
8 Web Appendix

8.1 On the Identifying Assumptions for the Target Average Treat-

ment E�ect

We now discuss the assumptions for identification of · , as given in Assumption 1 in Section 2.

We can weaken Assumption 1(b) to only require EP1{Y (z)|X} = EP0{Y (z)|X}, z œ {0, 1}, i.e.,

conditional mean exchangeability of the potential outcomes across treatment groups. Also, we can

weaken Assumption 1(d) to require ET{Y (1) ≠ Y (0)|X} = EP{Y (1) ≠ Y (0)|X}, i.e., conditional

mean exchangeability of the treatment e�ect across the study and target populations. In this

paper, we consider somewhat stronger assumptions as they allow us to identify general features of

the distributions of the potential outcomes in the target population, e.g., ET[g{Y (z)}], z œ {0, 1},

and g̃[ET{Y (1)}, ET{Y (0)}] for measurable functions g(·) and g̃(·).

By Assumption 1(d), controlling for the observed covariates is su�cient to remove di�erences in

potential outcome distributions between the study and the target populations. Importantly, be-

cause Assumptions 1(c) and 1(d) are based completely on the distributions of {Y (1), Y (0),X} in

the study and the target populations, they can pertain to a variety of generalization and trans-

portation settings. These include those where the study and target populations are disjoint (e.g.,

transportation) and those where the study population is nested within the target (e.g., generaliza-

tion).

8.2 Connection to inverse propensity weighting

8.2.1 The dual optimization problem

In this section, we formally discuss the equivalence between one-step balancing weights and in-

verse propensity modeling weights. Recall that the primal optimization problem for the one-step

balancing weights is given by

argmin
w

Y
]

[
ÿ

i:Zi=z

Â(wi) :

------

ÿ

i:Zi=z

wiBk(Xi) ≠ B̄
ú

k

------
Æ ”k, k = 1, 2, ..., K;

ÿ

i:Zi=z

wi = 1

Z
^

\ (8)
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Throughout this section, we consider generalization in the nested study setting, because traditional

inverse propensity weighting methods have only been developed for settings with a formal study

selection process and selection indicator variable. Here, the study population P is nested within the

target population T , with D indicating selection from T into P. We assume that the study sample of

size n is nested within a random sample of size n
ú from T . For a unit in group Z = z with covariate

vector x, let ‚w(x) and w
IP(x) be its one-step balancing weight and the true inverse propensity

weight, respectively, where the one-step balancing weights are obtained via (8). In Theorem 8.1,

we show that the one-step balancing weights estimate the inverse propensity weights under a specific

functional form of the inverse propensity weights and a loss function. Theorem 8.1 generalizes the

results of Wang and Zubizarreta (2020) and Chattopadhyay et al. (2020), where similar connections

between minimal and inverse propensity weights have been established in missing data and causal

inference settings, respectively.

Theorem 8.1.

(a) The dual problem of (8) is equivalent to the empirical loss minimization problem with L1

regularization:

minimize
�

(nú)≠1
núÿ

i=1

Ë
≠ n

ú (Zi = z)Difl{B(Xi)€�} + B(Xi)€�
È

+ |�|
€�, (9)

where � is a K◊1 vector of dual variables corresponding to the K balancing constraints, |�| is

the vector of component-wise absolute values of �, and fl(t) = t/n
ú
≠t(hÕ)≠1(t)≠h((hÕ)≠1(t)),

with h(t) = Â(1/n
ú

≠ t).

(b) If ŵ and �†
z are solutions to the primal and dual forms of (8), respectively, then for i : Zi = z,

‚wi = fl
Õ
{B(Xi)€�†

z}. (10)

(c) If �̃z œ argmin
⁄

ET[≠n
ú (Zi = z)Difl{B(Xi)€�} + B(Xi)€�|Xi = x], then �̃z satisfies

fl
Õ
{B(x)€�̃z} = {n

ú
fi(x)PP(Zi = z|Xi = x)}≠1 = (nú)≠1

w
IP(x). (11)
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Parts (a) and (b) of Theorem 8.1 provide an alternative approach to obtain the one-step balancing

weights via the dual form of the optimization problem in (8), and part (c) links the form of the dual

objective to inverse propensity weighting. Formally, suppose the true inverse propensity weights

in group Z = z have the functional form w
IP(x) = n

ú
fl

Õ
{B(x)€�} for some parameter �, and

we estimate � by minimizing the regularized empirical loss function in (9). Equation 10 implies

that the resulting estimated inverse propensity weights are proportional to the one-step balancing

weights in the sense that ‚wIP
i = n

ú ‚wi. Importantly, estimation of the inverse propensity weights

here does not involve separate specifications of the treatment assignment and the study selection

models. Theorem 8.1 thus shows that our proposed method is equivalent to a one-step estimation

method of the inverse propensity weights via a loss function that directly addresses covariate balance

relative to the target and simultaneously ensures that the weights are less dispersed.

8.2.2 Proof of Theorem 8.1

We first consider the optimization problem without the normalization constraint and with ”k > 0

for k œ {1, 2, ..., K}. The kth balancing constraint in the optimization problem in (9) can be written

as,

---
ÿ

i:Zi=z

wiBk(Xi) ≠ B̄
ú

k

--- Æ ”k

=∆

---
núÿ

i=1
(Zi = z)DiwiBk(Xi) ≠ (nú)≠1

núÿ

i=1
Bk(Xi)

--- Æ ”k

=∆

---
núÿ

i=1

)
(nú)≠1

≠ (Zi = z)Diwi
*
Bk(Xi)

--- Æ ”k

=∆

---
núÿ

i=1
›iBk(Xi)

--- Æ ”k (12)

where ›i = 1/n
ú
≠ (Zi = z)Diwi. Thus, for the units in group Zi = z of the sample, wi = (1/n

ú
≠›i).

For the objective function
q

i:Zi=z Â(wi), we have

ÿ

i:Zi=z

Â(wi) =
núÿ

i=1
(Zi = z)Dih(›i), (13)
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where h(x) = Â(1/n
ú

≠ x). We let A be a K ◊ n matrix whose (i, j)th element is Bi(Xj);

Q =
1
A€

, ≠A€

2
€

; and d = (�, �)T . We can write the primal problem as

minimize
w

núÿ

i=1
(Zi = z)Dih(›i)

subject to Q⇠ Æ d

(14)

This gives us a convex optimization problem in ⇠ with linear constraints. The Lagrange dual

function of the primal problem in Equation 14 is given by inf
⇠

{
qnú

i=1 (Zi = z)Dih(›i)+�€Q⇠}≠�€d

(see, e.g., Boyd and Vandenberghe 2004 Chapter 5). Let Qi be the ith column of Q. The dual

objective function can be written as

≠ sup
⇠

{≠

núÿ

i=1
(Zi = z)Dih(›i) ≠ �€Q⇠} ≠ �€d

= ≠

núÿ

i=1
sup

›i

{≠(Q€

i �)›i ≠ (Zi = z)Dih(›i)} ≠ �€d

=
núÿ

i=1
{≠h

ú

i (≠QT
i �)} ≠ �€d,

where h
ú

i (·) is the convex conjugate of (Zi = z)Dih(·). Thus, the dual problem is given by

maximize
�

núÿ

i=1
{≠h

ú

i (≠QT
i �)} ≠ �€d

subject to � Ø 0,

(15)

Since the last K components of Qi are reflected versions of the first K components, by symmetry

we can write the dual problem as,

maximize
�

núÿ

i=1
{≠h

ú

i (QT
i �)} ≠ �€d

subject to � Ø 0,

(16)

Now,
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h
ú

i (t) = sup
›i

{t›i ≠ (Zi = z)Dih(›i)}

= sup
wi

#)
1/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih

Ó
1/n

ú
≠ (Zi = z)Diwi

Ô$

= sup
wi

#)
1/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih(1/n

ú
≠ wi)

$

=
)
1/n

ú
≠ (Zi = z)Di ‚wi(t)

*
t ≠ (Zi = z)Dih(1/n

ú
≠ ‚wi(t)}, (17)

where ‚wi(t) satisfies

ˆ/ˆwi

Ë)
1/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih(1/n

ú
≠ wi)

È---
wi=‚wi(t)

= 0. (18)

Solving for wi, we get ‚wi(t) = 1/n
ú

≠ (hÕ)≠1(t). Therefore, the dual problem boils down to,

minimize
�

núÿ

i=1

Ó
≠ (Zi = z)Difl(Q€

i �) + 1/n
úQ€

i �
Ô

+ �€d

subject to � Ø 0,

(19)

where fl(t) = t/n
ú

≠ t(hÕ)≠1(t) + h{(hÕ)≠1(t)}. Note that fl
Õ(t) = 1/n

ú
≠ (hÕ)≠1(t). Therefore,

‚wi(t) = fl
Õ(t). (20)

Following the proof structure of Theorem 1 in Wang and Zubizarreta (2020), we write � =

