), since A0k < 1, we have A0k = Ã0k for any k ∈ B2.

Next we show that B1 = Ṽ0 \ V0 = ∅. Suppose B1 ̸= ∅. By condition (iv’), for any

i ∈ B1, there exists a k ∈ B2 such that Ã0k ̸= Ãik. Consider the probability that only i

appears,

ρ̃0Ã0i

∏
j=1,...,n,j ̸=i

(1−Ã0j)+ρ̃i
∏

j=1,...,n,j ̸=i

(1−Ãij) = ρ0A0i(1−A0k)
∏

j=1,...,n,j /∈{i,k}

(1−A0j), (30)

and the probability that only i and k appear

ρ̃0Ã0iA0k

∏
j=1,...,n,j /∈{i,k}

(1− Ã0j) + ρ̃iÃik

∏
j /∈{i,k}

(1− Ãij) = ρ0A0iA0k

∏
j /∈{i,k}

(1− A0j). (31)

Let

x̃ = ρ̃0Ã0i

∏
j=1,...,n,j /∈{i,k}

(1− Ã0j),

ỹ = ρ̃i
∏

j=1,...,n,j /∈{i,k}

(1− Ãij).

Then (30) and (31) can be viewed as a system of linear equations with unknown variables
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x̃ and ỹ:

 A0k Ãik

1− A0k 1− Ãik


x̃

ỹ

 =

 ρ0A0iA0k

∏
j=1,...,n,j /∈{i,k}(1− A0j)

ρ0A0i(1− A0k)
∏

j=1,...,n,j /∈{i,k}(1− A0j)

 .

Since A0k = Ã0k ̸= Ãik, the system is full rank and hence has a unique solution:

ρ̃0Ã0i

∏
j=1,...,n,j /∈{i,k}

(1− Ã0j) = ρ0A0i

∏
j=1,...,n,j /∈{i,k}

(1− A0j),

ρ̃i
∏

j=1,...,n,j /∈{i,k}

(1− Ãij) = 0.

Combining with (28), we have

ρ̃0(1− Ã0i)
∏

j=1,...,n,j /∈{i,k}

(1− Ã0j) = ρ0(1− A0i)
∏

j=1,...,n,j /∈{i,k}

(1− A0j).

As Ãij < 1, A0i = Ã0i for any i ∈ B1 ⊂ Ṽ0 and ρ̃i = 0, which contradicts the assumption

that 0 < ρ̃i < 1 for any i ∈ Ṽ0. Therefore, Ṽ0 \ V0 = ∅ implies that Ṽ0 does not contain any

redundant component.

By the same argument, we obtain A0i = Ã0i for any i ∈ V0 \ Ṽ0 and ρi = 0, which

contradicts the assumption 0 < ρi < 1 for i ∈ V0. Therefore, V0 \ Ṽ0 = ∅. Hence, V0 = Ṽ0.

By Theorem 2, we have (ρ̃, Ã) = (ρ,A).

We close this section by a discussion on how the penalized log-likelihood function (Sec-

tion 3.2 in the main text) can result in sparse solutions. Maximizing the Lagrangian form

of the penalized log-likelihood function is equivalent to maximizing L(A, ρ) under the fol-
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lowing constraints

ρi ≥ 0, i = 0, 1, . . . ,M,

M∑
i=0

ρi = 1,
M∑
i=1

[log(ϵ+ ρi)− log ϵ] ≤ t.

To show how the constraints can result in sparse solutions, we consider a toy model con-

taining only two nodes, both of which are potential hub set members, that is, M = 2. The

constraints become

ρ1 ≥ 0, ρ2 ≥ 0, ρ1 + ρ2 ≤ 1, (32)

log(1 +
ρ1
ϵ
) + log(1 +

ρ2
ϵ
) ≤ t.
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Figure 1: Feasible regions of the log penalty with different values of t.

Figure 1 shows the feasible regions of the log penalties for t = 3, 4, 5 and ϵ = 0.01,

where the crosses mark the intersection of log(1 + ρ1/ϵ) + log(1 + ρ2/ϵ) = t and the axes,

and the dashed line indicates ρ1 + ρ2 = 1. For t = 3 and 4, ρ̂1 (resp. ρ̂2) can potentially
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reach 0 with ρ̂2 (resp. ρ̂1) being non-zero, indicated by the cross markers within the region

defined by (32). For t = 5 (corresponding to a smaller λ), this cannot happen because

log(1 + ρ1/ϵ) + log(1 + ρ2/ϵ) = 5 intersects with the axes outside of the region defined by

(32).

