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This document contains supplementary materials for “Minimum Resource Threshold Policy Under

Partial Interference.” Section A presents additional results related to the main paper. Section B

proves lemmas and theorems stated in the paper.

A Additional Details of the Main Paper

A.1 Examples of Beneficial Intervention/Treatment for Most of the Population

We provide plausible examples where the intervention/treatment seems beneficial for almost all

members of the population.

� Prior works have shown that improving household access to improved water, sanitation, and

hygiene (WASH) resources are critical to reduce rates of diarrhea-related diseases (Esrey

et al., 1985; Clasen et al., 2007), especially among children (Daniels et al., 1990; McMichael,

2019). Additionally, there is no biological rationale that well-managed WASH facilities cause

diarrhea-related diseases.

� Devoto et al. (2012) studied the effect of getting easier access to piped water on various kinds

of outcomes such as quality and quantity of water consumed, water-related time and financial

costs incurred by the household. In particular, based on the results in Table 3 and related

discussions, we can deduce that getting easier access to piped water results in a substantial

increase in the quantity of water for most of the population.

� As discussed in page 10 of Cohen and Dupas (2010), higher insecticide-treated bed nets (ITN)

coverage rates would be beneficial for the population because the use of ITN in a household

may have positive health externalities for neighboring households.

� Feikin et al. (2022) conducted a meta-analysis of studying the effect of COVID-19 vaccines

against SARS-CoV-2 infection. Their work and references therein suggest that COVID-19

vaccines are beneficial for most of the population.
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� Miguel and Kremer (2004) studied the effect of school-level deworming projects on students’

health status and academic achievements. They remarked that there were within- and across-

school spillover effects, indicating that students who did not directly receive deworming treat-

ment still benefited from those who did. Therefore, combined with the biological reasons, we

can infer that deworming drugs are beneficial for most of a majority of students.

A.2 Examples of Real-world Applications Targeting a Certain Level of Out-

comes

In this section, we present examples of real-world applications that target a specific level of outcomes

rather than the maximum level of outcomes.

� High levels of protein in the urine, known as proteinuria, may be caused by diabetes, high

blood pressure, autoimmune disorders, infections, and kidney diseases. Thus, for a normal

adult, it is recommended to maintain the total urinary protein excretion less than 150 mg/day

(Carroll and Temte, 2000).

� HDL cholesterol is commonly referred to as “good” cholesterol because it plays a crucial role

in removing harmful cholesterol from the bloodstream. As a result, maintaining high levels

of HDL cholesterol is associated with a lower risk of cardiovascular disease. It is generally

recommended to maintain HDL cholesterol levels above 60 mg/dL (Grundy et al., 2002).

� Warfarin, a blood-thinning medication, is used to increase the international normalized ratio

(INR), a measure of the time for the blood to clot, and it should be prescribed to keep patients’

INR within the desired range, usually between 2 and 3, according to the recommendations

from American Heart Association (January et al., 2014).

� Major medical associations recommend targeting proper ranges for chronic disease manage-

ment measures such as hemoglobin level (male: 138-172 g/L; female: 121-151 g/L) (American

Association of Clinical Endocrinologists and Others, 2019).

� UN has established the Sustainable Development Goals in 2015 (United Nations, 2016), which

consists of 17 specific goals. In particular, Goal 1 is to eradicate extreme poverty for all people

everywhere by 2030 and Goal 3 is to ensure healthy lives and promoting well-being at all ages.

Some specifics of these goals target certain levels of outcomes of interest as follows:

– 1.1: By 2030, eradicate extreme poverty for all people everywhere, currently measured

as people living on less than $1.25 a day

– 1.2: By 2030, reduce at least by half the proportion of men, women and children of all

ages living in poverty in all its dimensions according to national definitions

– 3.1: By 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live

births
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– 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age,

with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000

live births and under-5 mortality to at least as low as 25 per 1,000 live births

� The Global Technical Strategy for malaria 2016-2030 was adopted by the World Health As-

sembly in May 2015 (World Health Organization, 2021). It has set a target of reducing

malaria incidence by 40, 75, and 90 percent by 2020, 2025, and 2030, respectively, compared

with malaria incidence in 2015.

A.3 Application of Our Method to Other Real-World Examples

Motivated from the examples in Sections A.1 and A.2, we lay out some concrete examples where

our approach can be used.

