Supplement

Proof of Equation (2)

Recall for linear models the Cook’s distance metric for observation i can be expressed as (Weisberg,

2013):

n ~ ~ 2

D, _ Zim (8~ 9iw) ZEGQQhM'
‘ ds? p\s/ 1—hy

For our single-tree model, we have p = B and we replace s?> with a posterior sample of the

variance, say o. Then, we need only simplify the expression involving h;;. Let F}; represent a vector

of indicators where

1 if z; € terminal node j
0 otherwise

By construction, note that F" Fj, = 0 for all column vectors Fj, Fj, such that k # j, and F F; = n;,
the number of observations mapping to terminal node j. Now suppose observation x; maps to

terminal node j, resulting in f; being a vector of zeros except in position j (which is a 1). Then,
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Th? = G D2 and the resulting form of Cook’s Distance in Equation (2) results.
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Proof of Proposition 0.

First, we interpret the ratio as Wp&;) = [7(yi|Y )] ™" Now,
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where ¢;(©) = 7(v;|Y_;,©) = f(v:|©) since the data are independent conditional on O, and

w;(0)oct }Tij‘@(;)) — [f(%:|©)]"". Then by the self-normalized importance sampling theorem (e.g.

Owen, 2013, Ch.9), we know that the estimator
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as N — oo by the strong law of large numbers, where wz(k) = w;(©W)). Therefore, by the continuous

mapping theorem, it follows that
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Proof of Proposition 1.

Suppose y; lives in terminal node n; with mean parameter p;. Let P; represent the path from the

terminal node j back to the tree root, and let © = O\u;, Pj, 0* represent all other parameters

making up the tree. The posterior can then be factored (up to proportionality) as
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Integrating, we get
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So we can choose the importance distribution to be m(u;,n;, P;,02|Y ;) since posterior samples
from the marginal are readily available by simply dropping the unneeded dimensions of ©, so the

weights become
w) = (15,05, Py, oY gy)
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and since I(|n;| = ng) by definition, we arrive at
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0, otherwise.

Similarly, suppose we are interested in predictions at terminal node 7; with mean parameter y; and
where y; does not live in 7. Choosing m(u, mi, P, 0?[Y ) to be the importance distribution, we

have
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since y; does not appear in 7; and therefore does not affect the numerator.

Proof of Proposition 2

Suppose now we have a BART model involving m trees. Suppose y; lives in terminal nodes
Nj1, - - -, Njm- SUppose we want to perform a (weighted) prediction at input setting =. This prediction
input could map exactly to each n;,l = 1,...,m or only a single n; for some [ € {1,...,m}, or
indeed any subset of terminals between these extremes. We will want to weight if for inputs that
map to at least one of these nodes, which means m — 1 nodes will not be in the set n;1,...,njn.
Let n, represent these nodes and m, represent the remaining set of nodes that are not involved
in predictions at x. Let pu,, P, be the respective mean parameters and paths in the m trees. Let

0= O\n,, 1y, Pa, 0% Finally, let Y, and Y, be the respective portions of the dataset. Then,
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Integrating, we have
ﬁ m(O|Y)ocm (g, My, Pa, 2 Ya).
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The weights for predicting at x then become
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Similarly, if we are interesting in predicting at x such that x does not involve any of the n;,l =

1,...,m, then as in Proposition 1 the weight will be 1.

Proof of Proposition 3

Let & be our super-tree representation of the original BART trees 17, ...,T,,. Suppose y; lives in
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terminal node 77] with mean parameter p; and let P; represent the path from terminal node j
back to the super-tree root. Let ©° = S\u}i , Pf, o? represent all other parameters making up the

super-tree. Then,
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Integrating, we get
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and the weights for predicting at = € 77;5’ become
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Note here that 77;5) = N" M for nodes ny; in the original BART ensemble to which = maps.

Finally, as in Proposition 1, predicting at an x that does not involve 77;3) has corresponding weight

1.



