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SUPPLEMENTARY MATERIAL

Appendix A contains the proofs for theorems and propositions stated in the main text.

Appendix B contains simulation results. Appendix C studies parameters implicitly defined

by overidentifying moment conditions.

A Technical Proofs

In this section, we prove the theorems and propositions stated in the main text. We assume

that Assumptions 1 - 3 hold throughout this section.

A.1 Proofs for the identification results

Lemma 1. S ⊥ Z | X and t ∈ T , Yt ⊥ T | S,X.

Proof of Lemma 1. The first statement follows from the definition of S and the fact that Z

is independent of the vector (Tz1 , · · · , TzNZ
) conditioning on X. For the second statement,

T is entirely determined by (S, Z,X). Hence, given S and X, T is independent of Yt since

Z is independent of (Yt1 , · · · , YtNT
) conditional on X.

Lemma 2. For each t ∈ T and k = 1, · · · , NZ, the following identification results hold.
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(i) P(S ∈ Σt,k | X) = bt,kPt(X) a.s.

(ii) E
[

Yt | S ∈ Σt,k, X
]

= (bt,kQt(X))/(bt,kPt(X)) a.s.

Proof of Lemma 2. This is Theorem T-6 in Heckman and Pinto (2018a). The conditioning

is explicitly presented.

Proof of Theorem 2.1. The first statement follows from applying the law of iterated expec-

tation to Lemma 2(i). For the second statement, we can apply Bayes’ rule to Lemma 2

and obtain that

E
[

Yt | S ∈ Σt,k

]

=

∫

E
[

Yt | S ∈ Σt,k, X = x
]

fX|S∈Σt,k
(x)dx

=

∫

E
[

Yt | S ∈ Σt,k, X = x
] P(S ∈ Σt,k | X = x)

P(S ∈ Σt,k)
fX(x)dx

= E
[

bt,kQt(X)
]

/pt,k,

where fX|S∈Σt,k
denotes the conditional density function of X given type S ∈ Σt,k.

Proof of Theorem 2.2. By Lemma L-16 of Heckman and Pinto (2018b), we know that under

the unordered monotonicity assumption, Bt[·, i] = Bt[·, i′] for all si, si′ ∈ Σt,k. Thus, the

set Zt,k always exists. For the first statement, we have

P
(

T = t, S ∈ Σt,k

)

= P
(

Z ∈ Zt,k, S ∈ Σt,k

)

= E

[

P
(

Z ∈ Zt,k, S ∈ Σt,k | X
)

]

= E

[

P
(

Z ∈ Zt,k | X
)

P
(

S ∈ Σt,k | X
)

]

= E
[

bt,kPt(X)πt,k(X)
]

,

where the second equality follows from the law of iterated expectations and the third

equality follows from the fact that Z ⊥ S | X (Lemma 1). For the second statement,

notice that

P(T = t, S ∈ Σt,k | X = x) = P(T = t | S ∈ Σt,k, X = x)P(S ∈ Σt,k | X = x)

= P(Z ∈ Zt,k | X)P(S ∈ Σt,k | X = x)

= πt,k(X)bt,kPt(X).
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By Lemma 1, we know that

E
[

Yt | T = t, S ∈ Σt,k, X = x
]

= E
[

Yt | S ∈ Σt,k, X = x
]

.

Therefore, we can apply Bayes’ rule and obtain that

E
[

Yt | T = t, S ∈ Σt,k

]

=

∫

E
[

Yt | T = t, S ∈ Σt,k, X = x
]

fX|T=t,S∈Σt,k
(x)dx

=

∫

E
[

Yt | S ∈ Σt,k, X = x
] P (T = t, S ∈ Σt,k | X = x)

P (T = t, S ∈ Σt,k)
fX(x)dx

=

∫

bt,kQt(X)

bt,kPt(X)
× πt,k(X)bt,kPt(X)

qt,k
fX(x)dx

=E
[

bt,kQt(X)πt,k(X)
]

/qt,k.

A.2 Semiparametric efficiency calculations

We follow the method developed by Newey (1990). The likelihood function of the GLATE

model can be specified as

L (Y, T, Z,X) = fX(X)
∏

z∈Z

(

fz(Y, T | X)πz(X)
)

1{Z=z}
,

where fz(·, · | X) denotes the conditional density of Y, T given Z = z and X. In a regular

parametric submodel, where the true underlying probability measure P is indexed by θo,

we use the following notations to represent the score functions:

sz(Y, Z | X; θ) =
∂

∂θ
log
(

fz(Y, T | X; θ)
)

,

sπ(Z | X; θ) =
∑

z∈Z
1{Z = z} ∂

∂θ
log
(

πz(X; θ)
)

,

sX(X; θ) =
∂

∂θ
log
(

fX(X; θ)
)

.

The score in a regular parametric submodel is

sθo(Y, T, Z,X) =
∑

z∈Z
1{Z = z}sz

(

Y, T | X; θo
)

+ sπ(Z | X; θo) + sX(X; θo).
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Hence, the tangent space of the model is

S =
{

s ∈ L2
0 : s(Y, T, Z,X) =

∑

z∈Z
1{Z = z}sz

(

Y, T | X
)

+ sπ(Z | X) + sX(X)

for some sz, sπ, sX such that

∫

sz(y, t | X)fz(y, t | X)dydt = 0, ∀z;
∑

z∈Z
sπ(z | X)πz(X) = 0, and

∫

sX(x)fX(x)dx = 0
}

,

where L2
0 is a subspace of L2 that contains the mean zero functions.

Proof of Theorem 3.1. We only prove statements (i) and (ii) since (iii) and (iv) are easier

cases that can be proved along the way. We start with the first statement. The path-wise

differentiability of the parameter βt,k can be verified in the following way: in any parametric

submodel, we have

∂

∂θ
βt,k(θ)

∣

∣

∣

θ=θo
=

∂

∂θ
(bt,kEθ

[

Qt(X)
]

/pt,k)
∣

∣

θ=θo

=
1

pt,k

(

(∂bt,kEθ
[

Qt(X)
]

/∂θ)|θ=θo − (bt,kEθ
[

Qt(X)
]

/pt,k)(∂pt,k/∂θ)|θ=θo
)

=
1

pt,k
bt,k

(

∂

∂θ
Eθ

[

Qt(X)
] ∣

∣

θ=θo
− ∂

∂θ
Eθ

[

Pt(X)
] ∣

∣

θ=θo
βt,k

)

,

where ∂
∂θ
Eθ

[

Qt(X)
]

|θ=θo and ∂
∂θ
Eθ

[

Pt(X)
]

|θ=θo are NZ × 1 random vectors whose typical

element can be represented respectively by

∫

y1{τ = t}sz(y, τ | x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

y1{τ = t}sX(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

and

∫

1{τ = t}sz(y, τ | x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

1{τ = t}sX(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx,

respectively, for z ∈ Z. The EIF is characterized by the condition that

∂

∂θ
βt,k(θ)

∣

∣

∣

θ=θo
= E

[

ψβt,ksθo
]

, and ψβt,k ∈ S .
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The expression of ψβt,k given in Equation (1) meets the above requirements. In particular,

the correspondence between terms in the EIF and path-wise derivative appears exactly as

in Lemma 1 of Hong and Nekipelov (2010b).

For the second statement, the path-wise derivative of γt,k can be computed similarly.