� Motivated by Cohen and Dupas (2010) and World Health Organization (2021), we can study

the minimum ITN coverage necessary to meet the thresholds set by the Global Technical

Strategy for malaria control Also, because an ITN is likely to reduce malaria incidence in

both the household where it is installed and nearby (but not too far away) households,

partial interference is a viable framework for modeling the effect of ITN installation on malaria

incidence. Furthermore, there are biological reasons to believe that malaria incidence would

exhibit a monotonic response to ITN coverage. Combined together, we can use our method

to determine the Minimum Resource Threshold Policy (MRTP) of ITN coverage to achieve

a desired malaria incidence level.

� Motivated by Devoto et al. (2012), we can study the minimum proportion of households with

piped water that will meet or exceed the levels of existing hygiene and/or welfare indicators.

For instance, as Tables 3 and 4 of Devoto et al. (2012) reported, one may use the numbers of

baths and showers and the number of times a child fetched water in recent days as a basis for

the hygiene and welfare indicators, respectively. Also, as suggested by Devoto et al. (2012),

these indicators are likely to show monotonic response to water pipe installation. Finally,

partial interference is reasonable in this context because the hygiene and welfare indicators

of a household are affected by piped water in nearby (but not too far away) households.

Therefore, we can use our method to determine the smallest water pipe coverage necessary

to achieve the desired hygiene and/or welfare levels.

� We can consider a policy for allocating water, sanitation, and hygiene (WASH) in developing

countries to achieve the Sustainable Development Goals 3.2 by targeting under-5 mortality

being lower than 25 per 1000 live births. The context is similar to the application of the

main paper except that the outcome is under-5 mortality. As before, partial interference and

monotonicity are reasonable assumptions for the context, and investigators may determine

the MRTPof the amount of WASH facilities that achieves the desired under-5 mortality rate.
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A.4 A Graphical Illustration for the Setup

We provide a visual illustration for the setup in Figure A.1. For simplicity, we consider N = 2

clusters where each cluster has ni = 2 study units. The black arrows from Aij to Yij (i, j = 1, 2)

depict the direct effect of the treatment, and the red arrows from Aij to Yij′ (i, j, j
′ = 1, 2, j ̸= j′)

depict the indirect effect of the treatment. No connection between two clusters illustrate the

cluster-level independence.

Cluster 1

X11 X12

A11

A12

Y11

Y12

Cluster 2

X21 X22

A21

A22

Y21

Y22

Figure A.1: A Graphical Illustration for the Setup. The blue arrows from Aij to Yij (i, j = 1, 2)
depict the direct effect of the treatment, and the red arrows from Aij to Yij′ (i, j, j

′ = 1, 2, j ̸= j′)
depict the indirect effect of the treatment.

A.5 The (Mostly) Wrong Approach: Analysis With Aggregated, Cluster-Level

Data

We briefly discuss a tempting approach based on aggregating the data at the cluster-level. This ag-

gregation approach has been discussed in the literature (e.g., Section 2.3 of Imbens and Wooldridge

(2009) and Kilpatrick and Hudgens (2021)) as a simple way to deal with interference. While

this approach will clearly not work for estimating MRTPs like θ∗SO(xi) or other MRTPs targeting

spillover-specific outcomes, from a practitioner’s point of view, it is worth asking whether this ap-

proach can be used to estimate, or at least approximate, MRTPs like θ∗OV(xi) which combine both

the direct and spillover effects of treatment in a block. Unfortunately, as we illustrate below, this

aggregation approach will lead to grossly misleading estimates of θ∗OV(xi) except in very restrictive

settings.

Formally, following the above advice from the literature, suppose an investigator attempts to

bypass the problem from interference at the unit/household-level by aggregating their data at the

cluster/block-level. That is, for each cluster i, the investigator can consider Oi = (Y i, Ai,Xi) to

be the available data and use existing techniques in the optimal treatment regime literature for

a continuous treatment, such as Chen et al. (2016), to obtain the minimum proportion of WASH

facilities necessary to achieve a certain target T . For example, given a cluster-level outcome model
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for the expected value of Y i as a function of cluster-level variables Ai and Xi, the investigator can

find the smallest Ai ∈ [0, 1] where the expected outcome exceeds T .
Despite its simplicity, the above analysis is only appropriate in very restrictive settings, which

we illustrate with an example. Suppose the treatment assignment depends on the measured covari-

ates, and the outcome regression is given as E
{
Y

(aij ,ai(−j))

ij

∣∣Xi

}
= β1aij + β2ai(−j) + β⊺

3Xijaij +

β⊺
4Xijai(−j) where β1, . . . ,β4 are non-negative coefficients to guarantee Assumption (A5). Some

algebra reveals the average potential outcome at the cluster-level is

E
{
Y

(ai)
i

∣∣Xi

}
=

(
β1 + β2 +

niβ
⊺
4Xi

ni − 1

)
ai +

{
(ni − 1)β3 + β4

ni − 1

}⊺( 1

ni

ni∑
j=1

aijXij

)
. (1)

