Supplemental Material

1. Details of the proposed method

Here we describe the implementation details of our proposed wvisual posturing con-
troller. The controller was implemented using Tensorflow 2.8.0.

1.1. World model and learning

action in synergy space @

@

h; » h,

v

ht+1

visual observation

= [700) (1)
RUPA = BN O B
front diagonal <

> @ @o e

Figure 1. Recurrent state-space model

1.1.1. Observation and embedding

The observation of the world model (Fig. 1 (1)) was a set of two images; a front
view and a diagonal view. An image of each view was RGB of 128 x 128 pixels. Each
pixel was an unsigned integer within [0,255]. The images were first normalized to
[—0.5,0.5]. Subsequently, they were masked to remove the background. Masks were
generated using depth images obtained from the depth cameras. Pixels were set to
1.0 if they were within a specific distance range and 0.0 otherwise. The ranges were
determined so that only the robotic hands were extracted.

The masked images were fed into a CNN image encoder. Images from the two views
were processed with separate CNNs. Each CNN was consisted of five convolution layers
(filter numbers: 4, 8, 16, 32, 64, kernel size: 4 x 4, strides: 2 x 2, strides, activation:
ReLU). The outputs of the CNNs were flattened and concatenated and fed into a
fully connected (FC) layer to calculate an observation embedding e;, which had 1024
elements.

1.1.2. Updating deterministic term

A deterministic term was calculated from the previous latent state (z;—1 = [hy—1;8;—1]
and the previous action in the synergy space (a;_1) (Fig. 1 (2)). Specifically, s;_; and
a;_1 were first concatenated and fed into a FC layer (activation functions for FC layers
were exponential linear unit (ELU) unless otherwise mentioned) to calculate a vector
of 200 elements. This vector was fed into a GRU (tensorflow.keras.layers.GRU),
whose hidden layer had 100 units. The current hidden layer of the GRU was used as
h;; hence, h; was a vector of 100 elements.

1.1.3. Prior prediction

A prior distribution pP"" of the stochastic term s; was calculated solely from a de-
terministic term h; (Fig. 1 3). hy was fed into FC layers to calculate a vector of
200 elements. Subsequently, it was fed into two different FC layers (without activation
functions) to calculate put" and %", which were vectors of 100 elements. The second
vector o8 was post processed as o5 < softplus(eb") +0.1. A prior distribution was
instantiated as a multivariate normal distribution whose mean was pf' and diagonal
standard deviation was o5 . s; was sampled from this prior for imagination during
planning.

1.1.4. Posterior inference

A posterior distribution pPosterior of the stochastic term s; was calculated from a de-
terministic term h; and an observation embedding e; (Fig. 1 (). First, h; and e; were
concatenated, and they were fed into an FC layer to calculate a vector of 200 elements.
Subsequently, it was fed into two different FC layers (without activation functions) to

ost ost . ost
calculate u? and o5, which were vectors of 100 elements. The second vector o

was post processed as ot softplus(aEOSt) + 0.1. A posterior distribution was in-
stantiated as a multivariate normal distribution whose mean was p2°®" and diagonal
standard deviation was 2%, s, was sampled from this posterior to update the current

belief of the system state after observation at each step.

1.1.5. Reconstruction of observation

An observation o; was reconstructed from h; and s; (Fig. 1 (9). First, a la-
tent state z; = [hy;s¢] was fed into an FC layer (no activation functions) to
calculate a vector of 512 elements. Subsequently, it was fed into two indepen-
dent stacks of transposed convolution layers to generate two tensors f{)nean and
f{nean, whose size were 128 x 128 x 3. A stack of transposed convolution layers
(tensorflow.keras.layers.Conv2DTranspose) had five layers (number of filters: 64,
32, 14, 8, 3, kernel size: 5 x 5, stride: 2 x 2). f{)nean and f{nean were stacked to compose a
reconstruction I}***". A generative distribution p&°" was instantiated as a multivariate
normal distribution whose mean was I}"***" and the standard deviation was 1.0. This
distribution was used to calculate the likelihood in the loss function.

1.1.6. Updating world model

During training, episodes were stored in a buffer (either Dyandom Or Dreplay)- B episodes
were sampled uniformly at random from Dyandom U Dreplay to update the world model.
From each sampled episode, a sequence of L steps was randomly sampled. As a result,

a batch of B x L samples were generated for one update iteration. In this study, we
set B =50 and L = 21.

