
Appendix

1 Proofs of consistency and the central limit theorem

We begin by establishing some standard results regarding the asymptotic behavior of the

singular values of P, A and A � P. Recall that for Z ⇠ F , the minimal dimensionality

condition from Assumption 1 states that the random vector X = �(Z) has second moment

matrix � = E(XX
>) with full rank d. Therefore, a combination of a Hoe↵ding-style

argument and a corollary of Weyl’s inequalities (Horn and Johnson (2012), Corollary 7.3.5)

shows that the d non-zero singular values �i(P) satisfy �i(P) = ⌦(n) almost surely. By

showing that the spectral norm of A � P has smaller asymptotic growth, we can once

again invoke Weyl’s argument to show that the top d singular values �i(A) also satisfy

�i(A) = ⌦(n).

Proposition 1. kA�Pk = O
⇣
n
1/2 log↵+1/2(n)

⌘
almost surely.

Proof. We will make use of a matrix analogue of the Bernstein inequality (Tropp (2015),

Theorem 1.6.2):

Theorem 3 (Matrix Bernstein). Let M1, . . . ,Mn 2 R
n⇥n be symmetric independent ran-

dom matrices satisfying E(Mk) = 0 and kMkk  L for each 1  k  n, for some fixed

value L.

Let M =
nX

k=1

Mk and let v(M) = kE(MM
>)k denote the matrix variance statistic of

M. Then for all t � 0:

P(kMk � t)  2n exp

✓
�t

2
/2

v(M) + Lt/3

◆
.
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We apply this theorem as follows: for each 1  i  j  n, let Mij be the n⇥ n matrix

with (i, j)th and (j, i)th entries equal to Aij �Pij, and all other entries equal to 0. Then

kMijk = |Aij �Pij| < 2� log↵(n)

almost surely, and E(Mij) = 0, and so the matrix M =
P

Mij = A � P satisfies the

criteria for Bernstein’s theorem.

To bound the matrix variance statistic v(M), observe that

(MM
>)ij =

nX

k=1

(Aik �Pik)(Ajk �Pjk),

and thus

E{(MM
>)ij} =

8
>><

>>:

nX

k=1

Var(Aij) i = j

0 i 6= j

By Popoviciu’s inequality, the variances Var(Aij) are bounded in absolute value by

�
2 log2↵(n), and so, since the matrix E(MM

>) is diagonal, we see that

v(M)  �
2
n log2↵(n)

almost surely, and after substituting into Theorem 3 we find that for any t � 0,

P(kA�Pk � t)  2n exp

✓
�3t2

6�2n log2↵(n) + 4� log↵(n)t

◆

almost surely.

The numerator of the exponential term dominates for n su�ciently large if t = cn
1/2 log↵+1/2(n),

and therefore kA�Pk = O
⇣
n
1/2 log↵+1/2(n)

⌘
almost surely, as required.

The following result follows from an identical argument as that used in the proof of

Lemma 17 in Lyzinski et al. (2016):

2



Proposition 2. kU>
P(A�P)UPkF = O

⇣
log↵+1/2(n)

⌘
almost surely.

Proposition 3. The following bounds hold almost surely:

i. kUAU
>
A �UPU

>
Pk = O

⇣
n
�1/2 log↵+1/2(n)

⌘
;

ii. kUA �UPU
>
PUAkF = O

⇣
n
�1/2 log↵+1/2(n)

⌘
;

iii. kU>
PUA⇤A �⇤PU

>
PUAkF = O

�
log2↵+1(n)

�
;

iv. kU>
PUAIp,q � Ip,qU

>
PUAkF = O

�
n
�1 log2↵+1(n)

�

Proof.

i. Let �1, . . . , �d denote the singular values of U>
PUA, and let ✓i = cos�1(�i) be the

principal angles. It is a standard result that the non-zero eigenvalues of the matrix

UAU
>
A �UPU

>
P are precisely the sin(✓i) (each occurring twice) and so, by a variant

of Davis-Kahan (Yu et al. (2015), Theorem 4) we have

kUAU
>
A �UPU

>
Pk = Axi2{1,...,d}| sin(✓i)| 

2
p
d (2�1(P) + kA�Pk) kA�Pk

�d(P)2

for n su�ciently large.