∂

∂θ
γt,k(θ)

∣

∣

∣

θ=θo
=

1

qt,k
bt,k

∂

∂θ
Eθ

[

Qt(X)πt,k(X)
]

∣

∣

∣

θ=θo

− γt,k
qt,k

bt,k
∂

∂θ
Eθ

[

Pt(X)πt,k(X)
]

∣

∣

∣

θ=θo
,

where ∂
∂θ
Eθ[Qt(X)πWt,k

(X)]|θ=θo and ∂
∂θ
Eθ[Pt(X)πWt,k

(X)]|θ=θo are NZ × 1 random vectors

whose typical element can be represented by

∫

y1{τ = t}sz(y, τ | x; θo)πWt,k
(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

y1{τ = t}sX(x; θo)πWt,k
(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

y1{τ = t}
(

∂

∂θ
πt,k(X; θ)

∣

∣

θ=θo

)

fz(y, τ | x; θo)fX(x; θo)dydτdx,

and

∫

1{τ = t}sz(y, τ | x; θo)πWt,k
(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

1{τ = t}sX(x; θo)πWt,k
(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

1{τ = t}
(

∂

∂θ
πt,k(X; θ)

∣

∣

θ=θo

)

fz(y, τ | x; θo)fX(x; θo)dydτdx,

respectively, for z ∈ Z. The main difference appears when dealing with the last terms

in the above two expressions, which can be matched with terms in the efficient influence

function of the following two forms

E
[

Y 1{T = t} | Z = z,X
] (

1{Z ∈ Zt,k} − πt,k(X)
)

, and

E
[

1{T = t} | Z = z,X
] (

1{Z ∈ Zt,k} − πt,k(X)
)

.

Take the latter one as an example. Notice that

1{Z ∈ Zt,k} − πt,k(X) =
∑

z∈Zt,k

(

1{Z = z} − πz(X)
)

,
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and

(

1{Z = z} − πz(X)
)

sπ(Z | X; θo) =
1{Z = z}
πz(X)

∂

∂θ
πz(X; θ)

∣

∣

θ=θo
− πz(X)sπ(Z | X; θo).

By the law of iterated expectation, we have

E

[

E
[

1{T = t} | Z = z,X
] (

1{Z = z} − πz(X)
)

sπ(Z | X; θo)
]

=E

[

E
[

1{T = t} | Z = z,X
]

E
[

1{Z = z}/πz(X) | X
] ∂

∂θ
πz(X; θ)

∣

∣

θ=θo

]

−E

[

E
[

1{T = t} | Z = z,X
]

πz(X)E
[

sπ(Z | X; θo) | X
]

]

=E

[

E
[

1{T = t} | Z = z,X
] ∂

∂θ
πz(X; θ)

∣

∣

θ=θo

]

=

∫

1{τ = t}
(

∂

∂θ
πz(X; θ)

∣

∣

θ=θo

)

fz(y, τ | x; θo)fX(x; θo)dydτdx.

Proof of Proposition 3.2. This proof is based on Section 4 in Newey (1994). We focus on

the case of βt,k. The other cases are similar. To ease notation, let ht =
(

hY,t,Z , ht,Z , π
)′
.

The estimator β̂t,k is defined by the moment condition

E[M
(

X, βt,k, ht
)

] = 0,

where M
(

X, βt,k, ht
)

equals

bt,k

(

hY,t,z1(X)

πz1(X)
, · · · ,

hY,t,zNZ
(X)

πzNZ
(X)

)′

− βt,kbt,k

(

ht,z1(X)

πz1(X)
, · · · ,

ht,zNZ
(X)

πzNZ
(X)

)′

.

We then compute the derivatives of M with respect to the parameters:

E
[

∂M/∂βt,k
]

= −bt,kE
[

Pt(X)
]

= −pot,k
∂M/∂hY,t,zi |ht=hot = bt,k[i]/π

o
zi
(X) = δY,t,zi(X)

∂/∂ht,ziM |ht=hot = −(βt,kbt,k[i])/π
o
zi
(X) = δt,zi(X)

∂M/∂πzi |ht=hot = −(bt,k[i]Q
o
t,zi

(X))/πozi(X) + (βt,kbt,k[i]P
o
t,zi

(X))/πozi(X) = δπ,zi(X),
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where bt,k[i] denotes the ith element of the vector bt,k. Define

α (Y, T, Z,X) =
∑

z∈Z
δY,t,z(X)

(

1{Z = z}Y 1{T = t} − hoY,t,z(X)
)

+
∑

z∈Z
δt,z(X)

(

1{Z = z}1{T = t} − hot,z(X)
)

+
∑

z∈Z
δπ,z(X)

(

1{Z = z} − πoz(X)
)

.

We have

α (Y, T, Z,X) = bt,kζ(Z,X, π
o)
(

ι(Y 1{T = t})−Qo
t (X)

)

− βot,kbt,kζ(Z,X, π
o)
(

ι1{T = t} − P o
t (X)

)

.

Then Newey’s (1994) Proposition 4 suggests that the influence function of the estimator

β̂t,k is (M + α)/pt,k which is equal to the EIF ψβt,k .

Proof of Theorem 3.3. Based on Proposition 3.2, we only need to show that the estimators

are asymptotically linear. By the delta-method argument, if we have two estimators that

are asymptotically linear, then their ratio is also asymptotically linear. Therefore, we only

need to show that p̂t,k is asymptotically linear, and then the other estimators can be dealt

with in the same way. Because p̂t,k is a linear combination of 1
n

∑n
i=1 P̂t,z(Xi), z ∈ Z, we

only need to work with the latter expression. After adding and subtracting the true first

step functions, we obtain that

√
n





1

n

n
∑

i=1

P̂t,z(Xi)− E[Pt,z(X)]



 =
1√
n

n
∑

i=1

(P̂t,z(Xi)− E[Pt,z(X)])

=
1√
n

n
∑

i=1

(

ĥt,z(Xi)

π̂z(Xi)
− ht,z(Xi)

πz(Xi)

)

+
1√
n

n
∑

i=1

(

ht,z(Xi)

πz(Xi)
− E

[

ht,z(Xi)

πz(Xi)

]

)

.

The second term is already in the form of an influence function, and we only need to focus

on the first term. Since πz is bounded away from zero, we can apply Taylor expansion to
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the ratio function and obtain that

ĥt,z(Xi)

π̂z(Xi)
− ht,z(Xi)

πz(Xi)
=

1

πz(Xi)
(ĥt,z(Xi)− ht,z(Xi))−

ht,z(Xi)

πz(Xi)2
(π̂z(Xi)− πz(Xi))

+Op

(

‖ĥt,z − ht,z‖2∞ ∨ ‖π̂z − πz‖2∞
)

.

The above expansion is uniform for 1 ≤ i ≤ n because the remainder term is small with

respect to the sup norm. By the standard uniform convergence rate of local polynomial

regressions (see, e.g., Masry, 1996, Theorem 6), we know that

‖ĥt,z − ht,z‖2∞ ∨ ‖π̂z − πz‖2∞ = op

(

log n

nadX
+ a2λ

)

= op(n
−1/2),

where the second equality follows from our assumption on the bandwidth. The remaining

task is to show that the following two terms are asymptotically linear:

1√
n

n
∑

i=1

1

πz(Xi)
(ĥt,z(Xi)− ht,z(Xi)),

1√
n

n
∑

i=1

ht,z(Xi)

πz(Xi)2
(π̂z(Xi)− πz(Xi)).

