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SUPPLEMENTARY MATERIAL

Appendix A contains the proofs for theorems and propositions stated in the main text.
Appendix B contains simulation results. Appendix C studies parameters implicitly defined

by overidentifying moment conditions.

A Technical Proofs

In this section, we prove the theorems and propositions stated in the main text. We assume

that Assumptions 1 - 3 hold throughout this section.

A.1 Proofs for the identification results

Lemmal. S1LZ|X andteT,Y, LT]|S X.

Proof of Lemma 1. The first statement follows from the definition of S and the fact that Z
is independent of the vector (73,,--- 7. ZNZ) conditioning on X. For the second statement,

T is entirely determined by (S, Z, X). Hence, given S and X, T is independent of Y; since
Z is independent of (V;,,---, Y, ) conditional on X. O

Lemma 2. For eacht € T and k =1,--- Ny, the following identification results hold.



(i) P(S € Syp | X) = bpPo(X) a.s.
(it) E[Y; | S € Sip, X] = (b:xQe(X))/ (be s P(X)) a.s.

Proof of Lemma 2. This is Theorem T-6 in Heckman and Pinto (2018a). The conditioning
is explicitly presented. O]

Proof of Theorem 2.1. The first statement follows from applying the law of iterated expec-
tation to Lemma 2(i). For the second statement, we can apply Bayes’ rule to Lemma 2

and obtain that

E [Y; ’ S e Et,k} = /E [Y; | S e Zt,kaX = x} fX|5€gt,k(a:)dx

P(SeX| X =1
= |E|Y,|SeX,, X= - d
/ |: t | € t,ks I'j| ]P)<S c Et,k) fX(l’) x
=E [bt,th(X)] /pt,kv
where fx|sex,, denotes the conditional density function of X given type S € ¥y 4. m

Proof of Theorem 2.2. By Lemma L-16 of Heckman and Pinto (2018b), we know that under
the unordered monotonicity assumption, By[-,i] = By[-,7] for all s;, sy € ¥¢j. Thus, the

set Z;, always exists. For the first statement, we have

P(T=t5S¢€%,)=P(Z€ 2S5 ¢cSy)
[IP (Z €24 5€%u| X)}

P(Z € Zy | X)P(S €Ty | X)]|

where the second equality follows from the law of iterated expectations and the third
equality follows from the fact that Z 1 S | X (Lemma 1). For the second statement,

notice that
P(T=tSel| X=2)=PT =t]|5€X, X=0)P(Se€l|X=0)

—P(Z € Z, | X)P(S €Sy | X =)
= Wt,k(X)bt,k‘Pt(X)'



By Lemma 1, we know that
IE[Y; | T:t,SEEt’k,X:x} :E[Y; | SEEM,X:x].
Therefore, we can apply Bayes’ rule and obtain that

IE[Yt|T:t,SEZt,k]

:/E [Yi | T=t,5 €3, X = m} fX|T:t,Sezt,k(27)d90

P(T:t,SGZt,k‘X:x>
:/]E[YﬂSEEt,k,XIx} P(T=t,5 € %y)

[ bek@Qu(X) T (X) bk P(X)
_/ b Pu(X) X - fx(z)dx

“E [bos @ (X)mes(X)] Jaes.

fx(z)dz

A.2 Semiparametric efficiency calculations

We follow the method developed by Newey (1990). The likelihood function of the GLATE

model can be specified as

E(Y7T7 ZvX) = fX(X) H <fz(Y>T | X)Wz(X)>1{Z:Z}

z2EZ

Y

where f,(-,- | X) denotes the conditional density of Y, T given Z = z and X. In a regular
parametric submodel, where the true underlying probability measure P is indexed by 6°,

we use the following notations to represent the score functions:

s; (Y, Z | X;0) = 3log(fz(Y,T\X;H)),

ol
(2] X36) = Y17 = 2} S log (r.(X:6)).
sx(X:0) = Tlog (fx(X:0)).

The score in a regular parametric submodel is

s (Y, T,2,X) =Y U Z =2z}s. (V,T | X;0°) + 5.(Z | X;6°) + sx(X;6°).

zZEZ



Hence, the tangent space of the model is
S ={seLi:s(V\T,Z,X) =) HZ==2}s. (V,T|X)+5:(Z | X)+5x(X)
2€Z
for some s,, s;, sx such that /sz(y,t | X)f.(y,t | X)dydt =0,Vz;
D sa(z | X)m(X) =0, and /sx(x)fx(x)dx =0},

Z2EZ

where L2 is a subspace of L? that contains the mean zero functions.

Proof of Theorem 3.1. We only prove statements (i) and (ii) since (iii) and (iv) are easier
cases that can be proved along the way. We start with the first statement. The path-wise
differentiability of the parameter 3, ; can be verified in the following way: in any parametric

submodel, we have

9 )
%ﬁt’kw)‘e:go = %(bt,k;]}fg [Qt(X)] /pt’k)lezeo
— ]i ((abt,kEe [Qt(X)} /00)|g=go — (bt 1 Eg [Qt(X)] /pt,k)(apt,k/39)|9:90)
0 0
= ]%’kbt,k (%Ee [Qt(X)} |9:90 - %Ee [Pt(X)} |9:90ﬁt,k) ’

where %Eg [Qt(X )} lop—go and %Ee [Pt(X )} lp—go are Nz x 1 random vectors whose typical

element can be represented respectively by

/ YL = t)s.(y.7 | 709 f.(y,7 | 2:6°) fxc (a5 0°) dydrd
+/@Hr=ﬂw@wﬂu%7mww&mﬁ%wmm

and

/1{7 = t}s(y, 7 [ 2 0°) foy, 7 | 2 0°) fx (2 0°)dydrda
" / {7 = t}sx(:6°) (. | 50°) f (; 0°)dydrd,

respectively, for z € Z. The EIF is characterized by the condition that

D040 =B, 50] and vy, € 7



The expression of ¢, , given in Equation (1) meets the above requirements. In particular,
the correspondence between terms in the EIF and path-wise derivative appears exactly as

in Lemma 1 of Hong and Nekipelov (2010b).