If the investigator uses the aggregated, cluster-level data to estimate the MRTP, the resulting

estimate will be biased because the cluster-level outcome model of Y i given Ai and Xi is mis-

specified. Or equivalently, there is an omitted variable bias because of the term
∑ni

j=1 aijXij ,

which roughly measures the covariance between the unit-level treatment variable and the unit-

level covariate. The magnitude and the direction of the bias will depend on (a) the magnitude of

treatment effect heterogeneity, as measured by β3 and β4, and (b) the magnitude and the sign of

the measured, unit-level confounding, as measured by the covariance of Aij and Xij .

More generally, if the outcome model is nonlinear, which is often the case in popular epidemiolog-

ical models (e.g., Magal and Ruan (2014)), no amount of modeling with aggregated, cluster-level

data (Y i, Ai,Xi) will completely remove this bias as the cluster-level data cannot capture both

unit-level treatment heterogeneity and unit-level confounding. As a concrete example, suppose the

treatment is completely randomized and there are no interactions between the covariates and the

treatment, but there exists non-linear relationship between the treatment on the outcome:

E
{
Y

(aij ,ai(−j))

ij

∣∣Xi

}
= β0 + β1aij + β2

{
(ai(−j) − qa)p

}
+

(2)

where β1 and β2 are non-negative coefficients, qa ∈ [0, 1], and p is a positive integer. Roughly

speaking, the model states that the household’s outcome can be affected by its peer households

through a non-linear function z 7→ (z − qa)p if at least (100 × qa)% of their peers are treated; see

Granovetter (1978), Watts (2002), and Kempe et al. (2003) and references therein for other types

of threshold models in networks. As before, Assumptions (A4) and (A5) hold for this model and

some algebra will reveal that the cluster-level outcome model will be mis-specified when using only

aggregated, cluster-level data (Y i, Ai,Xi) due to the non-linearity of ai(−j) in the household-level

outcome model. Consequently, the resulting MRTP with the cluster-level data will be biased.

We provide a graphical illustration of model (2). To demonstrate, we fix the cluster size ni = 10

and the coefficients β0 = β1 = 0, and choose β2 so that the range of the outcome regression becomes

[0, 1]. We consider three levels for qa ∈ {0.4, 0.6, 0.8} and p ∈ {1, 2, 5}, respectively, and we choose

the threshold T = 0.2. Figure A.2 visually presents the differences between the MRTPs based on

τOV and the aggregated cluster-level outcome regression. We find that the differences vary between
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0.07 and 0.17. The toy example suggests that estimating the MRTP based on the aggregated

outcome regression may yield significantly biased estimates of θOV in equation (6) of the main

paper.

Figure A.2: Graphical Comparison between the MRTPs Based on the Aggregated Cluster-level
Outcome Regression and τOV(α). Black dotted and red dashed lines indicate the MRTP based on
the aggregated cluster-level outcome regression and that based on τOV(α) (i.e., θOV), respectively.

However, we mention that this simple aggregation approach may work under different assump-

tions. For instance, Kilpatrick and Hudgens (2021) assumed that the cluster-level potential outcome

only depends on the total number of treatment implemented in a cluster, i.e., the cluster-level strat-

ified interference. This implies that the average potential outcome at the cluster-level has a form

of E
{
Y

(aij)
i

∣∣Xi

}
= µ†

(
ai,Xi

)
for some function µ†, which can be identified as (nonparametric)

regression models of Y i on (Ai,Xi). In turn, using their g-formula approach and/or the indirect

approach in Section 3.1 of the main paper, we can get a valid estimate of θ∗OV. We remark that the

cluster-level stratified interference assumption lacks the necessary flexibility to define θ∗SO. This is

because it eliminates the possibility of having distinct cluster-level outcomes based on the treatment

recipients, which is a critical aspect of interference.

Next, we compare the classification performance measures of the true policy of the main

manuscript and the policy obtained from the aggregated cluster-level outcome regression. We

consider the following simple data generating process:

ni = 10 , Xij ∼ Ber(0.5) , Aij

∣∣Xij ∼ Ber(0.5)

Yij
∣∣ (Aij ,Ai(−j), Xij ,Xi(−j)) = Aij + 0.5Ai(−j) + 0.5AijXij + ϵij , ϵij ∼ N(0, 1) .
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The aggregated cluster-level outcome regression is given as E
(
Y i

∣∣Ai, Xi) = (1.5 + 0.5Xi)Ai, and

the simple policy is obtained as follows:

θ∗Simple(xi) = min
{
a ∈ {0, 0.1, . . . , 1}

∣∣∣E(Y i

∣∣Ai = a,Xi = xi) ≥ θ
}
.

