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S1 The Bayesian Inference

In this section, we present the Bayesian inference procedure. In the Bayesian setting, one very
first tough question concerns the choice of the prior distribution for parameters. Without sufficient
prior information, we may simply use a uniform distribution over the whole parameter space as a
non-informative prior (Syversveen, 1998), or leverage the Jeffreys prior that is proportional to the
square root of the determinant of the Fisher information matrix (Gelman, 2009), or construct the
reference prior by maximizing the missing information of model parameters (Berger et al., 2009).
For our service vehicle study, there is no prior information on the reliability of service vehicles and
on the preventive maintenance effectiveness. Hence, non-informative priors are considered in our

Bayesian inference procedure, which is introduced in greater detail in the sequel.

S1.1 Bayesian formulation

Consider a generic system that follows the failure process in Section 2.1 of the paper. Recall
that the AIC values in our real data example favor the model with a power-law baseline ROCOF
Xo(t) = (8/n) (t/n)P~1 and the Lognormal(y, o) multiplicative PM random effects, i.e., the PLP-
Lognormal model. For comparison, we next conduct the Bayesian inference procedure under this

PLP-Lognormal model setting and examine its performance. The observed data from this system



is D={L,R,N(t): t €[L,R]}. The set of PM random effects is A = {A; : kA < R}. When
n independent systems are under observation, let D = {D; : i« = 1,2,--- ,n} and A = {A; :
i = 1,2,--- ,n} denote the observed data and the PM random effects from all the n systems,

respectively. Conditioning on the PM random effects, the likelihood function can be written as

L(D|A,B,n) = Hexp(Ai(Li) - Ai(Ry)) H )\i(t)dNi(t)_ (1)

i=1 tE[LhRi}

In the Bayesian framework, the parameters 3, n, i, 02 and A are all assumed random variables.

The posterior distribution is

(A, B, 1,107 | D) o m(D | A, B,m)m(A, B,n, 1, 0%)

=L | A, B,n)7w(A, B,n, u,o?).

We assume that 3, 1, | 02, 02, and A | p, 02 are independent, and the prior is given by

w(A, B m, 1, 0%) = m(A | p,o?)m(p | o) (0)m(B)m ().
The priors are chosen as follows.

o (A | i, 0%) ~ Lognormal(p, o), where p is the mean and o2 is the variance.
e (1| 0?) ~ N(a,0?/b), where a is the mean and o2/b is the variance.

e 7(0?) ~ Inv-Gamma(a, /), i.e. inverse gamma distribution, where « is the shape parameter
and v is the scale parameter (see also Gelman’s Prior distributions for variance parameters

for a complete exposition in Gelman (2006)).
e 7(3) ~ Gamma(c, d), where c is the shape parameter and d is the rate parameter.

e 7(n) ~ Gammal(e, f), where e is the shape parameter and f is the rate parameter.

The values of hyperparameters a, b, «, v, ¢, d, e and f are carefully set to ensure non-informative
priors. The specific values of hyperparameters are introduced in Section S1.4. The dependence of

the variables are shown in Figure 1. With the above settings and the independent and identically



Figure 1: The dependence of the variables. In the directed graph, arrows run into nodes from their
direct influences. Rectangle nodes are fixed constants (i.e. hyperparameters), and circular nodes
are variables or observed data.

distributed (i.i.d.) unobserved PM random effects A;; assumption, we have

n [Ri/A] n [Ri/A] a._l 1 (ln(ak) o ,U)Q
w(h o) =TT TT Aulmo®) =] T] —%exp <—212), 2)
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As can be seen, combining 7(u | 02) and 7(0?), we have 7(u,0?) ~ NIG(a,b, o, ), i.e., normal-

inverse gamma distribution as below.

—a)? v (o2) v
S L (—“’(“ ) ) O (<), (3)

We carefully choose the normal-inverse gamma distribution for (i, 0?) to make our formulas ana-

lytically tractable. The detailed derivations are introduced in the sequel.

There is no analytical expression for the posterior distribution 7(A, 8,7, u,c? | D). As such, we
use the Markov Chain Monte Carlo (MCMC) algorithm to generate samples from this posterior
distribution. These posterior samples are further used to compute the point and interval estimations

of the model parameters, which is introduced in the next section.



S1.2 Gibbs sampling algorithm

To be specific, considering the difficulty in directly sampling from the posterior, we use the Gibbs
sampling algorithm (George and McCulloch, 1993). The pseudocode of the Gibbs sampling algo-

rithm is presented in Algorithm 1.

Algorithm 1 Gibbs sampling algorithm

Input: Initial values (A 3O 5 ;0 (52)0) number of burn-ins Ny and number of total
iterations N.

while 1 <k < N do

AP (| pETD D Y (62) (D) ) (4)
) ~w<ﬁ!n<k—1>,u<k “,(a?ﬂ’“ D, A®) D) (5)
n®) ~ (| BE), pFY (62 *D AP D) (6)
pl) (| BE) ®) (0% R %A““%D) (7)
(@)® ~ 7 (0? | B0, n®) u8) A D) (8)

Output: Sample values (A(k),ﬁ(k),n(k),u(k), (02)(’“)), k={No+1,--- ,N}

Next, we investigate the above full conditional distributions (4)-(8). By combining Equations (1)

and (2), we have

(A | B, p,o?, D) O<H<eXpA( ) I ™
i=1 te[LZ,R] "
R;/A _
L1_/[J iy 1 (In(ai) — p)*
——exp| ——-——F5—""—]|.
] O 27 2 o2

By combining Equation (1) and 7(8) ~ Gamma(c, d), we have

n dc

7B m 0% A D) oc [T [exp(Mi(Li) = Ai(Ri) [ M@™W | <=8 " exp(—dB), (10)
=1 t€[Lio, R] ¢

and by combining Equation (1) and 7(n) ~ Gammal(e, f), we have

w(n5,u,az,A7D>o<H(exp<Ai<L I § R C””“) F{;ne exp (—fn). (1)

i=1 te[LZ,R ]



By combining Equations (2) and (3), we have

1 1 n )
7_‘_(0_2 ’ 57”7N7A7D) x (0_2)—(1+a+§+§ i1 Ri/A)) «

( Ly oA <1n<aik>u>2+5b<ua>2+u>
exp | — .

o2

As can be seen, 7(c? | 8,1, i1, A, D) follows an inverse gamma distribution:

n n [Ri/A]
1 1 1
Inv-Gamma | o + B + 5 i_E Ri/A], ZE 1 g (In(a;) 24 ib(,u —a)l+v

Similarly, by combining Equations (2) and (3), we can obtain

A n /0 (In( azk w)?  1b(p—a)?
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Hence, 7(p | ,n,02, A, D) follows a normal distribution:

N Yoy ,E]iil/AJ In(a;x) + ab o2
b+ [Ri/A] Th+ DT [Ri/AL )

As above, (9), (10) and (11) do not have the analytical expressions and the Metropolis-Hastings
(M-H) algorithm is thus used to sample from them at every iteration 1 < k < N of the above
Gibbs sampling algorithm. Consider the kth iteration of the Gibbs sampling algorithm, and thus
we have A®) ~ 7(A | gD pk=1) (k=1 (52)(:=1) D). To generate the kth sample from (A |
=1 k=1 (k1) (52)(k=1) D), the M-H algorithm first generates a candidate A* from the pre-

specified proposal distribution h(A) =7 (A | pE=1) (02)(k_1)), and then calculates the probability



of accepting this candidate using the acceptance function

D1 A* gE=1) pk=1) ,(k—1) (52)(—1)
f<A(k_1),A*):min 1, 77( | A%, B 7 y , (09) ) ‘
7 (D | AG-D, gE=D k=D (1) (52)(-D)

A random number u is then generated from the standard uniform distribution to determine whether
to accept this generated candidate. For instance, if u < f (A(kfl),A*), then the candidate value

A* is accepted and we set A®) = A*. Otherwise, the candidate value is discarded and we set

AR — A1)

Similarly, to generate the kth samples 8*) and 7*), we run the random walk M-H algorithm to
first generate candidates * and n* from the proposal functions h(8* | S*#~1) and h(n* | n*~—1),
respectively. The common choice of h(-) is a normal distribution such that h(g* | gF=1) =
N(B*-D O'ﬂ) and h(n* | n*=D) = N (-1, o7), where aﬁ and o, are constants that are carefully
set in Section S1.4. Thus, the acceptance functions are respectively given by

1) o) (D | B* (k—1) (k’ 1),(02)(k_1),A(k))7r(ﬁ*)
() _mm{l’wm DT 0T (20T, A (30T |

and

£ (0D n) = min {1 w(D | n*, 8%, uED, (0?) B, AW ()

We accept the candidate if the value of the acceptance function exceeds a random number generated

from the standard uniform distribution. Otherwise, the candidate value is discarded.

S1.3 Bayesian parameter estimation

In this section, simulation is conducted to check the performance of the Bayesian parameter estima-
tion under the PLP-Lognormal setting. To be specific, we consider the power-law baseline ROCOF
Xo(t) = (B/n) (t/n)°~ with (8,1) = (1.25,100) and the Lognormal(u, 62) PM random effect with
(u,0) € {(=1/5,1/2),(—1/8,1/2),(—1/10,1/2)}. As with Section 5.1 of the paper, three levels of
the sample size are considered: n € {30,45,60}, four levels of the PM time interval are examined:
A € {365,450,540,630}, and we let the observation window of n/3 systems be [400,2000], n/3
systems be [400, 1200], and the remaining n/3 systems be [200, 1800].



For each setting above, we run 1,000 Monte Carlo replications. For each replication, we implement
the Gibbs sampling algorithm to sample posterior samples. The detailed discussions on the conver-
gence of the chain induced by the Gibbs sampling algorithm are deferred to Section S1.4. The mean
values of posterior samples are used as the point estimations of parameters, and the 95% highest
posterior density intervals are computed as the credible interval estimations of parameters. Based
on the 1,000 replications, we calculate the bias, root mean squared error (RMSE), and the coverage
probability of the 95% highest posterior density interval. All computations were conducted on an

Intel(R) Xeon(R) CPU E5-2698 v4 (2.20 GHz).

