Appendix

1 Proofs of consistency and the central limit theorem

We begin by establishing some standard results regarding the asymptotic behavior of the
singular values of P, A and A — P. Recall that for Z ~ F', the minimal dimensionality
condition from Assumption 1 states that the random vector X = ¢(Z) has second moment
matrix A = E(XXT) with full rank d. Therefore, a combination of a Hoeffding-style
argument and a corollary of Weyl’s inequalities (Horn and Johnson (2012), Corollary 7.3.5)
shows that the d non-zero singular values o;(P) satisfy o;(P) = Q(n) almost surely. By
showing that the spectral norm of A — P has smaller asymptotic growth, we can once

again invoke Weyl’s argument to show that the top d singular values o;(A) also satisfy

agi(A) = Q(n).
Proposition 1. |[A —P|| =0 <n1/2 logo‘+1/2(n)> almost surely.

Proof. We will make use of a matrix analogue of the Bernstein inequality (Tropp (2015),
Theorem 1.6.2):

Theorem 3 (Matrix Bernstein). Let My, ..., M, € R"*" be symmetric independent ran-
dom matrices satisfying E(My) = 0 and [|[M,[| < L for each 1 < k < n, for some fixed
value L.

Let M = ZM’“ and let v(M) = ||[E(MM ")|| denote the matrix variance statistic of

k=1
M. Then for all ¢ > 0:

P(|M]| > t) < 2nexp (qu/g)
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We apply this theorem as follows: for each 1 < ¢ < j < n, let M;; be the n X n matrix

with (i, 7)™ and (j, 7)™ entries equal to A;; — P;;, and all other entries equal to 0. Then

M) = |Ai; — Pij| < 281log”(n)

almost surely, and E(M;;) = 0, and so the matrix M = > M,;; = A — P satisfies the
criteria for Bernstein’s theorem.

To bound the matrix variance statistic v(M), observe that

(MM "),; = Zn:(Aik — Pie)(Aji — Py,

k=1

and thus .
ZV&T(AZ']') 1= j
k=1

0 i £

By Popoviciu’s inequality, the variances Var(A,;) are bounded in absolute value by

E{(MM");;} =

?1og®*(n), and so, since the matrix E(MM?") is diagonal, we see that
v(M) < *nlog™(n)

almost surely, and after substituting into Theorem 3 we find that for any ¢ > 0,

—3¢
P(|A-P|| >t) <2
(i I21) < 2nexp (652n10g2°‘(n) +45 logo‘(n)t>

almost surely.
The numerator of the exponential term dominates for n sufficiently large if ¢ = cn'/2log®+Y/ %(n),

and therefore |A —P|| =0 (nl/ 2Jog*+/ 2(n)> almost surely, as required. O

The following result follows from an identical argument as that used in the proof of

Lemma 17 in Lyzinski et al. (2016):



Proposition 2. |[UL(A — P)Up||r = O (logaH/Q(n)) almost surely.
Proposition 3. The following bounds hold almost surely:
i. [UsUL — UpUp| =0 (ml/? loga“/Q(n));
1. |[Ups — UpUpUallr =0 <n*1/2 10ga+1/2(n)>;
iii. |[ULUaAA — ApULU,|r = O (log”**'(n));
. |[UpUAL,, — L, ,ULUalr = O (n ' log®*!(n))
Proof.

i. Let 01,...,04 denote the singular values of ULUy, and let 6; = cos™'(o;) be the
principal angles. It is a standard result that the non-zero eigenvalues of the matrix
Ua,U, — UpUy are precisely the sin(f;) (each occurring twice) and so, by a variant
of Davis-Kahan (Yu et al. (2015), Theorem 4) we have

_ 2Vd(20(P) +||A —P|)) |A — P]|
- O'd(P)2

77777

for n sufficiently large.

The spectral norm bound from Proposition 1 then shows that

{01<P) 1l 10ga+1/2(n)} 12 1og® 2 ()
oa(P)?

[UaU; ~UpUp| =0

—0 (nfl/Q logaH/Z(n))

since 0;(P) = Q(n) almost surely.