For the second statement, the path-wise derivative of 7, ; can be computed similarly.

0 1 0
— 0 =—1b E X X
57O, = g [QUOmAX] |,
- duky, Oy (X )me(X)] |
G 00 9=60"

where ZEq[Q(X)mw, ,(X)]lo—ge and ZEg[Po(X)mw, , (X)]|g—so are Nz x 1 random vectors

whose typical element can be represented by
/yl{r =tys.(y, 7| 2;0°) 7w, (2;0°) fo(y, T | 250°) fx (25 0°)dydTdz
—i—/yl{T = tysx(z;0%)mw,, (z;0°) f.(y, 7 | 2;0°) fx(x;0°)dydrdx
b [t = (sl X5 ) Flnr | 056°) a0y,

and

/1{7 =t}s.(y, 7 | 2;0%)mw, , (7;0°) fo(y, 7 | 2;0°) fx (2;0°)dydrdz
[ 17 = )i ), (030 .07 | 38°) s 6y
/1{7 =t} <—7Ttk (X;0) ’9 90) fo(y, 7 | 2;0°) fx (x;0°)dydrdz,

respectively, for z € Z. The main difference appears when dealing with the last terms
in the above two expressions, which can be matched with terms in the efficient influence
function of the following two forms

E [Yl{T =t} | Z = z,X] (1{Z € Zip}— 7Tt7k(X)) , and

E[H{T =t} | Z=2X] (1{Z € 24} — mu(X)).

Take the latter one as an example. Notice that

HZeZu}—mu(X)= > (1{Z=2}-m(X)),

ZEZtyk



and

ME=23 0 (xi0)|,_, — m(X)sn(Z | X;0°).

(142 =2} = m(X) 5:(Z | X50%) = =~ == 50

By the law of iterated expectation, we have

E :IE (H{T =t} | Z=2X]| (1{Z =2} —m.(X)) s:(Z | X; 90)}

=E|E[1{T =t} | Z =2, X|E [1{Z = 2}/m.(X) | X] %WZ(X;H)IHO]

E :IE? [{T =1} | Z = 2, X] m(X)E [s,(Z | X;0°) | X]]

=K |E []_{T = t} | Z = Z,X} %Wz<X;‘9)’990:|

0
= [ 17 =0 (0], ) £l 30 fas ),
O

Proof of Proposition 3.2. This proof is based on Section 4 in Newey (1994). We focus on
the case of B, ;. The other cases are similar. To ease notation, let h; = (hYVtyz, ht7z,7T)/.

The estimator Bt,k is defined by the moment condition
E[M (X7 5t,k7 ht)] = 07
where M (X s Brokes ht) equals

!/
o (vaa () e, (0
P\ )T T, (X))

P (X)) heey, (O
T (X)) ’ Many, (X))

We then compute the derivatives of M with respect to the parameters:

E [0M/0B:x] = —beiE [P(X)] = —pf
OM[Ohy 2| hihe = beili] /72 (X) = by.z,(X)
0Oy, M |p,=ng = —(Biwbeli]) /72, (X) = 61,5, (X)
OM [ Om=,n=ny = —(bixli] Q7 ., (X)) /72 (X) + (Brwberli] P, (X)) /72 (X) = 0z (X),




where b; [i] denotes the ith element of the vector b; . Define

a(V.T,Z.X) =Y byia(X (1{2 YT =1} — h;t,Z(X))

zEZ

+ 37 02(X) (12 = 21T = 1} — (X))

ZEZ

+ Y 0 (X) (1{Z = 2} — 79(X)).

ZEZ

We have

o (YT, Z,X) = byC (2. X, 7%) ((Y 1T = £}) — QU(X))
— ﬂﬁkbt,kC(Z, X, ) (L]_{T =t} — PtO(X)) .

Then Newey’s (1994) Proposition 4 suggests that the influence function of the estimator

Bt,k is (M + «)/psx which is equal to the EIF L
O

Proof of Theorem 3.3. Based on Proposition 3.2, we only need to show that the estimators
are asymptotically linear. By the delta-method argument, if we have two estimators that
are asymptotically linear, then their ratio is also asymptotically linear. Therefore, we only
need to show that p, is asymptotically linear, and then the other estimators can be dealt
with in the same way. Because p;y is a linear combination of %Z?:l ]%,Z(Xi), z € Z, we
only need to work with the latter expression. After adding and subtracting the true first

step functions, we obtain that

Vn %Zptz(Xz> —E[P.(X)] | = % (Pr.(X;) — E[P.(X)))
htz Z htz Xz
Z ( 7.(Xi) 7rz(<Xl))>

e (=)

The second term is already in the form of an influence function, and we only need to focus

- a\
||M:ﬁ

on the first term. Since 7, is bounded away from zero, we can apply Taylor expansion to



the ratio function and obtain that

ht,z(Xi) . ht,z(Xz) _ 1 7 N Y ht,z(Xz)
X)  m(x) w0 =T

Op (Il = b2V 17 = =12, )

(ﬁz (XZ) — Ty (Xz))

The above expansion is uniform for 1 < ¢ < n because the remainder term is small with
respect to the sup norm. By the standard uniform convergence rate of local polynomial
regressions (see, e.g., Masry, 1996, Theorem 6), we know that
- . logn _
s = Puslle v 1 = 7l = 0p (52 +0) = o074,
where the second equality follows from our assumption on the bandwidth. The remaining

task is to show that the following two terms are asymptotically linear:

n

LNy b (x), L § hesXD)
\/ﬁ;ﬂ'z(Xz) (ht,z(Xz) ht,z(Xz))7\/ﬁi:1 7TZ<X1'>2

We focus on the first term because the second term can be analyzed analogously. Notice

(7=(Xi) — 2 (X0)).

that izt,z /7. and h; /7, are smooth functions. By Theorem 2.5.1 and Theorem 2.7.1 in
van der Vaart and Wellner (1996), we know that smooth functions form a Donsker class

and hence have the following stochastic equicontinuity result:

\FZ@ 7 e = (X \/‘/WZ (e () — hos(2)) f (@) + 0,(1).

