8 Web Appendix

8.1 On the Identifying Assumptions for the Target Average Treat-

ment Effect

We now discuss the assumptions for identification of 7, as given in Assumption 1 in Section 2.
We can weaken Assumption 1(b) to only require Ep,{Y (2)|X} = Ep {Y (2)|X}, z € {0,1}, i.e.,
conditional mean exchangeability of the potential outcomes across treatment groups. Also, we can
weaken Assumption 1(d) to require Ep{Y (1) — Y (0)|X} = Ep{Y (1) — Y(0)| X}, i.e., conditional
mean exchangeability of the treatment effect across the study and target populations. In this
paper, we consider somewhat stronger assumptions as they allow us to identify general features of
the distributions of the potential outcomes in the target population, e.g., Er[g{Y (2)}], z € {0, 1},

and g[ET{Y (1)}, Er{Y (0)}] for measurable functions ¢(-) and g§(-).

By Assumption 1(d), controlling for the observed covariates is sufficient to remove differences in
potential outcome distributions between the study and the target populations. Importantly, be-
cause Assumptions 1(c) and 1(d) are based completely on the distributions of {Y(1),Y(0), X} in
the study and the target populations, they can pertain to a variety of generalization and trans-
portation settings. These include those where the study and target populations are disjoint (e.g.,
transportation) and those where the study population is nested within the target (e.g., generaliza-

tion).
8.2 Connection to inverse propensity weighting

8.2.1 The dual optimization problem

In this section, we formally discuss the equivalence between one-step balancing weights and in-
verse propensity modeling weights. Recall that the primal optimization problem for the one-step

balancing weights is given by

> wiBR(X;) — By,
2=z

argmin{ Z P(w;) :

w .
0=z

<6k k=12,..,K; > wi:1} (8)

©li=z



Throughout this section, we consider generalization in the nested study setting, because traditional
inverse propensity weighting methods have only been developed for settings with a formal study
selection process and selection indicator variable. Here, the study population P is nested within the
target population 7, with D indicating selection from 7 into . We assume that the study sample of
size n is nested within a random sample of size n* from 7. For a unit in group Z = z with covariate
vector x, let @w(x) and w'F(x) be its one-step balancing weight and the true inverse propensity
weight, respectively, where the one-step balancing weights are obtained via . In Theorem 8.1

we show that the one-step balancing weights estimate the inverse propensity weights under a specific
functional form of the inverse propensity weights and a loss function. Theorem generalizes the
results of[Wang and Zubizarreta, (2020)) and (Chattopadhyay et al. (2020), where similar connections
between minimal and inverse propensity weights have been established in missing data and causal

inference settings, respectively.

Theorem 8.1.

(a) The dual problem of is equivalent to the empirical loss minimization problem with L;

regularization:
minimize Ry [ —n*1(Z; = 2)Dip{ B(X;) " A} + B(XZ-)T)\} +AIT8, (9
=1

where A is a K x 1 vector of dual variables corresponding to the K balancing constraints, |A| is
the vector of component-wise absolute values of A, and p(t) = t/n* —t(h')~1(t) —h((h)~1(t)),

with A(t) = (1 /n* — t).

(b) If w and XL are solutions to the primal and dual forms of , respectively, then for i : Z; = z,
— o AT AT
w; = p{B(X;) AL} (10)
(c) If A, € argmin Er[—n*1(Z; = 2)D;p{ B(X;) T A} + B(X;)"A|X; = x|, then A, satisfies
A

#{B(2) A} = {n"r(@)Pp(Z; = 2|X; = 2)} ' = (n") ' w(a). (11)



Parts (a) and (b) of Theorem [8.1| provide an alternative approach to obtain the one-step balancing
weights via the dual form of the optimization problem in , and part (c) links the form of the dual
objective to inverse propensity weighting. Formally, suppose the true inverse propensity weights
in group Z = z have the functional form w'f(x) = n*p’{B(x)" A} for some parameter A, and
we estimate A by minimizing the regularized empirical loss function in @ Equation implies
that the resulting estimated inverse propensity weights are proportional to the one-step balancing
weights in the sense that @ZIP = n*w;. Importantly, estimation of the inverse propensity weights
here does not involve separate specifications of the treatment assignment and the study selection
models. Theorem thus shows that our proposed method is equivalent to a one-step estimation
method of the inverse propensity weights via a loss function that directly addresses covariate balance

relative to the target and simultaneously ensures that the weights are less dispersed.

8.2.2 Proof of Theorem [8.1

We first consider the optimization problem without the normalization constraint and with d; > 0
for k € {1,2,..., K'}. The kth balancing constraint in the optimization problem in (9) can be written

as,

> wiBr(X;) — B < 6k
©Zi=z
= | Y 1(Z; = 2)Daw; Be(X;) — (n*) ™1 Br(Xi)| < 6k
=1 =1
— {(n*)™' = 1(Z; = 2) Dyw; } Bp(X;)| < 6y,
=1
— | > &GB(Xi)| < 6k (12)
=1

where §; = 1/n*—1(Z; = z)D;w;. Thus, for the units in group Z; = z of the sample, w; = (1/n*—¢&;).

For the objective function 37, , _ 1 (w;), we have

Z P(w;) = Z 1(Z; = 2)D;h(&), (13)



where h(z) = ¢¥(1/n* — x). We let A be a K x n matrix whose (7,j)th element is B;(X;);

T " T . .
Q= (A ,—A ) ;and d = (8,0)" . We can write the primal problem as

minimize Z 1(Z; = z)D;h(&)
i=1 (14)

subject to Q& <d

This gives us a convex optimization problem in & with linear constraints. The Lagrange dual
function of the primal problem in Equationis given by irglf{zgil 1(Z; = Z)Dih(gi)—FATQE}—}\Td
(see, e.g., |Boyd and Vandenberghe 2004 Chapter 5). Let @Q; be the ith column of Q. The dual

objective function can be written as

- sup{ Z 1(Z; = 2)Dih(&) — AT Q€Y — ATd
- Zsu_p{ (Qf N& — 1(Z; = 2)D;ih(&)} — ATd
— Z{ R (—QTA)} — ATd,
where h7(-) is the convex conjugate of 1(Z; = z)D;h(-). Thus, the dual problem is given by

maxi}\mize Z{ hi(—QIN)) —\Td
(15)

subject to A >0,

Since the last K components of Q; are reflected versions of the first K components, by symmetry
we can write the dual problem as,

*

maximize Y {—h;(Q{A\)} —A'd
8 i=1 (16)

subject to A >0,

Now,



hi(t) = Slgl_p{tfz' — 1(Zi = 2)Dih (&)}
= sup {1/n* = 1(Z; = z)Dyw; }t — 1(Z; = z)Dih{l/n* - 1(Z; = z)Diwi}]
= 8111}1}) {1/n* — 1(Z; = z) Dyw; }t — 1(Z; = z) D;h(1/n* — w;)]

= {1/n" = 1(Z = 2) Dyws(t) }t — L(Z; = 2) Dsh(1/n" — @i(1)}, (17)

where w;(t) satisfies

00w | {1/n* = 1(Z; = 2)Dywi}t — 1(Z; = 2)Dih(1/n* — w;)]

—0. (18)

w;=w; (t)