2. Using the bound from part <., we find that

|Ua — UpUpUallr = (UaU, — UpUp)Ua|lr < [UsU, — UpUp|[|[Ualr
—0 (n—1/2 1ogo‘+1/2(n)> ‘

222. Observe that
UpUaApx — ApULULL,, = UL(A — P)U,
=Up(A —P)(Us — UpUpU,) + Up(A — P)UpUpUs,
and so

[UpUAAL — ApUR Ul
< [[Up[l||A —P[[[|[Us — UpUpUa| r + [Up(A — P)Up||r|UpUa| r
-0 <n1/2 log‘”%(n) 12 loga+1/2<n)> L0 (logo‘H/Q(n))

_ O (10g2a+1(n)) 7
where we have used Propositions 1, 2 and the result from part z..

2v. Note that

UpUaL,, — L, UiUps = {(URUaAs — ApUpU,) + (EpUpUa — L, ,ULUsAL) } 231
- EP(UlTDUAIp,q - Ip,qUIIUA>EK1'

where ¥p = Aal,, and ¥p = ApL,,.

For any i,j € {1,...,d}, by rearranging and bounding the absolute value of the



right-hand terms by the Frobenius norm, we find

(UpUal,, — L,,UpUa)yj| (1 + Ung)))
< (|UpUsAA = ApUpUy|r + || ZpUpUs — L, ,UpUsAn|lr) S5
= ([UpUaAa — ApUpUn|lr + [[ApUpUa — UpUsAnllr) ' ]lr
— O( 110g2a+1( ))7

where we have used part 222. The result follows from the fact that (1 + Z?EB) > 1.
J

O
Proposition 4. Let ULUa + I, ,ULUAL,, admit the singular value decomposition
UpUja +1,,ULULL,,, = W W,
and let W = W, W, . Then W € O(d) N O(p, q) and
[UpUs = W|p, [1,,UpUslL, = Wp =0 (n"log™ " (n))
almost surely.

Proof. A standard argument shows that a solution to the modified one mode orthogonal

Procrustes problem

W = argmin [P A, — Q|f% + [|P3 A, — QI%
Qe0(a)

for matrices A;,P; € R"*? is given by W = W1W , where we have the singular value

decomposition

LPTA, +PA]) = W, W,



Setting W as in the statement of the proposition, we therefore observe that W satisfies
W = argmin ||U1T)UA - Q”% + ||Ip7qU1T>UAIp,q - Q”%“
Qe0(d)
Let UITDUA = V\/'UJZ)UV\/_ITL2 be the singular value decomposition of UIIU A, and define
WU S @(d) by WU = WU71W672. Then

d

1/2 d d
[UTUA — Wl = 5 — T = (Zu - >) SRR
=1 =1

i=1

d
> sin’(6;) < d|UaU, — UpUg |
=1

110g2a+1 ) )

Also,
||Ip7qUIT>UAIp,q - WU“F < ||Ip,quUAIp7q - UEUA”F + ||U;UA - WUHF

< ||U;UAIp7q - Ip,qUIIUA”F + ||U1T3UA - WUHF
— O ( —1 10g2a+1< ))

by Proposition 3.
Combining these shows that
||UEUA - WH%’ + ||Ip7qU;UAIp7q - WH% < ||UE>UA - WUH% + ||Ip,quT>UAIp7q - WUH%
=0 ( -2 10g4a+2( )) ’
which gives the desired bound.

Finally, we observe that the matrix UpUa + I, , ULUaL,, € RP*? @& R7%9, and thus
the matrices W1, Wy € O(p) @ O(q), so in particular W € O(d) N O(p, q). O
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Proposition 5. The following bounds hold almost surely:
i. [WZa —ZpW]|p =0 (log™™(n));
i, |[WEY? = SPW||p = 0 (n7/210g? (n));
iii. W, =22 W | p = 0 (n3210g?+ (n)).
Proof. 1. Observe that

WX, — 3pW = (W — UpUp)EA + UpUpXs — ZpW

= (W = UpUp)ZA + (UpUaZ, — 2pI, ,UpULL,,) + Zp(L, , UpUAL,, — W).

Proposition 4 shows that the terms [|[(W—UpUa )X A ||r and || Ep (L, ,UpUAL, ,—W)||r
are both O (log®**'(n)), while [[UUaXA — ZpL, ;UL UAL, | r is O (log*>* ™ (n)), and so
[WXA — ZpW|r = O (log™*'(n)).