Lrssm = Liikelihood + DKL (1)
Lijkelinood = EoimDiepiny, ze~ppos: 108D (0¢]2Z¢)] (2)
Dx1, = E._, [Dxr (P°° (ze|ze-1,a:-1,0¢) || P*" (2¢e|ze-1,24-1))] (3)

The likelihood term (2) was calculated as follows. First, latent states for each sequence
in a batch were calculated sequentially, starting from the first observation and action.
The initial hidden state of the GRU was set to zero, and latent states were calculated
step by step by feeding in the next observation and action. After inferring all the
latent states, generative distribution p#" was calculated from the states following the
procedure described in Section 1.1.5. The log-likelihood of observations provided the
generative distribution was averaged over the batch to obtain (2). The KL divergence
term (3) was calculated by averaging KL divergence between the posterior and the
prior of the stochastic variables in the batch.

All the parameters in the world model were updated by minimizing (1) using SGD.
We used Adam optimizer (tensorflow.optimizers.Adam) with a learning rate 6.0 x
10~*. We clipped the norm of gradients to 100.0 for learning stability.

1.2. Model predictive path integral

Algorithm 1 Action sequence planning at step t

Input: latent state z;, goal latent state z,, plan horizon H
latent dynamics p, previous momentum m;_1.44 79
previous action sequence C; 1.1 5 o

Output: my g1, Crprpg 1
Critr—1 < [Cruqrr—20]
My y g1 My q-2;0]

for j=1---M do

fork=1.---K do
e®) « N(0,6%I) (sample noise)
ég;kt)Jqu —Crpr1 +€¥ +ymyy g1 (generate action samples)
Z < Zy
forr=0---H—1do

z ~ p(z, aTk)) (imagination)

end for
d®) l|zg — z||]2 (calculate distance from the goal)

end for

A (S exp(—d®A) e®) / (S exp(—d®a))
My -1 < YMern-1+ A (NAG)

Crtrr—1 < Crppm—1 + Mety -1
end for

Algorithm 1 is the pseudo-code for MPPI in the world model. Nesterov Accelerated

Gradient (NAG) was adopted to accelerate the planning. We set the following param-
eters: M = 40, K = 250, 6 = 0.05, A = 10.0, and v = 0.8. Planning horizon H was set
to max(ﬁ ,T'—t), where H = 10. At the beginning of an episode, where there was no
preceding action sequence, ¢ was set to a zero vector.

2. Hardware details

2.1. Hand design and fabrication

100.5 mm

240mm

939 mm

(a) Palm design (b) Index / middle finger design (c) Thumb design (d) Pulley design (e) Centrl ligament wiring

Figure 2. Hardware designs and dimensions. (a) Palm design. (b) Finger design for index and middle fingers.
This part was mounted on the palm. The metacarpophalangeal (MCP) consists of two rolling contact joints.
(c) Finger design for the thumb. The carpometacarpal (CMC) consists of two rolling contact joints. (d) Pulley
design. It was fixed to a servo motor shaft. A tendon was fixed to this pulley using a screw. (e) Illustration
of central ligament wiring for the index finger. The central ligament string was fixed to a spring to generate
tension.

The design of a physical tendon-driven manipulator for the experiment is presented
in Fig. 2. We designed the hardware using Fusion360 (from Autodesk). Most of the
parts were made of VeroClear (translucent) or VeroWhitePlus (white color). They
were printed using Objet260 Connex3 (from Stratasys). Ligaments (amber parts in
Fig. 2) were made of Flexa Bright(TPU, A Shore hardness: 79) and printed using
Lisa-Pro (from Sinterit). There was a central ligament inside each finger, as shown
in the cross-section view in Fig. 2(e). It was fixed to the palm via a ligament spring
to extend the finger. Photos of the fabricated hand was presented in Fig. 3. Fingers
were covered by colored skins (Flexa Bright) shown in Fig. 3(a). They were fixed to
fingers with screws. We used Spectra Dyneema ropes of diameter 1.5mm for central
ligaments and tendons (the black ropes in Fig. 3). Tendons were guided to motors
through polytetrafluoroethylene tubes (the white tubes shown in Fig. 3).

2.2. Tenston sensor

Each tendon was equipped with a tension sensor to avoid extremely high tension
(Fig. 4). When a pulley pulled a unit, a slider pushed a pressure sensor FSR400
(Interlink Electronics Inc). When a sensor detected tension over a threshold,
the motion of the associated motor was restricted to avoid additional tension. In the
experiment, we restricted the motion of the associated motor when the resistance of
an FSR400 fell below 1.92k(? , in order to limit the tension.