The spectral norm bound from Proposition 1 then shows that

kUAU
>
A �UPU

>
Pk = O

0

@

n
�1(P) + n

1/2 log↵+1/2(n)
o
n
1/2 log↵+1/2(n)

�d(P)2

1

A

= O
⇣
n
�1/2 log↵+1/2(n)

⌘

since �i(P) = ⌦(n) almost surely.
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ii. Using the bound from part i., we find that

kUA �UPU
>
PUAkF = k(UAU

>
A �UPU

>
P)UAkF  kUAU

>
A �UPU

>
PkkUAkF

= O
⇣
n
�1/2 log↵+1/2(n)

⌘
.

iii. Observe that

U
>
PUA⇤A �⇤PU

>
PUAIp,q = U

>
P(A�P)UA

= U
>
P(A�P)(UA �UPU

>
PUA) +U

>
P(A�P)UPU

>
PUA,

and so

kU>
PUA⇤A �⇤PU

>
PUAkF

 kU>
PkkA�PkkUA �UPU

>
PUAkF + kU>

P(A�P)UPkFkU>
PUAkF

= O
⇣
n
1/2 log↵+

1
2 (n) · n�1/2 log↵+1/2(n)

⌘
+O

⇣
log↵+1/2(n)

⌘

= O
�
log2↵+1(n)

�
,

where we have used Propositions 1, 2 and the result from part ii..

iv. Note that

U
>
PUAIp,q � Ip,qU

>
PUA =

�
(U>

PUA⇤A �⇤PU
>
PUA) + (⌃PU

>
PUA � Ip,qU

>
PUA⇤A)

 
⌃

�1
A

�⌃P(U
>
PUAIp,q � Ip,qU

>
PUA)⌃

�1
A .

where ⌃A = ⇤AIp,q and ⌃P = ⇤PIp,q.

For any i, j 2 {1, . . . , d}, by rearranging and bounding the absolute value of the
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right-hand terms by the Frobenius norm, we find

��(U>
PUAIp,q � Ip,qU

>
PUA)ij

��
⇣
1 + �i(P)

�j(A)

⌘


�
kU>

PUA⇤A �⇤PU
>
PUAkF + k⌃PU

>
PUA � Ip,qU

>
PUA⇤AkF

�
k⌃�1

A kF

=
�
kU>

PUA⇤A �⇤PU
>
PUAkF + k⇤PU

>
PUA �U

>
PUA⇤AkF

�
k⌃�1

A kF

= O
�
n
�1 log2↵+1(n)

�
,

where we have used part iii. The result follows from the fact that
⇣
1 + �i(P)

�j(A)

⌘
� 1.

Proposition 4. Let U>
PUA + Ip,qU

>
PUAIp,q admit the singular value decomposition

U
>
PUA + Ip,qU

>
PUAIp,q = W1⌃W

>
2 ,

and let W = W1W
>
2 . Then W 2 O(d) \O(p, q) and

kU>
PUA �WkF , kIp,qU>

PUAIp,q �WkF = O
�
n
�1 log2↵+1(n)

�

almost surely.

Proof. A standard argument shows that a solution to the modified one mode orthogonal

Procrustes problem

cW = argmin
Q2O(d)

kP>
1 A1 �Qk2F + kP>

2 A2 �Qk2F

for matrices Ai,Pi 2 R
n⇥d is given by cW = cW1

cW>
2 , where we have the singular value

decomposition

1
2(P

>
1 A1 +P2A

>
2 ) = cW1⌃

cW>
2 .
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Setting W as in the statement of the proposition, we therefore observe that W satisfies

W = argmin
Q2O(d)

kU>
PUA �Qk2F + kIp,qU>

PUAIp,q �Qk2F .