12. We will bound the absolute value of the terms <W22/2 — Eg 2VV) . Note that
ij

Wij(0;(A) — 0i(P))
;(A)72 + 5;(P)'/2

’ (W=y? - =*w)

— [W, (0,(A)” — 0,(P)"?)| =

ij

) ‘(WEA —ZeW)y| WA — SpWp
= O'j(A)l/z +Ui(P)1/2 = gd(P)1/2 )

and consequently we find that [|[WXY? — W ||z = O (n~/2 log”**!(n)) by summing

over all 4,j € {1,...,d} and applying part 4.



222. We will bound the absolute value of the terms (WE:/ 2 21_31/ 2W) . Note that

[

‘ <WE:/Q _ E;l/QW) )

v

’Wij(ai(P)1/2 —0;(A)Y?)
0i(P)!/20;(P)!/2

‘ (WE},{Q - 2;/2W)

_ gl _ —3/21. 20+1
o;(P)%0;(A)1/? O (n log (n))

by part 4. The result follows by summing over all 7,5 € {1,...,d}.

Proposition 6. Let

R, = Up(ULUASY? — =°W)
R, = (I— UpUL)(A — P)(UaL,, — Upl, ,W)x, "/
R; = —UpUL(A — P)Upl, WS,/
R, = (A — P)UpL,,(W=,"? - B;°W).
Then the following bounds hold almost surely:
. ||IR1|l2500 = O (nfl 10g2°‘+1(n));
i’l:. HR2||2—>oo - O
#ii. |Raflasee = O n—lloga+1/2(n>);

0. |Rullssee = O (n—l 1og3a+3/2(n)>

In particular, we have ||[n'/?R; |20 — 0 for all 4.



Proof. i. Recall that UPZ;/ ? = XQx for some Qx € O(p, q) of bounded spectral norm.
Using the relation ||AP||s00 < [|All2=00||P]| (see, for example, Cape et al. (2019b), Propo-

sition 6.5) we find that |[Up||a—ec < [|X||2—00||Qx ||| 2 ||, and thus |[Up||s—e = O (n71/?)

as the rows of X are by definition bounded in Euclidean norm.

Thus

The first summand is O (n_l/ 2 logQQH(n)) by Proposition 4, while Proposition 5 shows that

the second is O (n="/?1log?**'(n)), and so

IR1ll2500 = O (07" log?* ™ (n)) .

22. We first observe that

HUPU; (A B P)<UAIP,Q - UPIp,qW)2;1/2”2—>oo
< [|Upllasoo [UB[|A = P[[|UAL,, — UpL, ;W3]

— 0 (n_1/2 /2 loga+1/2(n) .12 log2*t(n) - n—1/2)

- 0 (n—l 1Og3o¢+3/2(n)> :
where we have bounded ||Ual,, — UplL, ,W/|| by noting that

HUAIP7Q - UPIp,qWH < HUAIp,q - UPU;UAIp,qH + ||UPIp,q(Ip,qU;UAIp7q - W) H

=0 (n—1/2 10g2a+1(n)) :

by Propositions 3 and 4.



This leaves us to bound the term ||(A — P)(UaL,, — UpL, ;W)%1"?|l200. Now,

(A = P)(UaL,, — UpL, W), = (A-P)I-UpUp)U,L, 2,
+(A - P)UPIp,q(Ip,qU;UAIp,q - W)E:ﬂ,

and

I(A = P)UpL,(L,;UpUnly = W)S, |2 < [|A = PJ[|Up |1, UpUalLyy — W[,
-0 <n1/2 10ga+1/2(n) ! log%‘“(n) -n*1/2>

-0 (n’l 10g3°‘+3/2(n)>

by Propositions 1 and 4.

To bound the remaining term, observe that we can rewrite
(A —P)I—UpUL)UAL, 2,"? = (A — P)1— UpUL)U,UA UL, =,
and so
I(A = P)(I = UpUp)UaL, 33" 200 < [IRll200[UaLy =5,

where R = (A — P)(I - UpUy)U,U .