Solving for w;, we get @;(t) = 1/n* — (h')~'(t). Therefore, the dual problem boils down to,

n*

minimize Z { —1(Z; = 2)Dip(Q] ) + l/n*Q:)\} +A'd
. i=1 (19)

subject to A >0,

where p(t) = t/n* —t(h')~1(t) + h{(K)~1(t)}. Note that p'(t) = 1/n* — (h')~1(t). Therefore,

wi(t) = p'(t). (20)

Following the proof structure of Theorem 1 in Wang and Zubizarreta| (2020), we write A =
()\L AT, where A, and A_ are K x 1 vectors. Denoting A; as the ith column of A, we write

the dual objective as,

*

=3 { =12 = 2)Dip{A] Ar = A} + ()" AT (A =2+ AL+ ADs (1)
=1

Denote A = ()\f, AT_T)T as the dual solution. Let, if possible, the jth component of )\]L+ and Al

be both strictly positive, for some j € {1,2,..., K'}. Define,

At = (AT = (0,0, ..., min(AT_;, AT ),0,.,0)T, AT — (0,0,...,min(A, ;AT ),0,...,0)7)  (22)
—_———— —_————

jth place jth place



Notice that g(ATT) = g(AT) —26; min()\i’j, )\Lj) < g(AT) since §; > 0. This leads to a contradiction
since AT minimizes g(\). This implies that at least one of )\1’ j )\T_? ; equals zero. From Equation

we see that the dual problem has the following unconstrained form.
minimize (n")"" )" | = 2 1(Z: = 2)Dip{ B(X:) A} + {B(X:) " A} + A", (23)
i=1

where |A| is the vector of co-ordinate wise absolute values of A.

Now, consider the primal problem

minimize Z P(w;),
w

=z
subject to ’ Z w; Br(X;) — B};‘ <0, k=1,2, ..., K. (24)
2=z
‘ S wiBy(Xi) - B[ =0, k= Ko +1,.., K.
ZZZ:Z

Let B(x) = (By(x),...,Bg,(x))", B(x) = (Bg,41(),..., Bx(x))", and § = (61,...,0k,) . We
note that for By(x) = 1, the corresponding equality constraint boils down to the normalization

constraint. Using similar steps as before, we see that the dual of is

mir;imize (n*)Y { —n*1(Z; = 2)Dip{ B(X:) " X + é(Xi)Tl/} +{B(X))"A+ é(XZ)TV}} + Ao,
v i=1
(25)

can be written as:

n*

minimize (n*)~"Y" |~ 2 1(Z: = 2)Dip{ B(X:) A} + {B(X:) ' A}| + A", (26)
=1

which has the same form as in . This proves part (a) of Theorem 4.1. Moreover, Equation

implies that the optimal solutions of the primal problem satisfies

w; = p{B(X;) AT}, (27)



proving part (b). Finally, for part (c), we consider the conditional expected loss in (23).

Er[ = n*1(Z = 2)Dip{B(X:) A} + {B(Xi) A} Xi]
= By - n"1(Z = Z)Dip{B(Xi)TA}]XZ} +{B(X;)TA}

= —n*p{B(Xi) " A}Pr(Z; = 2| Xi)m(X,) + {B(Xi) T A} =: 6(N) (28)
We now minimize this expected loss ¢(X) wrt A. The minimizer A* satisfies the following:
P{B(X:) X} = {(n*n(Xi)Pr(Zi = 2|1 X;)} (29)

This implies the solutions w; implicitly estimate the inverse propensity weights. This completes

the proof.

8.3 Connection to inverse odds weighting

In this section, we consider the generalization problem in a nested design setting, where the target
population is the population of study non-participants. As before, we denote P and 7T as the study
and target population, respectively. Let Q be the population represented by the study participants
and non-participants, with associated probability measure Q (and density ¢). Also, let n** be the
total number of study participants and non-participants. As before, D is the indicator of being a

study participant. It follows that P = Q|D = 1 and T = Q|D = 0. In particular, we can write
7= Er{Y(1) =Y (0)} = Eo{Y (1) - Y(0)|D = 0} (30)

We now derive a connection between the one-step balancing weights and the inverse odds weights

in this setting. The kth balancing constraint in the optimization problem in (9) can be written



as,

Z win(XZ) — BZ < O
©wli=z
= | Y _1(Z; = 2) Daw; Be(X;) — (n*) ™" (1 — Dy)Bie(X5)| < 6
=1 i=1
— | Y {(n") (1 = Di) = 1(Z; = 2) Dyw; } B(Xi)| < 6
=1
= | D_&DBr(Xi)| < 0 (31)

where & = (n*)~1(1 — D;) — 1(Z; = 2)D;w;. So, for the units in the group Z; = z of the sample,
w; = {(1 = D;)/n* — &} = —&. For the objective function 37, , __ 1 (w;) (where 9 is a convex

function of the weights), we have

> v(wi) =) 1(Z; = 2)D;h(&), (32)

i Zi=z i=1

where h(z) = ¢(—xz). Now, let A be a K x n matrix whose (7,7)th element is B;(X;); Q =

T T T T . .
(A ,—A ) ;and d = (8,6)" . We can write the primal problem as

mingnize Z 1(Z; = z)Dih(&)
im1 (33)

subject to Q& < d

gives us a convex optimization problem in £ with linear constraints. Let @Q; be the ith column of

Q. The corresponding dual problem is given by,

*

imi QT — AT
maximize ;{ hi(Q; AN} —A"d

subject to A >0



where,

hi(t) = Sgp{tfi — 1(Z; = 2)D;h(&)}

Wi

= sup [{(1 — Dz)/n* — ]l(Zi = Z)Dz'wi}t — ]l(ZZ' = z)DZh(—wZ)]

Wi

={(1—-D,)/n" — 1(Z; = z)Dyw;(t) }t — 1(Z; = z)D;h(—w;(t))
where w;(t) satisfies

w,:@i (t)

00w [{(1 = Di)/n* = 1(Z; = 2) Diw}t = 1(Z; = ) Dih(~w;))|

Solving for w;, we get w;(t) = —(h/)fl(t)-

Therefore, the dual problem boils down to:

n**

mini}\mize Z{ —1(Z; = 2)Dip(Q) N) + (n*) 11 — DZ)QI)\} +'d
i=1

subject to A >0

where p(t) = —t(h')~1(t) + h((h')~1(t)). Note that p'(t) = —(h')~1(¢). Therefore,

(37)

Using similar steps as in the proof of Theorem 4.1 we obtain the following form of the dual prob-

lem.

n**

mini}\mize (™)1 [— n**1(Z; = 2)Dip{ B(X;) " A} + (n*) " 'n*™*(1 — D;)){B(X;) )\}} + AT

=1

(38)

Also, if @;s are the optimal solutions of the primal problem and AT is the optimal solution of the



dual problem, then we have

@; = p'{B(X;) AT}, (39)

Let us consider the conditional expected loss in .

Eg [ — ™ 1(Z; = 2)Dip{B(X;)TA} + (n*) " 'n** (1 — Di){B(XZ»)TA}‘XZ}
= Bo[ = n"*1(Z; = 2)Dip{ B(X) T A} X,] + (n") "0 (1 — m(X:)){B(X:) A}
= —n"p{B(X;) ' A\}Pq(Zi = 2| Xi)m(Xi) + (") "'n** {1 = w(X;) {HB(Xi) ' A}

=: p(A) (40)
We now minimize this expected loss ¢(A) wrt A\. The minimizer A** satisfies the following—
P{B(X:) X"} = {1 - 7(Xy)} / {n"n(X:)Pg(Z; = 2 X))} (41)

This implies, the solutions w; implicitly estimate the inverse odds weights.