4 Additional Simulation Results

To further study the performance of the estimates under the setting of sparse A, we in-

troduce a scale factor α to control the density of A. Specifically, Aij ∼ U(0.2α, 0.4α) for

j ∈ Vi and Aij ∼ U(0, 0.2α) for j /∈ Vi, where α = 0.1, 0.2, . . . , 1. We study how the ratios

of the RMSEs when the hub labels are unknown to those when the hub labels are known

i.e., RMSE(Âij)/RMSE∗, change with the degree of sparsity. We present the results for the

case when n = 100. Other simulation settings are the same with those in Section 4.1.

Figure 2 and 3 show the results of ratio versus α for the asymmetric hub model and the

hub model with the null component, respectively. As α decreases, the ratio typically first

increases and then decreases. This suggests that the estimators in both cases perform well

when A is dense, and the problem becomes more difficult for the estimator with unknown

hubs as A becomes sparser. However, when A becomes too sparse, the matrix A cannot be

well estimated even for the case of known hub labels (i.e., the baseline).

Moreover, Figure 2 and 3 show that the turning point, i.e., the maximizer of the ratio,

comes earlier when A is more difficult to estimate, which corresponds to the cases with

larger nL, smaller T , and the hub model with the null component. The turning point

corresponds to the α value that gives the largest gap between the RMSE for the estimator
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Figure 2: The asymmetric hub model results. The ratio is RMSE(Âij)/RMSE∗.
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Figure 3: The hub model with the null component results. The ratio is RMSE(Âij)/RMSE∗.
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with unknown hub labels and the baseline, and when the settings become more difficult,

the estimator with unknown hub labels starts to face challenges on a denser graph.

5 Additional Analysis of Passerine Data

We bootstrap 1,000 samples from the original data to evaluate the stability of the proposed

hub set selection method. Specifically, we perform our method on each bootstrapped sample

under λ from 0.045 to 0.065 and compute the proportion of each node being selected as a

hub set member. Table 1 demonstrates the stability of the proposed method: the majority

of the birds are not selected as a hub set member in any bootstrap sample, and v9, v30 and

v42, the three birds identified from the original data dominate in the selection proportions

across the bootstrapped samples.

6 Analysis of Extended Bakery Data

We apply the hub model with the null component to the extended bakery dataset (available

at http://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery) to find the hub items

and relationships among all the items. The dataset is a collection of purchases in a chain of

bakery stores. The stores provide 50 items including 40 bakery goods (1-40) and 10 drinks

(41-50). The goods can be divided into five categories: cakes (1-10), tarts (11-20), cookies

(21-30) and pastries (31-40). Each purchase contains a collection of items bought together.

The extended bakery data was used as a benchmark dataset to test certain machine

learning methods. For example, Agarwal and Nanavati (2016) used association rule mining
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to extract the hidden relationships of items and Negahban et al. (2018) applied a multino-

mial logit (MNL) model to address the problem of collaboratively learning representations

of the users and the items in recommendation systems.

In our experiment, we use the 5,000 receipts in the dataset. Since drinks are typically

purchased as affiliated items of food, we use the 40 bakery goods as the potential hub set,

i.e., V̄0 = {1, . . . , 40}. We use λ = 0.025, 0.030, . . . , 0.045 to estimate the hub set.

Table 2: Estimated hub set for extended bakery data
λ Selected hub nodes

0.025 1 4 5 6 12 13 25 29 33
0.030 1 4 5 15 23 29 33
0.035 5 15 23 29 34
0.040 15 16 23 29 34
0.045 15 23 29 34

Table 2 shows the estimated hub sets. As λ increases, nodes are removed gradually from

the hub set. According to the BIC criteria, the optimal λ is 0.045, at which the estimated

hub set contains v15, v23, v29 and v34, where v15 is tart, v23 and v29 are cookies, and v34 is

pastry.

In addition, if the data was fitted by the hub model without the null component, then

the entire node set has to be used as the hub set. In fact, each of the 50 items was purchased

individually for at least once, and therefore must serve as a hub if the hubless groups are

not assumed. When the hub model with the null component is used, the corresponding

items may be removed from the hub set, which greatly reduces the model complexity.
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