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A Deriving the acceptance-rejection probability

The BDRJ algorithm considers switching between (K [𝑠] , 𝐺 [𝑠] , W̃ , 𝐺′) to the alternative

(K′, 𝐺′,W 0, 𝐺 [𝑠]), where W 0 ∈ P𝐺 [𝑠] , by performing two Reversible Jump moves: (i) a

dimension increasing step from (K [𝑠] , 𝐺 [𝑠]) to (K′, 𝐺′) according to posterior parameters

𝑏 +𝑛 and 𝐷 +𝑈 and (ii) a dimension decreasing step from (W̃ , 𝐺′) to (W 0, 𝐺 [𝑠]) according

to prior parameters 𝑏 and 𝐷.

As mentioned in Section 3, the proposed graph 𝐺′ is obtained from Equation (4) by

adding the edge (𝑙, 𝑚) to the multigraph representation of 𝐺 [𝑠] . Regarding the precision

matrix, the double reversible jump is performed by leveraging on the change of variables

K ↦→ 𝚽, where 𝚽 is an upper triangular matrix such that K = 𝚽𝑇𝚽, see Section 3. We

set 𝚽′
𝑖 𝑗 = 𝚽𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝜈

(
𝐺

[𝑠]
)
. The free elements are the ones in the set 𝐿 that are

proposed by perturbing the old values independently and with the same variance 𝜎2
𝑔 , which

is a tuning parameter. Namely, we draw 𝜂ℎ
ind∼ N

(
𝚽[𝑠]

ℎ
, 𝜎2

𝑔

)
and set 𝚽′

ℎ
= 𝜂ℎ for each ℎ ∈ 𝐿.

This de�nes all the free elements of 𝚽′, while the non-free elements are determined through
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the completion operation (Atay-Kayis and Massam 2005). Hence, 𝚽′ is well de�ned as well

as K′ = (𝚽′)𝑇𝚽′.

The probability to accept the proposed values of (K′, 𝐺′) is equal to min(1, 𝑅+), where

𝑅+ =

𝑝

(
K′, 𝐺′,W 0, 𝐺 [𝑠] | y

)
𝑝

(
K [𝑠] , 𝐺 [𝑠] , W̃ , 𝐺′ | y

) 𝐽 (K′ → 𝚽′) 𝐽
(
W 0 → 𝚽0

)
𝐽

(
K [𝑠] → 𝚽[𝑠]

)
𝐽

(
W̃ → 𝚽̃

) 𝑞

(
K′ | K [𝑠]

)
𝑞

(
W 0 | W̃

) , (11)

where 𝐽 (𝐴 → 𝐵) denotes the Jacobian of the transformation from A to B. As usual with

discrete spaces, in Equation (11), the Jacobian needed for matching the dimensions of the

compared states has been omitted since it reduces to the determinant of the identity matrix.

First, we recall that the Cholesky decomposition of the precision matrix discussed in

Section 3 allows us to easily compute the determinant of K, see Roverato (2002), that is

det(K) =
𝑝∏
𝑖=1

𝚽2
𝑖𝑖 . (12)

Note that this formulation involves only diagonal values of 𝚽, which are free elements by

de�nition. Hence, Equation (12) implies that det(K′) = det
(
K [𝑠]

)
.

2



The �rst ratio in Equation (11) can be factorized as follows:

𝑝

(
K′, 𝐺′,W 0, 𝐺 [𝑠] | y

)
𝑝

(
K [𝑠] , 𝐺 [𝑠] , W̃ , 𝐺′ | y

) =
𝑝 (y | K′, 𝐺′)

𝑝
(
y | K [𝑠] , 𝐺 [𝑠] ) 𝑝(K′ | 𝐺′)

𝑝
(
K | 𝐺 [𝑠] ) 𝑞

(
𝐺 [𝑠] | 𝐺′

)
𝑞

(
𝐺′ | 𝐺 [𝑠] )

×
𝑝

(
W 0 | 𝐺 [𝑠]

)
𝑝

(
W̃ | 𝐺′

) 𝜋(𝐺′)
𝜋

(
𝐺 [𝑠] )