The true policy θ∗OV(α) is defined based on equation (6) of the main paper.

We generate N = 105 observations from the above data generating process, and compare the

three classification performance measures of θ∗Simple and θ∗OV across T ∈ [0.8, 1.6]. We use the

true outcome regressions µ∗ and µ† to construct θ∗OV and θ∗Simple. As a result, the discrepancies in

the performance measures can be attributed to the use of the aggregated approach instead of the

approach proposed of the main paper. The range of T has been chosen such that the lower bound

of the interval is not significantly smaller than the average outcome of E
(
Y i

)
= 0.875. Figure A.3

graphically summarizes the result. We find that θ∗OV uniformly yields better classification perfor-

mance measures compared to θ∗Simple, suggesting that using the aggregated cluster-level outcome

regression is suboptimal even in the simple model.

Figure A.3: Classification Performance Measures of θ∗OV and θ∗Simple.

In summary, an analysis based on aggregated, cluster-level data will often lead to biased es-

timates of MRTP. Also, if the investigator is interested in MRTPs based on spillover-specific

outcomes such as θ∗SO(xi), a cluster-level analysis is simply infeasible.

A.6 Inverse Probability-Weighted and Outcome Regression-based Loss Func-

tions

We introduce the IPW and outcome regression-based loss functions. Specifically, we can replace

ψDR in equation (9b) of the main paper with the following functions.

ψIPW(a, s,Oij ,Oi(−j)) =
Yij1(Aij = a, Si(−j) = s)

e∗(a, s
∣∣Xi)

, ψOR(a, s,Oij ,Oi(−j)) = µ∗
(
a,

s

ni − 1
,Xij ,Xi(−j)

)
.
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A.7 Machine Learning Methods Used for the Outcome Regression Estimation

As candidate machine learning methods, we include the following methods and R packages in our

super learner library: linear regression (glm), Lasso/elastic net (glmnet (Friedman et al., 2010)),

spline (earth (Friedman, 1991), polspline (Kooperberg, 2020)), generalized additive model (gam

(Hastie and Tibshirani, 1986)), boosting (xgboost (Chen and Guestrin, 2016), gbm (Greenwell

et al., 2019)), random forest (ranger (Wright and Ziegler, 2017)), and neural net (RSNNS (Bergmeir

and Beńıtez, 2012)).

A.8 Computation: Training the Support Vector Machine in (10) of the Main

Paper

This section presents the computational details on training the support vector machine in (10) of

the main paper. The algorithm to train SVMs under this type of nonconvex function is already

discussed in prior works (An and Tao, 1997; Chen et al., 2016) and we present a summary of it

for completeness. Also, to keep the notation clear, the discussion below assumes that the nuisance

functions are known, but the identical computation algorithm is used to train the SVM when the

nuisance functions are estimated.

To start off, we can decompose the loss function for the overall outcome case in equation

(9) of the main paper into the difference of two convex function L+(t,Oi) and L−(t,Oi), i.e.,

L(t,Oi) = L+(t,Oi)− L−(t,Oi) for any t and Oi where

L+(t,Oi) =


ν+(0,Oi)− 2δt if −∞ < t < 0

ν+(t,Oi) if 0 ≤ t ≤ 1

ν+(1,Oi) +
(
δ + 2δ

)
(t− 1) if 1 < t <∞

L−(t,Oi) =


ν−(0,Oi)− 2δt− δ + δet if −∞ < t < 0

ν−(t,Oi) if 0 ≤ t ≤ 1

ν−(1,Oi) +
(
δ + 2δ

)
(t− 1)− δ + δe1−t if 1 < t <∞

ν±(t,Oi) =
1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
ψDR(a, s,Oij ,Oi(−j))

×
ni−a−s∑
ℓ=0

(
ni − a− s

ℓ

){
(−1)ℓ

ℓ+ a+ s+ 1

}
±
tℓ+a+s+1 + (T )±t

Here, (a)+ = max(a, 0), (a)− = −min(a, 0), and δ is chosen as the maximum of the left derivatives

of ν+(t,Oi) and ν−(t,Oi) at t = 1, i.e., δ = max
{
limϵ↓0∇ν+(1− ϵ,Oi), limϵ↓0∇ν−(1− ϵ,Oi)

}
and

∇ν±(t,Oi) is the derivative of ν±(t,Oi) with respect to t. Critically, the two loss functions L+ and
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L− are convex and non-decreasing in t. For the spillover outcome case, we use

νSO,±(t,Oi) =
1

ni

ni∑
j=1

ni−1∑
s=0

(
ni − 1

s

)
ψDR(0, s,Oij ,Oi(−j))

ni−s∑
ℓ=0

(
ni − s
ℓ

){
(−1)ℓ

ℓ+ s+ 1

}
±
tℓ+s+1 + (T )±t

Given the decomposition of the loss function into the difference of two convex functions, we

use the DC algorithm (An and Tao, 1997), which is an iterative algorithm, to solve the original

non-convex optimization problem; see Algorithm 1 for details.