(�€
+,�€

≠)€, where �+ and �≠ are K ◊ 1 vectors. Denoting Ai as the ith column of A, we write

the dual objective as,

g(�) =
núÿ

i=1

Ó
≠ (Zi = z)Difl{A€

i (�+ ≠ �≠)} + (nú)≠1A€

i (�+ ≠ �≠)
Ô

+ (�€

+ + �€

≠)�. (21)

Denote �† = (�†€

+ ,�†€

≠ )€ as the dual solution. Let, if possible, the jth component of �†

+ and �†

≠

be both strictly positive, for some j œ {1, 2, ..., K}. Define,

�†† =
!
�†

+€
≠ (0, 0, ..., min(⁄†

+,j , ⁄
†

≠,j)
¸ ˚˙ ˝

jth place

, 0, ..., 0)€
,�†€

≠ ≠ (0, 0, ..., min(⁄†

+,j , ⁄
†

≠,j)
¸ ˚˙ ˝

jth place

, 0, ..., 0)€
"

(22)
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Notice that g(�††) = g(�†) ≠ 2”j min(⁄†

+,j , ⁄
†

≠,j) < g(�†) since ”j > 0. This leads to a contradiction

since �† minimizes g(�). This implies that at least one of ⁄
†

+,j ⁄
†

≠,j equals zero. From Equation 21

we see that the dual problem has the following unconstrained form.

minimize
�

(nú)≠1
núÿ

i=1

Ë
≠ n

ú (Zi = z)Difl{B(Xi)€�} + {B(Xi)€�}

È
+ |�|

€�, (23)

where |�| is the vector of co-ordinate wise absolute values of �.

Now, consider the primal problem

minimize
w

ÿ

i:Zi=z

Â(wi),

subject to
---

ÿ

i:Zi=z

wiBk(Xi) ≠ B̄
ú

k

--- Æ ”k, k = 1, 2, ..., K0.

---
ÿ

i:Zi=z

wiBk(Xi) ≠ B̄
ú

k

--- = 0, k = K0 + 1, ..., K.

(24)

Let B̃(x) = (B1(x), ..., BK0(x))€, ˜̃B(x) = (BK0+1(x), ..., BK(x))€, and �̃ = (”1, ..., ”K0)€. We

note that for Bk(x) = 1, the corresponding equality constraint boils down to the normalization

constraint. Using similar steps as before, we see that the dual of (24) is

minimize
�̃,⌫

(nú)≠1
núÿ

i=1

Ë
≠ n

ú (Zi = z)Difl{B̃(Xi)€�̃ + ˜̃B(Xi)€⌫} + {B̃(Xi)€�̃ + ˜̃B(Xi)€⌫}

È
+ |�̃|

€�̃.

(25)

Let � = (�̃€
,⌫€)€. Since B(x) = (B̃(x)€

,
˜̃B(x)€)€ and � = (�̃€

,0€)€, the dual problem in (25)

can be written as:

minimize
�

(nú)≠1
núÿ

i=1

Ë
≠ n

ú (Zi = z)Difl{B(Xi)€�} + {B(Xi)€�}

È
+ |�|

€�, (26)

which has the same form as in (23). This proves part (a) of Theorem 4.1. Moreover, Equation 20

implies that the optimal solutions of the primal problem satisfies

‚wi = fl
Õ
{B(Xi)€�†

}, (27)
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proving part (b). Finally, for part (c), we consider the conditional expected loss in (23).

ET
Ë

≠ n
ú (Zi = z)Difl{B(Xi)€�} + {B(Xi)€�}

---Xi

È

= ET
Ë

≠ n
ú (Zi = z)Difl{B(Xi)€�}

---Xi

È
+ {B(Xi)€�}

= ≠n
ú
fl{B(Xi)€�}PT(Zi = z|Xi)fi(Xi) + {B(Xi)€�} =: „(�) (28)

We now minimize this expected loss „(�) wrt �. The minimizer �ú satisfies the following:

fl
Õ
{B(Xi)€�ú

} = {n
ú
fi(Xi)PT(Zi = z|Xi)}≠1 (29)

This implies the solutions ‚wi implicitly estimate the inverse propensity weights. This completes

the proof.

8.3 Connection to inverse odds weighting

In this section, we consider the generalization problem in a nested design setting, where the target

population is the population of study non-participants. As before, we denote P and T as the study

and target population, respectively. Let Q be the population represented by the study participants

and non-participants, with associated probability measure Q (and density q). Also, let n
úú be the

total number of study participants and non-participants. As before, D is the indicator of being a

study participant. It follows that P = Q|D = 1 and T = Q|D = 0. In particular, we can write

· = ET{Y (1) ≠ Y (0)} = EQ{Y (1) ≠ Y (0)|D = 0} (30)

We now derive a connection between the one-step balancing weights and the inverse odds weights

in this setting. The kth balancing constraint in the optimization problem in (9) can be written
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as,

---
ÿ

i:Zi=z

wiBk(Xi) ≠ B̄
ú

k

--- Æ ”k

=∆

---
núúÿ

i=1
(Zi = z)DiwiBk(Xi) ≠ (nú)≠1

núúÿ

i=1
(1 ≠ Di)Bk(Xi)

--- Æ ”k

=∆

---
núúÿ

i=1

)
(nú)≠1(1 ≠ Di) ≠ (Zi = z)Diwi

*
Bk(Xi)

--- Æ ”k

=∆

---
núÿ

i=1
›iBk(Xi)

--- Æ ”k (31)

where ›i = (nú)≠1(1 ≠ Di) ≠ (Zi = z)Diwi. So, for the units in the group Zi = z of the sample,

wi = {(1 ≠ Di)/n
ú

≠ ›i} = ≠›i. For the objective function
q

i:Zi=z Â(wi) (where Â is a convex

function of the weights), we have

ÿ

i:Zi=z

Â(wi) =
núúÿ

i=1
(Zi = z)Dih(›i), (32)

where h(x) = Â(≠x). Now, let A be a K ◊ n matrix whose (i, j)th element is Bi(Xj); Q =
1
A€

, ≠A€

2T
; and d = (�, �)T . We can write the primal problem as

minimize
w

núúÿ

i=1
(Zi = z)Dih(›i)

subject to Q⇠ Æ d

(33)

gives us a convex optimization problem in ⇠ with linear constraints. Let Qi be the ith column of

Q. The corresponding dual problem is given by,

maximize
�

núúÿ

i=1
{≠h

ú

i (QT
i �)} ≠ �Td

subject to � Ø 0

(34)
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where,

h
ú

i (t) = sup
›i

{t›i ≠ (Zi = z)Dih(›i)}

= sup
wi

#)
(1 ≠ Di)/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih

1
(1 ≠ Di)/n

ú
≠ (Zi = z)Diwi

2$

= sup
wi

#)
(1 ≠ Di)/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih(≠wi)

$

=
)
(1 ≠ Di)/n

ú
≠ (Zi = z)Di ‚wi(t)

*
t ≠ (Zi = z)Dih(≠ ‚wi(t)) (35)

where ‚wi(t) satisfies

ˆ/ˆwi

Ë)
(1 ≠ Di)/n

ú
≠ (Zi = z)Diwi

*
t ≠ (Zi = z)Dih(≠wi)

È---
wi=‚wi(t)

= 0.

Solving for wi, we get ‚wi(t) = ≠(hÕ)≠1(t).

Therefore, the dual problem boils down to:

minimize
�

núúÿ

i=1

Ó
≠ (Zi = z)Difl(Q€

i �) + (nú)≠1(1 ≠ Di)Q€

i �
Ô

+ �€d

subject to � Ø 0

(36)

where fl(t) = ≠t(hÕ)≠1(t) + h((hÕ)≠1(t)). Note that fl
Õ(t) = ≠(hÕ)≠1(t). Therefore,

‚wi(t) = fl
Õ(t). (37)

Using similar steps as in the proof of Theorem 4.1 we obtain the following form of the dual prob-

lem.

minimize
�

(núú)≠1
núúÿ

i=1

Ë
≠ n

úú (Zi = z)Difl{B(Xi)€�} + (nú)≠1
n

úú(1 ≠ Di){B(Xi)€�}

È
+ |�|

€�

(38)

Also, if ‚wis are the optimal solutions of the primal problem and �† is the optimal solution of the
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dual problem, then we have

‚wi = fl
Õ
{B(Xi)€�†

}. (39)

Let us consider the conditional expected loss in (38).

EQ
Ë

≠ n
úú (Zi = z)Difl{B(Xi)€�} + (nú)≠1

n
úú(1 ≠ Di){B(Xi)€�}

---Xi

È

= EQ
Ë

≠ n
úú (Zi = z)Difl{B(Xi)€�}

---Xi

È
+ (nú)≠1

n
úú(1 ≠ fi(Xi)){B(Xi)€�}

= ≠n
úú

fl{B(Xi)€�}PQ(Zi = z|Xi)fi(Xi) + (nú)≠1
n

úú
{1 ≠ fi(Xi)}{B(Xi)€�}

=: „(�) (40)

We now minimize this expected loss „(⁄) wrt ⁄. The minimizer �úú satisfies the following–

fl
Õ
{B(Xi)€�úú

} = {1 ≠ fi(Xi)} / {n
ú
fi(Xi)PQ(Zi = z|Xi)} . (41)

This implies, the solutions ‚wi implicitly estimate the inverse odds weights.