We focus on the first term because the second term can be analyzed analogously. Notice

that ĥt,z/πz and ht,z/πz are smooth functions. By Theorem 2.5.1 and Theorem 2.7.1 in

van der Vaart and Wellner (1996), we know that smooth functions form a Donsker class

and hence have the following stochastic equicontinuity result:

1√
n

n
∑

i=1

1

πz(Xi)
(ĥt,z(Xi)− ht,z(Xi)) =

√
n

∫

1

πz(x)
(ĥt,z(x)− ht,z(x))fX(x)dx+ op(1).

That is, we can replace the empirical measure with the true probability of X, and the error

is negligible. Lastly, the by standard Bahadur representation of local polynomial estimators

(e.g., Kong et al., 2010, Theorem 1), we know that ĥt,z(x)−ht,z(x) is first-order equivalent

to a function of Xi multiplied by 1
nad

∑n
i=1 εiK̃((x −Xi)/a), where εi = 1{Zi = z}1{Ti =

t} − E[1{Zi = z}1{Ti = t}|Xi] and K̃ is a kernel function that depends on the original

kernel K and the order of the local polynomial estimator. By using a change of variables

u = (x−Xi)/a, we obtain that the integral of the above expression is equal to

∫

1

nad

n
∑

i=1

εiK̃((x−Xi)/a)fX(x)/πz(x)dx =
1

n

n
∑

i=1

∫

εifX(Xi + au)/πz(Xi + au)K̃(u)du

∼ 1

n

n
∑

i=1

εifX(Xi)/πz(Xi)

∫

K̃(u)du.
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This verifies that the term 1√
n

∑n
i=1

1
πz(Xi)

(ĥt,z(Xi)− ht,z(Xi)) has an asymptotically linear

representation. Similarly, we can also verify that the term 1√
n

∑n
i=1

ht,z(Xi)

πz(Xi)2
(π̂z(Xi)−πz(Xi))

is asymptotically linear. This proves the result of the theorem.

A.3 Proofs for the robustness results

Proof of Proposition 4.1. We prove the case for ψpt,k , the other cases can be dealt with

analogously. First assume π = πo, then

E
[

1{Z = z}/πoz(X) | X
]

= 1,

which implies that E
[

ζ(Z,X, πo) | X
]

is almost surly equal to the identity matrix I. By

the law of total expectations, we have

E
[

1{T = t}1{Z = z}/πoz(X) | X
]

= E
[

1{T = t} | Z = z,X
]

= P o
t,z(X),

which implies that E
[

ζ(Z,X, πo)ι1{T = t}
]

= E
[

P o
t (X)

]

. Therefore,

bt,kE[ζ(Z,X, π
o)
(

ι(1{T = t})− Pt(X)
)

+ Pt(X)]

=bt,kE
[

ζ(Z,X, πo)ι1{T = t}
]

+ bt,kE
[

(I− ζ(Z,X, πo))Pt(X)
]

= bt,kE
[

P o
t (X)

]

= pot,k.

Now suppose that Pt = P o
t . Then by the law of total expectation, we have

E[1{Z = z}(1{T = t} − P o
t,z(X)) | X]

=πz(X)E[E[1{T = t} | Z = z,X]− P o
t,z(X) | X] = 0.

This implies that E[ζ(Z,X, π)(ι(1{T = t})− P o
t (X))] = 0. Hence,

bt,kE
[

ζ(Z,X, π)
(

ι(1{T = t})− P o
t (X)

)

+ P o
t (X)

]

= bt,kE
[

P o
t (X)

]

= pot,k.

This proves the proposition.

Proof of Proposition 4.2. Since bt,k is a finite vector, it suffices to verify the Neyman or-

thogonality condition for ψz, which is defined by

ψz(Y, T, Z,X, βt,k, Qt, Pt, πz)

=
(

(1{Z = z}/πz(X))
(

1{T = t} − Pt,z(X)
)

+ Pt,z(X)
)

βt,k

− (1{Z = z}/πz(X))
(

Y 1{T = t} −Qt,z(X)
)

−Qt,z(X).
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We want to show that

d

dr
E
[

ψz(Y, T, Z,X, βt,k, Q
r
t , P

r
t , π

r
z)
]

∣

∣

∣

r=0
= 0,

where Qr
t = Qo

t + r(Qt −Qo
t ), P

r
t = P o

t + r(Pt − P o
t ), and π

r
z = πoz + r(πz − πoz). In fact,

d

dr
E
[

ψz(Y, T, Z,X, βt,k, Q
r
t , P

r
t , π

r
z)
] ∣

∣

r=0

=E

[−1{Z = z}
(πrz(X))2

(

1{T = t} − P r
t,z(X)

)

(

πz(X)− πoz(X)
)

βt,k

+

(

Pt,z(X)− P o
t,z(X)− 1{Z = z}

πrz(X)

(

Pt,z(X)− P o
t,z(X)

)

)

βt,k

+
1{Z = z}
(πrz(X))2

(

Y 1{T = t} −Qr
t,z(X)

)

(

πz(X)− πoz(X)
)

− (Qt,z(X)−Qo
t (X)) +

1{Z = z}
πrz(X)

(

Qt,z(X)−Qo
t,z(X)

) ]∣

∣

∣

r=0

=E

[−1{Z = z}
(πoz(X))2

(

1{T = t} − P o
t,z(X)

)

(

πz(X)− πoz(X)
)

βt,k

+

(

Pt,z(X)− P o
t,z(X)− 1{Z = z}

πoz(X)

(

Pt,z(X)− P o
t,z(X)

)

)

βt,k

+
1{Z = z}
(πoz(X))2

(

Y 1{T = t} −Qo
t,z(X)

)

(

πz(X)− πoz(X)
)

− (Qt,z(X)−Qo
t,z(X)) +

1{Z = z}
πoz(X)

(

Qt,z(X)−Qo
t,z(X)

) ]

,

which equals zero because of the following three identities:

E[1{Z = z}/πoz(X) | X] = 1,

E[1{Z = z}/πoz(X)(1{T = t} − P o
t,z(X)) | X] = 0,

E[1{Z = z}/πoz(X)(Y 1{T = t} −Qo
t,z(X)) | X] = 0.

Proof of Theorem 4.3. The asserted claims follow from Theorem 3.1, Theorem 3.2, and

Corollary 3.2 of Chernozhukov et al. (2018) (henceforth referred to as the DML paper).

We want to verify their Assumption 3.1 and 3.2. Adopting the notation from the DML

paper, we let

ψa(T, Z,X, Pt, π) = −bt,k
(

ζ(Z,X, π)
(

ι1{T = t} − Pt(X)
)

+ Pt(X)
)

10



and

ψb(Y, T, Z,X,Qt, π) = bt,k

(

ζ(Z,X, π)
(

ι(Y 1{T = t})−Qt(X)
)

+Qt(X)
)

so that the linearity of the moment condition (with respect to βt,k) is verified by the fact

that ψ = ψaβt,k + ψb. Define1

ǫn = max
z∈Z

(

‖Q̂t,z −Qo
t,z‖2 ∨ ‖P̂t,z − P o

t ‖2 ∨‖π̂z − πoz‖2
)

.