The latter term is O (n~'/2), so it suffices to bound ||R||2—e0. To do this, we claim that
the Frobenius norms of the rows of the matrix R are exchangeable, and thus have the same
expectation, which implies that E (]|R||%2) = nE (||R;]|?) for any i € {1,...,n}. Applying

Markov’s inequality, we therefore see that

E(Ri*) _E(R[})
. < — X
PR > ) < = =
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Now,
IR[r < |A —P[l[|A — UpUpAlr|Ujllr
=0 (nl/Q loga+1/2(n) 2 loga+1/2(n)>

= 0O (log®*'(n))

by Propositions 1 and 3.

It follows that
P <||Rz'|| >ni 10g2a+1(n)> < en12
and thus
IR|[25500 = O (n’i IOgQO‘H(n))

almost surely.

We must therefore show that the Frobenius norms of the rows of R are exchangeable.
Let Q € O(n) be a permutation matrix, and observe that for any matrix G € R™",
right multiplication by Q' simply permutes the columns of G, and thus does not alter
the Frobenius norms of its rows. In particular, the Frobenius norms of the rows of QGQ"
are the same as the Frobenius norms of the rows of QG. For any symmetric matrix
G € R™" let P4(G) denote the projection onto the subspace spanned by the eigenvectors
corresponding to the top d singular values of G, and let P;(G) denote the projection onto

the orthogonal complements of this subspace.

Note that

Py(P)=UpUp and Py(A) =U,Ujp,
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while for any permutation matrix Q € Q(n) we have
Pa(QPQ') = QUpUpQ' and R, (QAQ') = QUAULAQ'.
For any pair of matrices G, H € R"*™" define an operator
Pa(G. H) = (G — H)P; (H)Py(G)
and note that P4(A,P) = R, while

PAQAQ",QPQ") = QA - P)Q'Q(I - UpUp)Q QUAULQ"
= QRQ".

By assumption, the latent positions for our graphs are independent and identically
distributed, and so the entries of the pair (A, P) have the same joint distribution as those
of the pair (QAQ', QPQ"). Therefore, the entries of the matrix P, (A, P) have the same
joint distribution as those of the matrix ﬁd(QAQT, QPQ"), which implies that R has the
same distribution as QRQ", and consequently the Frobenius norms of the rows of R have

the same distribution as those of QR., which proves our claim.

Combining these results, we see that
IRallo o = O (0™ log™*/2(n) )

as required.
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22t. Similarly to part <., we see that
IRsfl2om < [|Up 2soo|[Up (A — P)UpL, WS, |
< [|Up ool Up (A = P)Up [ WE, ||
—0 (n—1/2 1og®+2(n) - n—1/2>
=0 (n_l logo‘H/Q(n))
by Proposition 2.

2v. Observe that

[R4ll2500 < [|RallF
< ||A = P||[|Upl|p||WE,"* — 25" "W
-0 (n—l log3a+3/2(n))

by Propositions 1 and 5.

1.1 Proof of Theorem 1
Proof. Observe that

Xa — XpW = UpaSY? — Upz/*W
— UaZY? — UpURULZY” + Up(ULULE” — =°W)

= UASY? — UpULUASY? + Ry
Noting that

UaSy? = AULL,2,.* and UpULP =P,
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we see that

Xa — XpW = AULL, %,"? — UpULAULL, ., * + Ry,

= AULL, 3,"? = PUAL, X,"? — (UpULAULL, ,"? - PUAL, =,."*) + R,
A —P)UAL 3" — (UpULAULL, =, — UpULPULL =% + Ry
A —P)U,L >,"? ~ UpUL(A — P)ULL =,* + R,

A —P)Upl, , W=, +R3+ Ry + Ry

(
(
(

= (I- UpUL)(A — P){UpL,,W + (Upl,, — UpL, ,W)}X,* + R,
(
(A —P)UpL, {Zp"°W + (WE,"? = =5'*W)} + R; + Ry + Ry
(

A —P)UpL,,S5"*W + R, + Ry + Ry + R
Applying Proposition 6, we find that

X~ XpWla v = (A~ P)UpL S s+ O (T og™20n))
Consequently,

XA~ XeWIl, .. < u(P) 72 [(A ~ P)Upllae + O (0¥ log*2(m))

Letting u denote the j*® column of Up, we note that for any i € {1,...,n} we have

n

{(A=P)Upli; = > (Ay — Pi)uy

h—1
= (Ap — Py)up — Pu;.
Kt
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The latter term is O(1), while the former is a sum of independent zero-mean random

variables satisfying

—2t2
P ( Z(Alk — P )ug| > t> < 2exp ~
ki 42 ||
ki

—$2
S 2 exp (T)

by Hoeffding’s inequality. Thus {(A—P)Up};; = O <10ga+1/ 2(n)) almost surely, and hence
I{(A — P)Up}i|]| = O (loga+1/2(n)> almost surely by summing over all j € {1,..., d}.