That is, we can replace the empirical measure with the true probability of X, and the error
is negligible. Lastly, the by standard Bahadur representation of local polynomial estimators
(e.g., Kong et al., 2010, Theorem 1) we know that hy () — he.(z) is first-order equivalent
to a function of X; multiplied by -1 3" | &K ((z — X;)/a), where &; = 1{Z; = 2}1{T; =
t} —E[1{Z = 2}1{T, = t}|X,] and K is a kernel function that depends on the original
kernel K and the order of the local polynomial estimator. By using a change of variables

u = (x — X;)/a, we obtain that the integral of the above expression is equal to

/ o Z& Xi)/a) fx(x)/m.(x Z/&fo (X; + au) /7. (X; + au) K (u)du
~;2h&ummun/m@m



This verifies that the term f S (ht (XG) — hy Z(XZ)) has an asymptotically linear

7,17rz

representation. Similarly, we can also Verlfy that the term f S Zt f)((X)Q) (7.(X;) —7m.(X3))

is asymptotically linear. This proves the result of the theorem. O]
A.3 Proofs for the robustness results

Proof of Proposition 4.1. We prove the case for 1Pt# the other cases can be dealt with

analogously. First assume m = 7°, then

E[1{Z=2}/m(X) | X] =1,

which implies that E [C (Z,X,7°) | X} is almost surly equal to the identity matrix I. By

the law of total expectations, we have
E[H{T =t}1{Z =2}/72(X) | X] =E [I{T =t} | Z = 2z, X] = P2.(X),
which implies that E [((Z, X, 7°)1{T = t}] = E [P?(X)]. Therefore,

bk E[C(Z, X, 7°) («({T = t}) — P(X)) + P(X)]
=b, E [C(Z, X, 7)) 1{T = t}] + b, B [(I— ¢((Z, X, 7)) P,(X)] = b E [P(X)] = Pik

Now suppose that P, = P?. Then by the law of total expectation, we have

E[{Z = z}({T =t} - F.(X)) | X]
=m(X)EEMT =t} [ Z = 2, X] - P7(X) | X] = 0.

This implies that E[((Z, X, 7)(«(1{T =t}) — P?(X))] = 0. Hence,
bkl [C(Z, X, ) (T = 1}) = PA(X)) + PAX)| = burkE [P2(X)] = i
This proves the proposition. ]

Proof of Proposition 4.2. Since by, is a finite vector, it suffices to verify the Neyman or-

thogonality condition for ¢,, which is defined by

wz(Y, T, 7, X, ﬁt,k;@t,Pt,ﬂ'z)
=(({Z = 2}/m.(X)) (H{T =t} = P.(X)) + P2(X)) Ben
- (1{2 = Z}/WZ(X)) (Yl{T = t} - Qt,z(X)) - Qt,z(X)



We want to show that

d
TB[.(VT, 2, X, B, Q7 P ) ‘ — 0,

r=0

where Qf = Q¢ +(Q. — Q7). Py = P? + (P, — F?), and 7l = 72+ r(m. — 79). In fact,

d
%E [wz(}/? T7 Z7 X7 5t,k7Q1tn7Ptr77T;)] ‘ =0

—E [% (UT =8} = PLIX) ) (m:(X) = 72(X) B
+ (a0 - m0 - HEZE (oo - B )

1{Z = Z} o T T — 7°
TR (YHT =1} = Q1)) (r-(X) — m2())
1{Z =z} <

z

— (Q2(X) = Q7(X)) +

(r2(X))?
CHZ==z}

m2(X)

B [ﬁ (UT =1} = P2(X) ) (ma(X) = 72(X) B
(

i (Pmm LX)

{Z ==z}
(m2(X))?

~(Qual(X) = Q100 + =5 (Que(X) — €1.(0)) .

(YUT =1} - @2.(X)) (m=(X) — 72(X))

which equals zero because of the following three identities:

E[{Z = z}/m2(X) | X] = 1,

E[{Z = 2}/m(X)(U{T = t} - P7.(X)) | X] =0,

E[{Z = 2}/m(X) (YT =t} - Q7.(X)) | X] = 0.
O

Proof of Theorem 4.3. The asserted claims follow from Theorem 3.1, Theorem 3.2, and
Corollary 3.2 of Chernozhukov et al. (2018) (henceforth referred to as the DML paper).
We want to verify their Assumption 3.1 and 3.2. Adopting the notation from the DML

paper, we let

VT, Z,X, Poymt) = —byy (C(Z, X,m) (A{T =t} — P(X)) + Pt(X)>

10



and

VY, T, Z,X, Q) = by, (c(z, X, m) (W(YI{T = t}) — Q,(X)) + Qt(X))

so that the linearity of the moment condition (with respect to f;y) is verified by the fact
that ¢ = "By, + ¥°. Define!

n = max (@ — Q3. lla v 1Byz = PPl V17 — m2l,).