The estimation results and computation time results are presented in Tables 1-4. These results
reveal that the biases and RMSEs are generally small. The coverage probabilities of the 95%
highest posterior density intervals for p and o are closer to the nominal value than 8 and 7. This
might be attributed to the inadequate mixing property of the chain for parameters 5 and 7. To
support our speculation, we conduct the convergence analysis in Section S1.4, and the convergence
diagnostic plots indeed show the inadequate mixing property of the chain and the high level of
autocorrelation among samples. In addition, by checking the computation time results, we note
in passing that the Bayesian estimation method is generally less computationally efficient than
the proposed EM estimation method. Overall, tuning the MCMC algorithm for such a complex

posterior in our study is hard and time-consuming.



Table 1: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1,000 Monte Carlo replications, under the PLP-
Lognormal model (A = 365).

n (B, n, p, o) Run time I6; 7 il o

(1.25,100,—1/5,1/2)  3.025  bias (x1072) 0.523 82527 —0.252 0.207
RMSE 0.093 23.473  0.069  0.065

CP 0.935 0.928  0.947  0.949

(1.25,100,—1/8,1/2)  3.321  bias (x1072) 0.293 89.521  0.392 —0.472
30 RMSE 0.108 22.194 0.075  0.052
CP 0.935 0.937 0944  0.959

(1.25,100,—1/10,1/2)  3.240  bias (x1072) 0.674 95.361 —0.341 —0.452
RMSE 0.094 22.093  0.044  0.046
CP 0.937 0931 0943  0.958

(1.25,100,—1/5,1/2) 4574  bias (x1072) 0426 63.215 —0.083  0.035
RMSE  0.088 20405 0.052  0.056

CP 0.945 0941  0.942  0.958

(1.25,100,—1/8,1/2)  4.329  bias (x1072) 0.212 111532 0.231  0.178

45 RMSE  0.079 18.184  0.042  0.037
CP 0.937 0940 0953  0.955

(1.25,100,—1/10,1/2)  4.925  bias (x1072) 0.805 122.623 0.124  0.401
RMSE  0.115 21.162  0.048  0.036
CP 0935 0937  0.956  0.953

(1.25,100,—1/5,1/2)  6.715  bias (x1072) 0.079 124.921 0.073  0.044
RMSE  0.073 18491  0.039  0.038

CP 0.941  0.945  0.956  0.957

(1.25,100,—1/8,1/2)  6.532  bias (x1072) 0.125 87.315 0.088  0.213

60 RMSE  0.079 18262  0.047  0.032
CP 0.944 0943 0949  0.953

(1.25,100,—1/10,1/2)  6.357  bias (x1072) 0.942 107.459 0.205  0.378
RMSE  0.071 16.145 0.032  0.033
CP 0.947 0949  0.952  0.953




Table 2: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1,000 Monte Carlo replications, under the PLP-
Lognormal model (A = 450).

n (B, 1, 1. o) Run time CR i 5

(1.25,100,—1/5,1/2)  2.934  bias (x1072) 0.113 48431 0.096  0.062
RMSE 0.101 21.455 0.048  0.038

CP 0.935 0.934 0.946  0.961

(1.25,100,—1/8,1/2)  3.046  bias (x1072) 0.105 35.329 0.077  0.068
30 RMSE  0.095 20.968 0.042  0.060
CP 0.937 0936  0.940  0.964

(1.25,100,—1/10,1/2)  3.032  bias (x1072) 0.436 85.591 —0.124 0.325
RMSE 0.096 25.630 0.075  0.057
CP 0.935 0.945 0.944  0.953

(1.25,100,—1/5,1/2)  4.645  bias (x1072) 0.095 37.481 0.102  0.055
RMSE ~ 0.068 18453 0.051  0.053

CP 0.941 0938 0947  0.957

(1.25,100,—1/8,1/2)  4.527  bias (x1072) 0.084 30.531 0.062  0.043
45 RMSE  0.083 15451 0.041  0.036
CP 0.945 0.943 0948  0.960

(1.25,100,—1/10,1/2)  4.801  bias (x10~2) 0.341 46.682 0.117 —0.245
RMSE  0.118 22456 0.046  0.052
CP 0.938 0.941 0948  0.954

(1.25,100,—1/5,1/2)  5.371  bias (x1072) 0.076 36.257 0.121  0.027
RMSE  0.061 17.627 0.034  0.040

CP 0.940 0.947 0951  0.955

(1.25,100,—1/8,1/2) 5554  bias (x1072) 0.069 25.412 0.071  0.038
60 RMSE  0.082 16.641 0.042  0.033
CP 0.942 0937 0954  0.948

(1.25,100,—1/10,1/2)  5.386  bias (x1072) 0.143 32,674 0.142 —0.227
RMSE 0.085 20.943 0.032  0.051
CP 0.943 0.950 0.944  0.948




Table 3: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1,000 Monte Carlo replications, under the PLP-
Lognormal model (A = 540).

n (B, 1, 1. o) Run time CR i 5

(1.25,100,—1/5,1/2)  2.813  bias (x1072) 0.065 87.551 0.142 —0.721
RMSE 0.084 19.571 0.053  0.048

CP 0.939 0.943  0.952  0.943

(1.25,100,—1/8,1/2)  2.653  bias (x1072) 0.083 47.682 0.053  0.851
30 RMSE 0.073 20.372 0.053  0.049
CP 0.932 0937 0946  0.945

(1.25,100,—1/10,1/2)  3.204  bias (x1072) 0.135 41.463 —0.121 —0.401
RMSE 0.086 21.571 0.053  0.032
cp 0.935 0.933 0939  0.941

(1.25,100,—1/5,1/2)  4.671  bias (x1072) 0.057 77.581 0.121  0.510
RMSE  0.067 16.025 0.045  0.035

CP 0.938 0.942  0.959  0.945

(1.25,100,—1/8,1/2)  4.324  bias (x1072) 0.076 55.251 0.044 —0.521
45 RMSE  0.067 17.856 0.048  0.036
CP 0.936 0.941  0.952  0.949

(1.25,100,—1/10,1/2)  4.463  bias (x102) 0.094 38593 0.117 —0.301
RMSE  0.052 19.659 0.049  0.035
CP 0.938 0939 0942  0.947

(1.25,100,—1/5,1/2) 5397  bias (x1072) 0.047 56.138 0.091  0.305
RMSE  0.041 14.648 0.042  0.039

CP 0.945 0941 0960  0.944

(1.25,100,—1/8,1/2) 5523  bias (x1072) 0.083 41.543 0.035 —0.355
60 RMSE  0.056 13.372 0.038  0.035
CP 0.943 0.944 0949  0.952

(1.25,100,—1/10,1/2)  5.301  bias (x1072) 0.044 45.102 0.098 —0.283
RMSE 0.057 17.150  0.040  0.039
CP 0.945 0.946  0.947  0.952

10



Table 4: Biases, RMSEs, the coverage probability (CP) of the 95% highest density interval and
average computation time (in hours), based on 1,000 Monte Carlo replications, under the PLP-
Lognormal model (A = 630).

n (B, 1, 1. o) Run time ER i 5

(1.25,100,—1/8,1/2)  2.610  bias (x1072) 0.243 41572 0.075  0.347
RMSE 0.082 25.421 0.049  0.052
CP 0.936 0.932 0942  0.955

300 (1.25,100,-1/10,1/2)  2.849  bias (x1072) 0.323 42.549 —0.461 0.668
RMSE  0.070 26.674 0.038  0.053

CP 0.933 0944 0948  0.957

(1.25,100,—1/5,1/2)  4.124  bias (x1072) 0.302 24.594 0.141 —0.119
RMSE ~ 0.032 15148 0.059  0.045

CP 0.939 0928 0944  0.951

(1.25,100,—1/8,1/2)  4.276  bias (x1072) 0.145 27.921 0.044 —0.218
15 RMSE ~ 0.065 21.343 0.045  0.036
CP 0.935 0947 0958  0.943

(1.25,100,—1/10,1/2)  4.352  bias (x1072) 0.156 32.814 0.315 —0.406
RMSE 0051 23245 0.029  0.048

CP 0.929 0945 0947  0.958

(1.25,100,-1/5,1/2) 5548  bias (x1072) 0.073 26.447 0.041 —0.107
RMSE  0.036 16.847 0.041  0.026

CP 0.942 0938 0945  0.953

(1.25,100,-1/8,1/2) 5218  bias (x1072) 0.075 17.234 0.030  0.163
60 RMSE  0.026 14548 0.037  0.032
CP 0.939 0951 0949  0.954

(1.25,100,—1/10,1/2) 5155  bias (x1072) 0.123 23.217 0.157 —0.314
RMSE 0051 22534 0.027  0.042
CP 0.943 0.946  0.950  0.949

11



S1.4 Convergence analysis

Next, we summarize the chain induced by the Gibbs sampling algorithm and assess its convergence.
The Bayesian parameter estimation is implemented with priors introduced in Section S1.1. To set up
non-informative priors, the hyperparameters are set as follows (Spiegelhalter et al., 1996; Gelman,

2006),

a=1020=103a=103v=102,c=10"*d=10"%e=10"%, f = 107%

The parameters of proposal functions are set as og = 0.22 and o, = 7.20. To define the stopping
criteria for the algorithm, we run the Geweke diagnostic (Geweke, 1992) to examine the conver-
gence of the Markov chain induced by the proposed Gibbs sampling algorithm. Specifically, we
conduct the Geweke test by taking the first 10% and the last 50% part of the chain into account.
Besides, the Gelman and Rubin’s statistic (Gelman and Rubin, 1992; Brooks and Gelman, 1998) is
also computed to check the convergence of multiple chains from the overdispersed starting points.
As suggested by Brooks and Gelman (1998), the convergence is reached if the Gelman-Rubin
convergence diagnostic value is less than 1.2 for all model parameters. According to our compre-
hensive numerical experience, we need to run the Gibbs sampling algorithm for a total number of
N = 500,000 iterations to ensure the Gelman-Rubin convergence diagnostic values are less than
1.2 and p-values of the Geweke test statistic for all model parameters 5, n, 4 and o are above the
pre-specified threshold § = 0.05 under all the settings. We then discard the first Ny = 100, 000
iterations as burn-in. After burn-in, we thin the chain by setting the value of thinning as 100 to
reduce the autocorrelation of posterior samples. As such, a chain of 4,000 iterations is obtained

after burn-in and thinning.

