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S1 The Bayesian Inference

In this section, we present the Bayesian inference procedure. In the Bayesian setting, one very

first tough question concerns the choice of the prior distribution for parameters. Without sufficient

prior information, we may simply use a uniform distribution over the whole parameter space as a

non-informative prior (Syversveen, 1998), or leverage the Jeffreys prior that is proportional to the

square root of the determinant of the Fisher information matrix (Gelman, 2009), or construct the

reference prior by maximizing the missing information of model parameters (Berger et al., 2009).

For our service vehicle study, there is no prior information on the reliability of service vehicles and

on the preventive maintenance effectiveness. Hence, non-informative priors are considered in our

Bayesian inference procedure, which is introduced in greater detail in the sequel.

S1.1 Bayesian formulation

Consider a generic system that follows the failure process in Section 2.1 of the paper. Recall

that the AIC values in our real data example favor the model with a power-law baseline ROCOF

λ0(t) = (β/η) (t/η)β−1 and the Lognormal(µ, σ2) multiplicative PM random effects, i.e., the PLP-

Lognormal model. For comparison, we next conduct the Bayesian inference procedure under this

PLP-Lognormal model setting and examine its performance. The observed data from this system
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is D = {L,R,N(t) : t ∈ [L,R]}. The set of PM random effects is A = {Ak : k∆ ≤ R}. When

n independent systems are under observation, let D = {Di : i = 1, 2, · · · , n} and A = {Ai :

i = 1, 2, · · · , n} denote the observed data and the PM random effects from all the n systems,

respectively. Conditioning on the PM random effects, the likelihood function can be written as

L(D | A, β, η) =

n∏
i=1

exp(Λi(Li)− Λi(Ri))
∏

t∈[Li,Ri]

λi(t)
dNi(t). (1)

In the Bayesian framework, the parameters β, η, µ, σ2 and A are all assumed random variables.

The posterior distribution is

π(A, β, η, µ, σ2 | D) ∝ π(D | A, β, η)π(A, β, η, µ, σ2)

= L(D | A, β, η)π(A, β, η, µ, σ2).

We assume that β, η, µ | σ2, σ2, and A | µ, σ2 are independent, and the prior is given by

π(A, β, η, µ, σ2) = π(A | µ, σ2)π(µ | σ2)π(σ2)π(β)π(η).

The priors are chosen as follows.

• π(Aik | µ, σ2) ∼ Lognormal(µ, σ2), where µ is the mean and σ2 is the variance.

• π(µ | σ2) ∼ N(a, σ2/b), where a is the mean and σ2/b is the variance.

• π(σ2) ∼ Inv-Gamma(α, ν), i.e. inverse gamma distribution, where α is the shape parameter

and ν is the scale parameter (see also Gelman’s Prior distributions for variance parameters

for a complete exposition in Gelman (2006)).

• π(β) ∼ Gamma(c, d), where c is the shape parameter and d is the rate parameter.

• π(η) ∼ Gamma(e, f), where e is the shape parameter and f is the rate parameter.

The values of hyperparameters a, b, α, ν, c, d, e and f are carefully set to ensure non-informative

priors. The specific values of hyperparameters are introduced in Section S1.4. The dependence of

the variables are shown in Figure 1. With the above settings and the independent and identically

2



D1 Di Dn

A1 Ai An

β η

µ σ2

c d fe

ναa b

Figure 1: The dependence of the variables. In the directed graph, arrows run into nodes from their
direct influences. Rectangle nodes are fixed constants (i.e. hyperparameters), and circular nodes
are variables or observed data.

distributed (i.i.d.) unobserved PM random effects Aik assumption, we have

π(A | µ, σ2) =
n∏
i=1

bRi/∆c∏
k=1

π(Aik | µ, σ2) =
n∏
i=1

bRi/∆c∏
k=1

a−1
ik

σ
√

2π
exp

(
−1

2

(ln(aik)− µ)2

σ2

)
, (2)

As can be seen, combining π(µ | σ2) and π(σ2), we have π(µ, σ2) ∼ NIG(a, b, α, ν), i.e., normal-

inverse gamma distribution as below.

π(µ, σ2) =
1√
2π

√
b

σ
exp

(
−1

2

b (µ− a)2

σ2

)
×
να
(
σ2
)−α−1

Γ (α)
exp

(
− ν

σ2

)
. (3)

We carefully choose the normal-inverse gamma distribution for (µ, σ2) to make our formulas ana-

lytically tractable. The detailed derivations are introduced in the sequel.

There is no analytical expression for the posterior distribution π(A, β, η, µ, σ2 | D). As such, we

use the Markov Chain Monte Carlo (MCMC) algorithm to generate samples from this posterior

distribution. These posterior samples are further used to compute the point and interval estimations

of the model parameters, which is introduced in the next section.
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S1.2 Gibbs sampling algorithm

To be specific, considering the difficulty in directly sampling from the posterior, we use the Gibbs

sampling algorithm (George and McCulloch, 1993). The pseudocode of the Gibbs sampling algo-

rithm is presented in Algorithm 1.

Algorithm 1 Gibbs sampling algorithm

Input: Initial values (A(0), β(0), η(0), µ(0), (σ2)(0)), number of burn-ins N0 and number of total
iterations N .

while 1 ≤ k ≤ N do

A(k) ∼ π(A | β(k−1), η(k−1), µ(k−1), (σ2)(k−1),D) (4)

β(k) ∼ π(β | η(k−1), µ(k−1), (σ2)(k−1),A(k),D) (5)

η(k) ∼ π(η | β(k), µ(k−1), (σ2)(k−1),A(k),D) (6)

µ(k) ∼ π(µ | β(k), η(k), (σ2)(k−1),A(k),D) (7)

(σ2)(k) ∼ π(σ2 | β(k), η(k), µ(k),A(k),D) (8)

Output: Sample values (A(k), β(k), η(k), µ(k), (σ2)(k)), k = {N0 + 1, · · · , N}.

Next, we investigate the above full conditional distributions (4)-(8). By combining Equations (1)

and (2), we have

π(A | β, η, µ, σ2,D) ∝
n∏
i=1

(
exp(Λi(Li)−Λi(Ri))

∏
t∈[Li,Ri]

λi(t)
dNi(t)

bRi/∆c∏
k=1

a−1
ik

σ
√

2π
exp

(
−1

2

(ln(aik)− µ)2

σ2

) .

(9)

By combining Equation (1) and π(β) ∼ Gamma(c, d), we have

π(β | η, µ, σ2,A,D) ∝
n∏
i=1

exp(Λi(Li)− Λi(Ri))
∏

t∈[Li0,Ri]

λi(t)
dNi(t)

 dc

Γ(c)
βc−1 exp (−dβ) , (10)

and by combining Equation (1) and π(η) ∼ Gamma(e, f), we have

π(η | β, µ, σ2,A,D) ∝
n∏
i=1

exp(Λi(Li)− Λi(Ri))
∏

t∈[Li,Ri]

λi(t)
dNi(t)

 fe

Γ(e)
ηe−1 exp (−fη) . (11)
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By combining Equations (2) and (3), we have

π(σ2 | β, η, µ,A,D) ∝
(
σ2
)−(1+α+ 1

2
+ 1

2

∑n
i=1bRi/∆c)×

exp

(
−

1
2

∑n
i=1

∑bRi/∆c
k=1 (ln(aik)− µ)2 + 1

2b (µ− a)2 + ν

σ2

)
.

As can be seen, π(σ2 | β, η, µ,A,D) follows an inverse gamma distribution:

Inv-Gamma

α+
1

2
+

1

2

n∑
i=1

bRi/∆c ,
1

2

n∑
i=1

bRi/∆c∑
k=1

(ln(aik)− µ)2 +
1

2
b (µ− a)2 + ν

 .

Similarly, by combining Equations (2) and (3), we can obtain

π(µ | β, η, σ2,A,D) ∝ exp

−1

2

n∑
i=1

bRi/∆c∑
k=1

(ln(aik)− µ)2

σ2
− 1

2

b (µ− a)2

σ2


∝ exp

− n∑
i=1

bRi/∆c∑
k=1

µ2 − 2µ ln(aik) + ln2(aik)

2σ2
− bµ2 − 2abµ+ a2b

2σ2


∝ exp

(
−
b+

∑n
i=1 bRi/∆c
2σ2

[
µ2 − 2

(∑n
i=1

∑bRi/∆c
k=1 ln(aik) + ab

b+
∑n

i=1 bRi/∆c

)
µ

+

∑n
i=1

∑bRi/∆c
k=1 ln2(aik) + a2b

b+
∑n

i=1 bRi/∆c

])

∝ exp

−b+
∑n

i=1 bRi/∆c
2σ2

[
µ−

∑n
i=1

∑bRi/∆c
k=1 ln(aik) + ab

b+
∑n

i=1 bRi/∆c

]2
 .

Hence, π(µ | β, η, σ2,A,D) follows a normal distribution:

N

(∑n
i=1

∑bRi/∆c
k=1 ln(aik) + ab

b+
∑n

i=1 bRi/∆c
,

σ2

b+
∑n

i=1 bRi/∆c

)
.

As above, (9), (10) and (11) do not have the analytical expressions and the Metropolis-Hastings

(M-H) algorithm is thus used to sample from them at every iteration 1 ≤ k ≤ N of the above

Gibbs sampling algorithm. Consider the kth iteration of the Gibbs sampling algorithm, and thus

we have A(k) ∼ π(A | β(k−1), η(k−1), µ(k−1), (σ2)(k−1),D). To generate the kth sample from π(A |

β(k−1), η(k−1), µ(k−1), (σ2)(k−1),D), the M-H algorithm first generates a candidate A∗ from the pre-

specified proposal distribution h(A) = π
(
A | µ(k−1), (σ2)(k−1)

)
, and then calculates the probability
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of accepting this candidate using the acceptance function

f
(
A(k−1),A∗

)
= min

{
1,

π
(
D | A∗, β(k−1), η(k−1), µ(k−1), (σ2)(k−1)

)
π
(
D | A(k−1), β(k−1), η(k−1), µ(k−1), (σ2)(k−1)

)} .
A random number u is then generated from the standard uniform distribution to determine whether

to accept this generated candidate. For instance, if u < f
(
A(k−1),A∗

)
, then the candidate value

A∗ is accepted and we set A(k) = A∗. Otherwise, the candidate value is discarded and we set

A(k) = A(k−1).