By assumption on the convergence rates of the nonparametric estimators, we have ¢, =
o(n='4). Define C, = Ce1VCeoV CesV Cey, where Ce1,Cc9,Cc3, and C, 4 are positive
constant that only depends on C and e and are specified later in the proof. Let 9, be a
sequence of positive constants approaching zero and satisfies that 9, > C’E(ei\/ﬁ vty
n~(=%9)_ Such construction is possible since /ne? = o(1). We set the nuisance realization
set N, (denoted by 7Ty in the DML paper) to be the set of all vector functions (Qy, P, 7, :

z € Z) consisting of square-integrable functions Q) ., P; ., and 7, such that for all z € Z:

HQt,qu < C, Pt,z € [07 1]77Tz € [67 1]72 € Z7
Q1,2 — Q;qu VP — PtOqu V. — ﬂ-qu < €n,

I = w20l > (1@ — Q7.

2+ [P — PL2) < €.

Consider Assumption 3.1 in the DML paper. Assumption 3.1(d), the Neyman orthog-
onality condition, is verified by Proposition 4.2, where the validity of the differentiation
under the integral operation is verified later in the proof. Assumption 3.1(e), the identifi-
cation condition, is verified by the condition that p7, € [e,1]. The remaining conditions of
Assumption 3.1 in the DML paper are trivially verified.

Next, we consider Assumption 3.2 in the DML paper. Note that Assumption 3.2(a)
holds by the construction of N,, and €, and our assumptions on the nuisance estimates.
Assumption 3.2(d) is verified by our assumption that the semiparametric efficiency bound
of B is above €. The remaining task is to verify Assumption 3.2(b) and 3.2(c) in the
DML paper. To do that, we choose n sufficiently large and let (Q:., Pi.,m. 1 2 € 2)

be an arbitrary element of the nuisance realization set N,,. We keep the above notations

'For simplicity, we drop the superscript [ in the nonparametric estimators.

11



throughout the remaining part of the proof. Define

1/’?<T7 Za X, Ptaﬂ-z) = %(1{7—‘ = t} - Pt,z(X)) + Pt,Z<X)
and
¢2(K T7 Z7 X, Qhﬂ—z) = %(Yl{j‘ = t} - Qt,z(X)) + Qt,z(X)

Since 1 is a linear combination of 9%, z € Z and ¢° is a linear combination of ¥, z € Z,
we only need }}¢§(T, Z, X,Pt,ﬂz)Hq and HMZ’ Y, T,7Z, X,Q¢,7>) Hq to be uniformly bounded
(i.e., the bounds do not depend on n) for z € Z in order to verify Assumption 3.2(b) in
the DML paper. In fact,

z(Y7T7 ZaX7IDta7Tz)

<1z = @O UT = 1 = Qu)]| +Qu],

< % (HYl{T =}, +H@t,z<X>Hq) +[|Qu-(X)||, €20/ + C,

where we have used the assumption that 7, >

=t}||, < C, and [|[QuX) ||, < C.

Similarly, we have

Jve(r. 2%, Am)|, <[|142 = 2}/m(OPUT = 1} = P(X)]|| +]1AL(0))],
1
< L0 aC0l,) HR, £ 27641
where we have used the assumption that 7, > € and P, € [0,1]. Thus, Assumption 3.2(b)
in the DML paper is verified.
To verify Assumption 3.2(c) in the DML paper, we again only need to verify the corre-

sponding conditions for ¢¢ and 9, respectively. For ¢, we have

qug(TvzaXaPt’ﬂ-Z)_wa(T Z X Pto’ z ||2
m.(X) — m2(X)

P.(X) FLX) 0
. (X)me(X) |, WZ(X) T eX) ‘;’Ptvz(X*Ptvz(X)HQ
S}QHm X)lly + 5[ (Poa(X) = PeLOXR206) + P E(X) — (X))
ro-ros],”

g%\\wzm 72X, + (/1)

Ptv’«’(X) - _F)EZ(X>H2 < Ce,lgn < 5’(1,7

12



where the second to last inequality follows from the fact that P2, 7¢ € [0,1]. For 1?2, we

t,z) "z

have

VY, T,2,X,Q¢,m.) — VoY, T, Z,X,Q%, 7°)
2

< [REO0UT = 1 - Q) w0 UT = 1) - QL))
Q) = Q2.3

=3 (1T = 1) - @)X — (X)) + 7X@ () ~ Qua(3))]
+|@u(x) - @z

<0 = - @20 x) — (0| @0 - @)
+|Que(x) = Q2.(x)||

C 1
<Slme(X) =m0, + (— * 1) @200 = Qx| < Cuaen < 0,

where the last inequality follows from our assumption that |Y1{7 =t} — Q¢(X)| < C and
the fact that 72 € [¢, 1]. Combining the above two inequality results, we can verify the first
two conditions of Assumption 3.2(c) in the DML paper.