Algorithm 1 DC Algorithm

Require: Initialize values η(0) ∈ RN , b(0) ∈ R. Set iteration number to zero, j ← 0.
1: Precompute the gradient ∇L−(t,Oi) where

∇L−(t,Oi) =


∂

∂t
L−(t,Oi) t ̸= 0, 1

1

2
lim
ϵ↓0

{
∂

∂t
L−(t+ ϵ,Oi) +

∂

∂t
L−(t− ϵ,Oi)

}
t = 0, 1

2: repeat
3: Let η(j+1) and b(j+1) be the solution to the following convex optimization problem.[

η(j+1)

b(j+1)

]
∈ argmin

η,b

[
1

N

N∑
i=1

{
L+

(
k⊺
i η + b,Oi

)
−∇L−

(
k⊺
i η

(j) + b(j),Oi

)(
b+ k⊺

i η
) }

+
λN
2

η⊺Kη

]
4: j ← j + 1
5: until convergence
6: return

(
η̂, b̂

)
←

(
η(j), b(j)

)
.

To initiate the DC algorithm, we choose the initial value as follows. First, for each i, let the

solution be ri, i.e., ri = argmint∈[0,1] L(t,Oi) which can be obtained from a grid-search. In words,

ri is an approximate of θ̂(xi) that are found by a grid-search. But, since ri is bounded in the unit

interval, it may not be a suitable approximate of θ̃(xi), the SVM solution before the winsorization.

As a consequence, directly using ri to construct initial points may lead to an estimate policy

shrinking to a certain value, i.e., a policy does not reflect the heterogeneity induced by xi. To

stretch ri outside of the unit interval, we consider the following steps.

(a) Let ϕ and φ be

ϕ(a, a′,Xi) =
1

ni

ni∑
j=1

µ̂
(
a, a′,Xij ,Xi(−j)

)
, φ(Xi) =

1

ni

ni∑
j=1

Yij − µ̂(Aij , Ai(−j),Xij ,Xi(−j))

ê(Aij , Si(−j)

∣∣Xi)
.

(b) By only using the clusters with non-0 and non-1 ris, i.e., ri ∈ (0, 1), we fit linear regression

models where ϕ(a, a′,Xi) and φ(Xi) are regressed on ris. We choose (a, a′) from {0, 1} ⊗
{0, 0.2, 0.4, 0.6, 0.8, 1} = {(0, 0), (0, 0.2), . . . , (1, 0.8), (1, 1)}, i.e., 12 levels. Let (β̂0,model k, β̂1,model k)

are the estimated regression coefficients from kth model.
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(c) Let r̂i be the adjusted initial points which are defined as follows.

(c-1) If ri ∈ (0, 1), no adjustment is required, i.e., r̂i = ri.

(c-2) For clusters having ri = 1, we use the largest prediction values obtained from the 13

regression models and 1, i.e.,

r̂i = max

{
ϕ(0, 0,Xi)− β̂0,model 1

β̂1,model 1

, . . . ,
φ(Xi)− β̂0,model 13

β̂1,model 13

, 1

}
.

(c-3) Similarly, for clusters having ri = 0, we use the smallest prediction values obtained from

the 13 regression models and 0, i.e.,

r̂i = min

{
ϕ(0, 0,Xi)− β̂0,model 1

β̂1,model 1

, . . . ,
φ(Xi)− β̂0,model 13

β̂1,model 13

, 0

}
.

Second, we take b(0) =
∑N

i=1 r̂i/N and η(0) as a vector satisfying r̂i = k⊺
i η

(0) + b(0) for all i;

i.e., r̂ = Kη(0) + b(0)1 where r̂ = [r̂1, . . . , r̂N ]⊺ ∈ RN and 1 = [1, . . . , 1]⊺ ∈ RN . Even though the

kernel matrix K is invertible due to the positive definiteness of the kernel function K, the inverse

of K cannot be obtained due to the numerical singularity. Under such case, we add a tiny value to

diagonal of K until its inverse can be obtained. In line 1, ∇L− is a subgradient of L− that accounts

for the non-differentiability of L− at t = 0 and t = 1.