8.4 Connection to linear regression

In this section, we discuss the connection between one-step weights and linear regression. For

simplicity, we consider the generalization problem in a nested design setting, where the study

sample is nested within a random sample of size n
ú from the target population. Extensions of the

results to other settings hold analogously. Also, without loss of generality, we focus on estimating

ET{Y (1)} (the results hold similarly for ET{Y (0)}).

Recall that, by Assumption 1, m1(x) = ET{Y (1)|X = x} = EP{Y (1)|X = x}. The linear

regression imputation approach for generalization (our outcome modeling approach; see Dahabreh

et al. (2019)) first fits a linear outcome model Y
obs

i = —0 + �€
1 Xi + ‘i in the treatment group

and estimates m1(x) as m̂1(x) = —̂0 + �̂€
1 x, where the coe�cients are estimated by ordinary

least squares (OLS). The regression model can also incorporate other transformations of X. The
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regression imputation estimator of ET{Y (1)} is given by,

ÊT{Y (1)} = 1
nú

núÿ

i=1
{—̂0 + �̂€

1 Xi} = —̂0 + �̂€

1 X̄ú
, (42)

where X̄ú is the target profile, i.e., the mean of the covariates in the full sample.

We note that procedurally, this approach is equivalent to the multi-regression imputation (MRI)

approach in Chattopadhyay and Zubizarreta (2023). Hence, by Proposition 2 of Chattopadhyay

and Zubizarreta (2023), it follows that, —̂0 + �̂€
1 X̄ú =

q
i:Zi=1 wiY

obs
i , where the weights wi sum

to one in the treatment group.

Moreover, by Proposition 3 of the same paper, the weights wi are the weights of minimum variance

that add up to one and exactly balances the mean of the covariates in the treatment group, relative

to the target profile X̄ú. In other words, these weights are equivalent to the one-step weights in

(7), where — (i) the L2 norm of the weights are minimized, (ii) The basis functions are identity

functions, (iii) ”k = 0 for all k, and (iv) weights are allowed to be negative.

8.5 Convergence of one-step weights

The equivalence in Theorem 8.1 allows us to establish several asymptotic properties of the one-

step balancing weights and their resulting estimators. In this section, we formally show that

under Assumption 2 and 4, the one-step weights converge uniformly to the inverse propensity

weights.

For convenience, we restate the regularity conditions in Assumption 4 below.

Assumption 4. For z œ {0, 1},

(a) There exist constants c0, c1, c2 with 0 < c0 < 1/2 and c1 < c2 < 0, such that c1 Æ

n
ú
fl

ÕÕ(v) Æ c2 for all v in a neighborhood of B(x)€�ú
1z. Also, c0 Æ 1/(nú

fl
Õ(v)) Æ 1 ≠ c0 for

all v = B(x)€�, x œ X , �.

(b) sup
xœX

||B(x)||2 Æ CK
1/2 and ||ET{B(X)B(X)€

}||F Æ C, for some constant C > 0, where

|| · ||F denotes the Frobenius norm.
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(c) K = O{(nú)–
} for some 0 < – < 2/3.

(d) For some constant C > 0, ⁄min
Ë
ET{D (Z = z)B(X)B(X)€

}

È
> C, where ⁄min(A) denotes

the smallest eigenvalue of A.

(e) ||�||2 = OP

Ë
K

1/4
{(log K)/n

ú
}

1/2 + K
≠rz+1/2

È
.

Assumption 4(a) bounds the slope and curvature of the function fl(·), allowing us to translate the

convergence of the dual solution to the convergence of the weights. This condition is satisfied for

typical choices of convex objective functions Â(·), e.g., those corresponding to entropy balancing

(Hainmueller 2012) and stable balancing weights (Zubizarreta 2015). Assumption 4(b) restricts

the rate of growth of the norm of the basis functions, and 4(c) specifies the rate of growth of the

number of basis functions K relative to n
ú. Assumption 4(d) is a technical condition required

to ensure non-singularity of the covariance matrices of the basis functions within each treatment

group. Finally, 4(e) controls the degree of approximate balancing in terms of K and n
ú.

Theorem 8.2 (Uniform convergence). Under Assumptions 1, 2, and 4, the one-step balancing

weights in group Z = z œ {0, 1} satisfy

sup
xœX

|n
ú ‚w(x) ≠ w

IP(x)| = OP

Ë
K

3/4
{(log K) /n

ú
}

1/2 + K
1≠rz

È
= oP (1). (43)

Below we provide a proof of Theorem 8.2. All probabilities and expectations in this proof are

computed with respect to the probability measure T. We focus on the primal problem in group z,

for z œ {0, 1}. For simplicity, let us denote Z̃ = (Zi = z)Di. The dual optimization problem can

be written as,

minimize
�

G(�), where

G(�) = (nú)≠1
núÿ

i=1

Ë
≠ n

ú
Z̃ifl{B(Xi)€�} + {B(Xi)€�}

È
+ |�|

€�.

(44)

Let �† be a solution to the dual problem. We first consider the LŒ distance between the scaled

one-step balancing weights and inverse probability weights. In the following, we use C, C
Õ
, C

ÕÕ as

12



generic positive constants whose values may change from one step to the next.

sup
xœX

|n
ú ‚w(x) ≠ w

IP(x)|

= sup
xœX

|n
ú
fl

Õ
{B(x)€�†

} ≠ n
ú
fl

Õ
{g

ú

z(x)}|

Æ sup
xœX

|n
ú
fl

Õ
{B(x)€�†

} ≠ n
ú
fl

Õ
{B(x)€�ú

1z}| + sup
xœX

|n
ú
fl

Õ
{B(x)€�ú

1z} ≠ n
ú
fl

Õ
{g

ú

z(x)}|

Æ C sup
xœX

|B(x)€(�†
≠ �ú

1z)| + C sup
xœX

|B(x)€�ú

1z ≠ g
ú

z(x)|

Æ CK
1/2

||�†
≠ �ú

1z||2 + O(K≠rz ). (45)

The first equality is due to Assumption 2. The first inequality is due to the triangle inequality.

The second inequality follows from applying using the mean value theorem and Assumption 4(a).

The final inequality is due to the Cauchy-Schwarz inequality and Assumptions 2 and 4(b).

Let us now consider the following Lemma.

Lemma 8.3. There exists a dual solution �† such that ||�†
≠ �ú

1z||2 = Op[K1/4
{(log K)/n

ú
}

1/2 +

K
≠rz+1/2].

Given Lemma 8.3, Equation 45 completes the proof of Theorem 4.2. So, it su�ces to prove Lemma

8.3. For this, we require the following lemmas.

Lemma 8.4 (Bernstein’s inequality for random matrices). Let W 1,W 2, ...,W nú be d1 ◊ d2 in-

dependent random matrices with E(W j) = 0 and ||W j ||2 Æ Rnú a.s., where || · ||2 denotes the

spectral norm. Let ‡
2
nú := max

Ó
||

qnú
j=1 E(W jW

€

j )||2, ||
qnú

j=1 E(W€

j W j)||2
Ô

. Then, for all t Ø 0,

P
1

------

------

núÿ

j=1
W j

------

------
2

Ø t

2
Æ (d1 + d2) exp

Ë
(t2

/2)/{‡
2
nú + (Rnút)/3}

È
. (46)

Proof of Lemma 8.4. See Tropp et al. (2015).

Lemma 8.5.
---
---(nú)≠1 qnú

j=1{1 ≠ Z̃jw
IP(Xj)}B(Xj)

---
---
2

= OP [K1/4
{(log K)/n

ú
}

1/2].

13



Proof of Lemma 8.5. We will use Lemma 8.4 to prove this. Let us denote

W j = (nú)≠1
{1 ≠ Z̃jw

IP(Xj)}B(Xj), for j œ {1, 2, ..., n
ú
}. (47)

First, by unconfoundedness, E(W j) = 0. Second, we have

||W j ||2 = (nú)≠1
|1 ≠ Z̃jn

ú
fl

Õ
{g

ú

z(Xi)}| ◊ ||B(Xj)||2

Æ [1 + |n
ú
fl

Õ
{g

ú

z(Xj)}|](nú)≠1 sup
xœX

||B(x)||2

Æ CK
1/2(nú)≠1[C Õ + O(K≠rz )C] Æ (C Õ

K
1/2)/n

ú
. (48)

Here the second inequality is obtained by applying Assumption 4(b) on the second term in the prod-

uct and using the mean value theorem on n
ú
fl

Õ
{g

ú
z(Xj)} about B(Xj)€�ú

1z, followed by assumptions

4(a) and 2. Next, we consider

------

------

núÿ

j=1
E(W€

j W j)

------

------
2

=
núÿ

j=1
E

Ë
(nú)≠2

{1 ≠ Z̃jw
IP(Xj)}2B(Xj)€B(Xj)

È

Æ C(nú)≠2
núÿ

j=1
E

Ó
B(Xj)€B(Xj)

Ô

= C(nú)≠2trace
Ë
E

Ó
B(X1)B(X1)€

ÔÈ
. (49)

Here first inequality follows from applying the mean value theorem along with assumptions 4(a) and

2, similar to the steps in Equation 48. Now, let ⁄1, ...⁄K be the eigenvalues of a non-negative definite

matrix A. By the Cauchy-Schwarz inequality, trace(A) Æ K
1/2 !