For the last condition of Assumption 3.2(c) in the DML paper, which bounds the second-
order Gateaux derivative, we again consider ¢% and 1’ separately. For r € [0, 1), recall
that Q}, = Q7. +7(Q. — Q7.), P/, = P2, +r(P,.— P.), and 7] = 7 + r(m, — 7).
Clearly, P/ ,«7 € [0,1]. With differentiation under the integral, we have

aa—;E [WUT, Z, X, P, w)]
:%E[w (1{T =) - Ptfz(X)) (m.(X) = 7(X))
+ P (X) — P2(X) — IETZ(—;)Z} (Pt,z(X) - Pto,z(X)> ]
e[ 00 - mC0PUT = 1) - P00
+E[ gt (1) — R2CO)(PealX) — P2
+ B[22 () = 0T = - LOO) P00 - B
—E '%(1@ =t} = PL(X))(P(X) — Pt’fz)2]-

13



Using the fact that |[1{T =t} — P/(X)| < 1 and 7" > €, we can bound the above derivative
by

SR 2,X, P w)] | < Colma(X) — w2002+ | Ps(X) — PO

+ Cef|ma(X) = 72(X)|, % [Pea(X) = PL(X)l2
< Ceser < 6,//n.
By bounding the first and second derivative uniformly with respect to r, we know that the

differentiation under the integral operation is valid. Therefore, the Neyman orthogonality

condition is verified. Analogously, we can show that

g—;E WY, 2, X, Q) )
o [2xU{Z =2z} o 2 _ r
—E [~ Gy ()~ mXOPUT = 1) - QX))
']_{Z = Z} - . 71'0 . o
B[ gy (0 — m0)@ue(X) — Q)
_p[HZ=2 ey _n_or _oe
E| oy (=) = m O YT = 1) - QL)) (Que(X) - Q3.
r1{Z =z} B . 0 \2
B[P HT = 1) - Q1L ))@uX) - @1,

Under the assumption |YI{T =t} — Q?_(X)| < C, we have
YUT =t} = Qi.(X) < YUT =t} = Q7. (X)| + 7@ -(X) = Q7. <C+1,

for all r € [0,1] and n large enough. Then we can bound the above derivative by

O B[ 1.2.X.Q5.7)] | <) — 72002+ @)~ QX))

or?
7. (X) = 72(X) |, x||@ux(3) = @5.3)|

<Ceae) < 6 /V/n.

+ C.

Therefore, we have verified the last condition of Assumption 3.2(c) in the DML paper.
Lastly, we need to verify the condition on 9,, in Theorem 3.1 and 3.2 in the DML paper,
that is, 6, > n~l1=2/971/2] This directly follows from the construction of 6,,. O

14



A.4 Proofs for weak IV inference results

Proof of Theorem 5.1. We first prove part (i). Consider applying the DML method to the
moment condition (5) to estimate the parameter v — Syp and obtain the standard error.

We want to show the convergence in distribution of

5, Vn [(0 = Bop) — (v = Bop)] = p — v/n(v = Bop) /5y (A1)

to the standard normal distribution uniformly over the DGPs in PV(cy, ¢;). To do that,
we need to verify Assumptions 3.1 and 3.2 in the DML paper regarding the above mo-
ment condition. Assumptions 3.1(a)-(c) hold trivially. Assumption 3.1(d), the Neyman
orthogonality condition, is verified by Proposition 4.2. That is, the Gateaux derivatives
with respect to the nuisance parameters are zero regardless of the value of 5. Assumption
3.1(e), the identification condition, is verified since the Jacobian of the parameter in the
moment condition is 1. Assumption 3.2 in the DML paper can be verified in the same way
as in the proof of Theorem 4.3. For brevity, we do not repeat the verification here.

For DGPs in Py (co,c1), (A1) is equal to p. Therefore, the uniform convergence in
distribution of |p| is established in the null space, and the size of the test is uniformly

controlled accordingly. For DGPs in PEVI(CO, c1), where 8 > [, we have

p=(p—vn(v—Pop)/6y) + vVn(v— Bop) /5y
= (p— Vn(v = Bop)/5y) + V/n(B — Bo)p/Fp-

The first term on the RHS of the last equality converges in distribution to N(0,1). In
contrast, the second term diverges to infinity since &, converges in probability to o, > |/co
by Theorem 3.2 in the DML paper. Therefore, the probability of |p| exceeding any finite
number converges to 1. The case where 5 < [ is essentially the same.

To prove part (ii) of the theorem, notice that (8 — fy)p < 0 for any DGP in the null
space Ug<g, PEVI(CO, ¢1), which implies that p < p — /n(v — Bop)/Gy. Therefore,

Sl;pPP(PV > Nisa) < Sl}ipPP (p— vn(v—Bop) /5y > Ni—a) = a,

where the supremum is taken over P € (Jz 4 Py (co,c1). Consistency can be derived in

the same way as part (i). O
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B Simulation Study

To evaluate the performance of our weak-identification-robust inference approach, we de-
signed an experiment wherein the variables Y, Z, and S exhibit a nonlinear relationship
with the regressor X. Addressing both the “curse of dimensionality” and weak identifica-
tion simultaneously can be a challenging task; therefore, we focus on the performance of the
weak-identification-robust inference procedure in a low-dimensional setting with dy = 3.
This low-dimensional setup is typical in the simulation studies found in the literature. For
example, Cattaneo (2010)’s simulation has two covariates and Hong and Nekipelov (2010a)
has one covariate.

The data generating process is adapted from (Hong and Nekipelov, 2010a) and mod-
ified to more effectively address the multiple treatment and weak identification scenar-
ios. The setup is identical to that in the empirical study, featuring three treatment
levels and two instrument levels. We initially draw n ii.d. samples of mutually inde-
pendent X = (X, X5, X3) from the uniform distribution on [—0.5,0.5]. Subsequently,
the instrument Z is generated according to the Bernoulli distribution with parameter
(X1 + Xo + X3)/3 + 0.5. The type S is generated according to the following distribu-

tion:

In this way, the type S is dependent on the covariates X, but independent with the in-
strument Z given X. The weak identification issue is modeled by the drifting sequence
P(S = s4) = O(1/4/n), with the concentration parameter c¢. For simplicity, we denote
S; = 1{S = s;},j = 1,---,5. The treatment is determined by the instrument and the
type: Th = S1+ S4(1 — Z), To = So+ S5(1 — Z), and T3 = S5 + (Sy + S5)Z. The poten-

tial outcomes are generated based on Poisson distributions. We first generate six Poisson
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variables:
&; ~ Poisson(exp(X; + Xa + X3) + j), éj ~ Poisson(j),j = 1,2,3.