Let U>
PUA = WU,1⌃UW

>
U,2 be the singular value decomposition of U>

PUA, and define

WU 2 O(d) by WU = WU,1W
>
U,2. Then

kU>
PUA �WUkF = k⌃� IkF =

 
dX

i=1

(1� �i)
2

!1/2


dX

i=1

(1� �i) 
dX

i=1

(1� �
2
i )

=
dX

i=1

sin2(✓i)  dkUAU
>
A �UPU

>
Pk2

= O
�
n
�1 log2↵+1(n)

�
.

Also,

kIp,qU>
PUAIp,q �WUkF  kIp,qU>

PUAIp,q �U
>
PUAkF + kU>

PUA �WUkF

 kU>
PUAIp,q � Ip,qU

>
PUAkF + kU>

PUA �WUkF

= O
�
n
�1 log2↵+1(n)

�

by Proposition 3.

Combining these shows that

kU>
PUA �Wk2F + kIp,qU>

PUAIp,q �Wk2F  kU>
PUA �WUk2F + kIp,qU>

PUAIp,q �WUk2F

= O
�
n
�2 log4↵+2(n)

�
,

which gives the desired bound.

Finally, we observe that the matrix U
>
PUA + Ip,qU

>
PUAIp,q 2 R

p⇥p � R
q⇥q, and thus

the matrices W1,W2 2 O(p)�O(q), so in particular W 2 O(d) \O(p, q).
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Proposition 5. The following bounds hold almost surely:

i. kW⌃A �⌃PWkF = O
�
log2↵+1(n)

�
;

ii. kW⌃
1/2
A �⌃

1/2
P WkF = O

�
n
�1/2 log2↵+1(n)

�
;

iii. kW⌃
�1/2
A �⌃

�1/2
P WkF = O

�
n
�3/2 log2↵+1(n)

�
.

Proof. i. Observe that

W⌃A �⌃PW = (W �U
>
PUA)⌃A +U

>
PUA⌃A �⌃PW

= (W �U
>
PUA)⌃A + (U>

PUA⌃A �⌃PIp,qU
>
PUAIp,q) +⌃P(Ip,qU

>
PUAIp,q �W).

Proposition 4 shows that the terms k(W�U
>
PUA)⌃AkF and k⌃P(Ip,qU>

PUAIp,q�W)kF
are both O

�
log2↵+1(n)

�
, while kU>

PUA⌃A �⌃PIp,qU
>
PUAIp,qkF is O

�
log2↵+1(n)

�
, and so

kW⌃A �⌃PWkF = O
�
log2↵+1(n)

�
.

ii. We will bound the absolute value of the terms
⇣
W⌃

1/2
A �⌃

1/2
P W

⌘

ij
. Note that

����
⇣
W⌃

1/2
A �⌃

1/2
P W

⌘

ij

���� =
��Wij

�
�j(A)1/2 � �i(P)1/2

��� =
����
Wij(�j(A)� �i(P))

�j(A)1/2 + �i(P)1/2

����

=

���(W⌃A �⌃PW)ij

���
�j(A)1/2 + �i(P)1/2

 kW⌃A �⌃PWkF
�d(P)1/2

,

and consequently we find that kW⌃
1/2
A � ⌃

1/2
P WkF = O

�
n
�1/2 log2↵+1(n)

�
by summing

over all i, j 2 {1, . . . , d} and applying part i.
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iii. We will bound the absolute value of the terms
⇣
W⌃

�1/2
A �⌃

�1/2
P W

⌘

ij
. Note that

����
⇣
W⌃

�1/2
A �⌃

�1/2
P W

⌘

ij

���� =
����
Wij(�i(P)1/2 � �j(A)1/2)

�i(P)1/2�j(P)1/2

����

=

����
⇣
W⌃

1/2
A �⌃

1/2
P W

⌘

ij

����
�i(P)1/2�j(A)1/2

= O
�
n
�3/2 log2↵+1(n)

�

by part ii. The result follows by summing over all i, j 2 {1, . . . , d}.