Similarly, to generate the kth samples β(k) and η(k), we run the random walk M-H algorithm to

first generate candidates β∗ and η∗ from the proposal functions h(β∗ | β(k−1)) and h(η∗ | η(k−1)),

respectively. The common choice of h(·) is a normal distribution such that h(β∗ | β(k−1)) =

N(β(k−1), σ2
β) and h(η∗ | η(k−1)) = N(η(k−1), σ2

η), where σ2
β and σ2

η are constants that are carefully

set in Section S1.4. Thus, the acceptance functions are respectively given by

f
(
β(k−1), β∗

)
= min

{
1,

π(D | β∗, η(k−1), µ(k−1), (σ2)(k−1),A(k))π(β∗)

π(D | β(k−1), η(k−1), µ(k−1), (σ2)(k−1),A(k))π(β(k−1))

}
,

and

f
(
η(k−1), η∗

)
= min

{
1,

π(D | η∗, β(k), µ(k−1), (σ2)(k−1),A(k))π(η∗)

π(D | η(k−1), β(k), µ(k−1), (σ2)(k−1),A(k))π(η(k−1))

}
.

We accept the candidate if the value of the acceptance function exceeds a random number generated

from the standard uniform distribution. Otherwise, the candidate value is discarded.

S1.3 Bayesian parameter estimation

In this section, simulation is conducted to check the performance of the Bayesian parameter estima-

tion under the PLP-Lognormal setting. To be specific, we consider the power-law baseline ROCOF

λ0(t) = (β/η) (t/η)β−1 with (β, η) = (1.25, 100) and the Lognormal(µ, σ2) PM random effect with

(µ, σ) ∈ {(−1/5, 1/2), (−1/8, 1/2), (−1/10, 1/2)}. As with Section 5.1 of the paper, three levels of

the sample size are considered: n ∈ {30, 45, 60}, four levels of the PM time interval are examined:

∆ ∈ {365, 450, 540, 630}, and we let the observation window of n/3 systems be [400, 2000], n/3

systems be [400, 1200], and the remaining n/3 systems be [200, 1800].
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For each setting above, we run 1, 000 Monte Carlo replications. For each replication, we implement

the Gibbs sampling algorithm to sample posterior samples. The detailed discussions on the conver-

gence of the chain induced by the Gibbs sampling algorithm are deferred to Section S1.4. The mean

values of posterior samples are used as the point estimations of parameters, and the 95% highest

posterior density intervals are computed as the credible interval estimations of parameters. Based

on the 1, 000 replications, we calculate the bias, root mean squared error (RMSE), and the coverage

probability of the 95% highest posterior density interval. All computations were conducted on an

Intel(R) Xeon(R) CPU E5-2698 v4 (2.20 GHz).

The estimation results and computation time results are presented in Tables 1-4. These results

reveal that the biases and RMSEs are generally small. The coverage probabilities of the 95%

highest posterior density intervals for µ and σ are closer to the nominal value than β and η. This

might be attributed to the inadequate mixing property of the chain for parameters β and η. To

support our speculation, we conduct the convergence analysis in Section S1.4, and the convergence

diagnostic plots indeed show the inadequate mixing property of the chain and the high level of

autocorrelation among samples. In addition, by checking the computation time results, we note

in passing that the Bayesian estimation method is generally less computationally efficient than

the proposed EM estimation method. Overall, tuning the MCMC algorithm for such a complex

posterior in our study is hard and time-consuming.
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Table 1: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1, 000 Monte Carlo replications, under the PLP-
Lognormal model (∆ = 365).

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 3.025 bias (×10−2) 0.523 82.527 −0.252 0.207
RMSE 0.093 23.473 0.069 0.065

CP 0.935 0.928 0.947 0.949

(1.25, 100,−1/8, 1/2) 3.321 bias (×10−2) 0.293 89.521 0.392 −0.472
RMSE 0.108 22.194 0.075 0.052

CP 0.935 0.937 0.944 0.959

(1.25, 100,−1/10, 1/2) 3.240 bias (×10−2) 0.674 95.361 −0.341 −0.452
RMSE 0.094 22.093 0.044 0.046

CP 0.937 0.931 0.943 0.958

45

(1.25, 100,−1/5, 1/2) 4.574 bias (×10−2) 0.426 63.215 −0.083 0.035
RMSE 0.088 20.405 0.052 0.056

CP 0.945 0.941 0.942 0.958

(1.25, 100,−1/8, 1/2) 4.329 bias (×10−2) 0.212 111.532 0.231 0.178
RMSE 0.079 18.184 0.042 0.037

CP 0.937 0.940 0.953 0.955

(1.25, 100,−1/10, 1/2) 4.925 bias (×10−2) 0.805 122.623 0.124 0.401
RMSE 0.115 21.162 0.048 0.036

CP 0.935 0.937 0.956 0.953

60

(1.25, 100,−1/5, 1/2) 6.715 bias (×10−2) 0.079 124.921 0.073 0.044
RMSE 0.073 18.491 0.039 0.038

CP 0.941 0.945 0.956 0.957

(1.25, 100,−1/8, 1/2) 6.532 bias (×10−2) 0.125 87.315 0.088 0.213
RMSE 0.079 18.262 0.047 0.032

CP 0.944 0.943 0.949 0.953

(1.25, 100,−1/10, 1/2) 6.357 bias (×10−2) 0.942 107.459 0.205 0.378
RMSE 0.071 16.145 0.032 0.033

CP 0.947 0.949 0.952 0.953
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Table 2: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1, 000 Monte Carlo replications, under the PLP-
Lognormal model (∆ = 450).

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 2.934 bias (×10−2) 0.113 48.431 0.096 0.062
RMSE 0.101 21.455 0.048 0.038

CP 0.935 0.934 0.946 0.961

(1.25, 100,−1/8, 1/2) 3.046 bias (×10−2) 0.105 35.329 0.077 0.068
RMSE 0.095 20.968 0.042 0.060

CP 0.937 0.936 0.940 0.964

(1.25, 100,−1/10, 1/2) 3.032 bias (×10−2) 0.436 85.591 −0.124 0.325
RMSE 0.096 25.630 0.075 0.057

CP 0.935 0.945 0.944 0.953

45

(1.25, 100,−1/5, 1/2) 4.645 bias (×10−2) 0.095 37.481 0.102 0.055
RMSE 0.068 18.453 0.051 0.053

CP 0.941 0.938 0.947 0.957

(1.25, 100,−1/8, 1/2) 4.527 bias (×10−2) 0.084 30.531 0.062 0.043
RMSE 0.083 15.451 0.041 0.036

CP 0.945 0.943 0.948 0.960

(1.25, 100,−1/10, 1/2) 4.801 bias (×10−2) 0.341 46.682 0.117 −0.245
RMSE 0.118 22.456 0.046 0.052

CP 0.938 0.941 0.948 0.954

60

(1.25, 100,−1/5, 1/2) 5.371 bias (×10−2) 0.076 36.257 0.121 0.027
RMSE 0.061 17.627 0.034 0.040

CP 0.940 0.947 0.951 0.955

(1.25, 100,−1/8, 1/2) 5.554 bias (×10−2) 0.069 25.412 0.071 0.038
RMSE 0.082 16.641 0.042 0.033

CP 0.942 0.937 0.954 0.948

(1.25, 100,−1/10, 1/2) 5.386 bias (×10−2) 0.143 32.674 0.142 −0.227
RMSE 0.085 20.943 0.032 0.051

CP 0.943 0.950 0.944 0.948
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Table 3: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1, 000 Monte Carlo replications, under the PLP-
Lognormal model (∆ = 540).

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 2.813 bias (×10−2) 0.065 87.551 0.142 −0.721
RMSE 0.084 19.571 0.053 0.048

CP 0.939 0.943 0.952 0.943

(1.25, 100,−1/8, 1/2) 2.653 bias (×10−2) 0.083 47.682 0.053 0.851
RMSE 0.073 20.372 0.053 0.049

CP 0.932 0.937 0.946 0.945

(1.25, 100,−1/10, 1/2) 3.204 bias (×10−2) 0.135 41.463 −0.121 −0.401
RMSE 0.086 21.571 0.053 0.032

CP 0.935 0.933 0.939 0.941

45

(1.25, 100,−1/5, 1/2) 4.671 bias (×10−2) 0.057 77.581 0.121 0.510
RMSE 0.067 16.025 0.045 0.035

CP 0.938 0.942 0.959 0.945

(1.25, 100,−1/8, 1/2) 4.324 bias (×10−2) 0.076 55.251 0.044 −0.521
RMSE 0.067 17.856 0.048 0.036

CP 0.936 0.941 0.952 0.949

(1.25, 100,−1/10, 1/2) 4.463 bias (×10−2) 0.094 38.593 0.117 −0.301
RMSE 0.052 19.659 0.049 0.035

CP 0.938 0.939 0.942 0.947

60

(1.25, 100,−1/5, 1/2) 5.397 bias (×10−2) 0.047 56.138 0.091 0.305
RMSE 0.041 14.648 0.042 0.039

CP 0.945 0.941 0.960 0.944

(1.25, 100,−1/8, 1/2) 5.523 bias (×10−2) 0.083 41.543 0.035 −0.355
RMSE 0.056 13.372 0.038 0.035

CP 0.943 0.944 0.949 0.952

(1.25, 100,−1/10, 1/2) 5.301 bias (×10−2) 0.044 45.102 0.098 −0.283
RMSE 0.057 17.150 0.040 0.039

CP 0.945 0.946 0.947 0.952
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Table 4: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1, 000 Monte Carlo replications, under the PLP-
Lognormal model (∆ = 630).