=

√︁
|K′|√︁
|K |

exp

{
−1
2

〈
K′ −K [𝑠] , 𝑈

〉}
×
𝐼𝐺 [𝑠] (𝑏, 𝐷)
𝐼𝐺 ′ (𝑏, 𝐷) exp

{
−1
2

〈
K′ −K [𝑠] , 𝐷

〉} ���𝑛𝑏𝑑B,+
𝑀

(
𝐺

[𝑠]
𝐵

)������𝑛𝑏𝑑B,−
𝑀

(
𝐺′

𝐵

) ���
× 𝐼𝐺 ′ (𝑏, 𝐷)
𝐼𝐺 [𝑠] (𝑏, 𝐷)

1

exp
{
−1
2

〈
W̃ −W 0, 𝐷

〉} 𝜋(𝐺′)
𝜋(𝐺 [𝑠])

=
exp

{
−1
2

〈
K′ −K [𝑠] , 𝐷 +𝑈

〉}
exp

{
−1
2

〈
W̃ −W 0, 𝐷

〉}
���𝑛𝑏𝑑B,+

𝑀

(
𝐺

[𝑠]
𝐵

)������𝑛𝑏𝑑B,−
𝑀

(
𝐺′

𝐵

) ��� 𝜋(𝐺′)
𝜋

(
𝐺 [𝑠] ) ,

(13)

where 〈𝐴, 𝐵〉 denotes the trace of the product between 𝐴 and 𝐵. Note that the two ratios

of G-Wishart densities allow us to eliminate the presence of their normalizing constants.

Also, note that, thanks to Equation (12), all the determinants of the matrices in Equation

(13) canceled out.

For what concerns the change of variable from a precision matrix to its Cholesky de-

composition, the Jacobian of such a transformation is

𝐽 (K ↦→ 𝚽) = 2𝑝
𝑝∏
𝑖=1

𝚽
𝜈𝐺
𝑖

𝑖𝑖
, (14)

where 𝜈𝐺
𝑖
= |{ 𝑗 : 𝑗 > 𝑖 and (𝑖, 𝑗) ∈ 𝐸}| is the sum of elements in 𝑖-th row of the adjacency

matrix, from position 𝑖 + 1 up to the end. Then, the ratio of the Jacobians appearing in

Equation (11) is readily computed using Equation (14). That is,

𝐽 (K′ → 𝚽′)
𝐽 (K [𝑠] → 𝚽[𝑠])

=
2𝑝

2𝑝

∏𝑝

𝑖=1

(
𝚽′

𝑖𝑖

)𝜈𝐺′
𝑖

+1∏𝑝

𝑖=1

(
𝚽[𝑠]

𝑖𝑖

)𝜈𝐺
𝑖
+1

=
∏

𝑖∈𝑉 (𝐿)

(
𝚽[𝑠]

𝑖𝑖

)𝜈𝐺′
𝑖

−𝜈𝐺 [𝑠]
𝑖

. (15)
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The last equality follows by noticing that 𝜈𝑖 (𝐺) = 𝜈𝑖 (𝐺′) for all 𝑖 ≠ 𝑉 (𝐿) and those diagonal

elements are not modi�ed by construction. Analogously, one can show that

𝐽 (W 0 → 𝚽0)
𝐽 (W̃ → 𝚽̃)

=
∏

𝑖∈𝑉 (𝐿)

(
𝚽0

𝑖𝑖

)𝜈𝐺′
𝑖

−𝜈𝐺 [𝑠]
𝑖

.

Under the assumption that 𝐺′ is obtained by adding edge (𝑙, 𝑚) to the multigraph repre-

sentation of 𝐺 [𝑠] , the exponent in (15) reduces to

𝜈𝐺
′

𝑖 − 𝜈𝐺
[𝑠]

𝑖 = |{ 𝑗 ∈ 𝐵𝑚 : 𝑗 > 𝑖}|,

which is equal to the number of nodes in group 𝑚 whose index is greater than 𝑖.

Finally, the last ratio in Equation (11) is due to the randomness in the construction

of the proposed and the auxiliary matrices. By de�nition, each term is just the ratio of

independent multivariate Gaussian densities, i.e.,

𝑞

(
K′ | K [𝑠]

)
=

©­­«
1√︃
2𝜋𝜎2

𝑔

ª®®¬
|𝐿 |

exp

{
− 1

2𝜎2
𝑔

∑︁
ℎ∈𝐿

(
𝚽′

ℎ −𝚽ℎ

)2}
,

where, for sake of clarity, we explicitly wrote the ratio in terms of 𝚽′. Similarly, we obtain

the quantity 𝑞

(
W 0 | W̃

)
∝ exp

{
− 1
2𝜎2

𝑔

∑
ℎ∈𝐿

(
𝚽0

ℎ
− 𝚽̃ℎ

)2}
.