Proposition 6. Let

R1 = UP(U
>
PUA⌃

1/2
A �⌃

1/2
P W)

R2 = (I�UPU
>
P)(A�P)(UAIp,q �UPIp,qW)⌃�1/2

A

R3 = �UPU
>
P(A�P)UPIp,qW⌃

�1/2
A

R4 = (A�P)UPIp,q(W⌃
�1/2
A �⌃

�1/2
P W).

Then the following bounds hold almost surely:

i. kR1k2!1 = O
�
n
�1 log2↵+1(n)

�
;

ii. kR2k2!1 = O
⇣
n
� 3

4 log3↵+3/2(n)
⌘
;

iii. kR3k2!1 = O
⇣
n
�1 log↵+1/2(n)

⌘
;

iv. kR4k2!1 = O
⇣
n
�1 log3↵+3/2(n)

⌘

In particular, we have kn1/2
Rik2!1 ! 0 for all i.
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Proof. i. Recall that UP⌃
1/2
P = XQX for some QX 2 O(p, q) of bounded spectral norm.

Using the relation kAPk2!1  kAk2!1kPk (see, for example, Cape et al. (2019b), Propo-

sition 6.5) we find that kUPk2!1  kXk2!1kQXkk⌃�1
P k, and thus kUPk2!1 = O

�
n
�1/2

�

as the rows of X are by definition bounded in Euclidean norm.

Thus

kR1k2!1  kUPk2!1kU>
PUA⌃

1/2
A �⌃

1/2
P Wk

 kUPk2!1

⇣
k(U>

PUA �W)⌃1/2
A kF + kW⌃

1/2
A �⌃

1/2
P WkF

⌘

The first summand is O
�
n
�1/2 log2↵+1(n)

�
by Proposition 4, while Proposition 5 shows that

the second is O
�
n
�1/2 log2↵+1(n)

�
, and so

kR1k2!1 = O
�
n
�1 log2↵+1(n)

�
.

ii. We first observe that

kUPU
>
P(A�P)(UAIp,q �UPIp,qW)⌃�1/2

A k2!1

 kUPk2!1kU>
PkkA�PkkUAIp,q �UPIp,qWkk⌃�1/2

A k

= O
⇣
n
�1/2 · n1/2 log↵+1/2(n) · n�1/2 log2↵+1(n) · n�1/2

⌘

= O
⇣
n
�1 log3↵+3/2(n)

⌘
,

where we have bounded kUAIp,q �UPIp,qWk by noting that

kUAIp,q �UPIp,qWk  kUAIp,q �UPU
>
PUAIp,qk+ kUPIp,q(Ip,qU

>
PUAIp,q �W)k

= O
�
n
�1/2 log2↵+1(n)

�
,

by Propositions 3 and 4.
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This leaves us to bound the term k(A�P)(UAIp,q �UPIp,qW)⌃�1/2
A k2!1. Now,

(A�P)(UAIp,q �UPIp,qW)⌃�1/2
A = (A�P)(I�UPU

>
P)UAIp,q⌃

�1/2
A

+(A�P)UPIp,q(Ip,qU
>
PUAIp,q �W)⌃�1/2

A ,

and

k(A�P)UPIp,q(Ip,qU
>
PUAIp,q �W)⌃�1/2

A k2!1  kA�PkkUPkkIp,qU>
PUAIp,q �Wkk⌃�1/2

A k

= O
⇣
n
1/2 log↵+1/2(n) · n�1 log2↵+1(n) · n�1/2

⌘

= O
⇣
n
�1 log3↵+3/2(n)

⌘

by Propositions 1 and 4.

To bound the remaining term, observe that we can rewrite

(A�P)(I�UPU
>
P)UAIp,q⌃

�1/2
A = (A�P)(I�UPU

>
P)UAUA

>
UAIp,q⌃

�1/2
A

and so

k(A�P)(I�UPU
>
P)UAIp,q⌃

�1/2
A k2!1  kRk2!1kUAIp,q⌃

�1/2
A k,

where R = (A�P)(I�UPU
>
P)UAU

>
A.