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/8, 1/2) 2.610 bias (×10−2) 0.243 41.572 0.075 0.347
RMSE 0.082 25.421 0.049 0.052

CP 0.936 0.932 0.942 0.955

(1.25, 100,−1/10, 1/2) 2.849 bias (×10−2) 0.323 42.549 −0.461 0.668
RMSE 0.070 26.674 0.038 0.053

CP 0.933 0.944 0.948 0.957

45

(1.25, 100,−1/5, 1/2) 4.124 bias (×10−2) 0.302 24.594 0.141 −0.119
RMSE 0.032 15.148 0.059 0.045

CP 0.939 0.928 0.944 0.951

(1.25, 100,−1/8, 1/2) 4.276 bias (×10−2) 0.145 27.921 0.044 −0.218
RMSE 0.065 21.343 0.045 0.036

CP 0.935 0.947 0.958 0.943

(1.25, 100,−1/10, 1/2) 4.352 bias (×10−2) 0.156 32.814 0.315 −0.406
RMSE 0.051 23.245 0.029 0.048

CP 0.929 0.945 0.947 0.958

60

(1.25, 100,−1/5, 1/2) 5.548 bias (×10−2) 0.073 26.447 0.041 −0.107
RMSE 0.036 16.847 0.041 0.026

CP 0.942 0.938 0.945 0.953

(1.25, 100,−1/8, 1/2) 5.218 bias (×10−2) 0.075 17.234 0.030 0.163
RMSE 0.026 14.548 0.037 0.032

CP 0.939 0.951 0.949 0.954

(1.25, 100,−1/10, 1/2) 5.155 bias (×10−2) 0.123 23.217 0.157 −0.314
RMSE 0.051 22.534 0.027 0.042

CP 0.943 0.946 0.950 0.949
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S1.4 Convergence analysis

Next, we summarize the chain induced by the Gibbs sampling algorithm and assess its convergence.

The Bayesian parameter estimation is implemented with priors introduced in Section S1.1. To set up

non-informative priors, the hyperparameters are set as follows (Spiegelhalter et al., 1996; Gelman,

2006),

a = 10−3, b = 10−3, α = 10−3, ν = 10−3, c = 10−4, d = 10−4, e = 10−4, f = 10−4.

The parameters of proposal functions are set as σβ = 0.22 and ση = 7.20. To define the stopping

criteria for the algorithm, we run the Geweke diagnostic (Geweke, 1992) to examine the conver-

gence of the Markov chain induced by the proposed Gibbs sampling algorithm. Specifically, we

conduct the Geweke test by taking the first 10% and the last 50% part of the chain into account.

Besides, the Gelman and Rubin’s statistic (Gelman and Rubin, 1992; Brooks and Gelman, 1998) is

also computed to check the convergence of multiple chains from the overdispersed starting points.

As suggested by Brooks and Gelman (1998), the convergence is reached if the Gelman-Rubin

convergence diagnostic value is less than 1.2 for all model parameters. According to our compre-

hensive numerical experience, we need to run the Gibbs sampling algorithm for a total number of

N = 500, 000 iterations to ensure the Gelman-Rubin convergence diagnostic values are less than

1.2 and p-values of the Geweke test statistic for all model parameters β, η, µ and σ are above the

pre-specified threshold δ = 0.05 under all the settings. We then discard the first N0 = 100, 000

iterations as burn-in. After burn-in, we thin the chain by setting the value of thinning as 100 to

reduce the autocorrelation of posterior samples. As such, a chain of 4, 000 iterations is obtained

after burn-in and thinning.

However, we caution that the mixing property of the induced chain might be still poor, even

though they have passed the Geweke test and their Gelman-Rubin convergence diagnostic values

are less than 1.2 (Gong and Flegal, 2016). To illustrate that, we present a realization of the

convergence diagnostic plots of the chain for model parameters β, η, µ and σ in Figure 2. As can

be seen, the trace plots and autocorrelation plots for parameters β and η show the inadequate

mixing property of the chain and the high level of autocorrelation among samples. To overcome
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this, more iterations are required, which, however, renders the Bayesian estimation procedure even

more computationally cumbersome. Alternative strategies such as other carefully selected proposal

functions for the M-H algorithm, the adaptive Metropolis sampler (Haario et al., 1999, 2001) and

the delayed rejection mechanism (Tierney and Mira, 1999; Green and Mira, 2001) can be considered

in the future to improve the mixing efficiency of the chain, and thus the precision of the Bayesian

parameter estimation can be imrpoved.
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Figure 2: Trace plots (left) and corresponding autocorrelation plots (right) of the chain after burn-
in and thinning, under the PLP-Lognormal model setting with (β, η, µ, σ) = (1.25, 100,−0.2, 0.5),
n = 30 and ∆ = 630.
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S2 Technical Notes

S2.1 Intensity of the failure process

In this section, we add some more discussions on the system ROCOF. Let Ft be the filtration (i.e.

the history just up to time t) of the process up to and including time t. For the filtration, we have

Ft− =
⋃
s<tFs. The assumption that two failure events cannot occur at exactly the same time is

plausible in most settings and is also retained in our study. The intensity for the failure process is

defined formally as

λ(t | Ft−) = lim
∆t→0

Pr{∆N(t) = 1 | Ft−}
∆t

. (12)

The system ROCOF λ(t) in Equation (1) of the paper is accordingly defined by λ(t | Ft−).

S2.2 Product integral

In this section, we clarify the product integral, i.e., the term
∏
u∈[L,R]{λ(u)}dN(u) in Equation (2) of

the paper. Consider a generic system that follows the defined failure model in the paper. Suppose

m failures occur in the observation window [L,R] denoted by an ordered collection {tl : 1 ≤ l ≤ m},

m = N(R). Consider partitions L = u0 < u1 < · · · < uS = R of the observation window [L,R]

and define ∆us = us+1 − us, s = 0, 1, · · · , S, where uS+1 = u+
S . As introduced in Section 2.6 in

Andersen et al. (2012), the term
∏
u∈[L,R]{λ(u)}dN(u) in Equation (2) of the paper is actually a

limit of approximating the finite product limS→∞
∏S
s=0{λ(us)}∆N(us). As S → ∞ and ∆us → 0,

the m intervals that contain the event times t1, . . . , tm have ∆N(us) = 1; for all others ∆N(us) = 0.

Hence, we have ∏
u∈[L,R]

{λ(u)}dN(u)

= lim
S→∞

S∏
s=0

{λ (us)}∆N(us)

=
m∏
l=1

λ (tl) .

According to Theorem 2.1 in Cook et al. (2007), the probability density of the observed failure

events {tl : 1 ≤ l ≤ m} for the failure process with intensity (12) over the observation window
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[L,R] is
m∏
l=1

λ (tl) · exp

{
−
∫ R

L
λ(u)du

}
. (13)

With the above settings, the likelihood function in Equation (2) of the paper is obtained by inte-

grating A in (13) out:

L(θ;D) =

∫ ∞
0
· · ·
∫ ∞

0︸ ︷︷ ︸
bR/∆c

exp(Λ(L)− Λ(R))

m∏
l=1

λ (tl) dFA
(
a1

)
· · · dFA

(
abR/∆c

)
.

S2.3 Complete-data log-likelihood function

This section presents detailed derivations to obtain complete-data log-likelihood function. Consider

a generic system. Denote D = {L,R,N(t) : t ∈ [L,R]} as the observed data and A = {Ak : k∆ ≤

R} as the set of unobserved PM random effects. When n independent systems are available, the

recurrent failure data from n systems are thus D = {Di : i = 1, 2, · · · , n}, and A = {Ai : i =

1, 2, · · · , n} is the collection of all the PM random effects. Based on the complete data C = D∪A,

the complete-data likelihood function is given by

L(θ;C) =
n∏
i=1

L(θ;Di,Ai) =
n∏
i=1

exp(Λ(Li)− Λ(Ri))
∏

t∈[Li,Ri]

λi(t)
dNi(t)

bRi/∆c∏
k=1

fA(aik)

 .
Therefore, the complete-data log-likelihood function ` (θ;C) in Equation (3) of the paper is obtained

by simply taking the log of the above equation.

S2.4 Q-function

Detailed derivations to obtain the Q-function (i.e. Equation (4) of the paper) are given by

E
[
` (θ;C) | D,θ(j)

]
=

n∑
i=1

E
[
`(θ;Di,Ai) | Di,θ

(j)
]

=

n∑
i=1

∫ ∞
0
· · ·
∫ ∞

0︸ ︷︷ ︸
bRi/∆c

`(θ;Di,Ai)fAi

(
ai | Di,θ

(j)
)
dai1 · · · daibRi/∆c,
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where the first equality follows from the independence among n systems and fAi(ai | Di,θ
(j)) is

the conditional PDF of random effects (i.e. Equation (5) of the paper) , which can be expressed as

fAi

(
ai | Di,θ

(j)
)

=
L(θ(j);Di,Ai)

L(θ(j);Di)
.

S3 The Non-periodic or Condition-based PM Setting

In this section, we discuss the applicability of the proposed method to the non-periodic PM setting

or the condition-based PM setting. In keeping with the notation in Doyen and Gaudoin (2006) and

Doyen and Gaudoin (2011), we define the failure process N(t) that counts failures, the PM counting

process M(t) that counts PM actions and K(t) that counts both failures and PM actions over [0, t].

Denote {Ci}i≥0 the failure and PM time sequence (C0 = 0). Denote Ft, t ≥ 0, as the natural

filtration generated by the history of the processes N(t) and M(t) and the hypothetical observation

of PM random effects {Aj}j≥1 up to and including time t: Ft = σ({N(s),M(s), AM(s)}0≤s≤t). For

the filtration, let Ft− =
⋃
s<tFs.

• Non-periodic PM policy.

Consider a repairable system. The intensity for the failure process is defined by

λ(t | Ft−) = lim
∆t→0

Pr{∆N(t) = 1 | Ft−}
∆t

.

Next, when we consider a non-periodic time-based PM program to mitigate the risk of failures,

the PM time sequence is also predictable with respect to the filtration, i.e., the next PM time

is a deterministic function of the history of the PM and failure processes (Doyen and Gaudoin,

2011). Following the model setting in the paper, we consider the minimal repair assumption

and explicitly model the effect of PM as a multiplicative random effect on ROCOFs. Thus,

for the non-periodic PM policy, the system ROCOF is formulated as

λ(t) , λ(t | Ft−) =

M(t−)∏
j=1

Ajλ0(t),
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where random effects Aj , j = 1, · · · ,M(t−), are assumed to be i.i.d. nonnegative random

variables representing the effects of each PM action.

• Condition-based PM policy.

Next, we consider a repairable system under a condition-based PM program. In this case,

the PM time sequence is not predictable with respect to the filtration, i.e., PM times are not

deterministic. The intensity function for the failure process is defined by

λN (t | Ft−) = lim
∆t→0

Pr{∆N(t) = 1 | Ft−}
∆t

.

The intensity function for the condition-based PM process is defined by

λM (t | Ft−) = lim
∆t→0

Pr{∆M(t) = 1 | Ft−}
∆t

.