The convex optimization in line 3 can be solved by using many standard algorithms and soft-

wares. The iteration stops when
∥∥(η(j+1), b(j+1))− (η(j), b(j))

∥∥
2
drops below some threshold value.

We remark that because the objective function in (10) of the main paper is bounded below, the

algorithm will always converge in finite steps (An and Tao, 1997; Chen et al., 2016).

A.9 Details of Cross-validation

We present the details on how to choose the SVM parameters γ and λ. We consider a set of

candidate values for (γℓ, λℓ) where ℓ = 1, . . . ,K. Without loss of generality, let the estimation

data fold be D1 = Dc
2 and, as a consequence, observations in D2 is used to evaluate the estimated

loss function L̂(−1)(t,Oi) for i ∈ D2. We further split D2 into training and tuning sets, denoted

by D2,train and D2,tuning, respectively, based on the number of cross-validation folds. For each

candidate parameter (γℓ, λℓ), we estimate the direct MRTP θ̂train(Xi ; ℓ) by only using the training

set D2,train and obtain the empirical risk using the tuning set D2,tuning. The optimal parameters

(γ∗, λ∗) are the minimizer of the average of the empirical risks across the tuning sets, i.e.

(γ∗, λ∗) = argmin
ℓ=1,...,K

1∣∣D2,tuning

∣∣ ∑
i∈D2,tuninĝ

L(−1)

(
θ̂train(Xi ; ℓ),Oi

)
.
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A.10 Details of Undersampling and Cross-fitting Procedures

We discuss the details on how to negate the impact of a particular realization of undersampling

procedure. We randomly choose a subset of observations so that the cluster sizes are (nearly)

balanced, and we repeat the undersampling for U times indexed by u. Let µ̂(u) and ê(u) be the

estimated outcome regression and propensity score obtained from uth undersample. Then, we take

the median-adjusted nuisance function across U estimated functions as the final estimate of the

nuisance function, i.e., µ̂ := medianu=1,...,U µ̂
(u) and ê := medianu=1,...,U ê

(u).

Next, we discuss the median-adjustment of cross-fitting procedure. Once we split the data

into two folds D1 and D2, we obtain two directly estimated policies θ̂(−ℓ) for k = 1, 2 where Dc
ℓ

is used as the estimation data fold and Dℓ is used as the evaluation data fold. Investigators

may use either θ̂(−1) or θ̂(−2) as the final estimate of the MRTP, denoted by θ̂(F ). However, we

recommend to use θ̂(F )(x) =W
(
{θ̂(−1) + θ̂(−2)}/2

)
(x), the winsorized policy of the average of two

non-winsorized policies, for the new x as the estimate of the MRTP to fully use the data. If the

evaluation point is one of the points in the data, i.e., x = xi for some i ∈ Dℓ, we recommend using

θ̂(F )(x) = θ̂(−ℓ)(xi) because θ̂(−ℓ) does not depend on i while θ̂(ℓ) depends on i which may lead to

an overfitted value. Second, to construct a more robust estimate of the MRTP under cross-fitting,

we use the recommendation in Chernozhukov et al. (2018) to our setting by taking the mean or the

median of multiple MRTP estimates. Specifically, we repeat the estimation of θ̂(F ) multiple times,

say T times, and obtain θ̂
(F )
t (t = 1, . . . , T ) where the sample partitions are randomly done across

splits. We define the mean-MRTP estimate θ̂(F,mean)(x) =
∑T

t=1 θ̂
(F )
t (x)/T and the median-MRTP

estimate θ̂(F,median)(x) = mediant=1,...,T θ̂
(F )
t (x).

A.11 Details of the Data Generating Process of the Simulation

We provide details of the data generating process of the simulation in Section 4 of the main

paper. First, we provide the distribution of the cluster size ni, which is the same as the empirical

distribution of ni in the dataset used in Section 4 of the main paper.

ni 3 4 5 6 7 8 9 10 11 12

Frequency 4 4 11 22 30 55 61 76 80 88

Probability 0.004 0.004 0.011 0.021 0.029 0.054 0.059 0.074 0.078 0.086

ni 13 14 15 16 17 18 19 20 21 22

Frequency 92 90 113 86 72 71 39 22 6 5

Probability 0.090 0.088 0.110 0.084 0.070 0.069 0.038 0.021 0.006 0.005

Next, in Figure A.4, we provide graphical summaries of the distributions of Ai in the 2014-2017

Senegal DHS and the simulated datasets. The two distributions are similar to each other with the

common support of [0, 1].
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Figure A.4: Histograms of the treated households (i.e., Ai) in the 2014-2017 Senegal DHS (left) and
simulated datasets (right). The distribution of Ai in the simulation shows the distribution across
50 repetitions.