The latter term is O
�
n
�1/2

�
, so it su�ces to bound kRk2!1. To do this, we claim that

the Frobenius norms of the rows of the matrix R are exchangeable, and thus have the same

expectation, which implies that E (kRk2F ) = nE (kRik2) for any i 2 {1, . . . , n}. Applying

Markov’s inequality, we therefore see that

P (kRik > t)  E (kRik2)
t2

=
E (kRk2F )

nt2
.
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Now,

kRkF  kA�PkkA�UPU
>
PAkFkU>

AkF

= O
⇣
n
1/2 log↵+1/2(n) · n�1/2 log↵+1/2(n)

⌘

= O
�
log2↵+1(n)

�

by Propositions 1 and 3.

It follows that

P

⇣
kRik > n

� 1
4 log2↵+1(n)

⌘
 cn

�1/2

and thus

kRk2!1 = O
⇣
n
� 1

4 log2↵+1(n)
⌘

almost surely.

We must therefore show that the Frobenius norms of the rows of R are exchangeable.

Let Q 2 O(n) be a permutation matrix, and observe that for any matrix G 2 R
n⇥n,

right multiplication by Q
> simply permutes the columns of G, and thus does not alter

the Frobenius norms of its rows. In particular, the Frobenius norms of the rows of QGQ
>

are the same as the Frobenius norms of the rows of QG. For any symmetric matrix

G 2 R
n⇥n, let Pd(G) denote the projection onto the subspace spanned by the eigenvectors

corresponding to the top d singular values of G, and let P?
d (G) denote the projection onto

the orthogonal complements of this subspace.

Note that

Pd(P) = UPU
>
P and Pd(A) = UAU

>
A,
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while for any permutation matrix Q 2 O(n) we have

Pd(QPQ
>) = QUPU

>
PQ

> and Rd(QAQ
>) = QUAU

>
AQ

>
.

For any pair of matrices G,H 2 R
n⇥mn, define an operator

bPd(G,H) = (G�H)P?
d (H)Pd(G)

and note that bPd(A,P) = R, while

bPd(QAQ
>
,QPQ

>) = Q(A�P)Q>
Q(I�UPU

>
P)Q

>
QUAU

>
AQ

>

= QRQ
>
.

By assumption, the latent positions for our graphs are independent and identically

distributed, and so the entries of the pair (A,P) have the same joint distribution as those

of the pair (QAQ
>
,QPQ

>). Therefore, the entries of the matrix PL(A,P) have the same

joint distribution as those of the matrix bPd(QAQ
>
,QPQ

>), which implies that R has the

same distribution as QRQ
>, and consequently the Frobenius norms of the rows of R have

the same distribution as those of QR, which proves our claim.

Combining these results, we see that

kR2k2!1 = O
⇣
n
� 3

4 log3↵+3/2(n)
⌘
,

as required.
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iii. Similarly to part i., we see that

kR3k2!1  kUPk2!1kU>
P(A�P)UPIp,qW⌃

�1/2
A k

 kUPk2!1kU>
P(A�P)UPkFkW⌃

�1/2
A kF

= O
⇣
n
�1/2 · log↵+1/2(n) · n�1/2

⌘

= O
⇣
n
�1 log↵+1/2(n)

⌘

by Proposition 2.

iv. Observe that

kR4k2!1  kR4kF

 kA�PkkUPkFkW⌃
�1/2
A �⌃

�1/2
P WkF

= O
⇣
n
�1 log3↵+3/2(n)

⌘

by Propositions 1 and 5.

1.1 Proof of Theorem 1

Proof. Observe that

XA �XPW = UA⌃
1/2
A �UP⌃

1/2
P W

= UA⌃
1/2
A �UPU

>
PUA⌃

1/2
A +UP(U

>
PUA⌃

1/2
A �⌃

1/2
P W)

= UA⌃
1/2
A �UPU

>
PUA⌃

1/2
A +R1,1.