The failure and PM intensities completely characterize the failure and PM processes. The

competing risks approach developed in the context of maintenance is commonly used to derive

the failure and PM intensities (Doyen and Gaudoin, 2006; Dijoux and Gaudoin, 2009). To

use the competing risks approach, we introduce the concept of risk variables. After the kth

PM or repair action, the time to the next failure (i.e., the next repair action) is a random

variable Zk+1. However, the failure can be avoided by a condition-based PM action at a

random time, Yk+1. The time until the next failure or PM is Wk+1 = min(Zk+1, Yk+1). The

random variables Yk+1 and Zk+1 are called the risk variables.

The subhazard rates of the first failure and PM risk variables Z1 and Y1 are accordingly

defined as below (Doyen and Gaudoin, 2006):

λc(w) = lim
∆w→0

1

∆w
Pr (w < Z1 ≤ w + ∆w,Z1 < Y1 |W1 > w) ,

λp(w) = lim
∆w→0

1

∆w
Pr (w < Y1 ≤ w + ∆w, Y1 ≤ Z1 |W1 > w) .

(14)

Following the generalized virtual age model in Doyen and Gaudoin (2006), we define a se-

quence of random variables {Vk}k≥1, with V0 = 0, called effective ages. We assume that after

the kth failure or PM the risk variables Yk+1 and Zk+1 behave like the risk variables of a new
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system, never maintained before Vk. Under the assumption, the connections between failure

and PM intensities and subhazard rates are established by the following equations:

λN (t | Ft−) = λc
(
VK(t−) + t− CK(t−)

)
,

λM (t | Ft−) = λp
(
VK(t−) + t− CK(t−)

)
,

(15)

where λc(·) and λp(·) are the subhazard rates of the first latent repair and PM times, respec-

tively, defined in (14). As with our proposed model for the periodic PM setting, we can still

consider the minimal repair assumption and explicitly model the PM random effects, which

accounts for the potential PM adverse effects as well. By blending the idea of ARA∞ model

from Doyen and Gaudoin (2004), we have

VK(t) =


AM(t)(VK(t)−1 + CK(t) − CK(t)−1), dM(t) = 1,

VK(t)−1 + CK(t) − CK(t)−1, dM(t) = 0,

where random effects AM(t) are assumed to be i.i.d. nonnegative random variables represent-

ing the effects of each PM action and dM(t) = lim∆t→0M((t+ ∆t)−)−M(t−).

We next discuss the modeling method on the dependence between PM and repair actions. It

is sufficient to express the dependence between the risk variables Y1 and Z1 since the failure

and PM intensities are determined by them, as shown in (15). Though the independent risks

assumption is common in competing risks approach literature (Cox, 1959; Gail, 1975; Crowder,

2001), it is not realistic since PM and repair actions are linked through the degradation

process. To characterize the dependence between PM and repair actions, the dependent

competing risks model, e.g., the alert-delay model, is introduced in Dijoux and Gaudoin

(2009). To be specific, the alert-delay model assumes that the link between the PM and

repair action risk variables is as follows:

Y1 = pZ1 + E ,

where p ∈ [0, 1] and Z1 and E are two independent positive random variables. Commonly used

distributions for Z1 and E are the exponential distribution. The identifiability of the alert-
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delay model is also proved for p 6= 1 in Dijoux and Gaudoin (2009). Under this dependence

assumption, the subhazard rates are readily derived, and thus the failure and PM intensities

can be computed by (15). The detailed derivations can be found in Dijoux and Gaudoin

(2009).

S4 Gain of the quasi-Monte Carlo method

To illustrate the gain of the quasi-Monte Carlo method, we carefully investigate the Monte Carlo

method and quasi-Monte Carlo method from both theoretical and empirical perspectives, as detailed

below.

• Theoretical perspective. When using N samples, the Monte Carlo integration method yields a

probabilistic error bound ofO(N−1/2) independent of dimensions (Niederreiter, 1992; Caflisch,

1998). The quasi-Monte Carlo integration method can yield a deterministic error bound of

O(N−1(logN)d), where d is the dimension of the integral (Caflisch, 1998). To be exact, this

is the upper bound of the error. The convergence rate of the quasi-Monte Carlo integration

method is generally faster than that theoretical bound (Asmussen and Glynn, 2007).

The accuracy of the quasi-Monte Carlo method generally increases faster than Monte Carlo

method as N increases. However, this advantage should be checked judiciously since it is

only guaranteed if N is large enough and the dimension of the integral d is not large. It is

widely believed that quasi-Monte Carlo method is applicable to problems in a dimension of

moderate size, say, for d < 15 (Wang and Fang, 2003). To check that, the dimension of each

integral in Equation (4) of the paper (i.e. Q-function) is less than 10 in our studies. As such,

with the carefully chosen sample size N , the advantage of the faster convergence rate of the

quasi-Monte Carlo method can be well retained in our studies.

• Empirical perspective. To illustrate the gain of quasi-Monte Carlo method, we conduct sim-

ulation studies to check the average calculation time of Monte Carlo EM (MCEM) and

quasi-Monte Carlo EM (QMCEM) algorithms. We consider the power-law baseline ROCOF

λ0(t) = (β/η) (t/η)β−1 with (β, η) = (1.25, 100) and Lognormal(µ, σ2) PM random effect

with (µ, σ) ∈ {(−1/5, 1/2), (−1/8, 1/2), (−1/10, 1/2)} in the simulation. Two levels of the
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Table 5: The average calculation time (in seconds) of Monte Carlo EM (MCEM) and quasi-Monte
Carlo EM (QMCEM) algorithms under the power-law baseline ROCOF and lognormal PM random
effect setting.

n (β, η, µ, σ) Method ∆ = 365 ∆ = 540

30

(1.25, 100,−1/5, 1/2) MCEM algorithm 1554.39 1063.51
QMCEM algorithm 1482.60 1215.37

(1.25, 100,−1/8, 1/2) MCEM algorithm 3197.65 1404.68
QMCEM algorithm 2354.67 1270.73

(1.25, 100,−1/10, 1/2) MCEM algorithm 4719.59 1220.60
QMCEM algorithm 3706.83 1324.08

45

(1.25, 100,−1/5, 1/2) MCEM algorithm 1925.21 1155.26
QMCEM algorithm 1561.40 1354.13

(1.25, 100,−1/8, 1/2) MCEM algorithm 3205.59 1388.43
QMCEM algorithm 2627.82 1279.86

(1.25, 100,−1/10, 1/2) MCEM algorithm 5361.79 1366.29
QMCEM algorithm 3992.40 1537.02

60

(1.25, 100,−1/5, 1/2) MCEM algorithm 2211.40 1227.00
QMCEM algorithm 1657.05 1471.24

(1.25, 100,−1/8, 1/2) MCEM algorithm 3171.34 1363.68
QMCEM algorithm 3066.79 1306.54

(1.25, 100,−1/10, 1/2) MCEM algorithm 6075.84 1481.73
QMCEM algorithm 4276.59 1622.46

PM time interval are considered: ∆ ∈ {365, 540}. The sample size design and observation

window design are the same as in the Section 5.1 of the paper. All computations were con-

ducted on an Intel(R) Xeon(R) CPU E5-2698 v4 (2.20 GHz). The results are summarized in

Table 5. As can be seen, the average calculation time of MCEM algorithm is generally longer

than QMCEM algorithm under different settings.

In addition, to further illustrate the convergence rate in Monte Carlo method and quasi-Monte

Carlo method, we next compute the relative error of the Monte Carlo and quasi-Monte Carlo

approximations of the Q-function, |Q?(θ | θ̃) − Q(θ | θ̃)|/Q(θ | θ̃), where Q?(θ | θ̃) denotes

the approximations of Q-function. For example, we plot the relative approximation error as a

function of the sample size N from 101 to 104 by considering the power-law baseline ROCOF

and lognormal PM random effect with θ = θ̃ = (β, η, µ, σ) = (1.25, 100,−1/5, 1/2), PM time

interval ∆ = 365, and sample size n = 30. The results are presented in Figure 3. As can be

20



seen, the relative approximation error of the Monte Carlo method decreases as the increase

of sample size N , roughly at a rate of 1/
√
N , and the quasi-Monte Carlo method is generally

better at all sample sizes and appears to show a faster convergence rate.
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Figure 3: Relative approximation error as a function of the sample size N from 101 to 104.

S5 Martingale residuals

In this section, we introduce the concept of martingale residuals. Denote Λ = (Λ(t))t≥0 as the

cumulative intensity process of the counting process N = (N(t))t≥0, such that Λ(t) =
∫ t

0 λ(s)ds

and λ(s) is the intensity. The counting process martingale is defined by M(t) = N(t)− Λ(t).

Consider a generic repairable system that follows the defined failure model in the paper. We denote

{tl : 1 ≤ l ≤ m} as the ordered collection of its failure time epochs over the observation window

[L,R], where m = N(R) (i.e., the number of failures observed from the system) and t0 , L. With

the assumed model, the failure process follows a Poisson process after conditioning on the frailties

(i.e., PM random effects) and the observation windows. By plugging in parameter estimates, the

corresponding martingale residuals are obtained as M̂(tl) = N(tl)− Λ(tl; θ̂, Â), 1 ≤ l ≤ m. Based

on the martingale residuals, we can simply adopt the Kolmogorov-Smirnov (KS) type test statistic
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(see also Chauvel et al. (2016)) to evaluate the proximities between the observed data and the

estimated models, which is defined as

KS(θ̂, Â) = sup
1≤l≤m

∣∣∣M̂(tl)
∣∣∣

= sup
1≤l≤m

∣∣∣N(tl)− Λ(tl; θ̂, Â)
∣∣∣ .

As with Section 4 of the paper, a parametric bootstrap method (Efron and Tibshirani, 1994) can

be next employed to compute the quantiles of the above test statistic distribution.

S6 Addtional Figures and Tables

S6.1 Additional parameter estimation results

As indicated in Section 5.1 of the paper, when using optim() in R (R Core Team, 2020), the

constraints on the range of parameters need to be first specified. The range of parameters in the

baseline ROCOF is as below:

• For power-law process λ0(t) = (β/η) (t/η)β−1, we have parameters η, β > 0.

• For log-linear law process λ0(t) = exp (η + βt), we have parameters η, β ∈ R.

The range of parameters in the distribution of PM random effects is as below:

• For the Gamma(α, ν) random effect, we have the shape parameter α > 0 and the rate

parameter ν > 0.

• For the Lognormal(µ, σ2) random effect, we have parameters µ ∈ R and σ > 0.

