
Supplement

Proof of Equation (2)

Recall for linear models the Cook’s distance metric for observation i can be expressed as (Weisberg,

2013):

Di “
∞n

j“1

`
ŷj ´ ŷjpiq

˘2

ds2
“ 1

p

´
ei

s

¯2 hii

1 ´ hii
.

For our single-tree model, we have p “ B and we replace s
2 with a posterior sample of the

variance, say �. Then, we need only simplify the expression involving hii. Let Fj represent a vector

of indicators where

Fji “

$
’&

’%

1 if xi P terminal node j

0 otherwise
.

By construction, note that F T
j Fk “ 0 for all column vectors Fj, Fk such that k ‰ j, and F

T
j Fj “ nj,

the number of observations mapping to terminal node j. Now suppose observation xi maps to

terminal node j, resulting in fi being a vector of zeros except in position j (which is a 1). Then,

hii “ f
T
i

`
F

T
F

˘´1
fi

“ f
T
i

¨

˚̊
˚̊
˚̊
˝

F
T
1 F1 0 ¨ ¨ ¨ 0

0 F
T
2 F2 ¨ ¨ ¨ ...

...
...

. . .
...

0 ¨ ¨ ¨ ¨ ¨ ¨ F
T
BFB

˛

‹‹‹‹‹‹‚
fi

“ f
T
i diag

`
n

´1
1 , . . . , n

´1
B q

˘
fi

“ n
´1
j .

Substituting, hii
p1´hiiq2 “ nj

pnj´1q2 , and the resulting form of Cook’s Distance in Equation (2) results.
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Proof of Proposition 0.

First, we interpret the ratio as ⇡pY´iq
⇡pYq “ r⇡pyi|Y´iqs´1

. Now,

⇡pyi|Y´iq “
ª

⇥

⇡pyi|Y´i,⇥q⇡p⇥|Y´iqd⇥

“
ª

⇥

⇡pyi|Y´i,⇥q⇡p⇥|Y´iq
⇡p⇥|Yq ⇡p⇥|Yqd⇥

” E⇥ rgip⇥qwip⇥qs , ⇥ „ ⇡p⇥|Yq,

where gip⇥q “ ⇡pyi|Y´i,⇥q “ fpyi|⇥q since the data are independent conditional on ⇥, and

wip⇥q9fpY´i|⇥q
fpY|⇥q “ rfpyi|⇥qs´1

. Then by the self-normalized importance sampling theorem (e.g.

Owen, 2013, Ch.9), we know that the estimator
∞N

k“1 w
pkq
i gip⇥pkqq

∞N
i“1 w

pkq
i

Ñ E⇥ rgip⇥qwip⇥qs

as N Ñ 8 by the strong law of large numbers, where wpkq
i “ wip⇥pkqq. Therefore, by the continuous

mapping theorem, it follows that

log

¨

˝
«∞N

k“1 w
pkq
i gip⇥pkqq

∞N
i“1 w

pkq
i

�´1
˛

‚“ log

˜
1

N

Nÿ

k“1

rfpyi|⇥pkqqs´1

¸
Ñ log

ˆ
⇡pY´iq
⇡pYq

˙
.

Proof of Proposition 1.

Suppose yi lives in terminal node ⌘j with mean parameter µj. Let Pj represent the path from the

terminal node j back to the tree root, and let ⇥̃ “ ⇥zµj, Pj, �
2 represent all other parameters

making up the tree. The posterior can then be factored (up to proportionality) as

⇡p⇥|Yq9fpYpjq|µj, ⌘j, Pj, �
2q⇡p⌘jterminalq⇡pµjq⇡pPjq⇡p�2qfpY´pjq|⇥̃, Pj, �

2q⇡p⇥̃q

9fpYpjq|µj, ⌘j, Pj, �
2q⇡p⌘jterminalq⇡pµjq⇡pPjq⇡p�2q⇡p⇥̃|Y´pjq, Pj, �

2q

Integrating, we get
ª

⇥̃

⇡p⇥|Yq9fpYpjq|µj, ⌘j, Pj, �
2q⇡p⌘jterminalq⇡pµjq⇡pPjq⇡p�2q

ª

⇥̃

⇡p⇥̃|Y´pjq, Pj, �
2qd⇥̃

9fpYpjq|µj, ⌘j, Pj, �
2q⇡p⌘jterminalq⇡pµjq⇡pPjq⇡p�2q

9⇡pµj, ⌘j, Pj, �
2|Ypjqq
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So we can choose the importance distribution to be ⇡pµj, ⌘j, Pj, �
2|Ypjqq since posterior samples

from the marginal are readily available by simply dropping the unneeded dimensions of ⇥, so the