(a) Finger covers (b) Front side (c) Back side (d) Rolling contact joints (e) Thumb CMC
(index, middle finger)

Figure 3. Images of the fabricated hand.

inner spring

|
|
:
tendon spring |
|
|

pulled . press

(a) Fabricated tension sensor (b) lllustration of movement

Figure 4. Tension sensor

3. Collection of typical hand postures

Fix thumb position by hands

Fixed !

After balancing

Balance tensions

Figure 5. An illustration of typical posture collection where a posture for the thumb is being collected.

Typical postures were collected for each finger separately. Figure 5 illustrates a
procedure to collect a typical posture of the thumb. As depicted in the figure, the finger
was fixed at a target position using the experimenter’s hands. After that, the angles
of motors that were associated with the finger were adjusted iteratively to achieve a
specific tension. Tensions were monitored by the tension sensors described in Sec. 2.1.
Once the tensions were balanced, the finger was fixed at the position without the

external support. The motor angles of this state were recorded for synergy extraction.
We collected 14 postures for the thumb, 12 postures for the index finger, and 12
postures for the middle finger, respectively. Figure 8 shows all the typical postures
collected for the experiment.

‘seanysod puey [eord£) pelos[[od Jo IS 9 aan3ig

©)

B Ty

2z
jelioBeiq

4. Baseline implementations

4.1. regression

A regression model used the same CNNs described in 1.1.1 to generate an observation
embedding. An embedding was fed into two FC layers (400 units) to calculate a vector
of 400 elements. Subsequently, it was fed into two separate FC layers (no activation
functions) to calculate a mean vector viye.n and a standard deviation vector vgq.
These vectors were post-processed as follows:

v
Vmean < 9.0X tanh(;egm) (4)
Vsta < softplus (vea + log (e” — 1.0)) + 0.0001 (5)
Action distribution p*®8"®S was first instantiated as a multivariate normal distribution,
whose mean was Vipean and variance was (vstd)TI Vetd- Then, its sample space was
transformed to the interval [—1.0,1.0] using a tanh bijection function.
During training, pairs of an image observation and a corresponding set of motor

angles were sampled from D, andomUDreplay @s @ mini-batch. The following loss function
was minimized using the mini-batch:

Lregress = E0t7atNDrandornUDreplay [_ log pregress<SE<at)|ot)] (6)

Optimization was conducted using SGD with an Adam optimizer (learning rate being
6.0x 10™4, gradient norm clipped to 100.0). The number of updates in both pretraining
and reinforcement learning were aligned with the proposed method.

4.2. regression(r)

10k random samples were collected for this baseline, and a model was trained only
using this random data (i.e., only the pretraining phase was conducted and no rein-
forcement learning phase). The pretraining phase lasted until conducting 10k updates.

4.3. without synergies

The synergy module in the proposed method was replaced with a fixed linear trans-
formation to fit the action range into [—1.0,1.0] in the world model.

a = T 8min 9010 (7)
QAmax — Amin
a, = 0.5x (ét + 10) X (amax - amin) + @min (8)

4.4. Dreamer

We based the implementation of this baseline on the official one (https://github.
com/danijar/dreamer). Modifications to the implementation were described here.
An actor module was an FC network with four layers (400 units) followed by two
separate FC layers (no activation functions) that calculated the mean and standard
deviation of a normal distribution. Then, its sampling space was converted to the

interval [—1.0,1.0], as described in Sec. 4.1. The module received the current latent
state z; and a latent goal z4, and concatenated them before feeding to the network.

A value module was an FC network with three layers (400 units) followed by a single
FC layer (no activation functions) that calculated the mean of a normal distribution.
A standard deviation was fixed at 1.0. The module received the current latent state
z; and a latent goal z,, and concatenated them before feeding to the network.

A reward module was removed from the original implementation, and Euclidean
distance between z; and z, was used to evaluate imagined trajectories. A latent state
consisted of a deterministic term h; (100 elements) and a stochastic term s; (30 ele-
ments).

5. Posturing Behaviors

¥d bulutely

0d buiutesy

Td bulutesy

2d buuresy

10

€d bulutesy

Figure 7. Timelapse sequences of hand posturing episodes achieved using the proposed method. Goal hand postures are from the training set.

CEEGECEEE
EEECELELR
EEELEEERRE
ELECEEELED
EEELLEEEEG

p s

Sd1 bunsal 9d1 bunsap £d1 bunsal 8dL bunsal 0ldL bunsay

]
.. ’ .. u E
EL ECE ECCCEC

0d1 bunsap Ld1 Bunsap 7d1 bunsap €d1 bunsap ¥d1 bunsal

Goal

t=10

11

Figure 8. Timelapse sequences of hand posturing episodes achieved using the proposed method. Goal hand postures are from the testing set.