By assumption on the convergence rates of the nonparametric estimators, we have ǫn =

o(n−1/4). Define Cǫ = Cǫ,1 ∨ Cǫ,2 ∨ Cǫ,3 ∨ Cǫ,4, where Cǫ,1, Cǫ,2, Cǫ,3, and Cǫ,4 are positive

constant that only depends on C and ǫ and are specified later in the proof. Let δn be a

sequence of positive constants approaching zero and satisfies that δn ≥ Cǫ
(

ǫ2n
√
n ∨ n−1/4 ∨

n−(1−2/q)
)

. Such construction is possible since
√
nǫ2n = o(1). We set the nuisance realization

set Nn (denoted by TN in the DML paper) to be the set of all vector functions (Qt, Pt, πz :

z ∈ Z) consisting of square-integrable functions Qt,z, Pt,z, and πz such that for all z ∈ Z:

∥

∥Qt,z

∥

∥

q
≤ C,Pt,z ∈ [0, 1], πz ∈ [ǫ, 1], z ∈ Z,

‖Qt,z −Qo
t,z‖q ∨ ‖Pt,z − P o

t,z‖q ∨‖πz − πoz‖q ≤ ǫn,

‖πz − πoz‖2 ×
(

‖Qt,z −Qo
t,z‖2 + ‖Pt,z − P o

t,z‖2
)

≤ ǫ2n.

Consider Assumption 3.1 in the DML paper. Assumption 3.1(d), the Neyman orthog-

onality condition, is verified by Proposition 4.2, where the validity of the differentiation

under the integral operation is verified later in the proof. Assumption 3.1(e), the identifi-

cation condition, is verified by the condition that pot,k ∈ [ǫ, 1]. The remaining conditions of

Assumption 3.1 in the DML paper are trivially verified.

Next, we consider Assumption 3.2 in the DML paper. Note that Assumption 3.2(a)

holds by the construction of Nn and ǫn and our assumptions on the nuisance estimates.

Assumption 3.2(d) is verified by our assumption that the semiparametric efficiency bound

of βt,k is above ǫ. The remaining task is to verify Assumption 3.2(b) and 3.2(c) in the

DML paper. To do that, we choose n sufficiently large and let (Qt,z, Pt,z, πz : z ∈ Z)

be an arbitrary element of the nuisance realization set Nn. We keep the above notations

1For simplicity, we drop the superscript l in the nonparametric estimators.
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throughout the remaining part of the proof. Define

ψaz (T, Z,X, Pt, πz) =
1{Z = z}
πz(X)

(1{T = t} − Pt,z(X)) + Pt,z(X)

and

ψbz(Y, T, Z,X,Qt, πz) =
1{Z = z}
πz(X)

(Y 1{T = t} −Qt,z(X)) +Qt,z(X).

Since ψa is a linear combination of ψaz , z ∈ Z and ψb is a linear combination of ψbz, z ∈ Z,

we only need
∥

∥ψaz (T, Z,X, Pt, πz)
∥

∥

q
and

∥

∥ψbz(Y, T, Z,X,Qt, πz)
∥

∥

q
to be uniformly bounded

(i.e., the bounds do not depend on n) for z ∈ Z in order to verify Assumption 3.2(b) in

the DML paper. In fact,

∥

∥

∥ψbz(Y, T, Z,X, Pt, πz)
∥

∥

∥

q
≤
∥

∥

∥1{Z = z}/πz(X)
∣

∣Y 1{T = t} −Qt,z(X)
∣

∣

∥

∥

∥

q
+
∥

∥Qt,z(X)
∥

∥

q

≤ 1

ǫ

(

∥

∥Y 1{T = t}
∥

∥

q
+
∥

∥Qt,z(X)
∥

∥

q

)

+
∥

∥Qt,z(X)
∥

∥

q
≤ 2C/ǫ+ C,

where we have used the assumption that πz ≥ ǫ,
∥

∥Y 1{T = t}
∥

∥

q
≤ C, and

∥

∥Qt(X)
∥

∥

q
≤ C.

Similarly, we have

∥

∥ψaz (T, Z,X, Pt, πz)
∥

∥

q
≤
∥

∥

∥1{Z = z}/πz(X)
∣

∣1{T = t} − Pt,z(X)
∣

∣

∥

∥

∥

q
+
∥

∥Pt,z(X)
∥

∥

q

≤ 1

ǫ

(

1 +
∥

∥Pt,z(X)
∥

∥

q

)

+
∥

∥Pt,z(X)
∥

∥

q
≤ 2/ǫ+ 1,

where we have used the assumption that πz ≥ ǫ and Pt ∈ [0, 1]. Thus, Assumption 3.2(b)

in the DML paper is verified.

To verify Assumption 3.2(c) in the DML paper, we again only need to verify the corre-

sponding conditions for ψaz and ψbz, respectively. For ψ
a
z , we have

∥

∥ψaz (T, Z,X, Pt, πz)− ψaz (T, Z,X, P
o
t , π

o
z)
∥

∥

2

≤
∥

∥

∥

∥

πz(X)− πoz(X)

πz(X)πoz(X)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

Pt,z(X)

πz(X)
− P o

t,z(X)

πoz(X)

∥

∥

∥

∥

∥

2

+
∥

∥

∥
Pt,z(X)− P o

t,z(X)
∥

∥

∥

2

≤ 1

ǫ2
∥

∥πz(X)− πoz(X)
∥

∥

2
+

1

ǫ2

∥

∥

∥(Pt,z(X)− P o
t,z(X))πoz(X) + P o

t,z(X)(πoz(X)− πz(X))
∥

∥

∥

2

+
∥

∥

∥
Pt,z(X)− P o

t,z(X)
∥

∥

∥

2

≤ 2

ǫ2
∥

∥πz(X)− πoz(X)
∥

∥

2
+
(

1/ǫ2 + 1
)

∥

∥

∥Pt,z(X)− P o
t,z(X)

∥

∥

∥

2
≤ Cǫ,1εn ≤ δn,
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where the second to last inequality follows from the fact that P o
t,z, π

o
z ∈ [0, 1]. For ψbz, we

have
∥

∥

∥ψbz(Y, T, Z,X,Qt, πz)− ψbz(Y, T, Z,X,Q
o
t , π

o
z)
∥

∥

∥

2

≤ 1

ǫ2

∥

∥

∥πoz(X)(Y 1{T = t} −Qt,z(X))− πz(X)(Y 1{T = t} −Qo
t,z(X))

∥

∥

∥

2

+
∥

∥

∥Qt,z(X)−Qo
t,z(X)

∥

∥

∥

2

=
1

ǫ2

∥

∥

∥(Y 1{T = t} −Qo
t,z(X))(πoz(X)− πz(X)) + πoz(X)(Qo

t,z(X)−Qt,z(X))
∥

∥

∥

2

+
∥

∥

∥Qt,z(X)−Qo
t,z(X)

∥

∥

∥

2

≤ 1

ǫ2

∥

∥

∥(Y 1{T = t} −Qo
t,z(X))(πoz(X)− πz(X))

∥

∥

∥

2
+
∥

∥

∥πoz(X)(Qo
t,z(X)−Qt,z(X))

∥

∥

∥

2

+
∥

∥

∥Qt,z(X)−Qo
t,z(X)

∥

∥

∥

2

≤C
ǫ2
∥

∥πoz(X)− πz(X)
∥

∥

2
+

(

1

ǫ2
+ 1

)

∥

∥

∥
Qo
t,z(X)−Qt,z(X)

∥

∥

∥

2
≤ Cǫ,2εn ≤ δn,

where the last inequality follows from our assumption that |Y 1{T = t}−Qo
t (X)| ≤ C and

the fact that πoz ∈ [ǫ, 1]. Combining the above two inequality results, we can verify the first

two conditions of Assumption 3.2(c) in the DML paper.