Then potential outcomes are generated by

Y &1 & & &
ol=(&|+Si|&|+S]|&]+5s5]&
Y; &3 & & &3

The potential outcomes structure is similar to the simulation study presented in Hong
and Nekipelov (2010a). For both no-compliers and nm-compliers, the potential outcomes
are independent. Conversely, for no-never-takers, nm-never-takers, and always-takers, the
potential outcomes are correlated. Our primary interest lies in obtaining the confidence
region for f,,1, the LASF for the vanishing subpopulation s,. Under this framework,
Bro1 = (exp(0.5) — exp(—0.5))3.

Table 1 summarizes the simulation results from 1000 iterations. We explore different
values for the concentration parameter ¢ = 1,2,3 in the data-generating process. In con-
structing the test statistic p, we select the number of cross-fitting folds as L = 2,5. The
nonparametric estimators for nuisance parameters are generated via local linear regressions
using the Epanechnikov kernel function. We evaluate three bandwidth choices, 0.7,0.8,0.9,
and examine sample sizes of n = 250, 500, 1000.

The simulation results indicate that, generally, the confidence region exhibits satisfac-
tory coverage probabilities. It should be noted that the performance does not improve with
increasing sample size due to the construction of P(S = s4), which implies that the weak
identification issue escalates as the sample size grows. As the concentration parameter ¢
represents the severity of weak identification, it is observed that in many instances, cover-
age probability decreases as ¢ increases. The choice of the number of folds for cross-fitting

and bandwidth does not significantly affect the performance.?

2We have also experimented with other bandwidth values. For values below 0.7, there are insuffi-
cient observations within the bandwidth window, resulting in uninvertible matrices in the nonparametric

regression. For values moderately above 0.9, the results are comparable.
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Table 1: Simulation study for weak identification.

L bandwidth ¢ n = 250 n = 500 n = 1000

nominal coverage nominal coverage nominal coverage

900 950 .990 .900 .950 .990 .900 .950 .990

1 .896 .949 .992 .889 .947 989 .890 .944 .995
2 0.7 2 915 959 992 893 942 985 .892 .950 .989
3 .907 954 988 892 .940 986 .883 937 .984

1912 947 991 .894 .950 986 .899 .949 .995
2 0.8 2 917 960 .992 893 .948 987 889 .951 .989
3 916 961 .990 881 .937 .995 869 .938 .987

1 911 947 996 .891 .948 987 .903 .948 .994
2 0.9 2 908 956 .993 896 .946 985 .885 .950 .991
3 910 961 .993 882 .929 994 877 937 .985

1 916 963 .994 .906 .950 987 .906 .957 .993
5 0.7 2 913 960 .992 901 .952 991 .887 .949 .993
3 911 964 993 891 946 .994 873 .935 .988

1 918 963 .994 .905 .946 988 .908 .955 .994
5 0.8 2 910 958 993 897 944 990 .886 .950 .993
3 .920 969 .991 892 945 987 878 .936 .991

1 .910 .960 .995 912 951 991 .906 .953 .995
) 0.9 2 908 953 993 901 943 991 884 .951 .993
3 916 962 990 889 .944 987 .874 939 991

Simulated coverage probabilities of the confidence region for the LASF f,,1. The confidence region is
obtained by inverting the null-restricted test. The DGP models weak identification by having P(S = s4)
proportional to ¢/4/n. Number of replications is 1000.
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C Implicitly Defined Parameters

This section studies general parameters defined implicitly through moment conditions. We
allow the moment conditions to be non-smooth, which is the case when the parameter
of interest is the quantile. We also allow the moment conditions to be overidentifying,
which could be the result of imposing the underlying economic theory on multiple levels of
treatment and instrument.

To facilitate the exposition, we define a random variable Y} such that the marginal
distribution of Y;% is equal to the conditional distribution of Y; given S € ¥, . The joint
distribution of the Y}%’s is irrelevant and hence left unspecified. For convenience, we use
a single index j € J rather than (¢, k) for labeling. That is, we collect the Y%, ’s into the
vector Y = (Y, -, Y}). Let t; be the treatment level associated with Y;*. The quantities
p; and b; are analogously defined.?

Let the parameter of interest be n, which lies in the parameter space A C R%, d, < J.

The true value of the parameter 7y satisfies the moment condition
E [m(Y*,n%)] =0,
where m : Y7 x R% — R7 is a vector of functions:
m(Y*,n) = (ma(Y{',n), - ma (Y, m))

Since the vector 7 appears in each m;, restrictions are allowed both within and across dif-
ferent subpopulations. Another interesting feature of this specification is that the moment
conditions are defined for the random variables that are not observed. But their marginal
distributions can be identified similar to Theorem 2.1.

Let m = (m},--- ,m/;)’, where

/
5 (X,m) = (e (Xo), s, (X))

and

mj,z(Xa 77) =E [mj<y7 7])1{T = tj} | Z = ZvX] .

3We can further extend the vector Y* to include variables whose marginal distributions are the same
as the conditional distributions of Y; given T'=1¢,5 € ¥, ;. Efficient estimation in this more general case

is similar and hence omitted for brevity.
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The functions m; , are identified from the data. Similar to Theorem 2.1, we can show that

the parameter n is identified by the moment conditions:
bE [mj(X,n)] =0,1<j<J <= n=n".
The following theorem gives the SPEB for the estimation of 7.
Theorem C.1. Assume the following conditions hold.
(i) E [m(Y™*,n)?] <oo,n€A.