8.4 Connection to linear regression

In this section, we discuss the connection between one-step weights and linear regression. For
simplicity, we consider the generalization problem in a nested design setting, where the study
sample is nested within a random sample of size n* from the target population. Extensions of the
results to other settings hold analogously. Also, without loss of generality, we focus on estimating

Er{Y (1)} (the results hold similarly for Ep{Y (0)}).

Recall that, by Assumption (I, m;(x) = Ep{Y(1)|X = x} = Ep{Y(1)|X = «}. The linear
regression imputation approach for generalization (our outcome modeling approach; see Dahabreh
et al. (2019)) first fits a linear outcome model bes = Bo + B{ X; + ¢ in the treatment group
and estimates mi(x) as My (x) = By + B «, where the coefficients are estimated by ordinary

least squares (OLS). The regression model can also incorporate other transformations of X. The

10



regression imputation estimator of Ep{Y (1)} is given by,
> L a L AT A L AT %+
Ex{Y()} = —> {Bo+B1 Xi} = Bo+ B) X7, (42)
i=1

where X* is the target profile, i.e., the mean of the covariates in the full sample.

We note that procedurally, this approach is equivalent to the multi-regression imputation (MRI)
approach in (Chattopadhyay and Zubizarreta| (2023). Hence, by Proposition 2 of |(Chattopadhyay
and Zubizarreta, (2023), it follows that, By + 8] X* = > iZi=1 w; Y where the weights w; sum

to one in the treatment group.

Moreover, by Proposition 3 of the same paper, the weights w; are the weights of minimum variance
that add up to one and ezactly balances the mean of the covariates in the treatment group, relative
to the target profile X*. In other words, these weights are equivalent to the one-step weights in
(7), where — (i) the Lo norm of the weights are minimized, (ii) The basis functions are identity

functions, (iii) d; = 0 for all k, and (iv) weights are allowed to be negative.

8.5 Convergence of one-step weights

The equivalence in Theorem allows us to establish several asymptotic properties of the one-
step balancing weights and their resulting estimators. In this section, we formally show that
under Assumption [2| and the one-step weights converge uniformly to the inverse propensity

weights.
For convenience, we restate the regularity conditions in Assumption 4 below.
Assumption 4. For z € {0,1},
(a) There exist constants cg, ¢1, co with 0 < ¢g < 1/2 and ¢1 < ¢z < 0, such that ¢; <

n*p"(v) < ¢ for all v in a neighborhood of B(x) T Af,. Also, co < 1/(n*p'(v)) < 1 — ¢ for

allv=B(x)" X\, z € X, A

(b) sup ||B(z)|]s < CKY? and ||Er{B(X)B(X)"}||r < C, for some constant C' > 0, where
reX

|| - || denotes the Frobenius norm.

11



(¢) K =0{(n*)*} for some 0 < o < 2/3.

(d) For some constant C' > 0, Amin {ET{DIL(Z = z)B(X)B(X)T}} > (', where Apin(A) denotes

the smallest eigenvalue of A.

(e) [|d]l2=Op [Kl/‘l{(logK)/n*}l/2 + K—Tz+1/2}_

Assumption [fa) bounds the slope and curvature of the function p(-), allowing us to translate the
convergence of the dual solution to the convergence of the weights. This condition is satisfied for
typical choices of convex objective functions 9 (-), e.g., those corresponding to entropy balancing
(Hainmueller|2012) and stable balancing weights (Zubizarreta [2015). Assumption [4(b) restricts
the rate of growth of the norm of the basis functions, and c) specifies the rate of growth of the
number of basis functions K relative to n*. Assumption [4(d) is a technical condition required
to ensure non-singularity of the covariance matrices of the basis functions within each treatment

group. Finally, e) controls the degree of approximate balancing in terms of K and n*.

Theorem 8.2 (Uniform convergence). Under Assumptions 1, 2, and {4} the one-step balancing

weights in group Z = z € {0, 1} satisfy

sup | () — w'(@)| = Op [K¥* {(log K) /n*}'/* + K'77] = op(1). (43)
EAS

Below we provide a proof of Theorem All probabilities and expectations in this proof are
computed with respect to the probability measure T. We focus on the primal problem in group z,
for z € {0,1}. For simplicity, let us denote Z = 1(Z; = z)D;. The dual optimization problem can

be written as,

mini}fnize G(A), where
G = (1) 30 [ =" Zin{B(X:) TA} + {B(X) A} + I\[T8.
=1

Let AT be a solution to the dual problem. We first consider the Lo, distance between the scaled

one-step balancing weights and inverse probability weights. In the following, we use C,C’,C" as

12



generic positive constants whose values may change from one step to the next.

sup (@) — w'” (z)|
xrxeX

= sup n*p{B(z) "AT} — n*p'{g:(x)}]
* / Tyt * / Tyx* * / Ty * * /[ %
< sggln P{B(x) A} —n*p{B(x) A} + Sggln pP{B(z) A1} —n"p'{g:(x)}|

< Csup |B(x) (AT = A7)+ Csup [B(z) " A}, — g% ()|
xeX reX

< CKY2IAT = ALl + O(K 7). (45)

The first equality is due to Assumption The first inequality is due to the triangle inequality.
The second inequality follows from applying using the mean value theorem and Assumption (a).

The final inequality is due to the Cauchy-Schwarz inequality and Assumptions 2 and (b)
Let us now consider the following Lemma.

Lemma 8.3. There exists a dual solution AT such that [|AT — AL, ||2 = O[K/*{(log K)/n*}/? +

K—T‘Z-i-l/Q]‘

Given Lemma[8.3] Equation [45] completes the proof of Theorem 4.2. So, it suffices to prove Lemma

[8.3] For this, we require the following lemmas.

Lemma 8.4 (Bernstein’s inequality for random matrices). Let W, W, ..., W, . be d; X dz in-
dependent random matrices with E(W ;) = 0 and |[W,[|]2 < Ry« a.s., where || - [|2 denotes the

spectral norm. Let o2, := max {H S B(W W), || 20 E(mjwj)ug}. Then, for all £ > 0,

P(

> t) < (di +do) exp [(2/2) /{02 + (Ra-1)/3}]. (46)
2

> W,
j=1

Proof of Lemma See [Tropp et al. (2015).