⁄
2
1 + ... + ⁄

2
K

"1/2 = K
1/2

||A||F .

Thus, from Equation 49, we get

------

------

núÿ

j=1
E(W€

j W j)

------

------
2

Æ (CK
1/2)/n

ú

---
---E

Ë
B(X1)B(X1)€

È---
---
F

Æ (C Õ
K

1/2)/n
ú
, (50)
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where the last inequality holds due to Assumption 4(b). Next, we consider

------

------

núÿ

j=1
E(W jW

€

j )

------

------
2

Æ

núÿ

j=1

---
---E

Ë
(nú)≠2

{1 ≠ Z̃jw
IP(Xj)}2B(Xj)B(Xj)€

È---
---
2

Æ C(nú)≠2
núÿ

j=1
||E{B(Xj)B(Xj)€

}||2

Æ C(nú)≠2
núÿ

j=1
||E{B(Xj)B(Xj)€

}||F Æ C
ÕÕ
/n

ú (51)

Here the first inequality is due to the triangle inequality. The second inequality follows from

upper bounding {1 ≠ Z̃jw
IP(Xj)}2 as before and using monotonicity of spectral norms. The third

inequality holds since spectral norm is dominated by the Frobenius norm. Finally, the fourth

inequality holds due to Assumption 4(b)f. Therefore, from equations 50 and 51 we get,

‡
2
nú := max

Ó
------

------

núÿ

j=1
E{W jW

€

j }

------

------
2

,

------

------

núÿ

j=1
E{W€

j W j}

------

------
2

Ô
Æ (CK

1/2)/n
ú
. (52)

Using Lemma 8.4, we get,

P

Q

a||

núÿ

j=1
W j ||2 Ø t

R

b Æ (K + 1) exp
Ë
(t2

/2)/
Ó

CK
1/2(nú)≠1 + C

Õ
K

1/2
t(3n

ú)≠1
ÔÈ

(53)

Finally, we observe that due to Assumption 4(c), the right hand side of Equation 53 goes to

zero if t = C̄K
1/4(log K)1/2(nú)≠1/2, for some constant C̄ > 0. This implies, ||

qnú
j=1 W j ||2 =

OP

Ó
K

1/4(log K)1/2(nú)≠1/2
Ô

. This completes the proof.

Lemma 8.6. With probability tending to one, ⁄min
1 q

j:Z̃j=1(nú)≠1B(Xj)B(Xj)€

2
Ø C̃ for some

constant C̃ > 0.

Proof of Lemma 8.6. Let D :=
q

j:Z̃j=1(nú)≠1B(Xj)B(Xj)€ = (nú)≠1 qnú
j=1{Z̃jB(Xj)}{Z̃jB(Xj)€

}

and Dú := E{Z̃jB(Xj)B(Xi)€
}. We will first use Lemma 8.4 to show that ||D ≠ Dú

||2 = oP (1).

To this end, denote W j = (nú)≠1[{Z̃jB(Xj)}{Z̃iB(Xj)€
} ≠ E{Z̃jB(Xj)B(Xj)€

}]. By construc-
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tion, E(W j) = 0. Moreover,

||{Z̃jB(Xj)}{Z̃jB(Xj)€
}||2 Æ ||{Z̃jB(Xj)}{Z̃jB(Xj)€

}||F

Æ C
Õ sup
xœX

||B(x)||22 Æ C
ÕÕ
K, (54)

where the last inequality holds due to Assumption 4(b). Also,

||E{Z̃jB(Xj)B(Xj)€
}||2 Æ ||E{B(Xj)B(Xj)€

}||2

Æ ||E{B(Xj)B(Xj)€
}||F Æ C

Õ
, (55)

where the first inequality is due to the monotonicity of the spectral norm and the last inequality

holds due to Assumption 4(b). This implies,

||W j ||2 Æ {C(K + 1)}/n
ú
, (56)

for some constant C > 0. Next, we compute ‡
2
nú . After some algebra, it follows that,

||

núÿ

j=1
E(W jW

€

j )||2

Æ

núÿ

j=1
||E(W jW

€

j )||2

Æ (nú)≠1
1
CK||E{B(X1)B(X1)€

}||2 + ||E{Z̃1B(X1)B(X1)€
}E{Z̃1B(X1)B(X1)€

}||2
2

Æ (nú)≠1
Ë
CK||E{B(X1)B(X1)€

}||2 + ||E{B(X1)B(X1)€
}||

2
2
È

Æ {C
Õ(K + 1)}/n

ú
, (57)

for some large C
Õ

> 0. Here the first inequality is due to the triangle inequality; the second

inequality is due to Assumption 4(b) and monotonicity of the spectral norm; the third inequality is

due to the submultiplicativity of the spectral norm; and the final inequality is due to Assumption

16



4(b). Now, since W j is symmetric we have

||

núÿ

j=1
E(W€

j W j)||2 Æ {C
Õ(K + 1)}/n

ú
, (58)

implying ‡
2
nú Æ {C

Õ(K + 1)}/n
ú. Therefore, by Lemma 8.4, we get

P

Q

a

------

------

núÿ

j=1
W j

------

------
2

Ø t

R

b Æ 2K exp
Ë
(t2

/2)/
Ó

C
Õ(K + 1)(nú)≠1 + C(K + 1)t(2n

ú)≠1
ÔÈ

Æ 2K exp
Ë
n

ú
t
2
/{C

ÕÕ
K(1 + t)}

È
, (59)

for a large constant C
ÕÕ

> 0. We note that the right hand side goes to zero for t = C̄{(K log K)/n
ú
}

1/2

for a constant C̄ > 0. Therefore, we have

||D ≠ Dú
||2 = Op

Ë
{(K log K)/n

ú
}

1/2
È

= op(1), (60)

where the last equality holds due to Assumption 4(c). Now, Weyl’s inequality implies

⁄min(D) Ø ⁄min(Dú) ≠ ||D ≠ Dú
||2 Ø C ≠ ||D ≠ Dú

||2, (61)

where the last inequality holds due to Assumption 4(d). Since ||D ≠Dú
||2 = op(1), we have for n

ú

large enough, ⁄min(D) Ø C/2 > 0. This completes the proof.

Proof of Lemma 8.3. We follow the proof structure of Fan et al. (2016) and Wang and Zubizarreta

(2020). All the subsequent probabilities and expectations are taken with respect to T. First, let

r = C
ú

Ó
(K1/4 log K)/n

ú + K
≠rz+1/2

Ô
for a su�ciently large constant C

ú
> 0. Let � = � ≠ �ú

1z.

Also, let C = {� œ RK : ||�||2 Æ r}. To show that there exists a �† such that ||�†
≠ �ú

1z||2 =

Op

Ó
(K1/4 log K)/n

ú + K
≠rz+1/2

Ô
, it is enough to show that there exists a �†

œ RK such that

P(�†
œ C) nú

æŒ
≠≠≠≠æ 1 .

Now, the dual objective can be written as,

G(�ú

1z +�) = (nú)≠1
núÿ

i=1

Ë
≠n

ú
Z̃ifl{B(Xi)€(�ú

1z +�)}+{B(Xi)€(�ú

1z +�)}
È
+ |�ú

1z +�|
€�. (62)
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Since f(·) is convex, fl(·) is concave. It follows that G(�ú
1z + �) is convex in �. Moreover,

G(�ú
1z + �) is also continuous in �. Therefore, to show P(�†

œ C) nú
æŒ

≠≠≠≠æ 1, it is enough show

that

P
1

inf
�œˆC

G(�ú

1z + �) ≠ G(�ú

1z) > 0
2

nú
æŒ

≠≠≠≠æ 1, (63)

where ˆC is the boundary set of C given by ˆC = {� œ RK : ||�||2 = r}.

Now, fix � œ ˆC. Using multivariate Taylor’s theorem, we seen that for some intermediate �̃,

G(�ú

1z + �) ≠ G(�ú

1z)

= �€
Ë
(nú)≠1

núÿ

i=1
{≠n

ú
Z̃ifl

Õ
{B(Xi)€�ú

1z}B(Xi) + B(Xi)}
È

+ �€
Ë
(nú)≠1

núÿ

i=1
{≠n

ú
Z̃ifl

ÕÕ(B(Xi)€�̃)B(Xi)B(Xi)€
}

È
�/2 + (|�ú

1z + �| ≠ |�ú

1z|)€�

Ø ≠||�||2
---
---(nú)≠1

núÿ

i=1
{≠n

ú
Z̃ifl

Õ
{B(Xi)€�ú

1z}B(Xi) + B(Xi)}
---
---
2

+ (�€M�)/2 ≠ |�|
€�, (64)

where M = (nú)≠1 qnú
i=1{≠n

ú
Z̃ifl

ÕÕ(B(Xi)€�̃)B(Xi)B(Xi)€
}. Here the last inequality is due to

the Cauchy-Schwarz inequality (for the first term) and the triangle inequality (for the third term).