Noting that

UA⌃
1/2
A = AUAIp,q⌃

�1/2
A and UPU

>
PP = P,

13



we see that

XA �XPW = AUAIp,q⌃
�1/2
A �UPU

>
PAUAIp,q⌃

�1/2
A +R1,1

= AUAIp,q⌃
�1/2
A �PUAIp,q⌃

�1/2
A � (UPU

>
PAUAIp,q⌃

�1/2
A �PUAIp,q⌃

�1/2
A ) +R1

= (A�P)UAIp,q⌃
�1/2
A � (UPU

>
PAUAIp,q⌃

�1/2
A �UPU

>
PPUAIp,q⌃

�1/2
A ) +R1

= (A�P)UAIp,q⌃
�1/2
A �UPU

>
P(A�P)UAIp,q⌃

�1/2
A +R1

= (I�UPU
>
P)(A�P)UAIp,q⌃

�1/2
A +R1

= (I�UPU
>
P)(A�P){UPIp,qW + (UAIp,q �UPIp,qW)}⌃�1/2

A +R1

= (A�P)UPIp,qW⌃
�1/2
A +R3 +R2 +R1

= (A�P)UPIp,q{⌃�1/2
P W + (W⌃

�1/2
A �⌃

�1/2
P W)}+R3 +R2 +R1

= (A�P)UPIp,q⌃
�1/2
P W +R4 +R3 +R2 +R1.

Applying Proposition 6, we find that

kXA �XPWk2!1 = k(A�P)UPIp,q⌃
�1/2
P k2!1 +O

⇣
n
� 3

4 log3↵+3/2(n)
⌘
.

Consequently,

kXA �XPWk2!1  �d(P)�1/2k(A�P)UPk2!1 +O
⇣
n
� 3

4 log3↵+3/2(n)
⌘
.

Letting u denote the j
th column of UP, we note that for any i 2 {1, . . . , n} we have

{(A�P)UP}ij =
nX

k=1

(Aik �Pik)uk

=
X

k 6=i

(Aik �Pik)uk �Piiui.
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The latter term is O(1), while the former is a sum of independent zero-mean random

variables satisfying

P

 �����
X

k 6=i

(Aik �Pik)uk

����� � t

!
 2 exp

0

BB@
�2t2

4
X

k 6=i

|uk|2

1

CCA

 2 exp

✓
�t

2

2

◆

by Hoe↵ding’s inequality. Thus {(A�P)UP}ij = O
⇣
log↵+1/2(n)

⌘
almost surely, and hence

k{(A � P)UP}ik = O
⇣
log↵+1/2(n)

⌘
almost surely by summing over all j 2 {1, . . . , d}.

Taking the union bound over all n rows then shows that

�d(P)�1/2k(A�P)UPk2!1 = O
⇣
n
�1/2 log↵+1/2(n)

⌘
,

and consequently that

kXAQn �Xk2!1 = O
⇣
n
�1/2 log3↵+3/2(n)

⌘

by multiplying on the right by Qn = W
>
Q

�1
X .

1.2 Proof of Theorem 2

Proof. From the proof of Theorem 1, we see that

n
1/2(XAW

>
Q

�1
X �X) = n

1/2(A�P)UPIp,q⌃
�1/2
P Q

�1
X + n

1/2
R,

where kn1/2
Rk2!1 ! 0 by Proposition 6.

Recall that the matrix QX was chosen so that

XQX = XP = UP⌃
1/2
P ,
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and so

UPIp,q⌃
�1/2
P = UP⌃

�1/2
P Ip,q = XQX⌃

�1
P Ip,q.

Thus

n
1/2(A�P)UPIp,q⌃

�1/2
P Q

�1
X = n

1/2(A�P)XQX⌃
�1
P Ip,qQ

�1
X .

Consequently,

n
1/2
n
(A�P)UPIp,q⌃

�1/2
P Q

�1
X

o>

i
= n

1/2(QX⌃
�1
P Ip,qQ

�1
X )> {(A�P)X}>i

= (nQX⌃
�1
P Ip,qQ

�1
X )>

(
n
�1/2

nX

j=1

(Aij �Pij)Xj

)

= (nQX⌃
�1
P Ip,qQ

�1
X )>

(
n
�1/2

X

j 6=i

(Aij �Pij)Xj

)

�(nQX⌃
�1
P Ip,qQ

�1
X )>(n�1/2

PiiXi).