(i) For each j and z, m;,, . is continuously differentiable in its second argument. Let I’

be the J x d,, matriz whose jth row is bj%E [mj(X, 77)] ‘;7:77‘” and assume I has full
column rank.
Then for the estimation of n, the EIF is
— OV T VWY, T, Z, X, 7, im), (C.1)

where
V=E [wn<y7 T7 Z7 X? n,m, m)wn<Y7 T7 ZJ X7 n,m, m>/]
and Y (Y, T, Z, X, n,m,m) is a J X 1 random vector whose jth element is

b (é(Z, X,m) (etmy (V) H{T = t;}) — iy (X, m)) +my (X, 77)) (C.2)
In particular, the semiparametric efficiency bound is (F’V‘lf)_l.

Proof of Theorem C.1. The proof is based on the approach described in section 3.6 of Hong
and Nekipelov (2010a) and the proof of Theorem 1 in Cattaneo (2010). We use a constant
d, X d,, matrix A to transform the overidentified vector of moments into an exactly identified
system of equations A (bjIE [m]-(X , 77)] >j:1 = 0, find the A-dependent EIF for the exactly-
identified parameter, and choose the optimal A. In a parametric submodel, the implicit

function theorem gives that

o J

0 _ _ o
5o = = (AT A (0B [, (Xn)] )y
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where %Eg [mj(X , 770)} } g—go 18 an Nz x 1 random vector whose typical element can be

represented by
[0 = s [ 0°) .7 30 o ) dydrda
[y L = s @30 0 | 0°) 0y
for z € Z. So the EIF for this exactly-identified parameter is
VAY, T, Z, X, n°, 7°,m°) = — (AD) "' AW(Y, T, Z, X, n°, n°, m°),

where 1" is defined by Equation (C.2). It is straightforward to verify that 1 satisfies
%77‘9:90 =E [wAsgo] ,and ¥4 € .. The optimal A is chosen by minimizing the sand-
wich matrix E [4(y4)] = (AT) " AE [¢"(y")'] A" (I'A’)~". Thus, the EIF for the over-
identified parameter is obtained when A = I"V~!. Plugging this expression into 4, we

obtain Equation (C.1). O

Note that, for example, m;(Y}*,n) = Y;*—n, then = j3;, and the efficiency bound shown
above reduces to the one computed in Theorem 3.1. If T' = Z, that is, the treatment satisfies
the unconfounded, then the Theorem C.1 reduces to Theorem 1 in Cattaneo (2010).

For estimation, we use the EIFs to generate moment conditions and propose a three-step

semiparametric GMM procedure. The criterion function is

1 n
\IJ?L(nvﬂ-’m) = E Zd}n(mvﬂv Z’iaXianaﬂ-am)- (CB)

=1

Its probability limit is denoted as
\Ijn<7777T>mZ) =K W"(Y, T7 Z7 Xﬂ?ﬂBm)} ’ (C4>

where the expectation is taken with respect to the true parameters (7°,m°). The imple-
mentation procedure is as follows. Assume that we have nonparametric estimators @ and
m that consistently estimate 7° and m?°, respectively. We first find a consistent GMM

estimator 7 using the identity matrix as the weighting matrix, that is,

w27, &, 1)

|, < inf || W] (n, 7, i)

neA

}2 + 0,(1). (C.5)
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Next, we use this estimate to form a consistent estimator V' of the covariance matrix V,

where

V =

SRS

D WYL T, Zey Xy, 7, )W (Y, T, Z, X, 7,
=1

Then we let ) be the optimally-weighted GMM estimator:

~

\112(777 ﬁ-? mZ)Vn(ﬁa 7?‘-7 mZ)_l\PZ(ﬁa T, mZ)/

S 11’l£ \IJZ(n’ ﬁ-? mz)vn(ﬁ7 7%7 mZ)il‘IjZ(na ﬁ-a mZ)/ + Op (n71/2) .
ne

To conduct inference, we estimate I" using the estimator I’ whose elements are defined as

)
n=n

Ty = L i bjgmj(Xi, n)
n < an
where we have implicitly assumed that the estimator m; is differentiable in its second
argument.
In the following theorem, we derive the asymptotic properties of the GMM estimators.
The main theoretical difficulty is that the random criterion function W, (-, 7,m) could
potentially be discontinuous because we allow m(Y™*,-) to be discontinuous. We use the

theory developed in Chen et al. (2003) to overcome this problem.? Let II, be the function

class that contains 7. Let M; . be the function class that contains m .

Theorem C.2. Let the assumptions in Theorem C.1 hold. Assume the following conditions

hold.

(i) The parameter space A is compact. The true parameter n° is in the interior of A.

(i) For any j,z and m;, € M., there exists C > 0 such that for 6 > 0 sufficiently
small,
sup Efm; (X, 1) = my(X.n)| < 08,

In'—n[<é
4Cattaneo (2010) instead uses the theory from Pakes and Pollard (1989). However, the general theory

of Chen et al. (2003) is more straightforward to apply in this case since they explicitly assume the presence

of infinite-dimensional nuisance parameters, which can depend on the parameters to be estimated.
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(iii) Donsker properties:

| e NE Ot [ 108N (e My )de < o
0 0
where N (e, F,||||) denotes the covering number of the space (F.,||-||).