By Cauchy Schwarz, we get,

G(�ú

1z + �) ≠ G(�ú

1z)

Ø (�€M�)/2 ≠ r

1---
--- = (nú)≠1

núÿ

i=1
{≠n

ú
Z̃ifl

Õ
{B(Xi)€�ú

1z}B(Xi) + B(Xi)}
---
---
2

+ ||�||2
2
, (65)
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since ||�||2 = r. Now,

---
---(nú)≠1

núÿ

i=1
{≠n

ú
Z̃ifl

Õ
{B(Xi)€�ú

1z}B(Xi) + B(Xi)}
---
---
2

Æ

---
---(nú)≠1

núÿ

i=1
{≠Z̃in

ú
fl

Õ
{g

ú

z(Xi)}B(Xi) + B(Xi)}
---
---
2
+

---
---(nú)≠1

núÿ

i=1
≠Z̃i[nú

fl
Õ
{g

ú

z(Xi)} ≠ n
ú
fl

Õ
{B(Xi)€�ú

1z}]B(Xi)
---
---
2

Æ

---
---(nú)≠1

núÿ

i=1
{1 ≠ Z̃iw

IP(Xi)}B(Xi)
---
---
2

+ sup
xœX

|g
ú

z(x) ≠ B(x)€�ú

1z|

---
---(nú)≠1

núÿ

i=1
≠Z̃iB(Xi)

---
---
2

Æ

---
---(nú)≠1

núÿ

i=1
{1 ≠ Z̃iw

IP(Xi)}B(Xi)
---
---
2

+ O(K≠rz )(nú)≠1
||B(Xi)||2

Æ OP

Ó
(K1/4 log K)/(nú)1/2

Ô
+ CK

≠rz+1/2 = OP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

. (66)

Here, the first inequality is due to the triangle inequality, and the second inequality is due to the

mean value theorem. The third inequality is due to Assumption 2 and the triangle inequality.

Finally, the fourth inequality is due to Lemma 8.5 and Assumption 4(b). Equation 66 combined

with Assumption 4(e) implies that with probability tending to one,

G(�ú

1z + �) ≠ G(�ú

1z)

Ø (�€M�)/2 ≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

= (2n
ú)≠1

núÿ

i=1
[≠n

ú
Z̃ifl

ÕÕ(B(Xi)€�̃){�€B(Xi)}2] ≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

Ø C(nú)≠1
núÿ

i=1
Z̃j{�€B(Xi)}2

≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

= C�€
Ó ÿ

i:Z̃i=1
(nú)≠1B(Xi)B(Xi)€

Ô
� ≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

Ø Cr
2
⁄min

1 ÿ

i:Z̃i=1
(nú)≠1B(Xi)B(Xi)€

2
≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

Ø C
ÕÕ
r

2
≠ rOP

Ó
(K1/4 log K)/(nú)1/2 + K

≠rz+1/2
Ô

= C
ÕÕ(Cú)2

1
K

1/4
{(log K)/n

ú
}

1/2 + K
≠rz+1/2

22

≠ C
ú
OP

1Ó
K

1/4
{(log K)/n

ú
}

1/2 + K
≠rz+1/2

Ô22
> 0. (67)
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Here the second inequality holds due to Assumption 4(a). The third inequality holds since for a

square matrix A, x€Ax Ø ⁄min(A)||x||
2
2. The fourth inequality is due to Lemma 8.6. Finally, the

fifth inequality holds for a choice of C
ú large enough. This completes the proof of Lemma 8.3 and

Theorem 4.2.

8.6 Proofs of propositions and theorems

8.6.1 Proof of Theorem 1

We first show that when Assumption 3 holds,
q

i:Zi=z ‚wiYi(z) P
≠≠≠æ
næŒ

ET{Y (z)}, for z œ {0, 1}.

For simplicity, we denote Z̃i = Di (Zi = z). Also, denote B̄ú = (nú)≠1 qnú
i=1 B(Xi). Writing

Yi(z) = mz(Xi) + ‘iz, where ET(‘iz|Xi) = 0, we get the following decomposition.

---
ÿ

i:Zi=z

‚wiYi(z) ≠ ET{Y (z)}
---

Æ

---
núÿ

i=1
Z̃i ‚wi{mz(Xi) ≠ �ú€

2z B(Xi)}
--- +

---�ú€

2z

Ó ÿ

i:Zi=z

‚wiB(Xi) ≠ B̄ú
Ô---

+
---�ú€

2z B̄ ≠ (nú)≠1
núÿ

i=1
mz(Xi)

--- +
---(nú)≠1

núÿ

i=1
mz(Xi) ≠ ET{mz(Xi)}

--- +
---

núÿ

i=1
Z̃i ‚wi‘iz

---

Æ sup
xœX

|mz(x) ≠ �ú€

2z B(x)|
núÿ

i=1
Z̃i| ‚wi| + |�ú

2z|
€� + sup

xœX

|mz(x) ≠ �ú€

2z B(Xi)|

+ oP (1) +
---

núÿ

i=1
Z̃i ‚wi‘iz

---

Æ O(K≠sz )|(nú)≠1
núÿ

i=1
Z̃in

ú
fl

Õ
{�†€B(Xi)}| + ||�ú

2z||2||�||2 + O(K≠sz ) + oP (1) +
---

núÿ

i=1
Z̃i ‚wi‘iz

---

= oP (1) +
---(nú)≠1

núÿ

i=1
Z̃in

ú
fl

Õ
{�†€B(Xi)}‘iz

---. (68)

Here the first inequality is due to the triangle inequality. In the second inequality, we bound the

imbalances |
q

i:Zi=z wiB(Xi) ≠ B̄ú
| by � (component-wise). The third inequality holds due to the

Cauchy-Schwarz inequality (for the second term) and Assumption 3 (for the first and third terms).

The final equality is due to assumptions 3 and 4(a). Now,

(1 ≠ c0)≠1(nú)≠1
núÿ

i=1
Z̃i‘iz Æ (nú)≠1

núÿ

i=1
Z̃in

ú
fl

Õ
{�†€B(Xi)}‘iz Æ c

≠1
0 (nú)≠1

núÿ

i=1
Z̃i‘iz. (69)

20



Both the upper and and lower bounds converge to a constant times ET(Z̃i‘iz) = ET{fi(Xi)PP(Zi =

1|Xi)ET(‘iz|Xi)} = 0, by Assumption 1. Therefore,
---(nú)≠1 qnú

i=1 Z̃in
ú
fl

Õ
{�†€B(Xi)}‘iz

--- = oP (1).

We now show that when Assumption 2 holds,
q

i:Zi=z ‚wiYi(z) P
≠≠≠æ
næŒ

ET{Y (z)}.

|

ÿ

i:Zi=z

wiY
obs

i ≠ ET{Y (z)}|

Æ

---
ÿ

i:Zi=z

wiYi(z) ≠ (nú)≠1 ÿ

i:Zi=z

w
IP
i Yi(z)

--- +
---(nú)≠1 ÿ

i:Zi=z

w
IP
i Yi(z) ≠ ET{Y (z)}

---

Æ sup
xœX

---nú
w(x) ≠ w

IP(x)
---
Ó

(nú)≠1 ÿ

i:Zi=z

|Yi(z)|
Ô

+ oP (1)

= oP (1), (70)

where the last step holds due to Theorem 4.2. This completes the proof.

8.6.2 Proof of Theorem 2

For convenience, we restate Assumption 5 below.

Assumption 5. For z œ {0, 1},

(a) ET{Y
2(z)} < Œ.

(b) Let g
ú
z(·) œ Gz. Gz satisfies log N[]{‘, Gz, L2(P )} Æ C1(1/‘)1/k1 for some constants C1 > 0 and

k1 > 1/2, where N[]{‘, Gz, L2(P )} is the covering number of Gz by epsilon brackets.

(c) Let mz(·) œ Mz. Mz satisfies log N[]{‘, Mz, L2(P )} Æ C2(1/‘)1/k2 for some constants C2 > 0

and k2 > 1/2, , where N[]{‘, Mz, L2(P )} is the covering number of Mz by epsilon brackets.

(d) (nú){2(rz+sz≠0.5)}≠1 = o(K), where rz, sz are the constants in assumptions 2 and 3, respec-

tively.