For the last condition of Assumption 3.2(c) in the DML paper, which bounds the second-

order Gateaux derivative, we again consider ψaz and ψbz separately. For r ∈ [0, 1), recall

that Qr
t,z = Qo

t,z + r(Qt,z − Qo
t,z), P

r
t,z = P o

t,z + r(Pt,z − P o
t,z), and πrz = πoz + r(πz − πoz).

Clearly, P r
t,z, π

r
z ∈ [0, 1]. With differentiation under the integral, we have

∂2

∂r2
E
[

ψaz (T, Z,X, P
r
t , π

r
z)
]

=
∂

∂r
E

[−1{Z = z}
(πrz(X))2

(

1{T = t} − P r
t,z(X)

)

(

πz(X)− πoz(X)
)

+ Pt,z(X)− P o
t,z(X)− 1{Z = z}

πrz(X)

(

Pt,z(X)− P o
t,z(X)

) ]

=E

[2× 1{Z = z}
(πrz(X))3

(πz(X)− πoz(X))2(1{T = t} − P r
t,z(X))

]

+ E

[1{Z = z}
(πrz(X))2

(πz(X)− πoz(X))(Pt,z(X)− P o
t,z)
]

+ E

[1{Z = z}
(πrz(X))2

(πz(X)− πoz(X))(1{T = t} − P r
t,z(X))(Pt,z(X)− P o

t,z)
]

− E

[1{Z = z}
πrz(X)

(1{T = t} − P r
t,z(X))(Pt,z(X)− P o

t,z)
2
]

.
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Using the fact that |1{T = t}−P r
t (X)| ≤ 1 and πrz ≥ ǫ, we can bound the above derivative

by

∣

∣

∣

∂2

∂r2
E
[

ψaz (T, Z,X, P
r
t , π

r
z)
]

∣

∣

∣ ≤ Cǫ
(∥

∥πz(X)− πoz(X)
∥

∥

2

2
+
∥

∥Pt,z(X)− P o
t,z(X)

∥

∥

2

2

)

+ Cǫ
∥

∥πz(X)− πoz(X)
∥

∥

2
× ‖Pt,z(X)− P o

t,z(X)‖2
≤ Cǫ,3ε

2
n ≤ δn/

√
n.

By bounding the first and second derivative uniformly with respect to r, we know that the

differentiation under the integral operation is valid. Therefore, the Neyman orthogonality

condition is verified. Analogously, we can show that

∂2

∂r2
E

[

ψbz(Y, T, Z,X,Q
r
t , π

r
z)
]

=E

[2× 1{Z = z}
(πrz(X))3

(πz(X)− πoz(X))2(Y 1{T = t} −Qr
t,z(X))

]

+ E

[1{Z = z}
(πrz(X))2

(πz(X)− πoz(X))(Qt,z(X)−Qo
t,z)
]

− E

[1{Z = z}
(πrz(X))2

(πz(X)− πoz(X))(Y 1{T = t} −Qr
t,z(X))(Qt,z(X)−Qo

t,z)
]

− E

[1{Z = z}
πrz(X)

(Y 1{T = t} −Qr
t,z(X))(Qt,z(X)−Qo

t,z)
2
]

.

Under the assumption |Y 1{T = t} −Qo
t,z(X)| ≤ C, we have

|Y 1{T = t} −Qr
t,z(X)| ≤ |Y 1{T = t} −Qo

t,z(X)|+ r|Qt,z(X)−Qo
t,z| ≤ C + 1,

for all r ∈ [0, 1] and n large enough. Then we can bound the above derivative by

∣

∣

∣

∂2

∂r2
E

[

ψbz(Y, T, Z,X,Q
r
t , π

r
z)
] ∣

∣

∣
≤Cǫ

(∥

∥πz(X)− πoz(X)
∥

∥

2

2
+
∥

∥Qt,z(X)−Qo
t,z(X)

∥

∥

2

2

)

+ Cǫ
∥

∥πz(X)− πoz(X)
∥

∥

2
×
∥

∥

∥Qt,z(X)−Qo
t,z(X)

∥

∥

∥

2

≤Cǫ,4ε2n ≤ δn/
√
n.

Therefore, we have verified the last condition of Assumption 3.2(c) in the DML paper.

Lastly, we need to verify the condition on δn in Theorem 3.1 and 3.2 in the DML paper,

that is, δn ≥ n−[(1−2/q)∧(1/2)]. This directly follows from the construction of δn.
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A.4 Proofs for weak IV inference results

Proof of Theorem 5.1. We first prove part (i). Consider applying the DML method to the

moment condition (5) to estimate the parameter υ − β0p and obtain the standard error.

We want to show the convergence in distribution of

σ̌−1
ψ

√
n
[

(υ̌ − β0p̌)− (υ − β0p)
]

= ρ̌−√
n(υ − β0p)/σ̌ψ (A.1)

to the standard normal distribution uniformly over the DGPs in PWI(c0, c1). To do that,

we need to verify Assumptions 3.1 and 3.2 in the DML paper regarding the above mo-

ment condition. Assumptions 3.1(a)-(c) hold trivially. Assumption 3.1(d), the Neyman

orthogonality condition, is verified by Proposition 4.2. That is, the Gateaux derivatives

with respect to the nuisance parameters are zero regardless of the value of β. Assumption

3.1(e), the identification condition, is verified since the Jacobian of the parameter in the

moment condition is 1. Assumption 3.2 in the DML paper can be verified in the same way

as in the proof of Theorem 4.3. For brevity, we do not repeat the verification here.

For DGPs in PWI
β0

(c0, c1), (A.1) is equal to ρ̌. Therefore, the uniform convergence in

distribution of |ρ̌| is established in the null space, and the size of the test is uniformly

controlled accordingly. For DGPs in PWI
β (c0, c1), where β > β0, we have

ρ̌ =
(

ρ̌−√
n(υ − β0p)/σ̌ψ

)

+
√
n(υ − β0p)/σ̌ψ

=
(

ρ̌−√
n(υ − β0p)/σ̌ψ

)

+
√
n(β − β0)p/σ̌ψ.

The first term on the RHS of the last equality converges in distribution to N(0, 1). In

contrast, the second term diverges to infinity since σ̌ψ converges in probability to σψ ≥ √
c0

by Theorem 3.2 in the DML paper. Therefore, the probability of |ρ̌| exceeding any finite

number converges to 1. The case where β < β0 is essentially the same.

To prove part (ii) of the theorem, notice that (β − β0)p ≤ 0 for any DGP in the null

space
⋃

β≤β0 PWI
β (c0, c1), which implies that ρ̌ ≤ ρ̌−√

n(υ − β0p)/σ̌ψ. Therefore,

sup
P

PP

(

ρ̌ > N1−α
)

≤ sup
P

PP

(

ρ̌−√
n(υ − β0p)/σ̌ψ > N1−α

)

→ α,

where the supremum is taken over P ∈ ⋃β≤β0 PWI
β (c0, c1). Consistency can be derived in

the same way as part (i).
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B Simulation Study

To evaluate the performance of our weak-identification-robust inference approach, we de-

signed an experiment wherein the variables Y , Z, and S exhibit a nonlinear relationship

with the regressor X. Addressing both the “curse of dimensionality” and weak identifica-

tion simultaneously can be a challenging task; therefore, we focus on the performance of the

weak-identification-robust inference procedure in a low-dimensional setting with dX = 3.