(iv) Convergence rates of the nonparametric estimators:

172 = 7l - 772z — 25 e = 0p(n ™).

a%mj.(-, n)’ is integrable. The estimator a%fnj is consistent uni-

(v) The function sup,c,

formly in its second argument, that is,

J . J _, B
Hﬁ—nmj(:v,n) — a—nmj(x,n)H = 0,(1), V.

oo

~ ~

Then 7 =n° 4+ 0,(1), V=V +0,(1), ' =T+ 0,(1), and
V(i —1n°) = N(0,I'V-T)™),
where O denotes a vector of zeros.
The following lemma is helpful for proving Theorem C.2.
Lemma 3. Under the assumptions of Theorem C.1, the class
F={"Y.T,Z,X,n,m,m) 7 €Il.,m;. € M;,,1<j<Jz€Z}

is Donsker with a finite integrable envelope. The following stochastic equicontinuity condi-

tion hold: for any positive sequence 6, = o(1),

sup {\PZ(Th T, ’ﬁ’l) - \Pn(nv T, m) - \112(7707 7T07 mOZ) :

I = 7lly Vlm = 7l VI = 7] < 80} = 0, (n2).
where the supremum is taken over n € A, m, € I, and m;, € M, .

Proof of Lemma 3. We first verify that the moment condition 1" satisfies Condition (3.2) of
Theorem 3 in Chen et al. (2003) (hereafter CLK). In fact, when ||/ ,—m; .|| V7 — 1l <
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J, the triangle inequality gives that
2
| (X, 1) — (X, m)|
2

2
§2E‘m;,z(X7 77/) - m;’,z(Xa 77) + QE‘m;,z(X7 77) - mj,z <X7 77)

<const x 62,

where we use the notation const to denote a generic constant that may have different values
at each appearance. The last inequality follows from the assumption (ii). Similarly, we
can verify that the remaining terms in " also satisfy the same condition. Therefore, " is

locally uniformly Ls-continuous, that is,
]E[Sup {}¢n(Y7 T7 Z7 X7 77/,77'/,771,,) - wn(Y7 TJ Z7 X77777T7m)‘ :
o =l =l vl = ] < 6] < const. x 5

Following the same steps as in the proof of Theorem 3 in CLK (p. 1607), we can show that
the bracketing number of F is bounded by

Ny(e, Follll, )
<N (e/const, \,||-||) x HN(g/const,Hz,H-H) X HN(e/const,./\/ljg,Hﬂ).

j7z

Therefore, the bracketing entropy of class F is bounded by
log Ny (e, Fll.., )
<const X (log N(e/const, A ||]|) V mgxlog N(g/const, 1L, ||-||)
Vrr}%xlog N(E{/CO?’LSt,Mj,mH'H)).
Under the assumption that A is compact and
/000 log N (e, 11,,||-||) de, /000 log N (g, M ..,||I-||)de < o0, V7, 2,

we have that

/ log Ny (e, F|lll,, )de < oo.
0

This implies that F is Donsker with a finite integrable envelope. Lastly, as stated in Lemma
1 of CLK, the asserted stochastic equicontinuity condition is implied by the fact that F is

Donsker and " is Ls-continuous. [
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Proof of Theorem C.2. We follow the large sample theory in CLK and set § = n, h =
(m,m), M(0,h) =¥"(n,m,m), and M,(0,h) = V1 (n,m,m).

We first use Theorem 1 in CLK to show the consistency of 7. Condition (1.2) in CLK
is satisfied because A is compact, and W"(n, 7° m°) has a unique zero and is continuous
by our second condition in Theorem C.1. As for Condition (1.3) of CLK, we can easily
see from the expression of W that it is continuous with respect to m;, and 7, (since =, is
bounded away from zero), and the uniformity in 7 follows from the fact that E [m(Y™*,n)]
is bounded as a function of 7. Condition (1.4) of CLK is satisfied by the assumption of
Theorem C.2. The uniform stochastic equicontinuity condition (1.5) of CLK is implied by
Lemma 3. Therefore, 77 = 1° + 0,(1).

We use Corollary 1 (which is based on Theorem 2) in CLK to show the consistency of 1%
and the asymptotic normality of 7. Condition (2.2) in CLK is verified by the assumptions
of Theorem C.1. Similar to the proof of Proposition 4.2, we can show that the moment
condition U" based on the EIF, satisfies the Neyman orthogonality condition for the nui-
sance parameters m and myz. In fact, for any j and z, we let 77 = 7(X) +r(7,(X) —72(X))

and m (X, n) = m?_(X,n) + r(m;.(X,n) —m3_.(X,n)). Then we have

48 M2 (e = ) - ng(x) + ()
_g| - HE =2 ) S ao(X)) (g (V)T = 1} — o (X
(rzory? (7200 = ) (T = 5} = (X,

+ (8 (X m) = (X)) ( m2(X)

where we have applied the law of iterated expectations and used the fact that

B |25 (mvimuir =) = mg.cxan) [x] <o

Thus, the path-wise derivative of W” with respect to h = (7, m) is zero in any direction.
Hence, Condition (2.3) of CLK is verified. Condition (2.4) in CLK directly follows from
our assumptions of Theorem C.2. The stochastic equicontinuity condition (condition (2.6)
in CLK) follows from Lemma 3. Lastly, condition (2.6) in CLK is verified using the central

limit theorem since the path-wise derivative is zero. Due to the presence of V, we also need
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the uniform convergence condition in Corollary 1 of CLK, which can be verified by using
Lemma 3 and an application of Theorem 2.10.14 of van der Vaart and Wellner (1996).

Lastly, to show the consistency of I, we only need to show that
1« 0 p 0 0
- —mj (X, n) > E|=—m, . (X,n°)| = =—E |m;.(X,n°)]|,
- ;1 oy it = (X ) { gy = (X )} oy 77=(X )]

where the inequality follows from the differentiation under integral operation which holds
under the last assumption of the theorem. The convergence in probability follows from the
uniform convergence of 8%7?%2 and the consistency of 7. Therefore, the desired convergence

results follow. O
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