However, we caution that the mixing property of the induced chain might be still poor, even
though they have passed the Geweke test and their Gelman-Rubin convergence diagnostic values
are less than 1.2 (Gong and Flegal, 2016). To illustrate that, we present a realization of the
convergence diagnostic plots of the chain for model parameters 3, n, i and ¢ in Figure 2. As can
be seen, the trace plots and autocorrelation plots for parameters S and n show the inadequate

mixing property of the chain and the high level of autocorrelation among samples. To overcome

12



this, more iterations are required, which, however, renders the Bayesian estimation procedure even

more computationally cumbersome. Alternative strategies such as other carefully selected proposal

functions for the M-H algorithm, the adaptive Metropolis sampler (Haario et al., 1999, 2001) and

the delayed rejection mechanism (Tierney and Mira, 1999; Green and Mira, 2001) can be considered

in the future to improve the mixing efficiency of the chain, and thus the precision of the Bayesian

parameter estimation can be imrpoved.
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Figure 2: Trace plots (left) and corresponding autocorrelation plots (right) of the chain after burn-
in and thinning, under the PLP-Lognormal model setting with (5,7, u, o) = (1.25,100, —0.2,0.5),

n = 30 and A = 630.
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S2 Technical Notes

S2.1 Intensity of the failure process

In this section, we add some more discussions on the system ROCOF. Let F; be the filtration (i.e.
the history just up to time t) of the process up to and including time ¢. For the filtration, we have
Fi- = U<y Fs- The assumption that two failure events cannot occur at exactly the same time is
plausible in most settings and is also retained in our study. The intensity for the failure process is

defined formally as

Nt F) = 1 PHAN@ = 1] 7}

At—0 At ' (12)

The system ROCOF A(¢) in Equation (1) of the paper is accordingly defined by A(¢ | F;-).

S2.2 Product integral

In this section, we clarify the product integral, i.e., the term Hue[L’R}{)\(u)}dN(“) in Equation (2) of
the paper. Consider a generic system that follows the defined failure model in the paper. Suppose
m failures occur in the observation window [L, R] denoted by an ordered collection {t; : 1 <1 < m},
m = N(R). Consider partitions L = uy < u; < --- < ug = R of the observation window [L, R]
and define Aug = ugy1 — us, s = 0,1,---, S, where ugi1 = uJSr As introduced in Section 2.6 in
Andersen et al. (2012), the term Hue[L’R]{)\(u)}dN(“) in Equation (2) of the paper is actually a
limit of approximating the finite product limg Hfzo{/\(us)}AN (us) As S — 0o and Aug — 0,
the m intervals that contain the event times ¢4, ..., t,, have AN (us) = 1; for all others AN (us) = 0.

Hence, we have

I (e
u€|[L,R)
S

= lim JT AN (uo) V0

S—o00
s=0

=[] ).
=1
According to Theorem 2.1 in Cook et al. (2007), the probability density of the observed failure

events {t; : 1 <[ < m} for the failure process with intensity (12) over the observation window
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(L, R] is

l]jl)\(tl) - exp {— /LR )\(u)du} : (13)

With the above settings, the likelihood function in Equation (2) of the paper is obtained by inte-

grating A in (13) out:

m

L(Q;D) — /000 . ../OOO exp(A(L) — A(R)) H)\(tl)dFA(al) . "dFA(aLR/AJ)-

N—— =1
LR/A]

S2.3 Complete-data log-likelihood function

This section presents detailed derivations to obtain complete-data log-likelihood function. Consider
a generic system. Denote D = {L, R, N(t) : t € [L, R]} as the observed data and A = {4 : kA <
R} as the set of unobserved PM random effects. When n independent systems are available, the
recurrent failure data from n systems are thus D = {D; : i = 1,2,--- ,n}, and A = {A; : i =
1,2,---,n} is the collection of all the PM random effects. Based on the complete data C =D U A,

the complete-data likelihood function is given by

n n LRi / AJ

L(6;C) = [ L(6; Di, A) = [ [ |exp(A(Ze) — A(R)) [T MM T falaw)
k=1

=1 =1 tE[Li,RZ‘]

Therefore, the complete-data log-likelihood function £ (€; C) in Equation (3) of the paper is obtained

by simply taking the log of the above equation.

S2.4 (@-function
Detailed derivations to obtain the Q-function (i.e. Equation (4) of the paper) are given by
¢(6;C) | D, 00} ZE[ /(6 Di,Ai)|Di,0(j)}

= Z/ / £(0;Di, Aj) fa, (az‘ | Di,e(j)> daj1 -+ - daj| g, /A
i=1 0 0

[Ri/A]
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where the first equality follows from the independence among n systems and fa,(a; | D;, H(j)) is
the conditional PDF of random effects (i.e. Equation (5) of the paper) , which can be expressed as
; L(6Y); Dy, A,
fa, (az' | Di,0(3)> _ L6 D;, Ai)
L(6Y); D)

S3 The Non-periodic or Condition-based PM Setting

In this section, we discuss the applicability of the proposed method to the non-periodic PM setting
or the condition-based PM setting. In keeping with the notation in Doyen and Gaudoin (2006) and
Doyen and Gaudoin (2011), we define the failure process N (¢) that counts failures, the PM counting
process M (t) that counts PM actions and K () that counts both failures and PM actions over [0, ¢].
Denote {C;}i>o the failure and PM time sequence (Cp = 0). Denote F;,t > 0, as the natural
filtration generated by the history of the processes N (t) and M (t) and the hypothetical observation
of PM random effects {A;};>1 up to and including time t: F; = o({N(s), M (s), Aps(s) fo<s<t). For
the filtration, let Fp- = (U, ., Fs.

e Non-periodic PM policy.
Consider a repairable system. The intensity for the failure process is defined by

Pr{AN(t)=1| F-}
At—0 At

Next, when we consider a non-periodic time-based PM program to mitigate the risk of failures,
the PM time sequence is also predictable with respect to the filtration, i.e., the next PM time
is a deterministic function of the history of the PM and failure processes (Doyen and Gaudoin,
2011). Following the model setting in the paper, we consider the minimal repair assumption
and explicitly model the effect of PM as a multiplicative random effect on ROCOFs. Thus,

for the non-periodic PM policy, the system ROCOF is formulated as

M(t-)
A EAEF-) = T Ado(),
j=1

16



where random effects A;, j = 1,--- ,M(t7), are assumed to be i.i.d. nonnegative random

variables representing the effects of each PM action.

Condition-based PM policy.

Next, we consider a repairable system under a condition-based PM program. In this case,
the PM time sequence is not predictable with respect to the filtration, i.e., PM times are not

deterministic. The intensity function for the failure process is defined by

O PH{AN®) =1|F)
N | Fo) = ¢
M) = Aliglo At

The intensity function for the condition-based PM process is defined by

MM (| Fl) = Alir_% Pr{AM(t)At: 1| F-}
The failure and PM intensities completely characterize the failure and PM processes. The
competing risks approach developed in the context of maintenance is commonly used to derive
the failure and PM intensities (Doyen and Gaudoin, 2006; Dijoux and Gaudoin, 2009). To
use the competing risks approach, we introduce the concept of risk variables. After the kth
PM or repair action, the time to the next failure (i.e., the next repair action) is a random
variable Zy,1. However, the failure can be avoided by a condition-based PM action at a
random time, Y;1. The time until the next failure or PM is Wy = min(Zx1, Yiy1). The

random variables Y1 and Zy, are called the risk variables.

The subhazard rates of the first failure and PM risk variables Z; and Y; are accordingly
defined as below (Doyen and Gaudoin, 2006):

1
Ae(w) = lim —Pr(w<Z <w+Aw,Z; <Yy | W1 > w),
Aw—0 Aw (14)

1
Ap(w):Aligoerr(w<Yl <w+Aw, Y, < Z; | W > w).

Following the generalized virtual age model in Doyen and Gaudoin (2006), we define a se-
quence of random variables {V} }r>1, with Vp = 0, called effective ages. We assume that after

the kth failure or PM the risk variables Yj11 and Zj 1 behave like the risk variables of a new
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system, never maintained before Vj,. Under the assumption, the connections between failure
and PM intensities and subhazard rates are established by the following equations:

MWt | Fio) = A (V- +t — Crp—y)
: (Vi) K(t-)) 5)

M@ F-) =X (Vi) +t = Crey) »
where A.(-) and A, (+) are the subhazard rates of the first latent repair and PM times, respec-
tively, defined in (14). As with our proposed model for the periodic PM setting, we can still
consider the minimal repair assumption and explicitly model the PM random effects, which
accounts for the potential PM adverse effects as well. By blending the idea of ARA,, model

from Doyen and Gaudoin (2004), we have

Ay (Ve@w-1+ Crw — Crw-1), dM(t) =1,
Vi@ =

Viw-1+Crw — Cke-1, dM(t) =0,

where random effects A/ are assumed to be i.i.d. nonnegative random variables represent-

ing the effects of each PM action and dM (t) = lima;—0 M ((t + At)™) — M(t7).