weights become

w
pkq
piq “ ⇡pµj, ⌘j, Pj, �

2|Ypjqziq
⇡pµj, ⌘j, Pj, �

2|Ypjqq

9
±

l‰i fpypjq,l|µj, ⌘j, Pj, �
2q⇡pµjq⇡p⌘jq⇡pPjq⇡p�2qIp|⌘j| ´ 1 • n0q±

l fpypjq,l|µj, ⌘j, Pj, �
2q⇡pµjq⇡p⌘jq⇡pPjq⇡p�2qIp|⌘j| • n0q

and since Ip|⌘j| • n0q by definition, we arrive at

w
pkq
piq 9

$
’&

’%

1
fpyi|µj ,⌘j ,Pj ,�2q , if |⌘j| ´ 1 • n0

0, otherwise.

Similarly, suppose we are interested in predictions at terminal node ⌘l with mean parameter µl and

where yi does not live in ⌘l. Choosing ⇡pµl, ⌘l, Pl, �
2|Yplqq to be the importance distribution, we

have

w
pkq
piq “ ⇡pµl, ⌘l, Pl, �

2|Yplqziq
⇡pµl, ⌘l, Pl, �

2|Yplqq
“ 1,

since yi does not appear in ⌘l and therefore does not a↵ect the numerator.

Proof of Proposition 2

Suppose now we have a BART model involving m trees. Suppose yi lives in terminal nodes

⌘j1, . . . , ⌘jm. Suppose we want to perform a (weighted) prediction at input setting x. This prediction

input could map exactly to each ⌘jl, l “ 1, . . . ,m or only a single ⌘jl for some l P t1, . . . ,mu, or
indeed any subset of terminals between these extremes. We will want to weight if for inputs that

map to at least one of these nodes, which means m ´ 1 nodes will not be in the set ⌘j1, . . . , ⌘jm.

Let ⌘a represent these nodes and ⌘b represent the remaining set of nodes that are not involved

in predictions at x. Let µa,Pa be the respective mean parameters and paths in the m trees. Let

⇥̃ “ ⇥z⌘a,µa,Pa, �
2. Finally, let Ya and Yb be the respective portions of the dataset. Then,

⇡p⇥|Yq9fpYa|µa,⌘a,Pa, �
2q⇡pµa,⌘a,Paq⇡p�2qfpYb|⇥̃,µa,⌘a,Pa, �

2q⇡p⇥̃q

9fpYa|µa,⌘a,Pa, �
2q⇡pµa,⌘a,Paq⇡p�2q⇡p⇥̃|Yb,µa,⌘a,Pa, �

2q

3



Integrating, we have

ª

⇥̃

⇡p⇥|Yq9⇡pµa,⌘a,Pa, �
2|Yaq.

The weights for predicting at x then become

w
pkq
piq pxq9 1

fpyi|µa,⌘a,Pa, �
2q

π

l:xP⌘jl
Ip|⌘j| ´ 1 • n0q.

Similarly, if we are interesting in predicting at x such that x does not involve any of the ⌘jl, l “
1, . . . ,m, then as in Proposition 1 the weight will be 1.

Proof of Proposition 3

Let S be our super-tree representation of the original BART trees T1, . . . , Tm. Suppose yi lives in

terminal node ⌘
S
j with mean parameter µ

S
j and let P

S
j represent the path from terminal node j

back to the super-tree root. Let ⇥̃S “ ⇥SzµS
j , P

S
j , �

2 represent all other parameters making up the

super-tree. Then,

⇡p⇥S|Yq9fpYpjq|µS
j , ⌘

S
j , P

S
j , �

2q⇡p⌘Sj terminalq⇡pµS
j q⇡pP S

j q⇡p�2qfpY´pjq|⇥̃S
, P

S
j , �

2q⇡p⇥̃Sq

9fpYpjq|µS
j , ⌘

S
j , P

S
j , �

2q⇡p⌘Sj terminalq⇡pµS
j q⇡pP S

j q⇡p�2q⇡p⇥̃S|Y´pjq, P
S
j , �

2q.

Integrating, we get

ª

⇥̃S

⇡p⇥S|Yq9⇡pµS
j , ⌘

S
j , P

S
j , �

2|Ypjqq

and the weights for predicting at x P ⌘
S
j become

w
pkq
piq pxq9 1

fpyi|µS
j , ⌘

S
j , P

S
j , �

2q
π

l:xP⌘kl
Ip|⌘kl| ´ 1 • n0q.

Note here that ⌘Sj “ Xm
l“1⌘kl for nodes ⌘kl in the original BART ensemble to which x maps.

Finally, as in Proposition 1, predicting at an x that does not involve ⌘
S
j has corresponding weight

1.
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