This low-dimensional setup is typical in the simulation studies found in the literature. For

example, Cattaneo (2010)’s simulation has two covariates and Hong and Nekipelov (2010a)

has one covariate.

The data generating process is adapted from (Hong and Nekipelov, 2010a) and mod-

ified to more effectively address the multiple treatment and weak identification scenar-

ios. The setup is identical to that in the empirical study, featuring three treatment

levels and two instrument levels. We initially draw n i.i.d. samples of mutually inde-

pendent X = (X1, X2, X3) from the uniform distribution on [−0.5, 0.5]. Subsequently,

the instrument Z is generated according to the Bernoulli distribution with parameter

(X1 + X2 + X3)/3 + 0.5. The type S is generated according to the following distribu-

tion:

P(S = s1|X) = 0.2 +X1/10,

P(S = s2|X) = 0.2 +X2/10,

P(S = s3|X) = 0.2 +X1X2/10,

P(S = s4|X) = c|X1 +X2|/
√
n,

P(S = s5|X) = 0.4− (X1 +X2 +X1X2)/10− |X1 +X2|/
√
n.

In this way, the type S is dependent on the covariates X, but independent with the in-

strument Z given X. The weak identification issue is modeled by the drifting sequence

P(S = s4) = O(1/
√
n), with the concentration parameter c. For simplicity, we denote

Sj = 1{S = sj}, j = 1, · · · , 5. The treatment is determined by the instrument and the

type: T1 = S1 + S4(1 − Z), T2 = S2 + S5(1 − Z), and T3 = S3 + (S4 + S5)Z. The poten-

tial outcomes are generated based on Poisson distributions. We first generate six Poisson
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variables:

ξj ∼ Poisson(exp(X1 +X2 +X3) + j), ξ̃j ∼ Poisson(j), j = 1, 2, 3.

Then potential outcomes are generated by











Y1

Y2

Y3











=











ξ1

ξ2

ξ3











+ S1











ξ̃1

ξ̃1

ξ̃1











+ S2











ξ̃2

ξ̃2

ξ̃2











+ S3











ξ̃3

ξ̃3

ξ̃3











.

The potential outcomes structure is similar to the simulation study presented in Hong

and Nekipelov (2010a). For both no-compliers and nm-compliers, the potential outcomes

are independent. Conversely, for no-never-takers, nm-never-takers, and always-takers, the

potential outcomes are correlated. Our primary interest lies in obtaining the confidence

region for βno,1, the LASF for the vanishing subpopulation s4. Under this framework,

βno,1 = (exp(0.5)− exp(−0.5))3.

Table 1 summarizes the simulation results from 1000 iterations. We explore different

values for the concentration parameter c = 1, 2, 3 in the data-generating process. In con-

structing the test statistic ρ̌, we select the number of cross-fitting folds as L = 2, 5. The

nonparametric estimators for nuisance parameters are generated via local linear regressions

using the Epanechnikov kernel function. We evaluate three bandwidth choices, 0.7, 0.8, 0.9,

and examine sample sizes of n = 250, 500, 1000.

The simulation results indicate that, generally, the confidence region exhibits satisfac-

tory coverage probabilities. It should be noted that the performance does not improve with

increasing sample size due to the construction of P(S = s4), which implies that the weak

identification issue escalates as the sample size grows. As the concentration parameter c

represents the severity of weak identification, it is observed that in many instances, cover-

age probability decreases as c increases. The choice of the number of folds for cross-fitting

and bandwidth does not significantly affect the performance.2

2We have also experimented with other bandwidth values. For values below 0.7, there are insuffi-

cient observations within the bandwidth window, resulting in uninvertible matrices in the nonparametric

regression. For values moderately above 0.9, the results are comparable.
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Table 1: Simulation study for weak identification.

L bandwidth c n = 250 n = 500 n = 1000

nominal coverage nominal coverage nominal coverage

.900 .950 .990 .900 .950 .990 .900 .950 .990

2 0.7

1 .896 .949 .992 .889 .947 .989 .890 .944 .995

2 .915 .959 .992 .893 .942 .985 .892 .950 .989

3 .907 .954 .988 .892 .940 .986 .883 .937 .984

2 0.8

1 .912 .947 .991 .894 .950 .986 .899 .949 .995

2 .917 .960 .992 .893 .948 .987 .889 .951 .989

3 .916 .961 .990 .881 .937 .995 .869 .938 .987

2 0.9

1 .911 .947 .996 .891 .948 .987 .903 .948 .994

2 .908 .956 .993 .896 .946 .985 .885 .950 .991

3 .910 .961 .993 .882 .929 .994 .877 .937 .985

5 0.7

1 .916 .963 .994 .906 .950 .987 .906 .957 .993

2 .913 .960 .992 .901 .952 .991 .887 .949 .993

3 .911 .964 .993 .891 .946 .994 .873 .935 .988

5 0.8

1 .918 .963 .994 .905 .946 .988 .908 .955 .994

2 .910 .958 .993 .897 .944 .990 .886 .950 .993

3 .920 .969 .991 .892 .945 .987 .878 .936 .991

5 0.9

1 .910 .960 .995 .912 .951 .991 .906 .953 .995

2 .908 .953 .993 .901 .943 .991 .884 .951 .993

3 .916 .962 .990 .889 .944 .987 .874 .939 .991

Simulated coverage probabilities of the confidence region for the LASF βno,1. The confidence region is

obtained by inverting the null-restricted test. The DGP models weak identification by having P(S = s4)

proportional to c/
√
n. Number of replications is 1000.
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C Implicitly Defined Parameters

This section studies general parameters defined implicitly through moment conditions. We

allow the moment conditions to be non-smooth, which is the case when the parameter

of interest is the quantile. We also allow the moment conditions to be overidentifying,

which could be the result of imposing the underlying economic theory on multiple levels of

treatment and instrument.

To facilitate the exposition, we define a random variable Y ∗
t,k such that the marginal

distribution of Y ∗
t,k is equal to the conditional distribution of Yt given S ∈ Σt,k. The joint

distribution of the Y ∗
t,k’s is irrelevant and hence left unspecified. For convenience, we use

a single index j ∈ J rather than (t, k) for labeling. That is, we collect the Y ∗
t,k’s into the

vector Y ∗ = (Y ∗
1 , · · · , Y ∗

J ). Let tj be the treatment level associated with Y ∗
j . The quantities

pj and bj are analogously defined.3

Let the parameter of interest be η, which lies in the parameter space Λ ⊂ R
dη , dη ≤ J .

The true value of the parameter η0 satisfies the moment condition

E
[

m(Y ∗, ηo)
]

= 0,

where m : YJ × R
dη → R

J is a vector of functions:

m(Y ∗, η) =
(

m1(Y
∗
1 , η), · · · ,mJ(Y

∗
J , η)

)′

Since the vector η appears in each mj, restrictions are allowed both within and across dif-

ferent subpopulations. Another interesting feature of this specification is that the moment

conditions are defined for the random variables that are not observed. But their marginal

distributions can be identified similar to Theorem 2.1.

Let m̄ = (m̄′
1, · · · , m̄′

J)
′, where

m̄j(X, η) =
(

m̄j,z1(X, η), · · · , m̄j,zNZ
(X, η)

)′

and

m̄j,z(X, η) = E
[

mj(Y, η)1{T = tj} | Z = z,X
]

.

