A Unified Model Specification for Sparse and Dense
Functional /Longitudinal Data

Supplementary Material

S1  Proof of Main Results
Lemma 1. Under the conditions of Theorem 1, we have
Villa — @) = 0,(1).

Proof. Similar to the procedure of Lemma 2 in the supplement materials of
Liu et al. (2022), we can show that
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which implies that lim, . = >0, E[S;57] = Q. Under Assumption T2, it

holds that 71121':1 SZSZT is invertible with probability approaching to one.
According to the formula of & given by (3) in the main body, we obtain that
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where 6; = (8i1,...,0im,;)". Let S”%Q be the (i,j)-element of the matrix
S 5‘25'27 Employing Theorem 3 in Liu et al. (2022), we have
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which completes the proof. U
Proof of Theorem 1.
Proof. Denote Y; = {Yn - Zm } = 80, — 80,i, Where
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Since él = Yl - gO,i = 51 - (go’i - g(],i) = 61 - éi, we can write Jn =
In1 — 2Jp 2 + Jp 3, where

Jn1 = 2N2|H| ;;‘TWU&J? (51.2)
In2 = n2NI§|H| ;;5 i Wi, (S1.3)

It suffices to show that
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under Hy c. o B
On the other hand, the condition lim,, sup No/(Ng)* < co implies Ny =
O(N?). By the convex inequality, it holds that
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which means N = O(nNy), and N? — nN; = O(n(n — 1)N3). Therefore,
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which completes the proof. O

Proof of (S1.5)
Proof. We write jml = #}%'H'Z?ﬂ Nin, Where 1;, = Z]# 0T W;;0;

230 Wi;6;. It is easy to see that 7, is a martingale difference (MD)

process w.r.t. the filtration F' = o((1;, X;)"4, 61, ..., 0,,) and
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According to (C.8) and (C.9) in the supplement materials of Liu et al. (2022),



after a straightforward computation, we obtain that
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Note that 277" | 37", mym; = N* — nNy, where Ny = 37" 'm7. Fur-
thermore,
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Therefore,
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since N2|H| = o(1). Hence,
N —7’LN2 2
N H]
with of = /7 E[{Y(T,T) + o*(T)}* fr(T) I ELfi(X(T); T))-
Now, we consider \/ni\/|H J w/00 = > Cin, Where (i = Nin/Sn

and s2 = (N2 —nN,)|H|o3. To derive the asymptotic normality of .1 | Cin,
it remains to show the following three conditions in Lemma D1 of Jun and
Pinkse (2012):

(i) sup, E [rna,xZ 2] < o0,

Var(jnﬂl) =

(i) S0, ¢2 51, and
(ili) max;[Gin| = 0.

It is obvious that (i) holds since max; ¢, < >0 n2,/s2 and s2 = > | E[n2]+

mn —

o(1). By Markov’s inequality, it follows that
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Note that
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Obviously, s = O({N? — nNy)|H|}"/?) = O({n(n — 1)NZ|H|}"/?). On the
other hand, using C., inequality and Assumption E3, we obtain that
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Therefore,
ST E[Gal] = O{n*NEH[} %) = o(1) (S1.10)
=1

for r > 2, which shows that (iii) from (S1.9). Furthermore, by Burkholder
inequality and C, inequality, we have that
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which shows condition (ii). Hence, we complete the proof of (S1.5). O
Proof of (51.6)
Proof. Let €; ; be the j-th element of €;, which is given by
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Represent B, ), = {Bx(Xitk), -+, Br(Xim)}™ and B, = {Br(Xitk), s Br(Ximei)}



then we can write J,, o = Jy 21 + Jp 22 + Jn 23 + Jn 24, Where

Jno1 = n2N§|H| ;;WWWZU ayp),

jn,22 = n2N2|H] ;;;5 Wm )Bj,k?