We next discuss the modeling method on the dependence between PM and repair actions. It
is sufficient to express the dependence between the risk variables Y7 and Zy since the failure
and PM intensities are determined by them, as shown in (15). Though the independent risks
assumption is common in competing risks approach literature (Cox, 1959; Gail, 1975; Crowder,
2001), it is not realistic since PM and repair actions are linked through the degradation
process. To characterize the dependence between PM and repair actions, the dependent
competing risks model, e.g., the alert-delay model, is introduced in Dijoux and Gaudoin
(2009). To be specific, the alert-delay model assumes that the link between the PM and

repair action risk variables is as follows:
Yi=pZ1 + &,

where p € [0,1] and Z; and £ are two independent positive random variables. Commonly used

distributions for Z; and £ are the exponential distribution. The identifiability of the alert-
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delay model is also proved for p # 1 in Dijoux and Gaudoin (2009). Under this dependence
assumption, the subhazard rates are readily derived, and thus the failure and PM intensities
can be computed by (15). The detailed derivations can be found in Dijoux and Gaudoin

(2009).

S4 Gain of the quasi-Monte Carlo method

To illustrate the gain of the quasi-Monte Carlo method, we carefully investigate the Monte Carlo
method and quasi-Monte Carlo method from both theoretical and empirical perspectives, as detailed

below.

o Theoretical perspective. When using N samples, the Monte Carlo integration method yields a
probabilistic error bound of O(N -1/ 2) independent of dimensions (Niederreiter, 1992; Caflisch,
1998). The quasi-Monte Carlo integration method can yield a deterministic error bound of
O(N~1(log N)?), where d is the dimension of the integral (Caflisch, 1998). To be exact, this
is the upper bound of the error. The convergence rate of the quasi-Monte Carlo integration

method is generally faster than that theoretical bound (Asmussen and Glynn, 2007).

The accuracy of the quasi-Monte Carlo method generally increases faster than Monte Carlo
method as N increases. However, this advantage should be checked judiciously since it is
only guaranteed if N is large enough and the dimension of the integral d is not large. It is
widely believed that quasi-Monte Carlo method is applicable to problems in a dimension of
moderate size, say, for d < 15 (Wang and Fang, 2003). To check that, the dimension of each
integral in Equation (4) of the paper (i.e. Q-function) is less than 10 in our studies. As such,
with the carefully chosen sample size IV, the advantage of the faster convergence rate of the

quasi-Monte Carlo method can be well retained in our studies.

o Empirical perspective. To illustrate the gain of quasi-Monte Carlo method, we conduct sim-
ulation studies to check the average calculation time of Monte Carlo EM (MCEM) and
quasi-Monte Carlo EM (QMCEM) algorithms. We consider the power-law baseline ROCOF
Xo(t) = (8/n) (t/n)P~ with (8,1) = (1.25,100) and Lognormal(x, o) PM random effect
with (u,0) € {(-=1/5,1/2),(-1/8,1/2),(—1/10,1/2)} in the simulation. Two levels of the
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Table 5: The average calculation time (in seconds) of Monte Carlo EM (MCEM) and quasi-Monte
Carlo EM (QMCEM) algorithms under the power-law baseline ROCOF and lognormal PM random
effect setting.

n (8, m, p, o) Method A = 365 A = 540

(1.25,100,—1/5,1/2)  MCEM algorithm  1554.39 1063.51
QMCEM algorithm  1482.60 1215.37

(1.25,100,—1/8,1/2)  MCEM algorithm  3197.65 1404.68
QMCEM algorithm  2354.67 1270.73

(1.25,100,—1/10,1/2) MCEM algorithm  4719.59 1220.60
QMCEM algorithm  3706.83 1324.08

(1.25,100,—1/5,1/2)  MCEM algorithm  1925.21 1155.26
QMCEM algorithm  1561.40 1354.13

(1.25,100,—1/8,1/2)  MCEM algorithm  3205.59 1388.43
QMCEM algorithm  2627.82 1279.86

(1.25,100,—1/10,1/2)  MCEM algorithm  5361.79 1366.29
QMCEM algorithm  3992.40 1537.02

(1.25,100,—1/5,1/2)  MCEM algorithm  2211.40 1227.00
QMCEM algorithm  1657.05 1471.24

(1.25,100,—1/8,1/2)  MCEM algorithm  3171.34 1363.68
QMCEM algorithm  3066.79 1306.54

(1.25,100,—1/10,1/2) MCEM algorithm  6075.84 1481.73
QMCEM algorithm  4276.59 1622.46

30

45

60

PM time interval are considered: A € {365,540}. The sample size design and observation
window design are the same as in the Section 5.1 of the paper. All computations were con-
ducted on an Intel(R) Xeon(R) CPU E5-2698 v4 (2.20 GHz). The results are summarized in
Table 5. As can be seen, the average calculation time of MCEM algorithm is generally longer

than QMCEM algorithm under different settings.

In addition, to further illustrate the convergence rate in Monte Carlo method and quasi-Monte
Carlo method, we next compute the relative error of the Monte Carlo and quasi-Monte Carlo
approximations of the Q-function, |Q*(6 | 8) — Q(0 | 8)|/Q(6 | 8), where Q*(0 | 6) denotes
the approximations of Q-function. For example, we plot the relative approximation error as a
function of the sample size N from 10' to 10* by considering the power-law baseline ROCOF
and lognormal PM random effect with 8 = 6 = (B,m,1,0) =(1.25,100,—1/5,1/2), PM time

interval A = 365, and sample size n = 30. The results are presented in Figure 3. As can be
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seen, the relative approximation error of the Monte Carlo method decreases as the increase
of sample size N, roughly at a rate of 1/v/N, and the quasi-Monte Carlo method is generally

better at all sample sizes and appears to show a faster convergence rate.
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Figure 3: Relative approximation error as a function of the sample size N from 10! to 10%.

S5 Martingale residuals

In this section, we introduce the concept of martingale residuals. Denote A = (A(t)):>0 as the
cumulative intensity process of the counting process N = (N(t))¢>0, such that A(t) = fot A(s)ds

and A(s) is the intensity. The counting process martingale is defined by M (t) = N(t) — A(t).

Consider a generic repairable system that follows the defined failure model in the paper. We denote
{t; : 1 <1 < m} as the ordered collection of its failure time epochs over the observation window
[L, R], where m = N(R) (i.e., the number of failures observed from the system) and ¢ty = L. With
the assumed model, the failure process follows a Poisson process after conditioning on the frailties
(i.e., PM random effects) and the observation windows. By plugging in parameter estimates, the
corresponding martingale residuals are obtained as M(tl) = N(t;) — A(t;;0,A), 1 <1 < m. Based

on the martingale residuals, we can simply adopt the Kolmogorov-Smirnov (KS) type test statistic
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(see also Chauvel et al. (2016)) to evaluate the proximities between the observed data and the
estimated models, which is defined as
KS(0,A) = sup ‘J\/Z(tl)‘
1<i<m

— sup |[N(t) ~ A(t;6,A)

1<I<m

As with Section 4 of the paper, a parametric bootstrap method (Efron and Tibshirani, 1994) can

be next employed to compute the quantiles of the above test statistic distribution.

S6 Addtional Figures and Tables

S6.1 Additional parameter estimation results

As indicated in Section 5.1 of the paper, when using optim() in R (R Core Team, 2020), the
constraints on the range of parameters need to be first specified. The range of parameters in the

baseline ROCOF is as below:

e For power-law process Ao(t) = (8/n) (t/n)" !, we have parameters 7, 3 > 0.

e For log-linear law process \o(t) = exp (n + St), we have parameters 7, 8 € R.
The range of parameters in the distribution of PM random effects is as below:

e For the Gamma(a, v) random effect, we have the shape parameter a > 0 and the rate

parameter v > 0.

e For the Lognormal(y, o) random effect, we have parameters p € R and o > 0.

The additional parameter estimation results under PLP-Lognormal, PLP-Gamma, LLP-Lognormal
and LLP-Gamma model settings are presented in Tables 6-21. Besides, we compute the relative
estimation error (9 —0)/0 in each replication, and then present box plots of the relative estimation
error under the PLP-Lognormal model to check how the estimated parameters spread out. The box

plots of the relative estimation error based on the 1,000 replications are plotted in Figures 4-7. As
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demonstrated by the figures, the relative estimation error generally decreases as n increases under
the PLP-Lognormal model setting. Overall, the performance of the EM algorithm in parameter

estimations is satisfactory under different settings.

S6.2 Numerical issues

In this section, we discuss the numerical instability problems, e.g., arithmetic overflows, which arise
when considering the log-linear baseline model. As shown in Tables 14-21, when examining the
log-linear law baseline ROCOF model, the true magnitudes of the parameters 5 and n are set to
be 0.0005 and —4.5, respectively. The numerical problems may arise due to huge differences in
scales of the parameters. For example, when using quasi-Newton type method in optim(), the
convergence can be compromised due to the ill-conditioned problem on the Hessian matrix of the
Q-function. Besides, similar problems can also arise when computing the inverse of the Hessian
matrix of the Q-function to obtain confidence intervals. To overcome these hurdles, we resort to
the built-in control parameter “parscale” in optim() to rescale the parameters so that unit change

of rescaled parameters have nearly the same impact on the objective function.