The additional parameter estimation results under PLP-Lognormal, PLP-Gamma, LLP-Lognormal

and LLP-Gamma model settings are presented in Tables 6-21. Besides, we compute the relative

estimation error (θ̂−θ)/θ in each replication, and then present box plots of the relative estimation

error under the PLP-Lognormal model to check how the estimated parameters spread out. The box

plots of the relative estimation error based on the 1, 000 replications are plotted in Figures 4-7. As
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demonstrated by the figures, the relative estimation error generally decreases as n increases under

the PLP-Lognormal model setting. Overall, the performance of the EM algorithm in parameter

estimations is satisfactory under different settings.

S6.2 Numerical issues

In this section, we discuss the numerical instability problems, e.g., arithmetic overflows, which arise

when considering the log-linear baseline model. As shown in Tables 14-21, when examining the

log-linear law baseline ROCOF model, the true magnitudes of the parameters β and η are set to

be 0.0005 and −4.5, respectively. The numerical problems may arise due to huge differences in

scales of the parameters. For example, when using quasi-Newton type method in optim(), the

convergence can be compromised due to the ill-conditioned problem on the Hessian matrix of the

Q-function. Besides, similar problems can also arise when computing the inverse of the Hessian

matrix of the Q-function to obtain confidence intervals. To overcome these hurdles, we resort to

the built-in control parameter “parscale” in optim() to rescale the parameters so that unit change

of rescaled parameters have nearly the same impact on the objective function.

In addition, according to our numerical experience, the numerical stability issues seem to arise more

frequently in the quasi-Newton BFGS method than the Nelder-Mead method. The is because BFGS

method performs a line search in the direction of the gradient, which can lead to extreme parameter

values in the line search step and cause numerical issues. Luckily, we note that the optim() can

generally handle it without generating errors even though the objective function returns an “Inf”

or “NaN” value. This built-in feature of the optim() in R (R Core Team, 2020) helps to maintain

the numerical stability.
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Figure 4: Box plots of the relative estimation error of θ̂ = (β̂, η̂, µ̂, σ̂), under the PLP-Lognormal
model with PM time interval ∆ = 365.
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Figure 5: Box plots of the relative estimation error of θ̂ = (β̂, η̂, µ̂, σ̂), under the PLP-Lognormal
model with PM time interval ∆ = 450.
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Figure 6: Box plots of the relative estimation error of θ̂ = (β̂, η̂, µ̂, σ̂), under the PLP-Lognormal
model with PM time interval ∆ = 540.
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Figure 7: Box plots of the relative estimation error of θ̂ = (β̂, η̂, µ̂, σ̂), under the PLP-Lognormal
model with PM time interval ∆ = 630.
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Table 6: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: ∆ = 365.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 1482.60 bias (×10−2) 0.145 156.898 −0.086 −0.019
RMSE 0.115 26.084 0.053 0.051

CP (asymptotic CI) 0.930 0.941 0.955 0.977
CP (bootstrap CI) 0.938 0.949 0.957 0.973

(1.25, 100,−1/8, 1/2) 2354.67 bias (×10−2) 0.286 113.190 −0.405 −0.334
RMSE 0.112 24.902 0.057 0.048

CP (asymptotic CI) 0.915 0.937 0.939 0.972
CP (bootstrap CI) 0.936 0.946 0.951 0.971

(1.25, 100,−1/10, 1/2) 3706.83 bias (×10−2) 1.265 334.40 −0.200 −0.704
RMSE 0.126 26.776 0.061 0.050

CP (asymptotic CI) 0.906 0.914 0.911 0.946
CP (bootstrap CI) 0.931 0.937 0.936 0.961

45

(1.25, 100,−1/5, 1/2) 1561.40 bias (×10−2) 0.131 167.256 −0.052 0.016
RMSE 0.087 20.458 0.044 0.044

CP (asymptotic CI) 0.955 0.959 0.951 0.970
CP (bootstrap CI) 0.952 0.963 0.955 0.972

(1.25, 100,−1/8, 1/2) 2627.82 bias (×10−2) 0.195 166.732 −0.262 −0.278
RMSE 0.095 19.142 0.045 0.039

CP (asymptotic CI) 0.925 0.950 0.949 0.965
CP (bootstrap CI) 0.933 0.948 0.957 0.977

(1.25, 100,−1/10, 1/2) 3992.40 bias (×10−2) 1.203 322.932 −0.202 0.661
RMSE 0.112 19.973 0.047 0.042

CP (asymptotic CI) 0.920 0.934 0.941 0.953
CP (bootstrap CI) 0.936 0.944 0.955 0.962

60

(1.25, 100,−1/5, 1/2) 1657.05 bias (×10−2) 0.119 260.642 −0.031 0.055
RMSE 0.074 17.664 0.036 0.032

CP (asymptotic CI) 0.959 0.957 0.956 0.973
CP (bootstrap CI) 0.954 0.958 0.965 0.970

(1.25, 100,−1/8, 1/2) 3066.79 bias (×10−2) 0.173 246.082 −0.146 0.453
RMSE 0.079 18.062 0.040 0.035

CP (asymptotic CI) 0.924 0.940 0.941 0.969
CP (bootstrap CI) 0.938 0.952 0.949 0.971

(1.25, 100,−1/10, 1/2) 4276.59 bias (×10−2) 1.471 352.213 −0.462 0.737
RMSE 0.083 18.606 0.037 0.035

CP (asymptotic CI) 0.918 0.931 0.942 0.963
CP (bootstrap CI) 0.932 0.941 0.959 0.960
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Table 7: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: ∆ = 450.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 1346.54 bias (×10−2) 0.142 41.868 −0.171 0.086
RMSE 0.106 22.942 0.054 0.053

CP (asymptotic CI) 0.954 0.952 0.938 0.959
CP (bootstrap CI) 0.957 0.949 0.952 0.963

(1.25, 100,−1/8, 1/2) 1853.72 bias (×10−2) 0.093 55.931 0.087 −0.077
RMSE 0.115 24.651 0.047 0.058

CP (asymptotic CI) 0.952 0.961 0.963 0.955
CP (bootstrap CI) 0.956 0.958 0.967 0.958

(1.25, 100,−1/10, 1/2) 1452.41 bias (×10−2) 0.893 113.262 0.323 0.431
RMSE 0.125 31.256 0.078 0.062

CP (asymptotic CI) 0.931 0.940 0.923 0.948
CP (bootstrap CI) 0.944 0.947 0.952 0.965

45

(1.25, 100,−1/5, 1/2) 1622.76 bias (×10−2) 0.135 52.633 0.166 −0.075
RMSE 0.072 18.453 0.047 0.042

CP (asymptotic CI) 0.947 0.948 0.941 0.953
CP (bootstrap CI) 0.949 0.948 0.955 0.947

(1.25, 100,−1/8, 1/2) 2341.74 bias (×10−2) 0.090 34.931 −0.062 0.059
RMSE 0.086 15.144 0.044 0.039

CP (asymptotic CI) 0.947 0.955 0.959 0.961
CP (bootstrap CI) 0.953 0.959 0.951 0.949

(1.25, 100,−1/10, 1/2) 1789.68 bias (×10−2) 0.504 73.262 0.120 −0.309
RMSE 0.123 28.251 0.066 0.058

CP (asymptotic CI) 0.944 0.958 0.941 0.960
CP (bootstrap CI) 0.953 0.966 0.953 0.970

60

(1.25, 100,−1/5, 1/2) 2044.81 bias (×10−2) 0.096 60.649 0.180 −0.073
RMSE 0.058 13.894 0.041 0.037

CP (asymptotic CI) 0.955 0.950 0.947 0.961
CP (bootstrap CI) 0.947 0.948 0.956 0.968

(1.25, 100,−1/8, 1/2) 2637.54 bias (×10−2) 0.086 13.258 0.027 0.047
RMSE 0.051 10.152 0.045 0.033

CP (asymptotic CI) 0.944 0.947 0.952 0.965
CP (bootstrap CI) 0.957 0.953 0.946 0.954

(1.25, 100,−1/10, 1/2) 2683.84 bias (×10−2) 0.123 34.243 −0.105 0.289
RMSE 0.092 23.561 0.037 0.046

CP (asymptotic CI) 0.952 0.959 0.953 0.967
CP (bootstrap CI) 0.955 0.957 0.962 0.973
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Table 8: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: ∆ = 540.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/5, 1/2) 1215.37 bias (×10−2) 0.081 145.603 0.237 −1.332
RMSE 0.091 21.965 0.064 0.058

CP (asymptotic CI) 0.961 0.953 0.955 0.953
CP (bootstrap CI) 0.968 0.957 0.963 0.965

(1.25, 100,−1/8, 1/2) 1270.73 bias (×10−2) −0.071 83.930 0.043 −1.414
RMSE 0.086 20.233 0.068 0.058

CP (asymptotic CI) 0.947 0.954 0.932 0.949
CP (bootstrap CI) 0.954 0.961 0.951 0.959

(1.25, 100,−1/10, 1/2) 1324.08 bias (×10−2) −0.210 63.181 0.223 −1.349
RMSE 0.098 22.293 0.070 0.060

CP (asymptotic CI) 0.927 0.937 0.912 0.941
CP (bootstrap CI) 0.945 0.951 0.937 0.956

45

(1.25, 100,−1/5, 1/2) 1354.13 bias (×10−2) 0.121 84.521 0.235 −0.920
RMSE 0.073 19.529 0.055 0.045

CP (asymptotic CI) 0.961 0.963 0.959 0.971
CP (bootstrap CI) 0.958 0.966 0.953 0.967

(1.25, 100,−1/8, 1/2) 1279.86 bias (×10−2) 0.068 73.451 0.035 −0.946
RMSE 0.071 18.791 0.059 0.048

CP (asymptotic CI) 0.953 0.952 0.966 0.952
CP (bootstrap CI) 0.960 0.947 0.968 0.971

(1.25, 100,−1/10, 1/2) 1537.02 bias (×10−2) 0.133 52.881 0.302 −1.431
RMSE 0.052 20.274 0.059 0.057

CP (asymptotic CI) 0.951 0.958 0.949 0.967
CP (bootstrap CI) 0.963 0.961 0.955 0.948

60

(1.25, 100,−1/5, 1/2) 1471.24 bias (×10−2) −0.108 64.945 0.161 −0.496
RMSE 0.057 14.245 0.043 0.039

CP (asymptotic CI) 0.968 0.962 0.964 0.970
CP (bootstrap CI) 0.972 0.965 0.968 0.970

(1.25, 100,−1/8, 1/2) 1306.54 bias (×10−2) 0.091 56.144 0.117 −0.492
RMSE 0.059 14.567 0.041 0.040