Jnog = n2N2|H| ;;;a TWijan(B, — Byx), and
j"724:n2N2|H];;6 i Wi Oék—ak)(ﬁ = Bjx)-

Using Lemma 1, we get
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which implies that jn,21 = op<N;\/|?>. Similarly, it holds that jn’gg =
nNg

().
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Next, according to (C.26) and (C.29) in the supplement materials of Liu
et al. (2022), we obtain that

jn,23 = 7’L2N2|H| ZZZ(S VVZ]OUC

=1 i=1 j#i e{{f'k(X]m]) - rk(ijj)}

el {t%(Xj1) — re(Xjn)}

1 1
= o7 h2 - -
sz Wi {0 () +0, (o + 1)



Here, the last step uses the fact that » i, > 7, 67 Wi Op<\/n(n — 1)N12{|H|).
Similarly, .J, 24 = 0p<\/n n— 1)N§]Hl>. Hence, (S1.6) is shown. O

Proof of (S1.7)

~

Pmof From the definition of €;; given in (S1.11), we can write J,3 =
Jn31 + Jngz + Jn33 + Jn34 + Jn35 + (S 0) Where
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After direct computation, we obtain that J, 51 = O,(1/n), Jn.s2 = O,(1/n),
Jnzs = Op(h}), Jnzs = 0p(1/+/n), and J,, 35 = 0,(1/n). By Assumption T3,
we have that J, 3 = op<m>, which shows that (S1.7) holds. O
nNyg

Proof of (S1.8)
Proof. By the proof of (S1.5), the leading term of 67 is given by
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where the form of H; ; is obvious.



After straightforward computation, we obtain that
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Therefore, 7 = B[67] 4+ 0,(1) & o7. Since 67 2 52, we finish the proof. [
Proof of Theorem 2.
Proof. Under H, ¢,
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WhereA(t z X) - g(t Z, X a(t)uﬁ(x))_go<t’zax;a’IB<X))' Let A”L = (Aih 7A’Lmz)T
with A;; == A(T ZW,X ) then
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where J,;,i = 1,2,3 are given by (S1.2)-(S1.4), and
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In combination with the obtained results given in (S1.5)-(S1.7), it remains
to show that

L5 Ca >0, (S1.12)

1
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under H; . Therefore,
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at the rate of nNy+/|H|. Hence, the proof is finished. O
Proof of (S1.12)
Proof. 1t is easy to see that
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i=1 /=1 j#i j'#d
It is not difficult to show that the leading term of V; is given by

n  m;
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which yields V; = O (W) In the same vein, we obtain that V; =
H

O(—nm%m\) for i = 2,3, 4. Therefore, Var(l,,) = O, (#}%‘HJ = 0(1), which
implies that I,,1 = E[I, 1] + 0,(1). Furthermore, we can write E[I,, ;] as
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Since Cy is positive under H;, we obtain that E[, ;] = —nZNQ‘m Car —
Ca > 0, which yields (S1.12). O
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Proof of (S1.13)
Proof. 1t is easy to see that

Var(I,z) < E[I2,] = W [ZZ ATW,6,|
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Similar to the proof of (S1.12), it can be shown that Var(1,») = O, (—xzmm
Hence, (S1.13) holds because E [, 5] = 0. O
Proof of (S1.14)

Proof. From (S1.11), we can write I, 3 = I 31 + I 32 + In3s + 1534, where
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It follows that E|l, 31| < op< 1 ) which leads to I, 31 = op(

1 )
|H| nNu+/|H]|

). Combining with Theorem 3 in Liu

Similarly, we get [, 32 = op( -
’ nNuy/|H|
et al. (2022), we obtain that

1 1
= AWVZ h 0) — -
n2N2|H|zz gak{ 2) p( nNHhm)}
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(S1.16)

which is also implies that I, 34 = op(

o \/|7> Thus, we complete the proof
of (S1.14). O
Proof of (S1.15)

Proof. From the proof of above, the leading term of 6; under H; is decided
by

n  m;