Taking the union bound over all n rows then shows that
7a(P) (A = P)Up|la o = O (02 10g™2(n) )
and consequently that
[XaQu = Xllyo,o = O (n7/210"*(m))

by multiplying on the right by Q,, = W' Qx". O

1.2 Proof of Theorem 2
Proof. From the proof of Theorem 1, we see that
n1/2(XAWTQ)—(1 ~X) = nl/Q(A _ P)UPIp’qZ;1/2Q;(1 + nl/QR,

where ||n'/2R/2_,o — 0 by Proposition 6.

Recall that the matrix Qx was chosen so that

XQx = Xp = UPEi:/Z,
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and so

UpL, ,5p"% = Upxp'’L,, = XQxZp'L,,.

Thus
n'2(A — P)UpL,,S5"*Qx' = n'/*(A — P)XQx3p'L,,Qx.
Consequently,
.
2 {(A=P)UpL, 5 °Qx | = n'2(QxZp'L, Q%) {(A - P)X}]
= (nQleEle’qQX { ~1/2 Z ij P’L] }
— (nQXE;)legQX { _1/2 Z ’Lj - P’L] }
J#i

—(nQx3p'L, Q") T (n 2P, X,).

The latter term satisfies
|(nQxZp'1,,,Qx") T (n/*PuXy)||,_, .. < [|[(nQxZp'LQx") T (n /*PuX;)|| = O (n7'/?)

almost surely.
Conditional on the latent variable Z; = z € Z from Definition 1, we have P;; =

#(z)'1,,X;, and so

~1/2
n 2y (Ay - PyX,
J#i
is a scaled sum of n — 1 independent, zero-mean random variables, each with covariance

matrix given by
(z) = E{o(z,2)0(2)0(2)"} .

16



recalling that the function v(Z;, Z,) gives the variance of A;;. Therefore, by the multivariate

central limit theorem,

n~1/?2 Z(Aij - P)X; — N(0, i(z))
i

Finally, we consider the terms (nQxXp'L,,Qx')". Using the identities

Qx = (X'X)"'X"Xp, and XiXp=TIp,

we see that
QXzP_’IIp qQ)_(l = (XTX)_IXTXPEI_DIIP qQ)_(l
- (XTX)_IQ;(TX;XPEI;IIP,qQ;CI
= (XTX)ilQ;(TIp,qQ)icl
- (XTX)_IIp,q
and so

(nQXE;Ip,qQ;)T - Ip,inl

almost surely by the law of large numbers.

Combining all this, we find that, conditional on Z; = z,
nV? (XaWTQy' — X), = N (0,%(2))

almost surely. O
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2 Proofs for size-adjusted Chernoff information

Before beginning the proofs, it is convenient to write the summations in Corollary 1 as
matrix products. The second moment matrix A can expressed as
K
A = Zﬂ-k(XB)k<XB)]—|€— = X]—;HXB,
k=1
where IT = diag(my, ..., k). Similarly, the covariance matrix 3 for k € {1,..., K}, can
be expressed as
K
¥, =1,,A7" {Z mCre(XB)s );} AL, =1, ATIXETIS, Xg AT,
=1
where S;, = diag(C},) € RE*E. The expression for 34(t) has the same form as the above

equation, replacing Sy with its corresponding counterpart Sg,(t) = (1 — t)Sk + tS,.

2.1 Proof of Lemma 1

Proof. If D € REXK ig full rank, then for Y € RX*?_ the following matrix inequality holds
(Marshall and Olkin, 1990),

Y (Y DY) 'Y <D,

where M = 0 means that M is a positive semi-definite matrix. However, in the case where
D and X € REXK are full rank, then the two sides of this inequality are equal,

1

X (X'DX) X'=D".