In addition, according to our numerical experience, the numerical stability issues seem to arise more
frequently in the quasi-Newton BFGS method than the Nelder-Mead method. The is because BFGS
method performs a line search in the direction of the gradient, which can lead to extreme parameter
values in the line search step and cause numerical issues. Luckily, we note that the optim() can
generally handle it without generating errors even though the objective function returns an “Inf”
or “NaN” value. This built-in feature of the optim() in R (R Core Team, 2020) helps to maintain

the numerical stability.
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Figure 4: Box plots of the relative estimation error of 0= (,5’ .7, i, 0), under the PLP-Lognormal
model with PM time interval A = 365.
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model with PM time interval A = 450.
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model with PM time interval A = 540.
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Figure 7: Box plots of the relative estimation error of 0= (B .7, fi, ), under the PLP-Lognormal
model with PM time interval A = 630.
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Table 6: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: A = 365.

n (B, n, 1, o) Run time B8 il il o
(1.25,100,—1/5,1/2)  1482.60 bias (x10~2) 0.145 156.898 —0.086 —0.019
RMSE 0.115 26.084  0.053 0.051

CP (asymptotic CI) 0.930  0.941 0.955 0.977
CP (bootstrap CI)  0.938  0.949 0.957 0.973

(1.25,100,—1/8,1/2)  2354.67 bias (x10~2) 0.286 113.190 —0.405 —0.334

30 RMSE 0.112 24902  0.057  0.048
CP (asymptotic CI) 0.915  0.937 0.939 0.972

CP (bootstrap CI)  0.936  0.946 0.951 0.971

(1.25,100,—-1/10,1/2)  3706.83 bias (x1072) 1.265 33440 —0.200 —0.704
RMSE 0.126  26.776  0.061 0.050

CP (asymptotic CI) 0.906  0.914 0.911 0.946

CP (bootstrap CI)  0.931  0.937 0.936 0.961

(1.25,100,~1/5,1/2)  1561.40 bias (x10~2) 0.131 167.256 —0.052 0.016
RMSE 0.087  20.458  0.044 0.044

CP (asymptotic CI) 0.955  0.959 0.951 0.970

CP (bootstrap CI)  0.952  0.963 0.955 0.972

(1.25,100,-1/8,1/2)  2627.82 bias (x10~2) 0.195 166.732 —0.262 —0.278

45 RMSE 0.095 19.142  0.045 0.039
CP (asymptotic CI) 0.925  0.950 0.949 0.965

CP (bootstrap CI)  0.933  0.948 0.957 0.977

(1.25,100,—1/10,1/2)  3992.40 bias (x10~2) 1.203  322.932 —0.202  0.661
RMSE 0.112  19.973 0.047 0.042

CP (asymptotic CI) 0.920  0.934 0.941 0.953

CP (bootstrap CI) 0.936  0.944 0.955 0.962

(1.25,100,~1/5,1/2)  1657.05 bias (x10~2) 0.119 260.642 —0.031  0.055
RMSE 0.074 17.664  0.036 0.032

CP (asymptotic CI) 0.959  0.957 0.956 0.973

CP (bootstrap CI)  0.954  0.958 0.965 0.970

(1.25,100,—-1/8,1/2)  3066.79 bias (x1072) 0.173 246.082 —0.146  0.453

60 RMSE 0.079 18.062  0.040 0.035
CP (asymptotic CI) 0.924  0.940 0.941 0.969

CP (bootstrap CI)  0.938  0.952 0.949 0.971

(1.25,100, —1/10,1/2)  4276.59 bias (x10~2) 1471 352.213 —0.462  0.737

RMSE 0.083 18.606  0.037  0.035
CP (asymptotic CI) 0.918  0.931 0.942 0.963
CP (bootstrap CI)  0.932  0.941 0.959 0.960
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Table 7: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: A = 450.

n (B, n, 1, o) Run time B8 il il o
(1.25,100,—1/5,1/2)  1346.54 bias (x10~2) 0.142 41.868 —0.171  0.086
RMSE 0.106  22.942 0.054 0.053

CP (asymptotic CI) 0.954  0.952 0.938 0.959
CP (bootstrap CI)  0.957  0.949 0.952 0.963

(1.25,100,—1/8,1/2) 1853.72 bias (x1072) 0.093 55931  0.087 —0.077

30 RMSE 0.115 24.651  0.047  0.058
CP (asymptotic CI) 0.952  0.961 0.963 0.955

CP (bootstrap CI)  0.956  0.958 0.967 0.958

(1.25,100, —1/10,1/2)  1452.41 bias (x10~2) 0.893 113.262 0.323  0.431
RMSE 0.125 31.256  0.078 0.062

CP (asymptotic CI) 0.931  0.940 0.923 0.948

CP (bootstrap CI)  0.944  0.947 0.952 0.965

(1.25,100,~1/5,1/2)  1622.76 bias (x10~2) 0.135 52.633  0.166 —0.075
RMSE 0.072 18453  0.047  0.042

CP (asymptotic CI) 0.947  0.948 0.941 0.953

CP (bootstrap CI)  0.949  0.948 0.955 0.947

(1.25,100,—1/8,1/2)  2341.74 bias (x1072) 0.090 34931 —0.062 0.059

45 RMSE 0.086 15.144  0.044  0.039
CP (asymptotic CI) 0.947  0.955 0.959 0.961

CP (bootstrap CI)  0.953  0.959 0.951 0.949

(1.25,100,—-1/10,1/2)  1789.68 bias (x1072) 0.504 73.262  0.120 —0.309
RMSE 0.123 28251  0.066 0.058

CP (asymptotic CI) 0.944  0.958 0.941 0.960

CP (bootstrap CI)  0.953  0.966 0.953 0.970

(1.25,100,—1/5,1/2)  2044.81 bias (x10~2) 0.096 60.649  0.180 —0.073
RMSE 0.058 13.894  0.041 0.037

CP (asymptotic CI) 0.955  0.950 0.947  0.961

CP (bootstrap CI)  0.947  0.948 0.956 0.968

(1.25,100,—1/8,1/2)  2637.54 bias (x1072) 0.086 13.258  0.027  0.047

60 RMSE 0.051 10.152  0.045 0.033
CP (asymptotic CI) 0.944  0.947 0.952 0.965

CP (bootstrap CI)  0.957  0.953 0.946 0.954

(1.25,100,—1/10,1/2)  2683.84 bias (x10~2) 0.123 34243 —0.105  0.289

RMSE 0.092 23561  0.037  0.046
CP (asymptotic CI) 0.952  0.959 0.953 0.967
CP (bootstrap CI)  0.955  0.957 0.962 0.973
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Table 8: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: A = 540.

n B, n, u, o) Run time B 7) i G
(1.25,100,—-1/5,1/2) 1215.37 bias (x1072) 0.081 145.603 0.237 —1.332
RMSE 0.091  21.965 0.064 0.058
CP (asymptotic CI)  0.961 0.953  0.955  0.953
CP (bootstrap CI) 0.968 0.957  0.963  0.965
(1.25,100,-1/8,1/2)  1270.73 bias (x10~2) —0.071  83.930 0.043 —1.414
30 RMSE 0.086  20.233 0.068  0.058
CP (asymptotic CI)  0.947 0.954  0.932  0.949
CP (bootstrap CI) 0.954 0.961 0.951  0.939
(1.25,100,—1/10,1/2) 1324.08 bias (x1072) —-0.210 63.181 0.223 —1.349
RMSE 0.098  22.293 0.070  0.060
CP (asymptotic CI)  0.927 0.937 0912 0.941
CP (bootstrap CI) 0.945 0.951 0.937  0.956
(1.25,100,~1/5,1/2)  1354.13 bias (x10~2) 0.121 84521 0.235 —0.920
RMSE 0.073  19.529 0.055  0.045
CP (asymptotic CI)  0.961 0.963  0.959 0.971
CP (bootstrap CI)  0.958 0.966  0.953  0.967
(1.25,100,—1/8,1/2) 1279.86 bias (x1072) 0.068  73.451 0.035 —0.946
45 RMSE 0.071 18791 0.059  0.048
CP (asymptotic CI)  0.953 0.952  0.966  0.952
CP (bootstrap CI) 0.960 0.947  0.968 0.971
(1.25,100,—1/10,1/2)  1537.02 bias (x10~2) 0.133  52.881 0.302 —1.431
RMSE 0.052  20.274 0.059  0.057
CP (asymptotic CI)  0.951 0.958  0.949  0.967
CP (bootstrap CI) 0.963 0.961 0.955  0.948
(1.25,100,—1/5,1/2)  1471.24 bias (x10~2) —0.108  64.945 0.161 —0.496
RMSE 0.057  14.245 0.043  0.039
CP (asymptotic CI)  0.968 0.962 0.964 0.970
CP (bootstrap CI) 0.972 0.965  0.968  0.970
(1.25,100,-1/8,1/2)  1306.54 bias (x10~2) 0.091  56.144 0.117 —0.492
60 RMSE 0.059  14.567 0.041  0.040
CP (asymptotic CI)  0.966 0.965 0.961  0.959
CP (bootstrap CI)  0.960 0.968  0.959  0.963
(1.25,100,—-1/10,1/2)  1622.46 bias (x1072) 0.028  73.015 0.333 —0.668
RMSE 0.063  15.207 0.046  0.037
CP (asymptotic CI)  0.949 0.956  0.943  0.959
CP (bootstrap CI) 0.954 0.961  0.949 0.964
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Table 9: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Lognormal model
with the PM time interval: A = 630.

n (8, n, u, o) Run time 8 7 il o
(1.25,100,-1/8,1/2)  1361.95 bias (x10~2) 0.092  38.547 0.082 —0.630
RMSE 0.088  28.724  0.053 0.079

CP (asymptotic CI)  0.954  0.960  0.947 0.933
CP (bootstrap CI) 0.955 0.965 0.954 0.952
30

(1.25,100,—1/10,1/2)  2193.20 bias (x1072) 0426 56.236  0.543  —0.978
RMSE 0.063 35.721  0.045 0.082

CP (asymptotic CI)  0.935  0.941  0.937 0.946

CP (bootstrap CI) 0.947 0958 0.9432  0.950

(1.25,100,—1/5,1/2)  1241.92 bias (x10~2) 0.073 26251 0.131  0.653
RMSE 0.042  16.025  0.063 0.044

CP (asymptotic CI)  0.955  0.957  0.952 0.946

CP (bootstrap CI) 0.956 0.949 0.963 0.958

(1.25,100,-1/8,1/2)  1567.05 bias (x1072) 0.037  20.043 —0.067 0.572
RMSE 0.046  27.420 0.041 0.055

45 CP (asymptotic CI)  0.957  0.953  0.957  0.939
CP (bootstrap CI) 0.955  0.961  0.955 0.952

(1.25,100,—1/10,1/2)  2499.63 bias (x1072) 0.104 41.853 0.327  0.635
RMSE 0.053  30.542  0.047 0.069