CP (asymptotic CI) 0.966 0.965 0.961 0.959
CP (bootstrap CI) 0.960 0.968 0.959 0.963

(1.25, 100,−1/10, 1/2) 1622.46 bias (×10−2) 0.028 73.015 0.333 −0.668
RMSE 0.063 15.207 0.046 0.037

CP (asymptotic CI) 0.949 0.956 0.943 0.959
CP (bootstrap CI) 0.954 0.961 0.949 0.964
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Table 9: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: ∆ = 630.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(1.25, 100,−1/8, 1/2) 1361.95 bias (×10−2) 0.092 38.547 0.082 −0.630
RMSE 0.088 28.724 0.053 0.079

CP (asymptotic CI) 0.954 0.960 0.947 0.933
CP (bootstrap CI) 0.955 0.965 0.954 0.952

(1.25, 100,−1/10, 1/2) 2193.20 bias (×10−2) −0.426 56.236 0.543 −0.978
RMSE 0.063 35.721 0.045 0.082

CP (asymptotic CI) 0.935 0.941 0.937 0.946
CP (bootstrap CI) 0.947 0.958 0.9432 0.950

45

(1.25, 100,−1/5, 1/2) 1241.92 bias (×10−2) 0.073 26.251 0.131 0.653
RMSE 0.042 16.025 0.063 0.044

CP (asymptotic CI) 0.955 0.957 0.952 0.946
CP (bootstrap CI) 0.956 0.949 0.963 0.958

(1.25, 100,−1/8, 1/2) 1567.05 bias (×10−2) 0.037 29.043 −0.067 0.572
RMSE 0.046 27.420 0.041 0.055

CP (asymptotic CI) 0.957 0.953 0.957 0.939
CP (bootstrap CI) 0.955 0.961 0.955 0.952

(1.25, 100,−1/10, 1/2) 2499.63 bias (×10−2) 0.194 41.853 0.327 0.635
RMSE 0.053 30.542 0.047 0.069

CP (asymptotic CI) 0.946 0.953 0.948 0.955
CP (bootstrap CI) 0.952 0.966 0.953 0.964

60

(1.25, 100,−1/5, 1/2) 1572.35 bias (×10−2) 0.034 19.962 0.056 −0.342
RMSE 0.038 12.056 0.045 0.032

CP (asymptotic CI) 0.951 0.956 0.947 0.945
CP (bootstrap CI) 0.957 0.958 0.946 0.951

(1.25, 100,−1/8, 1/2) 1736.82 bias (×10−2) 0.044 22.451 0.032 0.296
RMSE 0.031 16.583 0.031 0.045

CP (asymptotic CI) 0.948 0.955 0.944 0.946
CP (bootstrap CI) 0.942 0.963 0.948 0.969

(1.25, 100,−1/10, 1/2) 2731.36 bias (×10−2) 0.083 35.765 0.184 0.428
RMSE 0.045 26.209 0.036 0.077

CP (asymptotic CI) 0.948 0.949 0.957 0.952
CP (bootstrap CI) 0.954 0.963 0.956 0.955
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Table 10: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: ∆ = 365.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(1.25, 100, 4, 5) 1988.53 bias (×10−2) 0.468 253.675 3.774 5.238
RMSE 0.084 25.401 1.042 1.217

CP (asymptotic CI) 0.937 0.936 0.945 0.957
CP (bootstrap CI) 0.942 0.943 0.958 0.953

(1.25, 100, 5, 5) 2762.04 bias (×10−2) 0.249 136.057 3.509 4.264
RMSE 0.073 17.488 1.480 1.611

CP (asymptotic CI) 0.945 0.932 0.939 0.951
CP (bootstrap CI) 0.953 0.949 0.941 0.955

45

(1.25, 100, 4, 5) 2604.52 bias (×10−2) −0.252 171.432 3.063 4.738
RMSE 0.055 19.932 1.307 0.843

CP (asymptotic CI) 0.936 0.945 0.961 0.972
CP (bootstrap CI) 0.949 0.952 0.965 0.956

(1.25, 100, 5, 5) 3542.67 bias (×10−2) 0.175 95.323 2.891 4.032
RMSE 0.053 16.360 1.030 1.361

CP (asymptotic CI) 0.943 0.946 0.941 0.959
CP (bootstrap CI) 0.955 0.954 0.953 0.948

60

(1.25, 100, 4, 5) 3259.05 bias (×10−2) 0.219 123.643 1.854 2.438
RMSE 0.031 18.950 0.712 1.258

CP (asymptotic CI) 0.944 0.951 0.957 0.968
CP (bootstrap CI) 0.958 0.957 0.961 0.952

(1.25, 100, 5, 5) 4746.24 bias (×10−2) −0.187 72.523 1.671 3.467
RMSE 0.041 15.432 0.798 1.654

CP (asymptotic CI) 0.939 0.947 0.952 0.953
CP (bootstrap CI) 0.947 0.950 0.959 0.962
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Table 11: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: ∆ = 450.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(1.25, 100, 4, 5) 1451.76 bias (×10−2) 0.435 202.532 12.128 7.432
RMSE 0.093 22.816 2.341 1.933

CP (asymptotic CI) 0.941 0.939 0.941 0.958
CP (bootstrap CI) 0.952 0.946 0.953 0.969

(1.25, 100, 5, 5) 1236.64 bias (×10−2) 0.334 145.251 4.537 3.447
RMSE 0.060 15.753 0.746 0.771

CP (asymptotic CI) 0.965 0.946 0.947 0.953
CP (bootstrap CI) 0.957 0.953 0.951 0.956

45

(1.25, 100, 4, 5) 1156.04 bias (×10−2) −0.372 121.432 3.063 4.738
RMSE 0.052 15.932 1.307 0.843

CP (asymptotic CI) 0.936 0.945 0.961 0.972
CP (bootstrap CI) 0.949 0.952 0.965 0.956

(1.25, 100, 5, 5) 1266.91 bias (×10−2) 0.275 95.323 2.891 4.032
RMSE 0.053 16.360 1.030 1.361

CP (asymptotic CI) 0.943 0.946 0.941 0.959
CP (bootstrap CI) 0.955 0.954 0.953 0.948

60

(1.25, 100, 4, 5) 2634.67 bias (×10−2) 0.129 93.643 1.854 2.438
RMSE 0.031 18.950 0.712 1.258

CP (asymptotic CI) 0.944 0.951 0.957 0.968
CP (bootstrap CI) 0.958 0.957 0.961 0.952

(1.25, 100, 5, 5) 2978.40 bias (×10−2) −0.261 62.523 1.671 3.467
RMSE 0.041 15.432 0.798 1.423

CP (asymptotic CI) 0.939 0.947 0.952 0.953
CP (bootstrap CI) 0.947 0.950 0.959 0.962
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Table 12: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: ∆ = 540.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(1.25, 100, 4, 5) 1067.32 bias (×10−2) −0.336 −156.334 4.501 3.176
RMSE 0.076 18.958 1.232 0.838

CP (asymptotic CI) 0.965 0.937 0.943 0.946
CP (bootstrap CI) 0.954 0.946 0.957 0.955

(1.25, 100, 5, 5) 1205.46 bias (×10−2) 0.223 163.675 17.832 16.310
RMSE 0.074 18.401 0.989 1.127

CP (asymptotic CI) 0.949 0.957 0.960 0.938
CP (bootstrap CI) 0.954 0.963 0.958 0.951

45

(1.25, 100, 4, 5) 1176.01 bias (×10−2) 0.203 132.201 3.036 2.621
RMSE 0.058 18.830 0.754 0.652

CP (asymptotic CI) 0.953 0.948 0.961 0.949
CP (bootstrap CI) 0.961 0.959 0.968 0.952

(1.25, 100, 5, 5) 1365.87 bias (×10−2) 0.132 107.753 14.740 13.954
RMSE 0.073 15.134 0.800 0.862

CP (asymptotic CI) 0.947 0.943 0.964 0.957
CP (bootstrap CI) 0.958 0.945 0.966 0.960

60

(1.25, 100, 4, 5) 1684.63 bias (×10−2) 0.137 91.854 7.154 8.607
RMSE 0.060 15.753 0.625 0.771

CP (asymptotic CI) 0.964 0.955 0.962 0.957
CP (bootstrap CI) 0.958 0.958 0.963 0.964

(1.25, 100, 5, 5) 1479.65 bias (×10−2) 0.085 79.923 10.219 9.018
RMSE 0.056 13.926 0.743 0.776

CP (asymptotic CI) 0.958 0.947 0.950 0.953
CP (bootstrap CI) 0.961 0.950 0.953 0.949
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Table 13: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: ∆ = 630.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(1.25, 100, 4, 5) 1025.51 bias (×10−2) 0.366 139.856 12.293 14.475
RMSE 0.085 19.669 1.633 1.346

CP (asymptotic CI) 0.947 0.935 0.965 0.959
CP (bootstrap CI) 0.958 0.943 0.968 0.963

(1.25, 100, 5, 5) 988.80 bias (×10−2) 0.476 98.562 10.385 8.051
RMSE 0.091 20.859 1.102 0.738

CP (asymptotic CI) 0.955 0.947 0.971 0.948
CP (bootstrap CI) 0.951 0.959 0.968 0.954

45

(1.25, 100, 4, 5) 1123.57 bias (×10−2) 0.223 82.392 6.934 8.203
RMSE 0.076 18.473 0.894 1.032

CP (asymptotic CI) 0.936 0.955 0.957 0.948
CP (bootstrap CI) 0.944 0.959 0.966 0.959

(1.25, 100, 5, 5) 1089.83 bias (×10−2) 0.249 75.391 9.305 8.264
RMSE 0.076 18.536 0.869 1.024

CP (asymptotic CI) 0.953 0.943 0.957 0.939
CP (bootstrap CI) 0.959 0.952 0.964 0.944

60

(1.25, 100, 4, 5) 1278.64 bias (×10−2) 0.161 76.205 7.885 10.417
RMSE 0.067 14.646 0.794 0.634

CP (asymptotic CI) 0.957 0.953 0.950 0.948
CP (bootstrap CI) 0.959 0.962 0.953 0.945

(1.25, 100, 5, 5) 1548.97 bias (×10−2) 0.134 67.264 5.937 6.205
RMSE 0.057 14.759 0.842 0.835