3We can further extend the vector Y ∗ to include variables whose marginal distributions are the same

as the conditional distributions of Yt given T = t, S ∈ Σt,k. Efficient estimation in this more general case

is similar and hence omitted for brevity.
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The functions m̄j,z are identified from the data. Similar to Theorem 2.1, we can show that

the parameter η is identified by the moment conditions:

bjE
[

m̄j(X, η)
]

= 0, 1 ≤ j ≤ J ⇐⇒ η = ηo.

The following theorem gives the SPEB for the estimation of η.

Theorem C.1. Assume the following conditions hold.

(i) E
[

m(Y ∗, η)2
]

<∞, η ∈ Λ.

(ii) For each j and z, mj,tj ,z is continuously differentiable in its second argument. Let Γ

be the J × dη matrix whose jth row is bj
d
dη
E
[

m̄j(X, η)
] ∣

∣

′
η=ηo

, and assume Γ has full

column rank.

Then for the estimation of η, the EIF is

−
(

Γ′V −1Γ
)−1

Γ′V −1ψη(Y, T, Z,X, ηo, πo, m̄o), (C.1)

where

V = E
[

ψη(Y, T, Z,X, η, π, m̄)ψη(Y, T, Z,X, η, π, m̄)′
]

and ψη(Y, T, Z,X, η, π, m̄) is a J × 1 random vector whose jth element is

bj

(

ζ(Z,X, π)
(

ι(mj(Y, η)1{T = tj})− m̄j(X, η)
)

+ m̄j(X, η)
)

(C.2)

In particular, the semiparametric efficiency bound is
(

Γ′V −1Γ
)−1

.

Proof of Theorem C.1. The proof is based on the approach described in section 3.6 of Hong

and Nekipelov (2010a) and the proof of Theorem 1 in Cattaneo (2010). We use a constant

dη×dm matrix A to transform the overidentified vector of moments into an exactly identified

system of equations A
(

bjE
[

m̄j(X, η)
]

)J

j=1
= 0, find the A-dependent EIF for the exactly-

identified parameter, and choose the optimal A. In a parametric submodel, the implicit

function theorem gives that

∂

∂θ
η
∣

∣

θ=θo
= − (AΓ)−1A

∂

∂θ

(

bjEθ
[

m̄j(X, η
o)
]

)J

j=1

∣

∣

θ=θo
,
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where ∂
∂θ
Eθ

[

m̄j(X, η
o)
] ∣

∣

θ=θo
is an NZ × 1 random vector whose typical element can be

represented by

∫

mj(y, η
o)1{τ = tj}sz(y, τ | x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx

+

∫

mj(y, η
o)1{τ = tj}sX(x; θo)fz(y, τ | x; θo)fX(x; θo)dydτdx,

for z ∈ Z. So the EIF for this exactly-identified parameter is

ψA(Y, T, Z,X, ηo, πo, m̄o) = − (AΓ)−1AΨη(Y, T, Z,X, ηo, πo, m̄o),

where ψη is defined by Equation (C.2). It is straightforward to verify that ψA satisfies

∂
∂θ
η
∣

∣

θ=θo
= E

[

ψAs′θo
]

, and ψA ∈ S . The optimal A is chosen by minimizing the sand-

wich matrix E
[

ψA(ψA)′
]

= (AΓ)−1AE
[

ψη(ψη)′
]

A′ (Γ′A′)−1. Thus, the EIF for the over-

identified parameter is obtained when A = Γ′V −1. Plugging this expression into ψA, we

obtain Equation (C.1).

Note that, for example,mj(Y
∗
j , η) = Y ∗

j −η, then η = βj, and the efficiency bound shown

above reduces to the one computed in Theorem 3.1. If T = Z, that is, the treatment satisfies

the unconfounded, then the Theorem C.1 reduces to Theorem 1 in Cattaneo (2010).

For estimation, we use the EIFs to generate moment conditions and propose a three-step

semiparametric GMM procedure. The criterion function is

Ψη
n(η, π,m) =

1

n

n
∑

i=1

ψη(Yi, Ti, Zi, Xi, η, π, m̄). (C.3)

Its probability limit is denoted as

Ψη(η, π,mZ) = E
[

ψη(Y, T, Z,X, η, π, m̄)
]

, (C.4)

where the expectation is taken with respect to the true parameters (πo, m̄o). The imple-

mentation procedure is as follows. Assume that we have nonparametric estimators π̂ and

m̂ that consistently estimate πo and m̄o, respectively. We first find a consistent GMM

estimator η̃ using the identity matrix as the weighting matrix, that is,

∥

∥Ψη
n(η̃, π̂, m̂)

∥

∥

2
≤ inf

η∈Λ

∥

∥Ψη
n(η, π̂, m̂)

∥

∥

2
+ op(1). (C.5)
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Next, we use this estimate to form a consistent estimator V̂ of the covariance matrix V ,

where

V̂ =
1

n

n
∑

i=1

ψη(Yi, Ti, Zi, Xi, η̃, π̂, m̂)ψη(Yi, Ti, Zi, Xi, η̃, π̂, m̂)′.

Then we let η̂ be the optimally-weighted GMM estimator:

Ψη
n(η̂, π̂, m̂Z)Vn(η̃, π̂, m̂Z)

−1Ψη
n(η̂, π̂, m̂Z)

′

≤ inf
η∈Λ

Ψη
n(η, π̂, m̂Z)Vn(η̃, π̂, m̂Z)

−1Ψη
n(η, π̂, m̂Z)

′ + op
(

n−1/2
)

.

To conduct inference, we estimate Γ using the estimator Γ̂ whose elements are defined as

Γ̂jl =
1

n

n
∑

i=1

bj
∂

∂η
m̂j(Xi, η)

∣

∣

∣

η=η̂
,

where we have implicitly assumed that the estimator m̂j is differentiable in its second

argument.

In the following theorem, we derive the asymptotic properties of the GMM estimators.

The main theoretical difficulty is that the random criterion function Ψn(·, π̂, m̂) could

potentially be discontinuous because we allow m(Y ∗, ·) to be discontinuous. We use the

theory developed in Chen et al. (2003) to overcome this problem.4 Let Πz be the function

class that contains πoz . Let Mj,z be the function class that contains m̄o
j,z.

Theorem C.2. Let the assumptions in Theorem C.1 hold. Assume the following conditions

hold.

(i) The parameter space Λ is compact. The true parameter ηo is in the interior of Λ.

(ii) For any j, z and m̄j,z ∈ Mj,z, there exists C > 0 such that for δ > 0 sufficiently

small,

sup
|η′−η|≤δ

E
∣

∣m̄j,z(X, η
′)− m̄j,z(X, η)

∣

∣

2 ≤ Cδ2.

4Cattaneo (2010) instead uses the theory from Pakes and Pollard (1989). However, the general theory

of Chen et al. (2003) is more straightforward to apply in this case since they explicitly assume the presence

of infinite-dimensional nuisance parameters, which can depend on the parameters to be estimated.
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(iii) Donsker properties:

∫ ∞

0

logN(ε,Πz,‖·‖∞)dε,

∫ ∞

0

logN(ε,Mj,z,‖·‖∞)dε <∞,

where N(ε,F ,‖·‖) denotes the covering number of the space (F ,‖·‖).

(iv) Convergence rates of the nonparametric estimators:

‖π̂z − πoz‖∞ , ‖m̂j,z − m̄o
j,z‖∞ = op(n

−1/4).

(v) The function supη∈Λ

∣

∣

∣

∂
∂η
m̄o
j(·, η)

∣

∣

∣ is integrable. The estimator ∂
∂η
m̂j is consistent uni-

formly in its second argument, that is,

∥

∥

∥

∥

∂

∂η
m̂j(x, η)−

∂

∂η
m̄o
j(x, η)

∥

∥

∥

∥

∞
= op(1), ∀x.