Wrapping everything together, we end up with

𝑅+ =
exp

{
−1
2

〈
K′ −K [𝑠] , 𝐷 +𝑈

〉}
exp

{
−1
2 〈W̃ −W 0, 𝐷〉

} ∏
𝑖∈𝑉 (𝐿)

(
𝚽[𝑠]

𝑖𝑖

𝚽0
𝑖𝑖

)𝜈𝐺′
𝑖

−𝜈𝐺 [𝑠]
𝑖

× exp

{
1

2𝜎2
𝑔

∑︁
ℎ∈𝐿

[(
𝚽′

ℎ −𝚽[𝑠]
ℎ

)2
−

(
𝚽0

ℎ − 𝚽̃ℎ

)2] }
𝜋(𝐺′)
𝜋

(
𝐺 [𝑠] ) .
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Algorithm 1: Block Double Reversible Jump

Suppose the chain to be in state
(
K [𝑠] , 𝐺 [𝑠]

)
, with K [𝑠] =

(
𝚽[𝑠]

)> (
𝚽[𝑠]

)
∈ 𝑃𝐺 [𝑠]

and 𝐺 [𝑠] ∈ B.

For each iteration:

Step 1. Updating the graph 𝐺

1.1. Sample 𝐺′
𝐵
from 𝑞

(
𝐺′

𝐵
| 𝐺 [𝑠]

)
given by (4). Set 𝐺′ = 𝜌−1

(
𝐺 [𝑠]

)
. Suppose an

addition move is selected. Call 𝐿 the set of new edges.

1.2. Draw W̃ | 𝐺′ ∼ G-Wishart(𝑏, 𝐷) from an exact sampler (Lenkoski 2013).

1.3. For each ℎ ∈ 𝐿, draw 𝜂ℎ ∼ 𝑁

(
𝚽[𝑠]

ℎ
, 𝜎2

𝑔

)
1.4. Set (𝚽′)𝜈(𝐺 [𝑠]) =

(
𝚽[𝑠]

)𝜈(𝐺 [𝑠])
and 𝚽′

ℎ
= 𝜂ℎ ∀ℎ ∈ 𝐿.

Derive the remaining elements by completion operation and de�ne

K′ = (𝚽′)>𝚽′.

1.5. Set (𝚽0)𝜈(𝐺 [𝑠]) = (𝚽̃)𝜈(𝐺 [𝑠]) . Derive the remaining elements by completion

operation and de�ne W 0 =
(
𝚽0

)>
𝚽0.

1.6. Compute 𝛾

((
K [𝑠] , 𝐺 [𝑠]

)
→ (K′, 𝐺′)

)
= min{1, 𝑅+} where

𝑅+ =
exp

{
−1
2

〈
K′ −K [𝑠] , 𝐷 +𝑈

〉}
exp

{
−1
2

〈
W̃ −W 0, 𝐷

〉} ∏
𝑖∈𝑉 (𝐿)

(
𝚽[𝑠]

𝑖𝑖

𝚽0
𝑖𝑖

)𝜈𝐺′
𝑖

−𝜈𝐺 [𝑠]
𝑖

× exp

{
1

2𝜎2
𝑔

∑︁
ℎ∈𝐿

[(
𝚽′

ℎ −𝚽[𝑠]
ℎ

)2
−

(
𝚽0

ℎ − 𝚽̃ℎ

)2] }
𝜋(𝐺′)
𝜋

(
𝐺 [𝑠] ) .

1.7. Draw 𝑐 ∼ Unif[0, 1]. if 𝑐 < 𝛾 then set 𝐺 [𝑠+1] = 𝐺′.

Step 2. Updating the precision matrix K

Draw K [𝑠+1] | 𝐺 [𝑠+1] , y ∼ G-Wishart(𝑏 + 𝑛, 𝐷 +𝑈).
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