Lemma 8.5. (")~ S5 {1 — Zjw!® (X))} B(X,)||| = Op[K"/*{(log K)/n"}/.
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Proof of Lemma We will use Lemma [8.4] to prove this. Let us denote

W, = (n*) 1 - Zw™ (X)) B(X;), forje{1,2,.,n"}. (47)

i
First, by unconfoundedness, £(W ;) = 0. Second, we have
IWll2 = ()1 = Zyn"p {gZ (X} x [|B(X;)]2

< [L+ "o {g (X ) HI (")~ sup 1B(2)]|2
< CKY?2(n*) 7O + O(K™™)C) < (C'KY?) /n*. (48)
Here the second inequality is obtained by applying Assumption (b) on the second term in the prod-

uct and using the mean value theorem on n*p/'{g*(X;)} about B(X;) " A},, followed by assumptions

[4(a) and 2. Next, we consider

SR Iw,)|| =3 B[ 2w (6)2BX) T B(X,)
J=1 2 J=1
<C(m") Y B{B(X))"B(X))}
j=1
= C(n*)2trace|[ E{ B(X1)B(X1)" }]. (49)

Here first inequality follows from applying the mean value theorem along with assumptions (a) and

2, similar to the steps in Equation[48] Now, let A, ...\ be the eigenvalues of a non-negative definite

matrix A. By the Cauchy-Schwarz inequality, trace(A) < K2 (A} + ... + 2% 2 = KY2||A||F.
Thus, from Equation we get
S EWIW,)| < (CK')/nt|[E[BX)BX]|| < (CKVAmt, (50)
Jj=1 2

14



where the last inequality holds due to Assumption (b) Next, we consider

3
*

Z EW,W))

<3| 20 - 2 (X BB

1 2

2 J

IN

)2 S | E(B(X)B(X;) T} s

j=1

n*) 2 Y IIE{B(X;)B(X;) " }lr < C"/n’ (51)
j=1

Here the first inequality is due to the triangle inequality. The second inequality follows from
upper bounding {1 — Z;w'"(X;)}? as before and using monotonicity of spectral norms. The third
inequality holds since spectral norm is dominated by the Frobenius norm. Finally, the fourth

inequality holds due to Assumption b)f. Therefore, from equations |50| and [51| we get,

> E{W,W ]}
j=1

o2 = max { JWH| )< (CRY) . (52)

2

2

Using Lemma we get,

P (H S Wk t) < (K +1)exp [(#2/2)/ {CK ()7 + C' K30 ] (53)
j=1

Finally, we observe that due to Assumption (C), the right hand side of Equation goes to
zero if t = CKY*(log K)'/?(n*)~1/2, for some constant C' > 0. This implies, HZ?;I Wiz =

Op {K1/4(log K)l/Q(n*)*l/Q}. This completes the proof.

Lemma 8.6. With probability tending to one, Amin ( Zj:Z]:l(n*)_lB(Xj)B(Xj)T) C for some

constant C' > 0.

ProofofLemma Let D =Y, _,(n")"'B(X;)B(X;)T = (n") ' S32{Z;B(X))}{Z;B(X;)"}
and D* := B{Z;B(X;)B(X;)"}. We will first use Lemmato show that ||D — D*||2 = op(1).
To this end, denote W; = (n*)'{Z;B(X;)}{Z:;B(X;)"} — E{Z;B(X,;)B(X;)"}]. By construc-
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tion, E(W ;) = 0. Moreover,

{Z;B(X;)}{Z;B(X;) "} < |{Z;B(X;)H{Z;B(X;) " }|r
< sup |B(x)|; < C"K (54)

where the last inequality holds due to Assumption (b) Also,

|1B{Z;B(X;)B(X;)" }ll2 < [|E{B(X;)B(X;)" }I|2

< [|[E{B(X;)B(X;)" }lIF < ', (55)

where the first inequality is due to the monotonicity of the spectral norm and the last inequality

holds due to Assumption b). This implies,
IW[le < {C(K +1)}/n, (56)

for some constant C' > 0. Next, we compute o2.. After some algebra, it follows that,

1S EOW, W),
j—l

Z! E(W W)l

.
[y

< (n") " (CK||E{B(X1)B(X1) }||2 + | E{Z1B(X1) B(X1) } E{Z: B(X1)B(X1) " }»)
< (n*) 7! |CK||B{B(X1)B(X1)" }|2 + || E{B(X1) B(X1) " }|I3]

<A{C'(K +1)}/n", (57)

for some large C’ > 0. Here the first inequality is due to the triangle inequality; the second
inequality is due to Assumption (b) and monotonicity of the spectral norm; the third inequality is

due to the submultiplicativity of the spectral norm; and the final inequality is due to Assumption
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b). Now, since W ; is symmetric we have
1> EW W)l < {C'(K + 1)}/n*, (58)
j=1

implying o2. < {C'(K + 1)}/n*. Therefore, by Lemma we get
P (

for a large constant C” > 0. We note that the right hand side goes to zero for t = C{(K log K)/n*}!/?

> W,
j=1

> t) < 2K exp [(12/2)/ {C/(K + (") + C(K + Di(2n*) )]
2

< 2K exp [n*#?/{C"K(1+ 1)}, (59)

for a constant C' > 0. Therefore, we have
D = D*[|2 = 0, [{(K log K)/n*}'/*] = 0,(1), (60)
where the last equality holds due to Assumption c). Now, Weyl’s inequality implies
Amin(D) 2 Amin(D*) — [|D — D*[[2 > C = [|D — D]z, (61)

where the last inequality holds due to Assumption [4(d). Since ||D — D*||z = 0,(1), we have for n*

large enough, Apin(D) > C/2 > 0. This completes the proof.

Proof of Lemma We follow the proof structure of Fan et al. (2016)) and [Wang and Zubizarreta,
(2020). All the subsequent probabilities and expectations are taken with respect to T. First, let
r=C* {(K1/4 log K)/n* + K""2+1/2} for a sufficiently large constant C* > 0. Let A = X — AJ,.
Also, let C = {A € RX : ||A]|]z < r}. To show that there exists a AT such that ||AT — AL, ||z =
Oy {(K1/4 log K)/n* + K*““/Q}, it is enough to show that there exists a AT € RX such that

n*—oo

P(ATeC) 2751,

Now, the dual objective can be written as,

n*

GO +A) = (1) Y [0 Zip{B(X)T (A + A)}+{B(X:) (AL +A))] + A7+ AT6. (62)

=1
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Since f(-) is convex, p(-) is concave. It follows that G(A], + A) is convex in A. Moreover,

n*—oo

G(M\;, + A) is also continuous in A. Therefore, to show P(AT € €) =25 1, it is enough show
that

( inf G(AL. +A) — G( 1)>0) B, (63)

where OC is the boundary set of C given by 9C = {A € RE : ||A||; = 7}.

Now, fix A € 9C. Using multivariate Taylor’s theorem, we seen that for some intermediate A,

GAL +A) - GAL)
= AT 12{ n"Zipf {B(X:) M.} B(X:) + B(X.)}|
+AT () 12{ ' Zip"(B(X;) ' A)B(X:)B(Xi) Y A/2+ (AL + Al = A7) T8

z—HAqum*)—l_Z{—n*zp’{m ) ALYB(Xi) + B(X)} ||+ (ATMA)/2 - |A]8, (64)

where M = (n*)~' % {—n*Z;ip"(B(X;) " A)B(X;)B(X;)"}. Here the last inequality is due to
the Cauchy-Schwarz inequality (for the first term) and the triangle inequality (for the third term).