CP (asymptotic CI)  0.946  0.953  0.948 0.955

CP (bootstrap CI) 0.952  0.966  0.953 0.964

(1.25,100,—1/5,1/2)  1572.35 bias (x10~2) 0.034 19.962 0.056 —0.342
RMSE 0.038 12.056  0.045 0.032

CP (asymptotic CI)  0.951 0.956 0.947 0.945

CP (bootstrap CI) 0.957  0.958  0.946 0.951

(1.25,100,—1/8,1/2)  1736.82 bias (x10~2) 0.044 22451 0.032  0.296
60 RMSE 0.031 16.583 0.031 0.045

CP (asymptotic CI)  0.948  0.955  0.944 0.946
CP (bootstrap CI)  0.942  0.963  0.948 0.969

(1.25,100,-1/10,1/2)  2731.36 bias (x1072) 0.083 35.765 0.184  0.428
RMSE 0.045 26.209 0.036 0.077

CP (asymptotic CI)  0.948  0.949  0.957 0.952

CP (bootstrap CI)  0.954  0.963  0.956 0.955
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Table 10: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in

seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: A = 365.

n (B, n, a, V) Run time I5; 7 & 1
(1.25,100,4,5)  1988.53 bias (x10~2) 0.468 253.675 3.774 5.238
RMSE 0.084 25.401 1.042 1.217

CP (asymptotic CI)  0.937 0.936  0.945 0.957
CP (bootstrap CI)  0.942  0.943  0.958 0.953

30 (1.25,100,5,5)  2762.04 bias (x1072) 0.240  136.057 3.500 4.264
RMSE 0.073  17.488 1.480 1.611

CP (asymptotic CI)  0.945  0.932  0.939 0.951

CP (bootstrap CI)  0.953  0.949  0.941 0.955

(1.25,100,4,5)  2604.52 bias (x10~2) —0.252 171432 3.063 4.738
RMSE 0.055  19.932 1.307 0.843

CP (asymptotic CI)  0.936 0.945 0.961 0.972

CP (bootstrap CI)  0.949 0.952  0.965 0.956

45 (1.25,100,5,5)  3542.67 bias (x10~2) 0.175  95.323 2.891 4.032
RMSE 0.053  16.360 1.030 1.361

CP (asymptotic CI)  0.943 0.946 0.941 0.959

CP (bootstrap CI)  0.955 0.954  0.953 0.948

(1.25,100,4,5)  3259.05 bias (x10~2) 0.219  123.643 1.854 2.438
RMSE 0.031  18.950 0.712 1.258

CP (asymptotic CI)  0.944 0.951  0.957 0.968

CP (bootstrap CI)  0.958  0.957  0.961 0.952

60 (1.95,100,5,5)  4746.24 bias (x1072)  —0.187 72.523 1.671 3.467
RMSE 0.041 15432 0.798 1.654

CP (asymptotic CI)  0.939  0.947  0.952 0.953
CP (bootstrap CI)  0.947 0.950 0.959 0.962
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Table 11: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in

seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: A = 450.

A~

n (B, n, a, v) Run time 153 7 & 1%
(1.25,100,4,5)  1451.76 bias (x1072) 0.435 202.532 12.128 7.432
RMSE 0.093 22.816 2.341 1.933

CP (asymptotic CI)  0.941 0.939 0.941 0.958
CP (bootstrap CI) 0.952 0.946 0.953 0.969
30

(1.25,100,5,5)  1236.64 bias (x1072) 0.334  145.251 4.537 3.447
RMSE 0.060 15.753  0.746 0.771

CP (asymptotic CI)  0.965 0.946 0.947 0.953

CP (bootstrap CI) 0.957 0.953 0.951 0.956

(1.25,100,4,5)  1156.04 bias (x10~2) —0.372 121432 3.063 4.738
RMSE 0.052 15.932  1.307 0.843

CP (asymptotic CI)  0.936 0.945  0.961 0.972

CP (bootstrap CI)  0.949 0.952  0.965 0.956

15 (1.25,100,5,5)  1266.91 bias (x10~2) 0.275  95.323  2.801 4.032
RMSE 0.053 16.360 1.030 1.361

CP (asymptotic CI)  0.943 0.946  0.941 0.959

CP (bootstrap CI)  0.955 0.954  0.953 0.948

(1.25,100,4,5)  2634.67 bias (x10~2) 0.129  93.643 1.854 2.438
RMSE 0.031 18.950  0.712  1.258

CP (asymptotic CI)  0.944 0.951  0.957 0.968

CP (bootstrap CI) 0.958 0.957 0.961 0.952

60 (1.25,100,5,5)  2978.40 bias (x1072)  —0.261 62523 1.671 3.467
RMSE 0.041 15432  0.798 1.423

CP (asymptotic CI)  0.939  0.947  0.952  0.953
CP (bootstrap CI)  0.947 0.950  0.959 0.962
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Table 12: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in

seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: A = 540.

A~

n (B, n, a, v) Run time 153 n & 1
(1.25,100,4,5)  1067.32 bias (x10~2) ~0.336 —156.334 4501  3.176
RMSE 0.076 18.958 1.232  0.838

CP (asymptotic CI)  0.965  0.937  0.943  0.946
CP (bootstrap CI)  0.954 0.946 0.957  0.955
30

(1.25,100,5,5)  1205.46 bias (x1072) 0.223 163.675 17.832 16.310
RMSE 0.074 18.401 0.989 1.127

CP (asymptotic CI)  0.949 0.957 0.960  0.938

CP (bootstrap CI) 0.954 0.963 0.958  0.951

(1.25,100,4,5)  1176.01 bias (x 10_2) 0.203 132.201 3.036  2.621
RMSE 0.058 18.830 0.754  0.652

CP (asymptotic CI)  0.953 0.948 0.961  0.949

CP (bootstrap CI)  0.961 0.959 0.968  0.952

15 (1.25,100,5,5)  1365.87 bias (x1072) 0.132  107.753 14.740 13.954
RMSE 0.073 15.134 0.800  0.862

CP (asymptotic CI)  0.947 0.943 0.964  0.957

CP (bootstrap CI)  0.958 0.945 0.966  0.960

(1.25,100,4,5)  1684.63 bias (x10~2) 0.137  91.854  7.154 8.607
RMSE 0.060 15.753 0.625  0.771

CP (asymptotic CI)  0.964 0.955 0.962  0.957

CP (bootstrap CI) 0.958 0.958 0.963  0.964

60 (1.25,100,5,5)  1479.65 bias (x1072) 0.085  79.923 10219 9.018

RMSE 0.056 13.926 0.743  0.776
CP (asymptotic CI)  0.958 0.947 0.950  0.953
CP (bootstrap CI) 0.961 0.950 0.953  0.949
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Table 13: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in

seconds), computed based on 1,000 Monte Carlo replications, under the PLP-Gamma model with
the PM time interval: A = 630.

~

n (B, n, a, V) Run time I3 7 & 1%
(1.25,100,4,5) 1025.51 bias (><10_2) 0.366 139.856 12.293 14.475
RMSE 0.085 19.669 1.633 1.346

CP (asymptotic CI) 0.947  0.935 0.965  0.959
CP (bootstrap CI)  0.958  0.943 0.968  0.963
30

(1.25,100, 5, 5) 988.80 bias (x1072) 0.476  98.562 10.385 8.051
RMSE 0.091 20.859 1.102 0.738

CP (asymptotic CI) 0.955  0.947 0.971  0.948

CP (bootstrap CI) 0.951  0.959 0.968  0.954

(1.25,100,4,5)  1123.57 bias (x10~2) 0.223 82392  6.934  8.203
RMSE 0.076 18.473 0.894 1.032

CP (asymptotic CI) 0.936  0.955  0.957  0.948

CP (bootstrap CI) 0.944 0.959  0.966  0.959

45 (1.25,100,5,5)  1089.83 bias (x1072)  0.249 75391  90.305  8.264
RMSE 0.076 18.536  0.869  1.024

CP (asymptotic CI) 0.953  0.943  0.957  0.939

CP (bootstrap CI) 0.959  0.952  0.964 0.944

(1.25,100,4,5)  1278.64 bias (x10~2) 0.161 76.205 7.885 10.417
RMSE 0.067 14.646 0.794 0.634

CP (asymptotic CI) 0.957  0.953 0.950  0.948

CP (bootstrap CI) 0.959  0.962 0.953  0.945

60 (1.95,100,5,5) 1548.97 bias (x1072) 0134 67.264 5.937  6.205

RMSE 0.057 14.759 0.842 0.835
CP (asymptotic CI) 0.963  0.947 0.956  0.946
CP (bootstrap CI) 0.967 0.958  0.960  0.948
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Table 14: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 365.