The latter term satisfies

��(nQX⌃
�1
P Ip,qQ

�1
X )>(n�1/2

PiiXi)
��
2!1 

��(nQX⌃
�1
P Ip,qQ

�1
X )>(n�1/2

PiiXi)
�� = O

�
n
�1/2

�

almost surely.

Conditional on the latent variable Zi = z 2 Z from Definition 1, we have Pij =

�(z)>Ip,qXj, and so

n
�1/2

X

j 6=i

(Aij �Pij)Xj

is a scaled sum of n � 1 independent, zero-mean random variables, each with covariance

matrix given by

b⌃(z) = E
�
v(z,Z)�(Z)�(Z)>

 
,
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recalling that the function v(Zi,Zj) gives the variance ofAij. Therefore, by the multivariate

central limit theorem,

n
�1/2

X

j 6=i

(Aij �Pij)Xj ! N (0, b⌃(z)).

Finally, we consider the terms (nQX⌃
�1
P Ip,qQ

�1
X )>. Using the identities

QX = (X>
X)�1

X
>
XP, and X

>
PXP = ⌃P,

we see that

QX⌃
�1
P Ip,qQ

�1
X = (X>

X)�1
X

>
XP⌃

�1
P Ip,qQ

�1
X

= (X>
X)�1

Q
�>
X X

>
PXP⌃

�1
P Ip,qQ

�1
X

= (X>
X)�1

Q
�>
X Ip,qQ

�1
X

= (X>
X)�1

Ip,q

and so

(nQX⌃
�1
P Ip,qQ

�1
X )> ! Ip,q�

�1

almost surely by the law of large numbers.

Combining all this, we find that, conditional on Zi = z,

n
�1/2

�
XAW

>
Q

�1
X �X

�>
i
! N (0,⌃(z))

almost surely.
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2 Proofs for size-adjusted Cherno↵ information

Before beginning the proofs, it is convenient to write the summations in Corollary 1 as

matrix products. The second moment matrix � can expressed as

� =
KX

k=1

⇡k(XB)k(XB)
>
k = X

>
B⇧XB,

where ⇧ = diag(⇡1, . . . , ⇡K). Similarly, the covariance matrix ⌃k for k 2 {1, . . . , K}, can

be expressed as

⌃k = Ip,q�
�1

(
KX

`=1

⇡`Ck`(XB)`(XB)
>
`

)
�

�1
Ip,q = Ip,q�

�1
X

>
B⇧SkXB�

�1
Ip,q,

where Sk = diag(Ck) 2 R
K⇥K . The expression for ⌃k`(t) has the same form as the above

equation, replacing Sk with its corresponding counterpart Sk`(t) = (1� t)Sk + tS`.

2.1 Proof of Lemma 1

Proof. If D 2 R
K⇥K is full rank, then for Y 2 R

K⇥d, the following matrix inequality holds

(Marshall and Olkin, 1990),

Y
�
Y

>
DY

��1
Y

> � D
�1
,

where M ⌫ 0 means that M is a positive semi-definite matrix. However, in the case where

D and X 2 R
K⇥K are full rank, then the two sides of this inequality are equal,

X
�
X

>
DX

��1
X

> = D
�1
.

If the block mean matrix B is full rank, then adjacency spectral embedding XB is also full

rank. Since B = XBIp,qX
>
B, this means rank(B)  rank(XB) implying rank(XB) = K

when rank(B) = K.
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Using this matrix equality and the expression for �, we have

⌃k`(t)
�1 =

�
Ip,q�

�1
X

>
B⇧Sk`(t)XB�

�1
Ip,q

��1

= Ip,qX
>
B⇧XB

�
X

>
B⇧Sk`(t)XB

��1
X

>
B⇧XBIp,q

= Ip,qX
>
B⇧Sk`(t)

�1
XBIp,q

Substituting this expression into the objective function in the size-adjusted Cherno↵ infor-

mation gives

{(XB)k � (XB)`}> ⌃k`(t)
�1 {(XB)k � (XB)`}

= (ek � e`)
>
XBIp,qX

>
B⇧Sk`(t)

�1
XBIp,qX

>
B(ek � e`)

= (ek � e`)
>
B⇧Sk`(t)

�1
B(ek � e`),

using the expression B = XBIp,qX
>
B.