By Cauchy Schwarz, we get,

G, +A) - G(AL,)

> (ATMA) /2 - (|| = ()1 Y (0 Zp BOX) TN BIX) + B +118ll). (65
i=1
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since ||Al|2 = 7. Now,

) fj{—n*zp’{B<Xi>TAfz}B<Xi> +B(X)}|,
< || 12{ Zim’ p'{g (X)) B(X:) + B(X)}|| +

00732 2o (g2 X0} — * (B TALNBOX)

=1

2

, +sup |gz (@) — B(z) AL,
xeX

< H(n*)_l Z{l — Zw'™ (X))} B(X,)
i=1

+O(K™")(n") "M B(X)|l2

< || X201 - Ziw™ (X)) B(X0))
i=1

< 0p {(K"Mog K)/(n*)"/2} + CK 12 = Op { (KM log )/ (n*)M/2 + K12} (66)

Here, the first inequality is due to the triangle inequality, and the second inequality is due to the
mean value theorem. The third inequality is due to Assumption [2] and the triangle inequality.
Finally, the fourth inequality is due to Lemma and Assumption (b) Equation [66| combined

with Assumption [4(e) implies that with probability tending to one,

GAT +A) - G(AL)

= (ATMA)/2 —rOp {(K1/4 log K)/(n*)1/2 + K—T’z-‘rl/Q}

*

= (2n7)" i;[ n*Zip" (B(X:) N{ATB(X,)Y] = rOp { (K" log )/ (n*)!/? 4+ K ~7=+1/2}
> C(n")” :Z {ATB(X,)}* — rOp {(K""log K)/(n*)!/? + K~7+1/2}
— C’AT{ Z_: (n*) ' B(X; )B(XZ.)T}A —rOp {(K1/4 log K)/(n*)!/2 + K—rz+1/2}
:Z;=1
> Cr /\mm( B(X)B(X,)") = rOp {(K"og K)/(n*)!/? + K712}

> "2 —rOp {(K1/4 IOgK)/(n*)1/2 + K—rz+1/2}
2
— C”(C*)Q(Kl/4{(10g K)/n*}1/2 + K—T‘z+1/2>

— 0 ({K"{(log K) fn*}/? + K412 5 0, (67)
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Here the second inequality holds due to Assumption (a). The third inequality holds since for a
square matrix A, ' Ax > A\pnin(A)||z||2. The fourth inequality is due to Lemma Finally, the
fifth inequality holds for a choice of C* large enough. This completes the proof of Lemma and
Theorem 4.2.

8.6 Proofs of propositions and theorems

8.6.1 Proof of Theorem 1

We first show that when Assumption 3| holds, >, , _. w;Yi(z) # Er{Y(2)}, for z € {0,1}.
For simplicity, we denote Z; = D;1(Z; = z). Also, denote B* = (n*)~' Y., B(X;). Writing

Yi(z) = m.(X;) + €z, where Ep(e;,|X;) = 0, we get the following decomposition.

| 3 @) - BEr{Y ()}

©Zi=z

\ng Bfma(X0) — XsTB(X)) +

)\32{ > @z’B(Xi)—B*}

©wZi=z

i=1

Ssug(!mz( z) — A B(z) ZZ\wzH!/\zz\T(SJr sup m.(x) = A3] B(X;)]
xe i=1

n*
+ Op(l) + ‘ Z ZZ’IDZEIZ
i=1

< O(K‘SZ)I(n*)‘lZZm*p’{A”B(Xi)}I + [IAZ1[2[10]]2 + O(K %) + op(1 !Z i
=1 =1

= op(1) + ’(n*)_l 3" Zimt o (AT B(Xo) Yeis|. (68)
i=1

Here the first inequality is due to the triangle inequality. In the second inequality, we bound the
imbalances | Y., _, w;B(X;) — B*| by 8 (component-wise). The third inequality holds due to the
Cauchy-Schwarz inequality (for the second term) and Assumption (3| (for the first and third terms).

The final equality is due to assumptions 3 and a). Now,
n* n* R n* R
(1 — C() Z *)_1 Z Zm*p'{)\TTB(Xi)}eiZ < Cal(n*)_l Z Zieiz. (69)
i=1 i=1 i=1
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Both the upper and and lower bounds converge to a constant times ET(Zieiz) = Er{n(X;)Pp(Z; =

11X;)Er(€eiz| X;)} = 0, by Assumption 1. Therefore, )(n*)’1 Z?:*l Zm*p’{)\TTB(XZ')}eZ-Z =op(1).
We now show that when Assumption |2 holds, >, 7 _, @;Yi(z) %) Er{Y(2)}.

| wiY?™ — Br{Y (2)}

2=z

<| S wie) - )T Y WY+ )T Y wlfYie) - Be{Y ()}

”LZl:Z ”LZl:Z ’LZZ:Z
< sug n*w(x) — wIP(w)‘{(n*)_l Z ]Yl(z)\} +op(1)
z€ =z
= OP(l)a (70)

where the last step holds due to Theorem 4.2. This completes the proof.
8.6.2 Proof of Theorem 2

For convenience, we restate Assumption [5| below.

Assumption 5. For z € {0,1},

(a) Er{Y?(2)} < oo.

(b) Let gZ(-) € G.. G. satisfies log Ny{¢,G., L2(P)} < C1(1/€)'/* for some constants C; > 0 and

k1 > 1/2, where Nj{e, G., La(P)} is the covering number of G, by epsilon brackets.

(c) Let m,(-) € M.. M, satisfies log Nj{e, M, L2(P)} < Cy(1/€)'/*2 for some constants Cy > 0

and kg > 1/2, , where Njj{e, M., La(P)} is the covering number of M, by epsilon brackets.

(d) (n*){2r=F5:=05)}"" — (K, where 7., s, are the constants in assumptions 2 and 3, respec-

tively.

The conditions in Assumption |5 are similar to Assumption [2|in Wang and Zubizarreta (2020) and
Assumption 4.1 in[Fan et al. (2016). In particular, Assumption [5{a) ensures existence of the second
moment of Y (z) with respect to the target distribution. Assumptions [5(b) and (c) control the
complexity of the function classes G, and M. Finally, Assumption d) puts further restriction

on the growth rate of the number of basis functions K as a function of n*.
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All probabilities and expectations in this proof are computed with respect to the probability measure
T. We first decompose the Hajek estimator T—7 = {3 ., _1 @; Y, =Y. 5 o 0; Y} — Ep{Y (1) —

Y (0)} as follows.

T—T:S+R0+R1+R2+R0+R1+R2, (71)
where
S=(n")""Y {ma(Xi) — mo(Xa)} + ()1 (DiZi) {e(X)m(X) HY™ — ma (X))
- i=1
— (n*) D (Di(1 = Z3)) [[{1 — e(X) b (X)) {YP — mo(X)} —
=1

*

Ro =) DiZw; — {n*e(Xi)m(X;)} ' {Yi(1) — mi(Xi)},

=1

Ry =Y (DiZiw; — (n*)~"){m1(Xi) — A5{ B(Xi)},
=1

Ry =Y (DiZi; — (n*) " ){A3] B(X)},
=1

Ry = iDi(l — Zi)w; — {n"{1 - €(XZ')}7T(XZ')}_1]{Y;‘(0) —mo(X;)},
=1

By = YU — Z)s — (n7) " Himo(X0) — N] BX0)}
=1

Foo = YAD:(1 - Z) — (n*) " HAR B(X0)}.
=1

By central limit theorem, it follows that,

Vn*S ﬁ N(0,V), (72)

where
V = Var (m1(X:) = mo(X:) + [DiZi{¥i(1) = mu(Xi)}] {e(Xo)m(X:)} (73)
— [Di(1 = Z){Yi(0) — mo(X)}]/[{1 — e(Xi)}m(X0)]). (74)

V' is same as the semiparametric efficiency bound for the target average treatment effect for nested
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designs (See Dahabreh et al. 2019, [Li et al.|2021).