The conditions in Assumption 5 are similar to Assumption 2 in Wang and Zubizarreta (2020) and

Assumption 4.1 in Fan et al. (2016). In particular, Assumption 5(a) ensures existence of the second

moment of Y (z) with respect to the target distribution. Assumptions 5(b) and (c) control the

complexity of the function classes Gz and Mz. Finally, Assumption 5(d) puts further restriction

on the growth rate of the number of basis functions K as a function of n
ú.
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All probabilities and expectations in this proof are computed with respect to the probability measure

T. We first decompose the Hajek estimator T ≠· = {
q

i:Zi=1 ‚wiY
obs

i ≠
q

i:Zi=0 ‚wiY
obs

i }≠ET{Y (1)≠

Y (0)} as follows.

T ≠ · = S + R0 + R1 + R2 + R̃0 + R̃1 + R̃2, (71)

where

S = (nú)≠1
núÿ

i=1
{m1(Xi) ≠ m0(Xi)} + (nú)≠1

núÿ

i=1
(DiZi)/{e(Xi)fi(Xi)}{Y

obs
i ≠ m1(Xi)}

≠ (nú)≠1
núÿ

i=1
(Di(1 ≠ Zi))/[{1 ≠ e(Xi)}fi(Xi)]{Y

obs
i ≠ m0(Xi)} ≠ ·,

R0 =
núÿ

i=1
DiZi[ ‚wi ≠ {n

ú
e(Xi)fi(Xi)}≠1]{Yi(1) ≠ m1(Xi)},

R1 =
núÿ

i=1
(DiZi ‚wi ≠ (nú)≠1){m1(Xi) ≠ �ú€

21 B(Xi)},

R2 =
núÿ

i=1
(DiZi ‚wi ≠ (nú)≠1){�ú€

21 B(Xi)},

R̃0 =
núÿ

i=1
Di(1 ≠ Zi)[ ‚wi ≠ {n

ú
{1 ≠ e(Xi)}fi(Xi)}≠1]{Yi(0) ≠ m0(Xi)},

R̃1 =
núÿ

i=1
{Di(1 ≠ Zi) ‚wi ≠ (nú)≠1

}{m0(Xi) ≠ �ú€

20 B(Xi)},

R̃2 =
núÿ

i=1
{Di(1 ≠ Zi) ‚wi ≠ (nú)≠1

}{�ú€

20 B(Xi)}.

By central limit theorem, it follows that,

Ô

núS
d

≠≠≠≠æ
núæŒ

N (0, V ), (72)

where

V = Var
1
m1(Xi) ≠ m0(Xi) + [DiZi{Yi(1) ≠ m1(Xi)}]/{e(Xi)fi(Xi)} (73)

≠ [Di(1 ≠ Zi){Yi(0) ≠ m0(Xi)}]/[{1 ≠ e(Xi)}fi(Xi)]
2
. (74)

V is same as the semiparametric e�ciency bound for the target average treatment e�ect for nested
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designs (See Dahabreh et al. 2019, Li et al. 2021).

For notational convenience, we denote Z̃i = ZiDi. We now consider

Ô

núR0 =
Ô

nú

Ë núÿ

i=1
Z̃i{ ‚wi ≠ (nú)≠1

w
IP
i }{Yi(1) ≠ m1(Xi)}

È

=
Ô

nú

1
(nú)≠1

núÿ

i=1
Z̃i{Yi(1) ≠ m1(Xi)}[nú

fl
Õ
{B(Xi)€�†

} ≠ w
IP
i ]

2
. (75)

For a function g1(·), let us define the function

f0(Z̃, Y (1),X) := Z̃{Y (1) ≠ m1(X)}
Ë
n

ú
fl

Õ
{g1(X)} ≠ w

IP(X)
È

(76)

and the corresponding empirical process Gn given by,

Gn(f0) = (nú)1/2
Ó

(nú)≠1
núÿ

i=1
f0(Z̃i, Yi(1),Xi) ≠ E{f0(Z̃, Y (1),X)}

Ô
. (77)

First, E{f0(Z̃, Y (1),X)} = 0 by Assumption 1. Now, consider a class of functions F defined

as

F = {f0 : sup
xœX

|g1(x) ≠ g
ú

1(x)| Æ ”0}, (78)

where ”0 = C[K3/4
{(log K)/n

ú
}

1/2 + K
1≠rz ]. From the proof of Theorem 4.2, it follows that

sup
xœX

|B(x)€�†
≠ g

ú
1(x)| Æ ”0. Hence,

Ô

nú|R0| Æ sup
f0œF

|Gn(f0)| (79)

By the Markov inequality, P ( sup
f0œF

|Gn(f0)| Ø C) Æ C
≠1

E{ sup
f0œF

|Gn(f0)|}, for C > 0. Thus, to

show
Ô

nú|R0|
P

≠≠≠≠æ
núæŒ

0, it is enough to show that E{ sup
f0œF

|Gn(f0)|} P
≠≠≠≠æ
núæŒ

0. Now, assumptions

2 and 4(a) imply that for f0 œ F , |f0(Z, Y (1),X)| Æ C
Õ
|Y (1) ≠ m1(X)|”0 for a constant C

Õ
> 0.

So the function F0(Z, Y (1),X) := C
Õ
|Y (1) ≠ m1(X)|”0 is an envelope of F , with ||F0||P,2 :=

[E{F0{Z, Y (1),X}
2
}]1/2

Æ C”0 for some C > 0 by Assumption 5(a). By the maximal inequality
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(see Van der Vaart 2000 Chapter 19) we have

E{ sup
f0œF

|Gn(f0)|} . J[](||F0||P,2, F , L2(P )), (80)

where J[](||F0||P,2, F , L2(P )) :=
s ||F0||P,2

0 [log N[]{‘, F , L2(P )}]1/2
d‘ is the bracketing integral and

. indicates less than up to a constant. We now use similar steps as in Fan et al. (2016) and

Wang and Zubizarreta (2020) to bound the log of the bracketing number. Define F0 = {f0 :

sup
xœX

|g1(x) ≠ g
ú
1(x)| Æ C} for some constant C > 0. It follows that, log N[](‘, F , L2(P )) .

log N[](‘, ”0F0, L2(P )) = log N[](‘/”0, F0, L2(P )) . log N[](‘/”0, G1, L2(P )) . (”0/‘)1/k1 , where the

final inequality holds due to Assumption 5(c). This implies,

J[](||F0||P,2, F , L2(P )) .
⁄ C”0

0

1
”0/‘

21/(2k1)
d‘ . ”0/{1 ≠ 1/(2k1)}, (81)

where in the last step we used 2k1 > 1. The right hand side converges to zero as n
ú goes to Œ.

Thus,
Ô

núR0
P

≠≠≠≠æ
núæŒ

0. Following similar steps, we can show
Ô

núR̃0
P

≠≠≠≠æ
núæŒ

0.

We will now show that
Ô

núR1
P

≠≠≠≠æ
núæŒ

0 where R1 =
qnú

i=1(Z̃i ‚wi ≠ (nú)≠1){m1(Xi) ≠ �ú€
21 B(Xi)}.

Define the function

f1(Z̃,X) := [nú
Z̃fl

Õ
{g1(X)} ≠ 1]{m1(X) ≠ �ú

21B(X)}, (82)

and the corresponding empirical process Gn given by,

Gn(f1) = (nú)1/2
Ó

(nú)≠1
núÿ

i=1
f1(Z̃i,Xi) ≠ E{f1(Z̃,X)}

Ô
(83)

Denote �(x) = m1(x) ≠ �ú€
21 B(x). Now, consider a class of functions F1 defined as,

F1 = {f1 : sup
xœX

|g1(x) ≠ g
ú

1(x)| Æ ”1, sup
xœX

|�(x)| Æ ”2}, (84)

where ”1 = C[K3/4
{(log K)/n

ú
}

1/2 + K
1≠rz ], ”2 = CK

≠s1 for some constant C > 0. As before,
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using the proof of Theorem 4.2, we get

(nú)1/2
|R1| Æ sup

f1œF1
|Gn(f1) +

Ô

núE{f1(Z̃,X)}| Æ sup
f1œF1

|Gn(f1)| + (nú)1/2 sup
f1œF1

|E{f1(Z̃,X)}|

(85)

We show that each term on the right hand side is oP (1). For the first term, by the Markov inequality

it su�ces to show that E{ sup
f1œF1

|Gn(f1)|} nú
æŒ

≠≠≠≠æ 0. Now, assumptions 2, 4(a), and 3 imply that for

f1 œ F1, |f1(Z,X)| Æ C
Õ
”2 for a constant C

Õ
> 0. So the function F1(Z,X) := C

Õ
”2 is an envelope

of F1, with ||F1||P,2 Æ C
Õ
”2. By the maximal inequality,

E{ sup
f1œF1

|Gn(f1)|} . J[](||F1||P,2, F1, L2(P )), (86)

where

J[](||F1||P,2, F1, L2(P )) .
⁄ CÕ”2

0
{log N[](‘, F1, L2(P ))}1/2

d‘. (87)

Define F0 := {f1 : sup
xœX

|g1(x) ≠ g
ú
1(x)| Æ C, sup

xœX

|�(x)| Æ 1} for some constant C > 0, H10 :=

{“ œ G1 + g
ú
1 : sup

xœX

|“(x)| Æ C}, H20 := {� œ M1 ≠ �ú€
21 B(x) : sup

xœX

|�(x)| Æ 1}. Using similar

steps as in Fan et al. (2016) and Wang and Zubizarreta (2020) to bound the log of this brack-

eting number, we get log N[](‘, F1, L2(P )) . log N[](‘/”2, F0, L2(P )) . log N[](‘/”2, H10, L2(P )) +

log N[](‘/”2, H20, L2(P )) . log N[](‘/”2, G1, L2(P ))+log N[](‘/”2, M1, L2(P )) Æ (”2/‘)1/k1+(”2/‘)1/k2 ,

where the final inequality holds due to assumptions 5(b) and 5(c). Thus,

J[](||F1||P,2, F1, L2(P )) . ”2/{1 ≠ 1/(2k1)} + ”2/{1 ≠ 1/(2k2)}, (88)

since 2k1 > 1 and 2k2 > 1. The right hand side converges to zero as n
ú goes to infinity. Thus,

sup
f1œF1

|Gn(f1)| = oP (1).