n (B, n, 1, ) Run time 3 7 i 5
(0.0005, —4.5,—0.2,0.5)  1520.53 bias (x1072) 6.234 x 1073 1.832  0.179  0.145
RMSE 3.689 x 107* 0.082 0.066 0.079
CP (asymptotic CI) 0.931 0.939 0.943 0.958
CP (bootstrap CI) 0.951 0.945 0.950 0.963
(0.0005, —4.5, —0.125,0.5)  2261.48 bias (x1072) 7.346 x 1073 2.674  —0.158  0.234
30 RMSE 8.458 x 1075 0.094 0.049 0.068
CP (asymptotic CI) 0.921 0.937 0.958 0.962
CP (bootstrap CI) 0.938 0.946 0.961 0.957
(0.0005, —4.5,—0.1,0.5)  3215.62 bias (x1072) 5850 x 1073 2.159  —0.433  0.524
RMSE 3.405 x 1074 0.125 0.059 0.061
CP (asymptotic CI) 0.925 0.933 0.948 0.961
CP (bootstrap CI) 0.940 0.945 0.952 0.975
(0.0005, —4.5,—0.2,0.5)  2294.30 bias (x1072) 3.696 x 1073 1.341  0.088  0.133
RMSE 2.548 x 1074 0.055 0.079 0.063
CP (asymptotic CI) 0.935 0.944 0.940 0.951
CP (bootstrap CI) 0.945 0.952 0.954 0.956
(0.0005, —4.5,—0.125,0.5)  3231.43 bias (x1072) 6.457 x 107°  3.749  0.122  —0.146
45 RMSE 6.759 x 1074 0.123 0.074 0.058
CP (asymptotic CI) 0.932 0.945 0.955 0.958
CP (bootstrap CI) 0.943 0.953 0.952 0.969
(0.0005, —4.5, —0.1,0.5) 4534.56 bias (x1072) 8.254 x 107* —0.353 —0.310  0.358
RMSE 1.116 x 1074 0.113 0.042 0.046
CP (asymptotic CI) 0.920 0.934 0.941 0.953
CP (bootstrap CI) 0.936 0.944 0.955 0.962
(0.0005, —4.5,—0.2,0.5)  2453.10 bias (x1072) 8439 x 107°  0.647  0.012 —0.023
RMSE 7.259 x 1075 0.092 0.060 0.034
CP (asymptotic CI) 0.941 0.943 0.956 0.962
CP (bootstrap CI) 0.954 0.951 0.950 0.970
(0.0005, —4.5, —0.125,0.5) 3671.09 bias (x107?%) 3.604 x 1074 1.516 —0.042  0.039
60 RMSE 8.046 x 1075 0.070 0.054 0.038
CP (asymptotic CI) 0.956 0.943 0.953 0.948
CP (bootstrap CI) 0.944 0.945 0.957 0.960
(0.0005, —4.5,—0.1,0.5) 5269.36 bias (><1072) 5.631 x 1074 0.387 0.087 —0.138
RMSE 2.193 x 1074 0.132 0.025 0.036
CP (asymptotic CI) 0.927 0.943 0.947 0.963
CP (bootstrap CI) 0.933 0.952 0.951 0.959
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Table 15: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 450.

n (B, m, p, o) Run time B Ul f o
(0.0005, —4.5, —0.2,0.5) 1184.03 bias (x1072) —4.125 x 107 2.836 0.131  0.193
RMSE 3.069 x 10™*  0.176 0.102  0.121
CP (asymptotic CI) 0.927 0.942 0956  0.939
CP (bootstrap CI) 0.948 0.945 0.971  0.960
(0.0005, —4.5,—0.125,0.5)  1548.29 bias (x1072) 7127 x107% 21142 0135  0.224
30 RMSE 2481 x107*  0.243 0.102 0.119
CP (asymptotic CI) 0.921 0.935 0.942  0.943
CP (bootstrap CI) 0.945 0.958 0.946  0.949
(0.0005, —4.5, —0.1,0.5) 1865.18 bias (x1072) 6.813x 107%  1.598 0.275 —0.312
RMSE 2,941 x 10™*  0.153  0.089  0.057
CP (asymptotic CI) 0.916 0.941 0952  0.960
CP (bootstrap CIT) 0.946 0.949 0.958  0.969
(0.0005, —4.5, —0.2,0.5) 1994.23 bias (x1072) 2,129 x 107%  1.322 0.119  0.173
RMSE 4.691 x 107*  0.123 0.081  0.054
CP (asymptotic CI) 0.930 0.949 0.955  0.942
CP (bootstrap CI) 0.946 0.953 0.962  0.954
(0.0005, —4.5, —0.125,0.5)  2418.62 bias (x1072) 5.385 x 1073 0.932 0.122  0.185
45 RMSE 9.210 x 107 0.152 0.063  0.091
CP (asymptotic CT) 0.929 0.938 0.946  0.947
CP (bootstrap CI) 0.951 0.945 0.957  0.969
(0.0005, —4.5, —0.1,0.5) 2711.10 bias (x1072) —1.168 x 107® 0.149 0.157 —0.193
RMSE 1.007 x 107*  0.102 0.051  0.049
CP (asymptotic CI) 0.922 0.939 0.945  0.953
CP (bootstrap CI) 0.937 0.944 0.953  0.967
(0.0005, —4.5, —0.2,0.5) 2305.27 bias (x1072) 8.754 x 107*  1.823 0.089  0.121
RMSE 9.814 x 1075 0.095 0.054  0.072
CP (asymptotic CT) 0.934 0.953 0.953  0.949
CP (bootstrap CI) 0.939 0.949 0.957 0.963
(0.0005, —4.5, —0.125,0.5)  2892.37 bias (x1072) —1.594 x 107 0.502 0.052 —0.081
60 RMSE 6.127 x 107°  0.077 0.061  0.083
CP (asymptotic CI) 0.941 0.943 0.955  0.949
CP (bootstrap CIT) 0.942 0.955 0.963  0.970
(0.0005, —4.5, —0.1,0.5) 3021.69 bias (x1072) 7.183x107*  0.374 0.077  0.109
RMSE 5.127 x 107°  0.083 0.042  0.055
CP (asymptotic CI) 0.936 0.944 0947  0.951
CP (bootstrap CI) 0.953 0.949 0.956  0.943
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Table 16: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model

with the PM time interval: A = 540.

n (B, m, u, o) Run time B 7 f o
(0.0005, —4.5, —0.2,0.5) 1252.73 bias (x1072) 6.323 x 1073 2.317  0.127  0.218
RMSE 5.846 x 1074 0.104  0.083  0.064
CP (asymptotic CI) 0.923 0.951  0.948  0.937
CP (bootstrap CIT) 0.941 0.960  0.953  0.951
(0.0005, —4.5, —0.125,0.5)  1410.22 bias (x1072%) 8.852 x 1073 1.768  0.071  0.323
30 RMSE 3.549 x 1074 0.152  0.115  0.087
CP (asymptotic CI) 0.925 0.946  0.939  0.940
CP (bootstrap CI) 0.941 0.953 0944  0.946
(0.0005, —4.5,—0.1,0.5) 1926.51 bias (x1072) —3573x 1072 4561 0.115 0.241
RMSE 9.605 x 1075 0.136  0.092  0.083
CP (asymptotic CI) 0.932 0.947 0955  0.960
CP (bootstrap CI) 0.949 0.952  0.959  0.953
(0.0005, —4.5, —0.2,0.5) 1358.64 bias (x1072%) —2.564x 107% 3519  0.089 0.114
RMSE 3.792 x 1074 0.079  0.099  0.038
CP (asymptotic CI) 0.929 0.958  0.951  0.943
CP (bootstrap CI) 0.953 0.961  0.948  0.946
(0.0005, —4.5, —0.125,0.5)  1512.64 bias (x1072) 5.742 x 1073 2.833  0.117  0.185
45 RMSE 3.182 x 1074 0.137  0.093  0.103
CP (asymptotic CT) 0.923 0.952 0951  0.944
CP (bootstrap CI) 0.955 0.961  0.957  0.949
(0.0005, —4.5, —0.1,0.5) 1493.20 bias (x1072) —1.659 x 107%  3.176  0.218 —0.258
RMSE 7.718 x 1075 0.104  0.056  0.066
CP (asymptotic CI) 0.933 0949 0.956  0.961
CP (bootstrap CI) 0.946 0.948  0.960 0.974
(0.0005, —4.5, —0.2,0.5) 1523.65 bias (x1072%) 9.174 x 107*  —2.312 0.213  —0.091
RMSE 7.184 x 1075 0.041  0.074  0.052
CP (asymptotic CT) 0.937 0.954  0.946  0.949
CP (bootstrap CI) 0.947 0.958  0.952  0.955
(0.0005, —4.5, —0.125,0.5)  1956.72 bias (x1072%) —1.035 x 107*  1.605  0.088  0.122
60 RMSE 9.349 x 107° 0.082 0.061 0.071
CP (asymptotic CI) 0.929 0.948 0.953  0.946
CP (bootstrap CT) 0.948 0.957  0.959  0.965
(0.0005, —4.5, —0.1,0.5) 2130.28 bias (x1072%) 7.126 x 1074 1.857  0.163  0.115
RMSE 6.523 x 1079 0.077  0.065  0.032
CP (asymptotic CI) 0.938 0.963 0951  0.954
CP (bootstrap CI) 0.942 0.967  0.955  0.962
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Table 17: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 630.

n (B, n, 1, ) Run time 3 p i 5
(0.0005, —4.5, —0.2,0.5) 1352.49 bias (x1072) 3.751 x 1073 0.731 0.316 0.438
RMSE 4.285 x 1074 0.073  0.065 0.089
CP (asymptotic CI) 0.928 0.954  0.941 0.950
CP (bootstrap CI) 0.954 0.958  0.951 0.966
(0.0005, —4.5, —0.125,0.5) 1410.22 bias (><1072) —1.648 x 107%  1.452 0.235 —0.522
30 RMSE 1.208 x 10~* 0.098  0.082 0.066
CP (asymptotic CI) 0.915 0941  0.944 0.963
CP (bootstrap CI) 0.943 0.955  0.953 0.972
(0.0005, —4.5,—0.1,0.5) 1926.51 bias (x1072) —2.503 x 107 2389 —0.233  0.534
RMSE 9.481x 107> 0104 0.075  0.062
CP (asymptotic) 0.920 0.947  0.936 0.941
CP (bootstrap) 0.942 0.949  0.953 0.948
(0.0005, —4.5,—0.2,0.5)  1358.64 bias (x1072) 1471 x 107 1.151  0.210  0.331
RMSE 2.587 x 1074 0.085  0.055 0.062
CP (asymptotic CI) 0.932 0.951  0.949 0.957
CP (bootstrap CI) 0.958 0.963  0.947 0.962
(0.0005, —4.5, —0.125,0.5)  1512.57 bias (x1072) 8517 x 107* 2185 0.188  0.324
45 RMSE 7.362 x 107° 0.074 0.074 0.053
CP (asymptotic CI) 0.927 0.968  0.940 0.951
CP (bootstrap CI) 0.940 0.951 0.958 0.965
(0.0005, —4.5, —0.1,0.5) 1493.20 bias (x1072) 8.546 x 107*  1.439  0.224 0.283
RMSE 4.574 x 1075 0.161 0.065 0.045
CP (asymptotic) 0.943 0.937  0.948 0.955
CP (bootstrap) 0.953 0.949  0.954 0.960
(0.0005, —4.5,-0.2,0.5)  1528.65 bias (x1072) 1158 x 1073 0.452  0.113  0.154
RMSE 2.576 x 1074 0.035 0.031 0.045
CP (asymptotic CI) 0.937 0.944  0.956 0.940
CP (bootstrap CI) 0.949 0.957  0.963 0.954
(0.0005, —4.5, —0.125,0.5) 1956.72 bias (x1072) 5.034 x 1074 1.309  0.074 —0.262
60 RMSE 6.385 x 1075 0.042  0.069 0.068
CP (asymptotic CI) 0.935 0.955  0.946 0.956
CP (bootstrap CI) 0.948 0.947  0.954 0.966
(0.0005, —4.5,—0.1,0.5) 2130.28 bias (><1072) 5.289 x 1074 0.578 0.120 —0.187
RMSE 2.193 x 1075 0.132  0.025 0.036
CP (asymptotic CI) 0.927 0.949  0.952 0.954
CP (bootstrap CI) 0.945 0.946  0.953 0.965
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Table 18: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 365.