For notational convenience, we denote Z; = Z;D;. We now consider

*

Vit Ry = Vi [ 32 i~ ()l (1) = (X))

@
Il
—

For a function g (-), let us define the function

fo(Z,Y (1), X) == Z{Y (1) — my(X)} [n*p/{gl(X)} — wIP(X)] (76)
and the corresponding empirical process G,, given by,

Gulfo) = (012 ()Y folZe Vi), X) — BLfolZ,Y (1), X)} . (77)

i=1

First, E{fo(Z,Y (1), X)} = 0 by Assumption 1. Now, consider a class of functions F defined

as

F={fo:swplgi(@) - gi(@)| < do}, (78)

where 69 = C[K**{(log K)/n*}'/?> + K'~":]. From the proof of Theorem 4.2, it follows that

sup |B(x) "AT — gi(x)| < 6. Hence,
xzeX

Vn*|Ro| < sup |Gy (fo)] (79)
fo€F

By the Markov inequality, P(sup |G,(fo)] > C) < C~'E{sup |G,(fo)|}, for C > 0. Thus, to
foeF fo€F

show v/n*|Ro| —P 0, it is enough to show that E{sup |G,(fo)|} —F 4 0. Now, assumptions
n*—oo foEF n*—oo

2 and [4(a) imply that for fo € F, |fo(Z,Y (1), X)| < C'|Y(1) — m1(X)|é for a constant C’ > 0.

So the function Fy(Z,Y (1), X) = C'|Y (1) — mi(X)|do is an envelope of F, with |[Fpl|p2 =

[E{Fy{Z,Y (1), X}?}]'/2 < C4 for some C' > 0 by Assumption a). By the maximal inequality
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(see Van der Vaart| 2000/ Chapter 19) we have

E{sup [Gn(fo)l} S Jp([Follp2, F, L2(P)), (80)
fo€eF

where J;([|Follp2, F, L2(P)) = fOHFO||P’2 [log Npj{e, F, Lo(P)}]'/2de is the bracketing integral and
< indicates less than up to a constant. We now use similar steps as in [Fan et al. (2016) and
Wang and Zubizarreta (2020) to bound the log of the bracketing number. Define Fy = {fp :
sup |g1(x) — gi(z)] < C} for some constant C' > 0. It follows that, log Nj(e, F, La(P)) <
ToegXNH (€,00F0, L2(P)) = log Nj(€/d0, Fo, L2(P)) S log Ny(€e/do, G1, L2(P)) < (60/6)1/k1, where the

final inequality holds due to Assumption c). This implies,

Tl F 2P £ [ (o) " < /1 - 12k, 51)

where in the last step we used 2k; > 1. The right hand side converges to zero as n* goes to oc.

Thus, vVn* Ry T 5o Following similar steps, we can show +/ n* Ry ~ L o,

n*—oo n*—o00

*

We will now show that v/n* Ry %) 0 where Ry = 7 (Ziw; — (n*) "D {m1(X;) — N3] B(X;)}.
n*—oo

Define the function
f(Z,X) = [ Zp{g1(X)} = {ma(X) — A5 B(X)}, (82)
and the corresponding empirical process G,, given by,
Gn(f1) = (”*)1/2{(n*)1:2*1f1(2i7Xi) - E{fl(va)}} (83)
Denote A(x) = m1(x) — A3{ B(x). Now, consider a class of functions F; defined as,
Fi={fi:sup foi(@) = g1(@)] < 01, sup [A(@)] < 62}, (84)

where §; = C[K%*{(log K)/n*}'/? 4+ K'="=], §5 = CK~*! for some constant C > 0. As before,
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using the proof of Theorem 4.2, we get

() 2|Ri| < sup |Gu(fi) + VIt E{fi(Z, X)}| < sup [Gul(f1)] + ()2 sup |E{fi(Z, X)}]

fiera fiera fiera
(85)
We show that each term on the right hand side is op(1). For the first term, by the Markov inequality
it suffices to show that E{ sup |G, (f1)|} oo, ), Now, assumptions 2, (a), and 3 imply that for
fieF

f1 € F1, 1f1(Z, X)| < C'dy for a constant C’ > 0. So the function Fy(Z, X) := C'd, is an envelope

of Fy, with ||Fi||p2 < C'd2. By the maximal inequality,

E{fsug Gn(f)I} < Jp(IF1lp2, F1, L2(P)), (86)
1€51
where
02 1/2
Jy(1F1l p2, F1, La(P)) 5/0 {log Nyj(€, F1, La(P)) }'/?de. (87)

Define Fy := {f1 : sug lg1(x) — g5 (x)| < C, sulj(]A(zc)] < 1} for some constant C' > 0, Hig :=
{yebi+gi: sup ’“;E(m)’ < C}, Hapo = {A ge/\/ll — A3 B(z) : SUE|A(33)| < 1}. Using similar
steps as in Fanw; al. (2016) and Wang and Zubizarreta (2020) ;coe bound the log of this brack-
eting number, we get log Njj(e, F1, L2(P)) S log Nj(€/d2, Fo, L2(P)) < log Ny(e/d2, Hio, L2(P)) +
log Nyj(€/b2, Hao, L2 (P)) < log Njj(€/02,G1, La(P))+log Ny (e/d2, Mi, La(P)) < (62/€)1/F14 (85 /e) /72,
where the final inequality holds due to assumptions [5(b) and [f(c). Thus,

Jy(IF1]|p2, F1, L2(P)) S 02/{1 — 1/(2k1)} + 02/{1 — 1/(2k2)}, (88)

since 2k; > 1 and 2ke > 1. The right hand side converges to zero as n* goes to infinity. Thus,

sup |Gy (f1)] = op(1).
fieF

Now, let H1 = {g € Gy : sup |g1(x) — gi(x)| < 61} and Ho = {A € My — A3{ B : sup |A(x)| <
xrcX xreX
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5},

()2 sup |E{A(Z, X)) = ()2 sup  [E({n"Zp'{g:1(X)} - 1}A(X))|

fieF g1E€EH1,AEH2
=) swp B[ e (ON/ I {g7(X)}] — 1) AX)]|
g1€H1,AEH
S sw s (@) - gite) s [A@)]}

< ()26,

5 K—51+3/4 log K + (n*)l/QK—’f’l—Sl-H/Q. (89)

Here the first inequality holds by applying the mean value theorem and assumptions (a), 2, and
a). The second inequality holds by definition of #; and H. Finally, by assumptions 3 and d)7

the right hand side of Equation [89| goes to zero as n* goes to infinity.

Thus, (n*)Y/2R, — P 5 0. Following similar steps, we can show (n*)'2R; — P 5 0. Finally, we
n*—oo n*—oo

consider Ry = Y7, (Ziw; — (n*)~1){A5] B(X;)}. We observe that,

()R] < A5 lla]| Y @iB(X) = (071 B(X,)
i:7;=1 i=1

;

< [[A31][2[18]]2 = o(1) (90)

The first inequality is due to Cauchy-Schwarz; the second inequality holds by construction of the
weights, and the third equality holds by AssumptionH This implies, (n*)'/2 R, BN} Following
n*—o00

similar steps, we can show (n*)'/2Ry —2 0. This completes the proof of the theorem.
n*— o0

8.7 Details for the Simulation Study

In this section, we include additional results on the performance of the one-step and two-step
estimators. We also include their performance when the estimand is E[Y (1) — Y (0)|S = 0] (trans-

portability) rather than E[Y (1) — Y (0)|S = 1] (generalizability).