Lastly, we provide the details of the outcome regression model:

Yij
∣∣ (Ai,Xi) ∼ Ber

expit


−0.35 +

{
0.1 + 0.25(Ci +Wij1)

2
}
Aij

+
{
0.05 + 0.15(W i(−j)2 +W i(−j)3)

2
}
Ai(−j)

+0.1(Ci +
∑3

k=1Wijk) + 0.25(C2
i +

∑3
k=1W

2
ijk) + 0.05(

∑3
k=1W i(−j)k)


 .

Here, W i(−j)k =
∑

ℓ ̸=j Wijk/(ni − 1). We remark that the outcome model satisfies Assumptions

(A1)-(A5) of the main paper.

A.12 Details of Classification Performance Measures

For an given MRTP θ, we define the true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN) as follows:

TP =
∑

i∈Dtest

1
{
Y i > T , Ai > θ(Xi)

}
, TN =

∑
i∈Dtest

1
{
Y i ≤ T , Ai ≤ θ(Xi)

}
, (3)

FP =
∑

i∈Dtest

1
{
Y i ≤ T , Ai > θ(Xi)

}
, FN =

∑
i∈Dtest

1
{
Y i > T , Ai ≤ θ(Xi)

}
.

Given these definitions, we use the following classification performance measures: accuracy, two-

sided F1 score, and the Matthews correlation coefficient (MCC) (Matthews, 1975) which are defined

as follows:

Accuracy =
TP + TN

TP+ TN+ FP + FN
, F1 =

2TP

2TP + FP + FN
+

2TN

2TN+ FP + FN
,

MCC =
TP× TN− FP× FN

{(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)}1/2
.
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The usual F1 score does not use true negatives in its score, i.e., 2TP/(2TP+FP+FN), and is

sensitive to the definition of a positive label. For example, if we were to define the positive label as

the opposite of the definition in equation (3), i.e., positive label if Y i ≤ T , the F1 score changes. To

avoid this, we consider the two-sided F1 score, the average of the usual F1 score and the “opposite”

F1 score, 2TN/(2TN+FP+FN).

A.13 Assessment of Assumptions of the Main Paper

We take a moment to discuss the plausibility of the bounded cluster size ni assumption and As-

sumptions (A1)-(A5) in the Senegal DHS.

(Bounded ni) The bounded block size assumption is plausible in the Senegal DHS because the data was

collected based on a stratified sampling design where a fixed number of households were

sampled from each block (ANSD and ICF, 2020). Also, the maximum number of households

among N = 1027 census blocks in the 2014-2017 Senegal DHS is M = 22, and the small

value of M/N = 0.021 (i.e., an upper bound on ni/N) suggests that the “large N , small ni”

asymptotic regime is a reasonable approximation for our data.

(A1) Assumption (A1) is plausible as long as households in different census blocks do not interact

with each other. In the data, 99.15% of the census blocks are geographically far apart from

each other. The average and median distances among 22,578 pairs of census blocks in the 2018

Senegal DHS are 245.04km and 230.17km, respectively; only 192 (0.85%) pairs of census blocks

have distance smaller than 10km. Given this, we find that the partial interference assumption

is plausible where interference likely occurs between households in the same census block and

not across different census blocks.

(A2) To check Assumptions (A2) and (A3), we check covariate balance and overlap by using the

binning approach in Hirano and Imbens (2004), Kluve et al. (2012) and Flores et al. (2012)

for a continuous treatment variable. Algorithm 2 shows the details on the covariate balance

assessment.

We use the median of the propensity score estimates from 100 cross-fitting procedures. As

a consequence, we obtain the unadjusted/adjusted t-statistics in Figure A.5, which suggests

covariate balance was satisfied for all cases.

(A3) Next, we assess the overlap assumption based on Algorithm 3. Again, we use the median of

the propensity score estimates from 100 cross-fitting procedures.

Figure A.6 shows histograms that visually assess the overlap assumption. Based on the

histograms, the overlap assumption seems to be satisfied or to be not severely violated.