CP (asymptotic CI) 0.963 0.947 0.956 0.946
CP (bootstrap CI) 0.967 0.958 0.960 0.948
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Table 14: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 365.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(0.0005,−4.5,−0.2, 0.5) 1520.53 bias (×10−2) 6.234× 10−3 1.832 0.179 0.145
RMSE 3.689× 10−4 0.082 0.066 0.079

CP (asymptotic CI) 0.931 0.939 0.943 0.958
CP (bootstrap CI) 0.951 0.945 0.950 0.963

(0.0005,−4.5,−0.125, 0.5) 2261.48 bias (×10−2) 7.346× 10−3 2.674 −0.158 0.234
RMSE 8.458× 10−5 0.094 0.049 0.068

CP (asymptotic CI) 0.921 0.937 0.958 0.962
CP (bootstrap CI) 0.938 0.946 0.961 0.957

(0.0005,−4.5,−0.1, 0.5) 3215.62 bias (×10−2) 5.850× 10−3 2.159 −0.433 0.524
RMSE 3.405× 10−4 0.125 0.059 0.061

CP (asymptotic CI) 0.925 0.933 0.948 0.961
CP (bootstrap CI) 0.940 0.945 0.952 0.975

45

(0.0005,−4.5,−0.2, 0.5) 2294.30 bias (×10−2) 3.696× 10−3 1.341 0.088 0.133
RMSE 2.548× 10−4 0.055 0.079 0.063

CP (asymptotic CI) 0.935 0.944 0.940 0.951
CP (bootstrap CI) 0.945 0.952 0.954 0.956

(0.0005,−4.5,−0.125, 0.5) 3231.43 bias (×10−2) 6.457× 10−3 3.749 0.122 −0.146
RMSE 6.759× 10−4 0.123 0.074 0.058

CP (asymptotic CI) 0.932 0.945 0.955 0.958
CP (bootstrap CI) 0.943 0.953 0.952 0.969

(0.0005,−4.5,−0.1, 0.5) 4534.56 bias (×10−2) 8.254× 10−4 −0.353 −0.310 0.358
RMSE 1.116× 10−4 0.113 0.042 0.046

CP (asymptotic CI) 0.920 0.934 0.941 0.953
CP (bootstrap CI) 0.936 0.944 0.955 0.962

60

(0.0005,−4.5,−0.2, 0.5) 2453.10 bias (×10−2) 8.439× 10−6 0.647 0.012 −0.023
RMSE 7.259× 10−5 0.092 0.060 0.034

CP (asymptotic CI) 0.941 0.943 0.956 0.962
CP (bootstrap CI) 0.954 0.951 0.950 0.970

(0.0005,−4.5,−0.125, 0.5) 3671.09 bias (×10−2) 3.604× 10−4 1.516 −0.042 0.039
RMSE 8.046× 10−5 0.070 0.054 0.038

CP (asymptotic CI) 0.956 0.943 0.953 0.948
CP (bootstrap CI) 0.944 0.945 0.957 0.960

(0.0005,−4.5,−0.1, 0.5) 5269.36 bias (×10−2) 5.631× 10−4 0.387 0.087 −0.138
RMSE 2.193× 10−4 0.132 0.025 0.036

CP (asymptotic CI) 0.927 0.943 0.947 0.963
CP (bootstrap CI) 0.933 0.952 0.951 0.959
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Table 15: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 450.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(0.0005,−4.5,−0.2, 0.5) 1184.03 bias (×10−2) −4.125× 10−3 2.836 0.131 0.193
RMSE 3.069× 10−4 0.176 0.102 0.121

CP (asymptotic CI) 0.927 0.942 0.956 0.939
CP (bootstrap CI) 0.948 0.945 0.971 0.960

(0.0005,−4.5,−0.125, 0.5) 1548.29 bias (×10−2) 7.127× 10−3 2.142 0.135 0.224
RMSE 2.481× 10−4 0.243 0.102 0.119

CP (asymptotic CI) 0.921 0.935 0.942 0.943
CP (bootstrap CI) 0.945 0.958 0.946 0.949

(0.0005,−4.5,−0.1, 0.5) 1865.18 bias (×10−2) 6.813× 10−3 1.598 0.275 −0.312
RMSE 2.941× 10−4 0.153 0.089 0.057

CP (asymptotic CI) 0.916 0.941 0.952 0.960
CP (bootstrap CI) 0.946 0.949 0.958 0.969

45

(0.0005,−4.5,−0.2, 0.5) 1994.23 bias (×10−2) 2.129× 10−3 1.322 0.119 0.173
RMSE 4.691× 10−4 0.123 0.081 0.054

CP (asymptotic CI) 0.930 0.949 0.955 0.942
CP (bootstrap CI) 0.946 0.953 0.962 0.954

(0.0005,−4.5,−0.125, 0.5) 2418.62 bias (×10−2) 5.385× 10−3 0.932 0.122 0.185
RMSE 9.210× 10−5 0.152 0.063 0.091

CP (asymptotic CI) 0.929 0.938 0.946 0.947
CP (bootstrap CI) 0.951 0.945 0.957 0.969

(0.0005,−4.5,−0.1, 0.5) 2711.10 bias (×10−2) −1.168× 10−3 0.149 0.157 −0.193
RMSE 1.007× 10−4 0.102 0.051 0.049

CP (asymptotic CI) 0.922 0.939 0.945 0.953
CP (bootstrap CI) 0.937 0.944 0.953 0.967

60

(0.0005,−4.5,−0.2, 0.5) 2305.27 bias (×10−2) 8.754× 10−4 1.823 0.089 0.121
RMSE 9.814× 10−5 0.095 0.054 0.072

CP (asymptotic CI) 0.934 0.953 0.953 0.949
CP (bootstrap CI) 0.939 0.949 0.957 0.963

(0.0005,−4.5,−0.125, 0.5) 2892.37 bias (×10−2) −1.594× 10−3 0.502 0.052 −0.081
RMSE 6.127× 10−5 0.077 0.061 0.083

CP (asymptotic CI) 0.941 0.943 0.955 0.949
CP (bootstrap CI) 0.942 0.955 0.963 0.970

(0.0005,−4.5,−0.1, 0.5) 3021.69 bias (×10−2) 7.183× 10−4 0.374 0.077 0.109
RMSE 5.127× 10−5 0.083 0.042 0.055

CP (asymptotic CI) 0.936 0.944 0.947 0.951
CP (bootstrap CI) 0.953 0.949 0.956 0.943
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Table 16: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 540.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(0.0005,−4.5,−0.2, 0.5) 1252.73 bias (×10−2) 6.323× 10−3 2.317 0.127 0.218
RMSE 5.846× 10−4 0.104 0.083 0.064

CP (asymptotic CI) 0.923 0.951 0.948 0.937
CP (bootstrap CI) 0.941 0.960 0.953 0.951

(0.0005,−4.5,−0.125, 0.5) 1410.22 bias (×10−2) 8.852× 10−3 1.768 0.071 0.323
RMSE 3.549× 10−4 0.152 0.115 0.087

CP (asymptotic CI) 0.925 0.946 0.939 0.940
CP (bootstrap CI) 0.941 0.953 0.944 0.946

(0.0005,−4.5,−0.1, 0.5) 1926.51 bias (×10−2) −3.573× 10−3 4.561 0.115 0.241
RMSE 9.605× 10−5 0.136 0.092 0.083

CP (asymptotic CI) 0.932 0.947 0.955 0.960
CP (bootstrap CI) 0.949 0.952 0.959 0.953

45

(0.0005,−4.5,−0.2, 0.5) 1358.64 bias (×10−2) −2.564× 10−3 3.519 0.089 0.114
RMSE 3.792× 10−4 0.079 0.099 0.038

CP (asymptotic CI) 0.929 0.958 0.951 0.943
CP (bootstrap CI) 0.953 0.961 0.948 0.946

(0.0005,−4.5,−0.125, 0.5) 1512.64 bias (×10−2) 5.742× 10−3 2.833 0.117 0.185
RMSE 3.182× 10−4 0.137 0.093 0.103

CP (asymptotic CI) 0.923 0.952 0.951 0.944
CP (bootstrap CI) 0.955 0.961 0.957 0.949

(0.0005,−4.5,−0.1, 0.5) 1493.20 bias (×10−2) −1.659× 10−3 3.176 0.218 −0.258
RMSE 7.718× 10−5 0.104 0.056 0.066

CP (asymptotic CI) 0.933 0.949 0.956 0.961
CP (bootstrap CI) 0.946 0.948 0.960 0.974

60

(0.0005,−4.5,−0.2, 0.5) 1523.65 bias (×10−2) 9.174× 10−4 −2.312 0.213 −0.091
RMSE 7.184× 10−5 0.041 0.074 0.052

CP (asymptotic CI) 0.937 0.954 0.946 0.949
CP (bootstrap CI) 0.947 0.958 0.952 0.955

(0.0005,−4.5,−0.125, 0.5) 1956.72 bias (×10−2) −1.035× 10−3 1.605 0.088 0.122
RMSE 9.349× 10−5 0.082 0.061 0.071

CP (asymptotic CI) 0.929 0.948 0.953 0.946
CP (bootstrap CI) 0.948 0.957 0.959 0.965

(0.0005,−4.5,−0.1, 0.5) 2130.28 bias (×10−2) 7.126× 10−4 1.857 0.163 0.115
RMSE 6.523× 10−5 0.077 0.065 0.032

CP (asymptotic CI) 0.938 0.963 0.951 0.954
CP (bootstrap CI) 0.942 0.967 0.955 0.962
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Table 17: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 630.

n (β, η, µ, σ) Run time β̂ η̂ µ̂ σ̂

30

(0.0005,−4.5,−0.2, 0.5) 1352.49 bias (×10−2) 3.751× 10−3 0.731 0.316 0.438
RMSE 4.285× 10−4 0.073 0.065 0.089

CP (asymptotic CI) 0.928 0.954 0.941 0.950
CP (bootstrap CI) 0.954 0.958 0.951 0.966

(0.0005,−4.5,−0.125, 0.5) 1410.22 bias (×10−2) −1.648× 10−3 1.452 0.235 −0.522
RMSE 1.208× 10−4 0.098 0.082 0.066

CP (asymptotic CI) 0.915 0.941 0.944 0.963
CP (bootstrap CI) 0.943 0.955 0.953 0.972

(0.0005,−4.5,−0.1, 0.5) 1926.51 bias (×10−2) −2.503× 10−3 2.389 −0.233 0.534
RMSE 9.481× 10−5 0.104 0.075 0.062