For the settings in the main text, Table[d]shows the bias of the H&jek estimators of the target average

treatment effect under each weighting method, based on 800 simulations. The one-step estimators
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tend to perform better than the corresponding two-step estimators across the three outcome models,
in both the randomized and observational study settings. In the randomized study, the one-step
estimators reduce the absolute bias by 85% in the misspecified cases and by 79% in the correctly
specified cases relative to the corresponding two-step estimators, on average. In the observational
study, the biases are typically higher than their experimental counterparts, particularly for the
misspecified cases. Here, the one-step estimators reduce the absolute bias by 10% in the misspecified
cases and by 92% in the correctly specified cases relative to the corresponding two-step estimators,
on average. In the correctly specified cases, biases are reduced substantially under the one-step
method because by construction, the one-step method balances the right functions of covariates

relative to the target.

Table 4: Bias of the Hajek estimator of the target average treatment effect using different
weighting methods in both the randomized and observational study settings.

Randomized Study Setting Observational Study Setting

Outcome Outcome Outcome Outcome Outcome Outcome
Weighting Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Two-Step Method 1 0.67 3.30 5.02 -9.26 -6.45 -4.77
One-Step Method 1 -0.02 0.53 2.04 -8.62 -8.00 -6.46
Two-Step Method 2 0.79 3.59 3.15 -32.12 -27.84 -32.71
One-Step Method 2 -0.03 0.50 -0.43 -17.16 -16.21 -23.97
Two-Step Method 3 0.18 0.20 0.14 0.63 0.91 1.05
One-Step Method 3 0.01 -0.03 -0.06 -0.10 -0.04 0.03

For the transportability design, we slightly modify the setup in Section 5. There are ngguqy = 500
units in the study sample and ntarget = 5000 units in the target sample. Let S = 1 indicate a
unit is in the study sample and S = 0 indicate a unit is in the target sample. For units with
S =1, the four independent latent covariates are Uy, Us, Us, Uy ~ N(0,1). For units with S = 0,
they are Uj ~ N(1.2,1), Uz ~ N(-04,1), U3 ~ N(0.3,1), and Uy ~ N(0.1,1). This creates
similar correlations betwen the latent covariates and S as in the setting detailed in Section 5. The

remaining setup is the same as that in Section 5.
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Table[5|shows the root-mean-squared errors and Table[6]shows the mean bias of the Hajek estimators
of the target average treatment effect. Figure |4/ shows how the effective sample sizes and maximum
normalized weights vary across simulations. Overall, the pattern of results is similar as in Section 5,
albeit with a more dramatic improvement in performance by the one-step weights, likely due to the
more limited covariate overlap. A few exceptions occur for the observational study, where the two-
step weights produce less biased estimates than the one-step weights for outcome model 1 (i.e., no
treatment effect heterogeneity), though the one-step weights still show improved root-mean-squared

error.

Table 5: Root-mean-squared error of the Hajek estimator of the target average treatment
effect using different weighting methods in both the randomized and observational study
settings (transportability setting).

Randomized Study Setting Observational Study Setting

Outcome Outcome Outcome Outcome Outcome Outcome
Weighting Method Model 1 Model 2 Model 3 Model 1  Model 2 Model 3
Two-Step 1 30.35 45.61 48.11 29.56 45.78 47.33
One-Step 1 2.32 2.52 3.24 5.64 5.15 5.9
Two-Step 2 31.88 46.71 49.74 31.90 46.02 48.44
One-Step 2 1.56 1.81 2.42 14.05 12.98 20.97
Two-Step 3 8.81 19.15 18.57 12.81 22.27 23.20
One-Step 3 0.52 0.81 1.22 0.72 0.95 1.33
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Table 6: Bias of the Hajek estimator of the target average treatment effect using different
weighting methods in both the randomized and observational study settings (transportability
setting).

Randomized Study Setting

Observational Study Setting

Outcome Outcome Outcome Outcome Outcome Outcome
Weighting Method Model 1  Model 2 Model 3 Model 1  Model 2 Model 3
Two-Step 1 -0.29 27.29 55.09 -0.37 28.08 55.13
One-Step 1 -0.06 -0.07 -0.07 -5.12 -4.47 3.21
Two-Step 2 -0.38 26.87 54.85 -3.39 24.10 55.07
One-Step 2 -0.02 0.00 -0.04 -13.95 -12.83 7.69
Two-Step 3 -0.27 16.04 32.80 0.03 15.92 31.17
One-Step 3 -0.02 -0.02 -0.09 0.21 0.29 -0.06

Figure 4: Effective sample sizes and maximum normalized weights across weighting methods
in both the randomized and observational study settings (transportability setting).
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8.8 Simulation study with heteroscedastic outcomes

In this section, we compare the one-step and two-step estimators in settings where the poten-
tial outcomes are heteroscedastic. We use the same setting as in Section |5 with four indepen-
dent unobserved covariates distributed as Uy, Us, Us, Uy ~ N(0,1), and four observed covariates
generated as X1 = exp(U1/2), Xo = Uz/{l + exp(U1)} + 10, X3 = (U1U3/25 + 0.6)3, and
Xy = (U + Uy + 20)2. D is the binary indicator for selection into the study, and Z is the
binary treatment indicator. The true model for the probability of selection into the study is
pr(D = 1|U) = expit(—Uy 4+ 0.5U3 — 0.25U3 — 0.1Uy) so that, marginally, pr(D = 1) = 0.5. The
total cohort size is 1000. For the randomized study setting, pr(Z = 1|U) = 0.5, and for the

observational setting, pr(Z = 1|U) = expit(U; + 2Us — 2Uz — Uy).

We consider three different models for Y (0) and Y (1). Under Model-j (5 € {1,2,3}), Y(0) =
210 + 27.4U; + 13.7U; + 13.7U3 + 13.7U4 + h;j(U )€y, where ¢ ~ N(0,5%). This model allows
for heteroscedasticity, since the conditional variance varies as a function of the covariates, i.e.,
Varp (Y (0)|U =u) = 25h§(u). We set hy(u) = 2uy, ho(u) = 2(u1+usz), and ha(uw) = 2(u1+us+us+
uy4). Similarly, there are three models for Y (1): Model 1 is given by Y (1) = 210+27.4U; +13.7Us +
13.7U3+13.7Us 4+ h1(U )er; Model 2 by Y (1) = 210+ 41.1U; +13.7U2 + 13.7U3 + 13.7Us + ha (U )ey;
and Model 3 by Y (1) = 210 + 41.1U; + 27.4Us + 27.4U3 + 13.7U4 + h3(U )er; where ¢; ~ N(0,52)

and h;(-)s are the same as those for the models of Y (0).

We compare three versions of one-step weighting to three versions of two-step weighting as specified
in Section Table [7] shows the root-mean-squared errors of the Hajek estimators, based on 800
simulations. We observe that the one-step weights outperform the two-step weights across the three

outcome models in both the randomized and observational study settings.
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Table 7: Root-mean-squared error of the Hajek estimator of the target average treatment
effect using different weighting methods in both the randomized and observational study
settings under heteroscedastic outcomes.