If the block mean matrix B is full rank, then adjacency spectral embedding Xg is also full
rank. Since B = XgI, X}, this means rank(B) < rank(Xg) implying rank(Xg) = K
when rank(B) = K.
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Using this matrix equality and the expression for A, we have

() = (L AT XSS () XA TT,,)
= Ip,qX}gHXB (XEHSkZ(t)XB)_l XEHXBIWJ
=1, , XgIIS (1) ' XgL,,

Substituting this expression into the objective function in the size-adjusted Chernoff infor-

mation gives

{(Xs)r — (XB)e} Sie(®) ™ {(Xp)r — (Xp)e}
= (ek — eg)TXBIp’ngHSM(t)_IXBIpqu]—;(ek — eg)
= (ek — eg)TBHSM(t)*lB(ek — eg),
using the expression B = XgI, ,X5. O

If the block mean matrix B is not full rank, then the matrix inequality effectively passes

through the whole argument in the above proof,
Sre(t) ' 2L, XgISk(t) ' Xgl,,,

which becomes a regular inequality when we compute the quadratic form. We get that, for

rank(B) < K,

t(1—t
C < min sup ( )
k#L 1e(0,1) 2

{(ek — eg)TBHSkg(t)_lB(ek — eg)}

with equality when B is full rank.
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2.2 Proof of Lemma 2

Proof. By assumption A and A’ have full rank block mean matrices, therefore, by Lemma 1,
both stochastic block models have the same size-adjusted Chernoff information if they have

the same value for

(ek — eg)TBHSkg(t)ilB(ek — eg).

For an affine entry-wise transformation, the entries of the block mean and variance matrices

are given by B}, = aBy, + b and C,, = a*Cy. Therefore,

B’(ek — eg) = aB(ek — eg),

()= a®Sp(t) 7,

where S/,(¢)! is the equivalent version of Sy,(¢)~! in the entry-wise transformed stochastic
block model. The contribution from a cancel and there is no contribution from b, meaning

size-adjusted Chernoff information is unaffected by affine transformation. O

2.3 Changes of signature by affine transformation

We demonstrate the possible effects an affine transformation may have on the signature of
a stochastic block model with dimension d and signature (p, ¢). We focus on affine transfor-
mations with a > 0 and b > 0 although a similar analysis for other affine transformations
leads to slight variations of the following results.

Consider a weighted stochastic block model with full rank block mean matrix B with
signature (p, q) and let \;(B) denote the i*" smallest eigenvalue of B. The signature of B
implies that A (B),..., A\;(B) < 0 and A\;11(B),..., A\p4(B) > 0, since B is full rank, no

eigenvalues are exactly zero.
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The block mean matrix of the weighted stochastic block model after affine transforma-
tion is given by B’ = aB + b11", where 1 € R" is the all-one vector. This is a rank-one
perturbation of the scaled matrix aB, therefore, by Horn and Johnson (2012), Corollary
4.3.9, the i*® eigenvalue of B’ lies between the i*" and (i + 1)*® eigenvalue of B, that is, for

i=1,...,d—1,

Figure 5 shows an example of this eigenvalue behavior. The only eigenvalue that can change
sign after affine transformation is \,(B’). In the example shown, \,(B’) > 0, meaning the
signature of the stochastic block model after affine transformation is (p + 1,q — 1); if
Ag(B’) < 0, then the signature would have remained (p, ¢). The other remaining possibility
is that A\,(B’) = 0, meaning that B’ is not full rank. In this case, the affine transformation
block model would instead need to be embedded into d — 1 dimensions and would have

signature (p,q — 1).

)‘qfl(B,) )‘q(B/) )‘q+1 (B/) )‘q+2(B,)
B o > o —>-0 o—>-o o e -
)‘q71<B> >‘q<B) 0 >‘q+1 (B) )‘q+2(B>
q negative eigenvalues of B p positive eigenvalues of B

Figure 5: Number line showing the eigenvalues of mean block matrices close to the origin.
White nodes represent eigenvalues of B with full rank d and signature (p, q), black nodes

represent eigenvalues of B’ = aB 4+ 011" with @ > 0, b > 0, full rank d and signature
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