Now, let H1 = {g œ G1 : sup
xœX

|g1(x) ≠ g
ú
1(x)| Æ ”1} and H2 = {� œ M1 ≠ �ú€

21 B : sup
xœX

|�(x)| Æ
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”2}.

(nú)1/2 sup
f1œF1

|E{f1(Z̃,X)}| = (nú)1/2 sup
g1œH1,�œH2

|E({n
ú
Z̃fl

Õ
{g1(X)} ≠ 1}�(X))|

= (nú)1/2 sup
g1œH1,�œH2

---E
Ë1

[nú
fl

Õ
{g1(X)}]/[nú

fl
Õ
{g

ú

1(X)}] ≠ 1
2
�(X)

È---

. (nú)1/2 sup
g1œH1,�œH2

Ó
sup
xœX

|g1(x) ≠ g
ú

1(x)|
ÔÓ

sup
xœX

|�(x)|
Ô

. (nú)1/2
”1”2

. K
≠s1+3/4 log K + (nú)1/2

K
≠r1≠s1+1/2

. (89)

Here the first inequality holds by applying the mean value theorem and assumptions 4(a), 2, and

4(a). The second inequality holds by definition of H1 and H2. Finally, by assumptions 3 and 5(d),

the right hand side of Equation 89 goes to zero as n
ú goes to infinity.

Thus, (nú)1/2
R1

P
≠≠≠≠æ
núæŒ

0. Following similar steps, we can show (nú)1/2
R̃1

P
≠≠≠≠æ
núæŒ

0. Finally, we

consider R2 =
qnú

i=1(Z̃i ‚wi ≠ (nú)≠1){�ú€
21 B(Xi)}. We observe that,

(nú)1/2
|R2| Æ ||�ú

21||2
---
---

ÿ

i:Z̃i=1
‚wiB(Xi) ≠ (nú)≠1

núÿ

i=1
B(Xi)

---
---
2

Æ ||�ú

21||2||�||2 = o(1) (90)

The first inequality is due to Cauchy-Schwarz; the second inequality holds by construction of the

weights, and the third equality holds by Assumption 3. This implies, (nú)1/2
R2

P
≠≠≠≠æ
núæŒ

0. Following

similar steps, we can show (nú)1/2
R̃2

P
≠≠≠≠æ
núæŒ

0. This completes the proof of the theorem.

8.7 Details for the Simulation Study

In this section, we include additional results on the performance of the one-step and two-step

estimators. We also include their performance when the estimand is E[Y (1) ≠ Y (0)|S = 0] (trans-

portability) rather than E[Y (1) ≠ Y (0)|S = 1] (generalizability).

For the settings in the main text, Table 4 shows the bias of the Hájek estimators of the target average

treatment e�ect under each weighting method, based on 800 simulations. The one-step estimators
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tend to perform better than the corresponding two-step estimators across the three outcome models,

in both the randomized and observational study settings. In the randomized study, the one-step

estimators reduce the absolute bias by 85% in the misspecified cases and by 79% in the correctly

specified cases relative to the corresponding two-step estimators, on average. In the observational

study, the biases are typically higher than their experimental counterparts, particularly for the

misspecified cases. Here, the one-step estimators reduce the absolute bias by 10% in the misspecified

cases and by 92% in the correctly specified cases relative to the corresponding two-step estimators,

on average. In the correctly specified cases, biases are reduced substantially under the one-step

method because by construction, the one-step method balances the right functions of covariates

relative to the target.

Table 4: Bias of the Hájek estimator of the target average treatment e�ect using di�erent
weighting methods in both the randomized and observational study settings.

Randomized Study Setting Observational Study Setting
Outcome Outcome Outcome Outcome Outcome Outcome

Weighting Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Two-Step Method 1 0.67 3.30 5.02 -9.26 -6.45 -4.77
One-Step Method 1 -0.02 0.53 2.04 -8.62 -8.00 -6.46
Two-Step Method 2 0.79 3.59 3.15 -32.12 -27.84 -32.71
One-Step Method 2 -0.03 0.50 -0.43 -17.16 -16.21 -23.97
Two-Step Method 3 0.18 0.20 0.14 0.63 0.91 1.05
One-Step Method 3 0.01 -0.03 -0.06 -0.10 -0.04 0.03

For the transportability design, we slightly modify the setup in Section 5. There are nstudy = 500

units in the study sample and ntarget = 5000 units in the target sample. Let S = 1 indicate a

unit is in the study sample and S = 0 indicate a unit is in the target sample. For units with

S = 1, the four independent latent covariates are U1, U2, U3, U4 ≥ N (0, 1). For units with S = 0,

they are U1 ≥ N (1.2, 1), U2 ≥ N (≠0.4, 1), U3 ≥ N (0.3, 1), and U4 ≥ N (0.1, 1). This creates

similar correlations betwen the latent covariates and S as in the setting detailed in Section 5. The

remaining setup is the same as that in Section 5.
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Table 5 shows the root-mean-squared errors and Table 6 shows the mean bias of the Hájek estimators

of the target average treatment e�ect. Figure 4 shows how the e�ective sample sizes and maximum

normalized weights vary across simulations. Overall, the pattern of results is similar as in Section 5,

albeit with a more dramatic improvement in performance by the one-step weights, likely due to the

more limited covariate overlap. A few exceptions occur for the observational study, where the two-

step weights produce less biased estimates than the one-step weights for outcome model 1 (i.e., no

treatment e�ect heterogeneity), though the one-step weights still show improved root-mean-squared

error.

Table 5: Root-mean-squared error of the Hájek estimator of the target average treatment
e�ect using di�erent weighting methods in both the randomized and observational study
settings (transportability setting).

Randomized Study Setting Observational Study Setting
Outcome Outcome Outcome Outcome Outcome Outcome

Weighting Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Two-Step 1 30.35 45.61 48.11 29.56 45.78 47.33
One-Step 1 2.32 2.52 3.24 5.64 5.15 5.59
Two-Step 2 31.88 46.71 49.74 31.90 46.02 48.44
One-Step 2 1.56 1.81 2.42 14.05 12.98 20.97
Two-Step 3 8.81 19.15 18.57 12.81 22.27 23.20
One-Step 3 0.52 0.81 1.22 0.72 0.95 1.33
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Table 6: Bias of the Hájek estimator of the target average treatment e�ect using di�erent
weighting methods in both the randomized and observational study settings (transportability
setting).

Randomized Study Setting Observational Study Setting
Outcome Outcome Outcome Outcome Outcome Outcome

Weighting Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Two-Step 1 -0.29 27.29 55.09 -0.37 28.08 55.13
One-Step 1 -0.06 -0.07 -0.07 -5.12 -4.47 3.21
Two-Step 2 -0.38 26.87 54.85 -3.39 24.10 55.07
One-Step 2 -0.02 0.00 -0.04 -13.95 -12.83 7.69
Two-Step 3 -0.27 16.04 32.80 0.03 15.92 31.17
One-Step 3 -0.02 -0.02 -0.09 0.21 0.29 -0.06

Figure 4: E�ective sample sizes and maximum normalized weights across weighting methods
in both the randomized and observational study settings (transportability setting).
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8.8 Simulation study with heteroscedastic outcomes

In this section, we compare the one-step and two-step estimators in settings where the poten-

tial outcomes are heteroscedastic. We use the same setting as in Section 5 with four indepen-

dent unobserved covariates distributed as U1, U2, U3, U4 ≥ N (0, 1), and four observed covariates

generated as X1 = exp(U1/2), X2 = U2/{1 + exp(U1)} + 10, X3 = (U1U3/25 + 0.6)3, and

X4 = (U2 + U4 + 20)2. D is the binary indicator for selection into the study, and Z is the

binary treatment indicator. The true model for the probability of selection into the study is

pr(D = 1|U) = expit(≠U1 + 0.5U2 ≠ 0.25U3 ≠ 0.1U4) so that, marginally, pr(D = 1) = 0.5. The

total cohort size is 1000. For the randomized study setting, pr(Z = 1|U) = 0.5, and for the

observational setting, pr(Z = 1|U) = expit(U1 + 2U2 ≠ 2U3 ≠ U4).