Then η̃ = ηo + op(1), V̂ = V + op(1), Γ̂ = Γ + op(1), and

√
n (η̂ − ηo) =⇒ N

(

0, (Γ′V −1Γ)−1
)

,

where 0 denotes a vector of zeros.

The following lemma is helpful for proving Theorem C.2.

Lemma 3. Under the assumptions of Theorem C.1, the class

F =
{

ψη(Y, T, Z,X, η, π, m̄) : π ∈ Πz, m̄j,z ∈ Mj,z, 1 ≤ j ≤ J, z ∈ Z
}

is Donsker with a finite integrable envelope. The following stochastic equicontinuity condi-

tion hold: for any positive sequence δn = o(1),

sup
{

Ψη
n(η, π, m̄)−Ψη(η, π, m̄)−Ψη

n(η
o, πo,mo

Z) :

‖η − ηo‖2 ∨‖π − πo‖∞ ∨‖m̄− m̄o‖∞ ≤ δn
}

= op
(

n−1/2
)

,

where the supremum is taken over η ∈ Λ, πz ∈ Πz, and m̄j,z ∈ Mj,z.

Proof of Lemma 3. We first verify that the moment condition ψη satisfies Condition (3.2) of

Theorem 3 in Chen et al. (2003) (hereafter CLK). In fact, when ‖m̄′
j,z−m̄j,z‖∞∨‖η′ − η‖∞ ≤
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δ, the triangle inequality gives that

E

∣

∣

∣
m̄′
j,z(X, η

′)− m̄j,z(X, η)
∣

∣

∣

2

≤2E
∣

∣

∣
m̄′
j,z(X, η

′)− m̄′
j,z(X, η)

∣

∣

∣

2

+ 2E
∣

∣

∣
m̄′
j,z(X, η)− m̄j,z(X, η)

∣

∣

∣

2

≤const× δ2,

where we use the notation const to denote a generic constant that may have different values

at each appearance. The last inequality follows from the assumption (ii). Similarly, we

can verify that the remaining terms in ψη also satisfy the same condition. Therefore, ψη is

locally uniformly L2-continuous, that is,

E
[

sup
{∣

∣ψη(Y, T, Z,X, η′, π′, m̄′)− ψη(Y, T, Z,X, η, π, m̄)
∣

∣ :
∥

∥η′ − η
∥

∥ ∨
∥

∥π′ − π
∥

∥

∞ ∨
∥

∥m̄′ − m̄
∥

∥

∞ ≤ δ
}]

≤ const.× δ2.

Following the same steps as in the proof of Theorem 3 in CLK (p. 1607), we can show that

the bracketing number of F is bounded by

N[]

(

ε,F ,‖·‖L2

)

≤N(ε/const,Λ,‖·‖)×
∏

z

N(ε/const,Πz,‖·‖)×
∏

j,z

N(ε/const,Mj,z,‖·‖).

Therefore, the bracketing entropy of class F is bounded by

logN[]

(

ε,F ,‖·‖L2

)

≤const×
(

logN(ε/const,Λ,‖·‖) ∨max
z

logN(ε/const,Πz,‖·‖)

∨max
j,z

logN(ε/const,Mj,z,‖·‖)
)

.

Under the assumption that Λ is compact and
∫ ∞

0

logN(ε,Πz,‖·‖)dε,
∫ ∞

0

logN(ε,Mj,z,‖·‖)dε <∞, ∀j, z,

we have that
∫ ∞

0

logN[]

(

ε,F ,‖·‖L2

)

dε <∞.

This implies that F is Donsker with a finite integrable envelope. Lastly, as stated in Lemma

1 of CLK, the asserted stochastic equicontinuity condition is implied by the fact that F is

Donsker and ψη is L2-continuous.
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Proof of Theorem C.2. We follow the large sample theory in CLK and set θ = η, h =

(π, m̄), M(θ, h) = Ψη(η, π, m̄), and Mn(θ, h) = Ψη
n(η, π, m̄).

We first use Theorem 1 in CLK to show the consistency of η̃. Condition (1.2) in CLK

is satisfied because Λ is compact, and Ψη(η, πo, m̄o) has a unique zero and is continuous

by our second condition in Theorem C.1. As for Condition (1.3) of CLK, we can easily

see from the expression of Ψ that it is continuous with respect to m̄j,z and πz (since πz is

bounded away from zero), and the uniformity in η follows from the fact that E
[

m(Y ∗, η)
]

is bounded as a function of η. Condition (1.4) of CLK is satisfied by the assumption of

Theorem C.2. The uniform stochastic equicontinuity condition (1.5) of CLK is implied by

Lemma 3. Therefore, η̃ = ηo + op(1).

We use Corollary 1 (which is based on Theorem 2) in CLK to show the consistency of V̂

and the asymptotic normality of η̂. Condition (2.2) in CLK is verified by the assumptions

of Theorem C.1. Similar to the proof of Proposition 4.2, we can show that the moment

condition Ψη, based on the EIF, satisfies the Neyman orthogonality condition for the nui-

sance parameters π and mZ . In fact, for any j and z, we let πrz = πoz(X)+r(πz(X)−πoz(X))

and m̄r
j,z(X, η) = m̄o

j,z(X, η) + r
(

m̄j,z(X, η)− m̄o
j,z(X, η)

)

. Then we have

d

dr
E

[

1{Z = z}
πrz(X)

(

mj(Y, η)1{T = tj} − m̄r
j,z(X, η)

)

+ m̄r
j,z(X, η)

]

∣

∣

∣

∣

∣

r=0

= E

[

− 1{Z = z}
(

πoz(X)
)2

(

πz(X)− πoz(X)
)

(

mj(Y, η)1{T = tj} − m̄o
j,z(X, η)

)

+
(

m̄o
j,z(X, η)− m̄j,z(X, η)

)

(

1{Z = z}
πoz(X)

− 1

)

]

= 0,

where we have applied the law of iterated expectations and used the fact that

E

[

1{Z = z}
πoz(X)

(

mj(Y, η)1{T = tj} − m̄o
j,z(X, η)

) ∣

∣

∣
X

]

= 0.

Thus, the path-wise derivative of Ψη with respect to h = (π, m̄) is zero in any direction.

Hence, Condition (2.3) of CLK is verified. Condition (2.4) in CLK directly follows from

our assumptions of Theorem C.2. The stochastic equicontinuity condition (condition (2.6)

in CLK) follows from Lemma 3. Lastly, condition (2.6) in CLK is verified using the central

limit theorem since the path-wise derivative is zero. Due to the presence of V̂ , we also need

25



the uniform convergence condition in Corollary 1 of CLK, which can be verified by using

Lemma 3 and an application of Theorem 2.10.14 of van der Vaart and Wellner (1996).

Lastly, to show the consistency of Γ̂, we only need to show that

1

n

n
∑

i=1

∂

∂η
m̂j,tj ,z(Xi, η̂)

p→ E

[

∂

∂η
m̂j,z(X, η

o)

]

=
∂

∂η
E
[

m̂j,z(X, η
o)
]

,

where the inequality follows from the differentiation under integral operation which holds

under the last assumption of the theorem. The convergence in probability follows from the

uniform convergence of ∂
∂η
m̂j,z and the consistency of η̂. Therefore, the desired convergence

results follow.
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