n (8, n, a, v) Run time Ié) Ul o 17

(0.0005, —4.5,4,5) 1482.60 bias (x1072) 3.578 x 107*  1.132  7.631 11.272
RMSE 1.543 x 10~*  0.181  1.287  1.352

CP (asymptotic CI) 0.918 0.944  0.953  0.962

CP (bootstrap CI) 0.947 0.952  0.947  0.973

30 0.0005,-4.5,5,5)  2319.67 bias (x1072) 6451 x 103  1.745 3451 —6.923
RMSE 2,947 x 107*  0.153  0.891  1.035

CP (asymptotic CI) 0.925 0.942 0.956  0.961

CP (bootstrap CI) 0.931 0.947  0.959  0.965

(0.0005, —4.5,4,5)  1766.25 bias (x10~2) 6.984 x 1073 —0.461 4.175 —8.238
RMSE 9.737 x 1075 0.110  0.715  0.851

CP (asymptotic CI) 0.926 0.950 0.945 0.953

CP (bootstrap CI) 0.937 0.953  0.949 0.948

45 0.0005,—4.5,5,5)  2832.71 bias (x10~2) 5275 x 1073 —1.278 2.923 —3.040
RMSE 1.104 x 10~*  0.116  0.767  0.691

CP (asymptotic CI) 0.928 0.937  0.949  0.952

CP (bootstrap CI) 0.935 0.942  0.956  0.955
(0.0005, —4.5,4,5)  2489.21 bias (x1072) 8.437 x 107*  0.559  2.135 —2.467
RMSE 6.746 x 1075 0.094 0.632  0.644

CP (asymptotic CI) 0.940 0.953 0.949 0.964

CP (bootstrap CI) 0.945 0.951  0.953  0.958

0" (0.0005, —4.5,5,5)  3251.04 bias (x1072)  8.042x 10* 0541 1.692 —1.816
RMSE 7.763 x 107°  0.093  0.558  0.720

CP (asymptotic CI) 0.938 0.942  0.956  0.948

CP (bootstrap CI) 0.946 0.943  0.967  0.959
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Table 19: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 450.

n (8, n, a, v) Run time Ié] Ul & 17
(0.0005, —4.5,4,5)  1346.54 bias (x10~2) 5750 x 1073 3.712  3.144 5175
RMSE 4.109 x 10~4 0.153 1.104 1.503
CP (asymptotic CI) 0.922 0.941 0.948 0.956
CP (bootstrap CI) 0.928 0.956 0.955 0.943
30 (0.0005, —4.5,5,5)  1745.30 bias (x1072) —7.351 x 1073 4.386 3.181 3.465
RMSE 4.166 x 10~4 0.152 1.256 1.761
CP (asymptotic CI) 0.927 0.937 0.944 0.938
CP (bootstrap CI) 0.934 0.943 0.953 0.946
(0.0005, —4.5,4,5)  1724.51 bias (x10~2) 2.085 x 1073 2.871 —2.109 —3.156
RMSE 3.671 x 1074 0.115 0.886 1.342
CP (asymptotic CI) 0.927 0.953 0.939 0.958
CP (bootstrap CI) 0.939 0.957 0.948 0.967
45 (0.0005,—4.5,5,5)  2306.41 bias (x1072) 6.573 x 1073 3.006 2.367  2.142
RMSE 3.341 x 1074 0.130 1.438 0.942
CP (asymptotic CI) 0.934 0.931 0.953 0.936
CP (bootstrap CI) 0.931 0.955 0.964 0.949
(0.0005, —4.5,4,5)  1974.93 bias (x1072) 8.410 x 10~* —1.632 1.123 2.110
RMSE 1.042 x 10~* 0.094 0.926 1.192
CP (asymptotic CI) 0.923 0.967  0.942 0.950
CP (bootstrap CI) 0.945 0.963 0.945 0.956
00 (0.0005,-4.5,5,5)  2792.48 bias (x1072) 9.208x 104  —1.150 —1.110 —1.104
RMSE 7.796 x 107° 0.084  0.894 0.859
CP (asymptotic CI) 0.930 0.963 0.941 0.958
CP (bootstrap CI) 0.937 0.967 0.953 0.964
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Table 20: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 540.

n (8, n, a, v) Run time Jé] 7 & 17
(0.0005, —4.5,4,5) 915.11 bias (x1072) 5.853 x 1073 1.457  3.783 5.325
RMSE 3.653 x 1074 0.142 1.244 1.571
CP (asymptotic CI) 0.922 0.944  0.951 0.942
CP (bootstrap CI) 0.947 0.954  0.963 0.970
30 (0.0005,—-4.5,5,5)  1109.93 bias (x1072) —1.392x 1075 0.794  4.681 6.750
RMSE 1.162 x 10~* 0.115 1.698 1.847
CP (asymptotic CI) 0.925 0.947 0.944 0.958
CP (bootstrap CI) 0.953 0.961  0.954 0.960
(0.0005,—4.5,4,5) 997.70 bias (x1072) —2.320 x 1073 0.813  3.512 4.708
RMSE 1.079 x 10~* 0.105 1.035 1.189
CP (asymptotic CI) 0.923 0.963  0.959 0.961
CP (bootstrap CI) 0.947 0.954  0.963 0.970
45 0.0005,—4.5,5,5)  1436.84 bias (x10~2) 8.466 x 1074 1.156  2.464 3.512
RMSE 7.641 x 107° 0.103  1.450 1.953
CP (asymptotic CI) 0.932 0.958  0.941 0.942
CP (bootstrap CI) 0.940 0.961  0.939 0.947
(0.0005, —4.5,4,5)  1657.03 bias (x10~2) ~5.492x 10~% 0572 1401 2.538
RMSE 7.875 x 107° 0.077  0.782 1.163
CP (asymptotic CI) 0.943 0.946  0.955 0.966
CP (bootstrap CI) 0.944 0.955  0.961 0.972
0" (0.0005, —4.5,5,5)  1810.24 bias (x10~2) 3.002x 1074 —0.714 1.246 1.289
RMSE 5.134 x 107° 0.069 1.019 1.064
CP (asymptotic CI) 0.944 0.960 0.952 0.957
CP (bootstrap CI) 0.939 0.965  0.947 0.946

42



Table 21: Biases and RMSEs of the MLE, the coverage probability (CP) of the 95% asymptotic
confidence interval (CI) and 95% bootstrap confidence interval and average computation time (in
seconds), computed based on 1,000 Monte Carlo replications, under the LLP-Lognormal model
with the PM time interval: A = 630.

n (8, n, a, v) Run time Jé] 7 & 17
(0.0005, —4.5,4,5)  779.96 bias (x10~2) —2.178 x 10~ 1.687 3.246 3.322
RMSE 8.652 x 107*  0.135  1.783 1.862
CP (asymptotic CI) 0.912 0.938  0.967 0.959
CP (bootstrap CI) 0.944 0.943 0.958 0.963
30 (0.0005, —4.5,5,5)  932.16 bias (x1072)  —4.841x 107* 1528 2.785 2.891
RMSE 2.193 x 1074 0.124  1.260 1.135
CP (asymptotic CI) 0.927 0.953  0.956 0.943
CP (bootstrap CI) 0.934 0.957 0.965 0.957
(0.0005, —4.5,4,5)  974.70 bias (x10~2) 7.045x 1074 1470 0.983 2.618
RMSE 3.731 x 1074 0.103 1.044 1.236
CP (asymptotic CI) 0.926 0.945 0.954 0.948
CP (bootstrap CI) 0.949 0.952  0.953 0.966
45 0.0005,—4.5,5,5)  1035.32 bias (x10~2) ~8.396 x 10~ —1.008 1.294 1.312
RMSE 7.232 x 107° 0.088 1.300 1.394
CP (asymptotic CI) 0.930 0.965  0.957 0.952
CP (bootstrap CI) 0.942 0.956  0.951 0.968
(0.0005, —4.5,4,5)  1338.29 bias (x10~2) ~1.302x 1075 0.849 1.145 1.176
RMSE 7.839 x 1073 0.078 0916 1.174
CP (asymptotic CI) 0.923 0.958  0.933 0.950
CP (bootstrap CI) 0.940 0.954 0.941 0.968
00 (0.0005,-4.5,5,5)  1624.81 bias (x10~2) 6.544 x 105 0.756  0.889 1.075
RMSE 4.113 x 1075 0.0564  0.752 0.408
CP (asymptotic CI) 0.939 0.947  0.952 0.961
CP (bootstrap CI) 0.945 0.957  0.958 0.963
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