Randomized Study Setting Observational Study Setting

Outcome Outcome Outcome Outcome Outcome Outcome
Weighting Method Model 1  Model 2 Model 3 Model 1  Model 2 Model 3
Two-Step 1 19.23 23.21 26.33 23.83 24.96 25.72
One-Step 1 3.03 3.57 4.75 9.23 8.69 7.93
Two-Step 2 20.83 25.25 28.09 44.45 42.65 48.17
One-Step 2 2.42 3.02 3.84 17.34 16.41 24.41
Two-Step 3 5.07 5.73 6.58 9.68 12.64 13.92
One-Step 3 0.89 1.52 2.03 1.22 1.73 2.99

8.9 Additional Case Study Results

In this section, we present results from the case study in Section 5, albeit with the weights imple-
mented via the two-step method. To calculate the two-step weights, we fit logistic regression models

for treatment and study selection, and we trim each set of weights at their 90th percentiles.

Figure [5| summarizes the performance of the two-step weighting method for achieving balance
relative to the various target covariate profiles. The figure also summarizes the dispersion of the
weights via density plots and effective sample sizes. Compared to the weights in Figure |2} each set
of two-step weights is less evenly dispersed and has higher variance and lower effective sample size,
reflecting the one-step method’s explicit optimization for these criteria. Covariate balance is also
worse than in the one-step approach, again because the one-step weights explicitly target covariate
balance. This pattern becomes more stark as the profile becomes more difficult to target (i.e., as

there is less overlap between the target and study populations).
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Figure 5: Distributions of target absolute standardized mean differences and effective sample
sizes for three target populations (two-step).
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TASMD = target absolute standardized mean difference. The black vertical dashed line in each plot marks a TASMD of 0.05,
signifying the heuristic that a TASMD < 0.05 indicates good balance. SD = standard deviation.

Figure[6] presents the Hdjek estimates of the target average treatment effect for each outcome along
with bootstrapped confidence intervals. The results are similar as those due to the one-step weights
in Figure |3, however, due to the higher variability of the two-step weights, the confidence intervals

are much wider.
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Figure 6: Estimates of the target average treatment effect for various outcome variables and
target populations.
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8.10 R Code

In this section, we provide instructions on how to implement the one-step weights using sbw package
for R. First, however, we recommend installing gurobi, an optimizer which increases the perfor-

mance of sbw. Instructions on installation can be found on https://www.gurobi.com.

Next, install the sbw package in R via the code install.packages("sbw"). Now, in this sec-
tion, we provide example code that would be used to weight the data set from the applied study
corresponding to the randomized participants. We weight these data toward a covariate profile

constructed from the covariate means of the entire recruited sample.

First, read in the trial data (oakland_analysis_final.dta) and the recruited sample data

(oakland_analysis_selection.dta) and list the covariates to balance.


https://www.gurobi.com

> library(sbw)

> oakland.final <- read_dta("oakland_analysis_final.dta")
> oakland.selection <- read_dta("oakland_analysis_selection.dta")
> Tl.vars <- c("good_sa_health",

"any_health_prob",

"ER_2years",

"nights_hosp_2years",
"hosp_visits_2years",

"med_mistrust",

"has_PCP",

"uninsured",

"age",

"married",

"unemployed",

"HSless",

"low_income",

"benefits")

V VV V V V V V V V V V.YV

For the sake of this analyses, we have imputed missing values with the mean for continuous covari-
ates and created an additional missing category for categorical covariates. For continuous imputed
covariates, we also add a dummy variable indicating missingness. These additional variables are
added to the list to balance. For the sake of space, we omit including the code that performs these
imputations. We assume that the final list of covariates is included in the list T1.vars.imp. We as-

sume the data sets oakland.selection and oakland.final have been updated accordingly.

Next, we define the balance tolerances. We define each covariate’s tolerance as 0.1 times the

covariate standard deviation in the recruited sample.

> sd_targets <- apply(as.matrix(oakland.selection[Tl.vars.imp]), 2, sd)
> tols <- 0.1 sd_targets

Next we subset the trial data by treatment group (i.e., values of black_dr) — as we want to
weight each treatment group toward the target profile. Then we define the various inputs to the
sbw function. For this first implementation, we manually set the tolerances, restrict the weights to

be positive (wei_pos = TRUE), and restrict the weights to sum to one (wei_sum = TRUE).
> t_ind <- "black_dr"
> dat.1 <- subset(dat, dat[t_ind][,1] == 1)

> dat.0 <- subset(dat, dat[t_ind][,1] == 0)
> bal_cov <- Tl.vars.imp
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bal_alg <- FALSE
bal_tol <- tols
bal_std <- "manual"
bal <- list(bal_cov
wei <- list(wei_sum

bal_cov, bal_alg = bal_alg, bal_tol = bal_tol, bal_std = bal_std)
TRUE, wei_pos = TRUE)
par_tar <- colMeans(oakland.selection[T1.vars.imp])

V V V V V V

Next, we balance each treatment group and combine the weighted data into a single data set with

both treatment groups.

> sbw.results.l <- sbw(dat = dat.l, bal = bal, par = list(par_est = "aux", par_tar
= par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> sbw.results.0 <- sbw.results.l <- sbw(dat = dat.0, bal = bal, par = list(par_est
= "aux", par_tar = par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> weighted.df.l <- sbw.results.l1$dat_weights

> weighted.df.0 <- sbw.results.O$dat_weights

> weighted.df <- rbind(weighted.df.l, weighted.df.0)

Using the weighted data, we can compute the TATE directly via weighted means. For the sake
of demonstration, we evaluate the TATE for the outcome that measures whether the participant

elected to receive a flu shot after their doctor’s visit.

> mean.l <- weighted.mean(weighted.df.1["post_flu"][,1], weighted.df.1["sbw_weights"][,1])
> mean.0 <- weighted.mean(weighted.df.O["post_flu"][,1], weighted.df.O["sbw_weights"][,1])

We omit the code to compute standard errors and confidence intervals via bootstrapping. In
addition to supplying the tolerances manually, one could also implement the algorithm that selects
the tolerances from a grid of options in a data-adaptive way. Code to implement this method

appears below.

> t_ind <- "black_dr"

> dat.1 <- subset(dat, dat([t_ind] [,1] == 1)
> dat.0 <- subset(dat, dat[t_ind][,1] == 0)
> bal_cov <- Tl.vars.imp

> bal_alg <- TRUE
>
>
>

bal_std <- "manual"

bal_gri <- c(0.0001, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1)

bal <- list(bal_cov = bal_cov, bal_alg = bal_alg, bal_tol = NULL, bal_std = bal_std,
bal_gri = bal_gri)
> wei <- list(wei_sum = TRUE, wei_pos = TRUE)
> par_tar <- colMeans(oakland.selection[T1.vars.imp])
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= "aux" R

wei)

sbw.results.l <- sbw(dat = dat.1, bal = bal, par = list(par_est
par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

sbw.results.0 <- sbw.results.l <- sbw(dat = dat.0, bal = bal, par =
"aux", par_tar = par_tar), sol = list(sol_nam = "gurobi"),wei =
weighted.df.l <- sbw.results.1$dat_weights

weighted.df.0 <- sbw.results.O$dat_weights

weighted.df <- rbind(weighted.df.1l, weighted.df.O0)
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