If the block mean matrix B is not full rank, then the matrix inequality e↵ectively passes

through the whole argument in the above proof,

⌃k`(t)
�1 � Ip,qX

>
B⇧Sk`(t)

�1
XBIp,q,

which becomes a regular inequality when we compute the quadratic form. We get that, for

rank(B)  K,

C  min
k 6=`

sup
t2(0,1)


t(1� t)

2

�
(ek � e`)

>
B⇧Sk`(t)

�1
B(ek � e`)

 �
.

with equality when B is full rank.

19



2.2 Proof of Lemma 2

Proof. By assumptionA andA
0 have full rank block mean matrices, therefore, by Lemma 1,

both stochastic block models have the same size-adjusted Cherno↵ information if they have

the same value for

(ek � e`)
>
B⇧Sk`(t)

�1
B(ek � e`).

For an a�ne entry-wise transformation, the entries of the block mean and variance matrices

are given by B
0
k` = aBk` + b and C

0
k` = a

2
Ck`. Therefore,

B
0(ek � e`) = aB(ek � e`),

S
0
k`(t)

�1 = a
2
Sk`(t)

�1
,

where S0
k`(t)

�1 is the equivalent version of Sk`(t)�1 in the entry-wise transformed stochastic

block model. The contribution from a cancel and there is no contribution from b, meaning

size-adjusted Cherno↵ information is una↵ected by a�ne transformation.

2.3 Changes of signature by a�ne transformation

We demonstrate the possible e↵ects an a�ne transformation may have on the signature of

a stochastic block model with dimension d and signature (p, q). We focus on a�ne transfor-

mations with a > 0 and b > 0 although a similar analysis for other a�ne transformations

leads to slight variations of the following results.

Consider a weighted stochastic block model with full rank block mean matrix B with

signature (p, q) and let �i(B) denote the i
th smallest eigenvalue of B. The signature of B

implies that �1(B), . . . ,�q(B) < 0 and �q+1(B), . . . ,�p+q(B) > 0, since B is full rank, no

eigenvalues are exactly zero.
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The block mean matrix of the weighted stochastic block model after a�ne transforma-

tion is given by B
0 = aB+ b11

>, where 1 2 R
n is the all-one vector. This is a rank-one

perturbation of the scaled matrix aB, therefore, by Horn and Johnson (2012), Corollary

4.3.9, the ith eigenvalue of B0 lies between the ith and (i+ 1)th eigenvalue of B, that is, for

i = 1, . . . , d� 1,

�i(B)  �i(B
0)  �i+1(B) and �d(B)  �d(B

0).

Figure 5 shows an example of this eigenvalue behavior. The only eigenvalue that can change

sign after a�ne transformation is �q(B0). In the example shown, �q(B0) > 0, meaning the

signature of the stochastic block model after a�ne transformation is (p + 1, q � 1); if

�q(B0) < 0, then the signature would have remained (p, q). The other remaining possibility

is that �q(B0) = 0, meaning that B0 is not full rank. In this case, the a�ne transformation

block model would instead need to be embedded into d � 1 dimensions and would have

signature (p, q � 1).

0�q�1(B) �q(B) �q+1(B) �q+2(B)

�q�1(B0) �q(B0) �q+1(B0) �q+2(B0)

. . . . . .

q negative eigenvalues of B p positive eigenvalues of B

Figure 5: Number line showing the eigenvalues of mean block matrices close to the origin.

White nodes represent eigenvalues of B with full rank d and signature (p, q), black nodes

represent eigenvalues of B0 = aB+ b11
> with a > 0, b > 0, full rank d and signature

(p+ 1, q � 1).

21