We consider three di�erent models for Y (0) and Y (1). Under Model-j (j œ {1, 2, 3}), Y (0) =

210 + 27.4U1 + 13.7U2 + 13.7U3 + 13.7U4 + hj(U)‘0, where ‘0 ≥ N (0, 52). This model allows

for heteroscedasticity, since the conditional variance varies as a function of the covariates, i.e.,

VarT(Y (0)|U = u) = 25h
2
j (u). We set h1(u) = 2u1, h2(u) = 2(u1+u2), and h3(u) = 2(u1+u2+u3+

u4). Similarly, there are three models for Y (1): Model 1 is given by Y (1) = 210+27.4U1 +13.7U2 +

13.7U3 + 13.7U4 + h1(U)‘1; Model 2 by Y (1) = 210 + 41.1U1 + 13.7U2 + 13.7U3 + 13.7U4 + h2(U)‘1;

and Model 3 by Y (1) = 210 + 41.1U1 + 27.4U2 + 27.4U3 + 13.7U4 + h3(U)‘1; where ‘1 ≥ N (0, 52)

and hj(·)s are the same as those for the models of Y (0).

We compare three versions of one-step weighting to three versions of two-step weighting as specified

in Section 5. Table 7 shows the root-mean-squared errors of the Hájek estimators, based on 800

simulations. We observe that the one-step weights outperform the two-step weights across the three

outcome models in both the randomized and observational study settings.
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Table 7: Root-mean-squared error of the Hájek estimator of the target average treatment
e�ect using di�erent weighting methods in both the randomized and observational study
settings under heteroscedastic outcomes.

Randomized Study Setting Observational Study Setting
Outcome Outcome Outcome Outcome Outcome Outcome

Weighting Method Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Two-Step 1 19.23 23.21 26.33 23.83 24.96 25.72
One-Step 1 3.03 3.57 4.75 9.23 8.69 7.93
Two-Step 2 20.83 25.25 28.09 44.45 42.65 48.17
One-Step 2 2.42 3.02 3.84 17.34 16.41 24.41
Two-Step 3 5.07 5.73 6.58 9.68 12.64 13.92
One-Step 3 0.89 1.52 2.03 1.22 1.73 2.99

8.9 Additional Case Study Results

In this section, we present results from the case study in Section 5, albeit with the weights imple-

mented via the two-step method. To calculate the two-step weights, we fit logistic regression models

for treatment and study selection, and we trim each set of weights at their 90th percentiles.

Figure 5 summarizes the performance of the two-step weighting method for achieving balance

relative to the various target covariate profiles. The figure also summarizes the dispersion of the

weights via density plots and e�ective sample sizes. Compared to the weights in Figure 2, each set

of two-step weights is less evenly dispersed and has higher variance and lower e�ective sample size,

reflecting the one-step method’s explicit optimization for these criteria. Covariate balance is also

worse than in the one-step approach, again because the one-step weights explicitly target covariate

balance. This pattern becomes more stark as the profile becomes more di�cult to target (i.e., as

there is less overlap between the target and study populations).
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Figure 5: Distributions of target absolute standardized mean di�erences and e�ective sample
sizes for three target populations (two-step).
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TASMD = target absolute standardized mean di�erence. The black vertical dashed line in each plot marks a TASMD of 0.05,
signifying the heuristic that a TASMD < 0.05 indicates good balance. SD = standard deviation.

Figure 6 presents the Hájek estimates of the target average treatment e�ect for each outcome along

with bootstrapped confidence intervals. The results are similar as those due to the one-step weights

in Figure 3, however, due to the higher variability of the two-step weights, the confidence intervals

are much wider.
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Figure 6: Estimates of the target average treatment e�ect for various outcome variables and
target populations.
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8.10 R Code

In this section, we provide instructions on how to implement the one-step weights using sbw package

for R. First, however, we recommend installing gurobi, an optimizer which increases the perfor-

mance of sbw. Instructions on installation can be found on https://www.gurobi.com.

Next, install the sbw package in R via the code install.packages("sbw"). Now, in this sec-

tion, we provide example code that would be used to weight the data set from the applied study

corresponding to the randomized participants. We weight these data toward a covariate profile

constructed from the covariate means of the entire recruited sample.

First, read in the trial data (oakland_analysis_final.dta) and the recruited sample data

(oakland_analysis_selection.dta) and list the covariates to balance.
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> library(sbw)

> oakland.final <- read_dta("oakland_analysis_final.dta")

> oakland.selection <- read_dta("oakland_analysis_selection.dta")

> T1.vars <- c("good_sa_health",

> "any_health_prob",

> "ER_2years",

> "nights_hosp_2years",

> "hosp_visits_2years",

> "med_mistrust",

> "has_PCP",

> "uninsured",

> "age",

> "married",

> "unemployed",

> "HSless",

> "low_income",

> "benefits")

For the sake of this analyses, we have imputed missing values with the mean for continuous covari-

ates and created an additional missing category for categorical covariates. For continuous imputed

covariates, we also add a dummy variable indicating missingness. These additional variables are

added to the list to balance. For the sake of space, we omit including the code that performs these

imputations. We assume that the final list of covariates is included in the list T1.vars.imp. We as-

sume the data sets oakland.selection and oakland.final have been updated accordingly.

Next, we define the balance tolerances. We define each covariate’s tolerance as 0.1 times the

covariate standard deviation in the recruited sample.

> sd_targets <- apply(as.matrix(oakland.selection[T1.vars.imp]), 2, sd)

> tols <- 0.1 sd_targets

Next we subset the trial data by treatment group (i.e., values of black_dr) — as we want to

weight each treatment group toward the target profile. Then we define the various inputs to the

sbw function. For this first implementation, we manually set the tolerances, restrict the weights to

be positive (wei_pos = TRUE), and restrict the weights to sum to one (wei_sum = TRUE).

> t_ind <- "black_dr"

> dat.1 <- subset(dat, dat[t_ind][,1] == 1)

> dat.0 <- subset(dat, dat[t_ind][,1] == 0)

> bal_cov <- T1.vars.imp
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> bal_alg <- FALSE

> bal_tol <- tols

> bal_std <- "manual"

> bal <- list(bal_cov = bal_cov, bal_alg = bal_alg, bal_tol = bal_tol, bal_std = bal_std)

> wei <- list(wei_sum = TRUE, wei_pos = TRUE)

> par_tar <- colMeans(oakland.selection[T1.vars.imp])

Next, we balance each treatment group and combine the weighted data into a single data set with

both treatment groups.

> sbw.results.1 <- sbw(dat = dat.1, bal = bal, par = list(par_est = "aux", par_tar

= par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> sbw.results.0 <- sbw.results.1 <- sbw(dat = dat.0, bal = bal, par = list(par_est

= "aux", par_tar = par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> weighted.df.1 <- sbw.results.1$dat_weights

> weighted.df.0 <- sbw.results.0$dat_weights

> weighted.df <- rbind(weighted.df.1, weighted.df.0)

Using the weighted data, we can compute the TATE directly via weighted means. For the sake

of demonstration, we evaluate the TATE for the outcome that measures whether the participant

elected to receive a flu shot after their doctor’s visit.

> mean.1 <- weighted.mean(weighted.df.1["post_flu"][,1], weighted.df.1["sbw_weights"][,1])

> mean.0 <- weighted.mean(weighted.df.0["post_flu"][,1], weighted.df.0["sbw_weights"][,1])

We omit the code to compute standard errors and confidence intervals via bootstrapping. In

addition to supplying the tolerances manually, one could also implement the algorithm that selects

the tolerances from a grid of options in a data-adaptive way. Code to implement this method

appears below.

> t_ind <- "black_dr"

> dat.1 <- subset(dat, dat[t_ind][,1] == 1)

> dat.0 <- subset(dat, dat[t_ind][,1] == 0)

> bal_cov <- T1.vars.imp

> bal_alg <- TRUE

> bal_std <- "manual"

> bal_gri <- c(0.0001, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1)

> bal <- list(bal_cov = bal_cov, bal_alg = bal_alg, bal_tol = NULL, bal_std = bal_std,

bal_gri = bal_gri)

> wei <- list(wei_sum = TRUE, wei_pos = TRUE)

> par_tar <- colMeans(oakland.selection[T1.vars.imp])
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> sbw.results.1 <- sbw(dat = dat.1, bal = bal, par = list(par_est = "aux", par_tar

= par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> sbw.results.0 <- sbw.results.1 <- sbw(dat = dat.0, bal = bal, par = list(par_est

= "aux", par_tar = par_tar), sol = list(sol_nam = "gurobi"),wei = wei)

> weighted.df.1 <- sbw.results.1$dat_weights

> weighted.df.0 <- sbw.results.0$dat_weights

> weighted.df <- rbind(weighted.df.1, weighted.df.0)
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