2 A2 L) _n(n_l)NI?I’H’ P
nQNQ‘H‘ZZZZAA = R C+0y(1) & C >0,
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(S1.17)
where C' = k5] 'E [A4(T, Z,X)fT(T)%} > 0 under H; . Hence the
proof. O

Proof of Theorem 3

Proof. Let El- = flgi — hy;, where
= {ho(Ti1, Zir, Xi1; &), .o, ho(Tim, s Zimm,, Xim,; )} and
= {ho(Ti1, Zi1, Xi1; &), ooy ho(Tim, s Ziim; s Ximy; &)}

Notice that c,, Y, — hoZ =0, — (hoz hy;) =9; — d;, then, we can write
I = J 1 2] 2+ ]n 3, Where J 1 is defined in the proof of Theorem 2, and

Lo = n2N2|H| ZZ&TWUdJ, and
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We have show that \/7\/ |H|J,1 /0 TN N(0,1). Since the j-th ele-

ments of d; is given by Z7. ( o(Ti;) — ao(Tij)+> 5y (& (Ti5) — o (Ti5)) Xijks

we can write 1, 2= ]n 21 -I— In 99 With

I = n2N2|H| Z > Z Z 0425, (61 (Tjo) — c(Tj)) wi;”  and

zlg;ézlljl

nn = n2N2IH|ZZZZ‘5ﬂ ok (Tho) = g (Th0)) Xjugws”.

i=1 j#i =1 j=1

Similar to the procedure of Zhang and Wang (2016), it can be shown that

Go(t) = ao(t) = Oy (/o5 + 1) and an(t) — () = O, (/i + 1),
. . . fal - ; A _ 1

Similarly, we obtain that I,9; = Op(nNH |H|> and I, 29 0p<—nNH |H‘>,

That i, Fus = (1),
) tn,2 D nNu~/|H|
Furthermore, we can rewrite I,, 3 = I, 31 + I, 32 + I, 33, Where
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n m;
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k:lzlg;ézlljl

It is routine to show that jnygl = 0p<N+\/|7> for [ = 1,2, 3, which means
nNg

that I, 5 = o, ( —+—). Therefore, it follows that
: P\ nNy+/|H|

2N2 0_1 2N2 D
_— |H|]n/01 _— |H|In1/al—i—o (1) = N(0,1),
N2 — nN, 61 v/N2 — nN, 3
which completes the proof. O

Proof of Theorem 4.
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Proof. Under Hj a,
gAij :Y;j _hO (EJJZ1]7X1]7Q<T )) A(ﬂjazmax ) Jij"_(sij:

Where~A(t,z,x) = g(t,z,x;0(t), B(x))—ho (t,2,x; a(t)) . Let A; = (A, ..., Ay,

with A;; .= A(T;;,Z;j,X,;), then
[n: nl_21n2+1n3+1n1_2[n2+2[n3a

where

Loy = 2N2|H| ZZZATWUAJ,

k=1 =1 j#i
In2 =13 Nz 21| ; ; ATW;;6;, and
P AT
[’n,,3 7’L2N2‘H‘ ;; Wz]d

In the vein of Theorem 2, we can show that

2:1 fl?(Xk)
f(Xq, ., Xg)

On the other hand, note that fn,3 = fn,;ﬂ + INR,32

Ini =E[L,1] +0,(1) = E [AQ(T, Z,X) fr(T) >0

and I,5 = Op(
with

1 )
nNuy/|H|/

L3 = n2N2|H];;ATW ZT ao(Tij) — ao(Ty;))  and

Ing = — N2| b ZZZATWW Tyj) — aw(Ty)) Xij-

k=1 1=1 j#i
Along with the line of (S1.14), we have jmgi = 0, <N;\/ﬁ> for i = 1,2,
nNy

which yields 7, ; = op(N;\/E). In combination with (S1.5) and (S1.8), we
nNyg

obtain that
1
|H|In/0'1—7’LNH\/|H n1+0 B — 00
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at the rate of nNyg+\/|H|. O
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