CP (asymptotic) 0.920 0.947 0.936 0.941
CP (bootstrap) 0.942 0.949 0.953 0.948

45

(0.0005,−4.5,−0.2, 0.5) 1358.64 bias (×10−2) 1.471× 10−3 1.151 0.210 0.331
RMSE 2.587× 10−4 0.085 0.055 0.062

CP (asymptotic CI) 0.932 0.951 0.949 0.957
CP (bootstrap CI) 0.958 0.963 0.947 0.962

(0.0005,−4.5,−0.125, 0.5) 1512.57 bias (×10−2) 8.517× 10−4 2.185 0.188 0.324
RMSE 7.362× 10−5 0.074 0.074 0.053

CP (asymptotic CI) 0.927 0.968 0.940 0.951
CP (bootstrap CI) 0.940 0.951 0.958 0.965

(0.0005,−4.5,−0.1, 0.5) 1493.20 bias (×10−2) 8.546× 10−4 1.439 0.224 0.283
RMSE 4.574× 10−5 0.161 0.065 0.045

CP (asymptotic) 0.943 0.937 0.948 0.955
CP (bootstrap) 0.953 0.949 0.954 0.960

60

(0.0005,−4.5,−0.2, 0.5) 1528.65 bias (×10−2) 1.158× 10−3 0.452 0.113 0.154
RMSE 2.576× 10−4 0.035 0.031 0.045

CP (asymptotic CI) 0.937 0.944 0.956 0.940
CP (bootstrap CI) 0.949 0.957 0.963 0.954

(0.0005,−4.5,−0.125, 0.5) 1956.72 bias (×10−2) 5.034× 10−4 1.309 0.074 −0.262
RMSE 6.385× 10−5 0.042 0.069 0.068

CP (asymptotic CI) 0.935 0.955 0.946 0.956
CP (bootstrap CI) 0.948 0.947 0.954 0.966

(0.0005,−4.5,−0.1, 0.5) 2130.28 bias (×10−2) 5.289× 10−4 0.578 0.120 −0.187
RMSE 2.193× 10−5 0.132 0.025 0.036

CP (asymptotic CI) 0.927 0.949 0.952 0.954
CP (bootstrap CI) 0.945 0.946 0.953 0.965
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Table 18: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 365.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(0.0005,−4.5, 4, 5) 1482.60 bias (×10−2) 3.578× 10−4 1.132 7.631 11.272
RMSE 1.543× 10−4 0.181 1.287 1.352

CP (asymptotic CI) 0.918 0.944 0.953 0.962
CP (bootstrap CI) 0.947 0.952 0.947 0.973

(0.0005,−4.5, 5, 5) 2319.67 bias (×10−2) 6.451× 10−3 1.745 3.451 −6.923
RMSE 2.947× 10−4 0.153 0.891 1.035

CP (asymptotic CI) 0.925 0.942 0.956 0.961
CP (bootstrap CI) 0.931 0.947 0.959 0.965

45

(0.0005,−4.5, 4, 5) 1766.25 bias (×10−2) 6.984× 10−3 −0.461 4.175 −8.238
RMSE 9.737× 10−5 0.110 0.715 0.851

CP (asymptotic CI) 0.926 0.950 0.945 0.953
CP (bootstrap CI) 0.937 0.953 0.949 0.948

(0.0005,−4.5, 5, 5) 2832.71 bias (×10−2) 5.275× 10−3 −1.278 2.923 −3.040
RMSE 1.104× 10−4 0.116 0.767 0.691

CP (asymptotic CI) 0.928 0.937 0.949 0.952
CP (bootstrap CI) 0.935 0.942 0.956 0.955

60

(0.0005,−4.5, 4, 5) 2489.21 bias (×10−2) 8.437× 10−4 0.559 2.135 −2.467
RMSE 6.746× 10−5 0.094 0.632 0.644

CP (asymptotic CI) 0.940 0.953 0.949 0.964
CP (bootstrap CI) 0.945 0.951 0.953 0.958

(0.0005,−4.5, 5, 5) 3251.04 bias (×10−2) 8.042× 10−4 0.541 1.692 −1.816
RMSE 7.763× 10−5 0.093 0.558 0.720

CP (asymptotic CI) 0.938 0.942 0.956 0.948
CP (bootstrap CI) 0.946 0.943 0.967 0.959
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Table 19: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 450.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(0.0005,−4.5, 4, 5) 1346.54 bias (×10−2) 5.759× 10−3 3.712 3.144 5.175
RMSE 4.109× 10−4 0.153 1.104 1.503

CP (asymptotic CI) 0.922 0.941 0.948 0.956
CP (bootstrap CI) 0.928 0.956 0.955 0.943

(0.0005,−4.5, 5, 5) 1745.30 bias (×10−2) −7.351× 10−3 4.386 3.181 3.465
RMSE 4.166× 10−4 0.152 1.256 1.761

CP (asymptotic CI) 0.927 0.937 0.944 0.938
CP (bootstrap CI) 0.934 0.943 0.953 0.946

45

(0.0005,−4.5, 4, 5) 1724.51 bias (×10−2) 2.085× 10−3 2.871 −2.109 −3.156
RMSE 3.671× 10−4 0.115 0.886 1.342

CP (asymptotic CI) 0.927 0.953 0.939 0.958
CP (bootstrap CI) 0.939 0.957 0.948 0.967

(0.0005,−4.5, 5, 5) 2306.41 bias (×10−2) 6.573× 10−3 3.006 2.367 2.142
RMSE 3.341× 10−4 0.130 1.438 0.942

CP (asymptotic CI) 0.934 0.931 0.953 0.936
CP (bootstrap CI) 0.931 0.955 0.964 0.949

60

(0.0005,−4.5, 4, 5) 1974.93 bias (×10−2) 8.410× 10−4 −1.632 1.123 2.110
RMSE 1.042× 10−4 0.094 0.926 1.192

CP (asymptotic CI) 0.923 0.967 0.942 0.950
CP (bootstrap CI) 0.945 0.963 0.945 0.956

(0.0005,−4.5, 5, 5) 2792.48 bias (×10−2) 9.208× 10−4 −1.150 −1.110 −1.104
RMSE 7.796× 10−5 0.084 0.894 0.859

CP (asymptotic CI) 0.930 0.963 0.941 0.958
CP (bootstrap CI) 0.937 0.967 0.953 0.964
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Table 20: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 540.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(0.0005,−4.5, 4, 5) 915.11 bias (×10−2) 5.853× 10−3 1.457 3.783 5.325
RMSE 3.653× 10−4 0.142 1.244 1.571

CP (asymptotic CI) 0.922 0.944 0.951 0.942
CP (bootstrap CI) 0.947 0.954 0.963 0.970

(0.0005,−4.5, 5, 5) 1109.93 bias (×10−2) −1.392× 10−5 0.794 4.681 6.750
RMSE 1.162× 10−4 0.115 1.698 1.847

CP (asymptotic CI) 0.925 0.947 0.944 0.958
CP (bootstrap CI) 0.953 0.961 0.954 0.960

45

(0.0005,−4.5, 4, 5) 997.70 bias (×10−2) −2.320× 10−3 0.813 3.512 4.708
RMSE 1.079× 10−4 0.105 1.035 1.189

CP (asymptotic CI) 0.923 0.963 0.959 0.961
CP (bootstrap CI) 0.947 0.954 0.963 0.970

(0.0005,−4.5, 5, 5) 1436.84 bias (×10−2) 8.466× 10−4 1.156 2.464 3.512
RMSE 7.641× 10−5 0.103 1.450 1.953

CP (asymptotic CI) 0.932 0.958 0.941 0.942
CP (bootstrap CI) 0.940 0.961 0.939 0.947

60

(0.0005,−4.5, 4, 5) 1657.03 bias (×10−2) −5.492× 10−4 0.572 1.401 2.538
RMSE 7.875× 10−5 0.077 0.782 1.163

CP (asymptotic CI) 0.943 0.946 0.955 0.966
CP (bootstrap CI) 0.944 0.955 0.961 0.972

(0.0005,−4.5, 5, 5) 1810.24 bias (×10−2) 3.092× 10−4 −0.714 1.246 1.289
RMSE 5.134× 10−5 0.069 1.019 1.064

CP (asymptotic CI) 0.944 0.960 0.952 0.957
CP (bootstrap CI) 0.939 0.965 0.947 0.946
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Table 21: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1, 000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: ∆ = 630.

n (β, η, α, ν) Run time β̂ η̂ α̂ ν̂

30

(0.0005,−4.5, 4, 5) 779.96 bias (×10−2) −2.178× 10−3 1.687 3.246 3.322
RMSE 8.652× 10−4 0.135 1.783 1.862

CP (asymptotic CI) 0.912 0.938 0.967 0.959
CP (bootstrap CI) 0.944 0.943 0.958 0.963

(0.0005,−4.5, 5, 5) 932.16 bias (×10−2) −4.841× 10−4 1.528 2.785 2.891
RMSE 2.193× 10−4 0.124 1.260 1.135

CP (asymptotic CI) 0.927 0.953 0.956 0.943
CP (bootstrap CI) 0.934 0.957 0.965 0.957

45

(0.0005,−4.5, 4, 5) 974.70 bias (×10−2) 7.945× 10−4 1.470 0.983 2.618
RMSE 3.731× 10−4 0.103 1.044 1.236

CP (asymptotic CI) 0.926 0.945 0.954 0.948
CP (bootstrap CI) 0.949 0.952 0.953 0.966

(0.0005,−4.5, 5, 5) 1035.32 bias (×10−2) −8.396× 10−5 −1.008 1.294 1.312
RMSE 7.232× 10−5 0.088 1.300 1.394

CP (asymptotic CI) 0.930 0.965 0.957 0.952
CP (bootstrap CI) 0.942 0.956 0.951 0.968

60

(0.0005,−4.5, 4, 5) 1338.29 bias (×10−2) −1.302× 10−5 0.849 1.145 1.176
RMSE 7.839× 10−3 0.078 0.916 1.174

CP (asymptotic CI) 0.923 0.958 0.933 0.950
CP (bootstrap CI) 0.940 0.954 0.941 0.968

(0.0005,−4.5, 5, 5) 1624.81 bias (×10−2) 6.544× 10−5 0.756 0.889 1.075
RMSE 4.113× 10−5 0.054 0.752 0.408

CP (asymptotic CI) 0.939 0.947 0.952 0.961
CP (bootstrap CI) 0.945 0.957 0.958 0.963
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