Overall, all 9 observed covariates are balanced across different bins of treatment values and

overlap is reasonable.
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Algorithm 2 Assessment of Covariate Balance

1: Divide
∑N

i=1 ni = 13556 units into four groups:

Ak =
{
(i, j)

∣∣ (Aij , Ai(−j)) ∈ Rk

}
, Rk =


{0} × [0, α0] ∈ {0, 1} × [0, 1] if k = 1

{0} × (α0, 1] ∈ {0, 1} × [0, 1] if k = 2

{1} × [0, α1] ∈ {0, 1} × [0, 1] if k = 3

{1} × (α1, 1] ∈ {0, 1} × [0, 1] if k = 4

where α0 and α1 are chosen so that A1, . . . ,A4 have similar sizes.
2: for k = 1, 2, 3, 4 do
3: Obtain unadjusted t-statistics that compare the distribution of Xi between Ak and Ac

k, i.e.,{
X̃i,k

∣∣∣∣ X̃i,k =

∑ni
j=1 1{(i, j) ∈ Ak}Xij∑ni

j=1 1{(i, j) ∈ Ak}

}
v.

{
X̃i,kc

∣∣∣∣ X̃i,kc =

∑ni
j=1 1{(i, j) /∈ Ak}Xij∑ni

j=1 1{(i, j) /∈ Ak}

}
4: Calculate the estimated propensity score êij,k = P̂

{
(Aij , Ai(−j)) ∈ Rk

∣∣Xij ,Xi(−j)

}
.

5: Let −∞ = q0 ≤ q1 ≤ . . . ≤ q9 ≤ q10 =∞ be the deciles of
{
êij,k

∣∣ (i, j) ∈ Ak

}
.

6: Let Eb,k =
{
(i, j)

∣∣∣ êij,k ∈ (qb−1, qb]
}
(b = 1, . . . , 10).

7: Obtain t-statistics that compare the distribution of Xi between Eb,k ∩Ak and Eb,k ∩Ac
k, i.e.,{

X̃i,k

∣∣∣∣ X̃i,k =

∑ni
j=1 1{(i, j) ∈ Eb,k ∩ Ak}Xij∑ni

j=1 1{(i, j) ∈ Eb,k ∩ Ak}

}
v.

{
X̃i,kc

∣∣∣∣ X̃i,kc =

∑ni
j=1 1{(i, j) ∈ Eb,k ∩ Ac

k}Xij∑ni
j=1 1{(i, j) ∈ Eb,k ∩ Ac

k}

}
8: Aggregate the t-statistics obtained in Step 7 with weights from the size of E1,k, . . ., E10,k.
9: Obtain adjusted t-statistics by taking the median of t-statistics in Step 6 across multiple

cross-fitting procedures.
10: end for

Figure A.5: Covariate Balance Assessment

(A4) Assumption (A4) is plausible if the number of diarrhea-free children in a household can be

reasonably approximated by a summary of peers’ WASH status. However, the assumption

may fail if a few households’ presence (or absence) of WASH facilities is driving the incidence
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Algorithm 3 Assessment of Overlap

1: Divide
∑N

i=1 ni = 13556 units into four groups:

Ak =
{
(i, j)

∣∣ (Aij , Ai(−j)) ∈ Rk

}
, Rk =


{0} × [0, α0] ∈ {0, 1} × [0, 1] if k = 1

{0} × (α0, 1] ∈ {0, 1} × [0, 1] if k = 2

{1} × [0, α1] ∈ {0, 1} × [0, 1] if k = 3

{1} × (α1, 1] ∈ {0, 1} × [0, 1] if k = 4

where α0 and α1 are chosen so that A1, . . . ,A4 have similar sizes.
2: Calculate the median of the estimated propensity scores obtained from multiple cross-fitting

procedures, i.e.,

ê
(median)
ij,k = median

s=1,...,S
P̂ (s)

{
(Aij , Ai(−j)) ∈ Rk

∣∣Xij ,Xi(−j)

}
where the conditional probability P̂ (s) is calculated from the estimated propensity score ob-
tained from the sth cross-fitting procedure.

3: Compare histograms of ê
(median)
ij,k (Xi) for Ak and Ac

k for each k.

Figure A.6: Overlap Assessment. The numbers in brackets show the range of the estimated propen-
sity scores for each group.

of diarrhea in the entire block, say if a few WASH-less households are located near com-

munal water sources and they are primarily responsible for the diarrhea in the entire block.

For example, if the census block has 20 households and the true response model for each

household is E(Yij
∣∣Ai,Xi) = β0 + β1Ai1 + β2Aij + β⊺

3Xij , i.e., every household j’s outcome

depends on household 1’s treatment status, then E(Y i

∣∣Ai,Xi) = β0 + β1Ai1 + β2Ai +β⊺
3Xi

and Assumption (A4) is violated because the average response of block i depends on the

treatment status of household 1. Unfortunately, the data does not contain information about

the location of households to test these hypothesized violations of Assumption (A4). In-

stead, we visually diagnose the assumption by using a residual plot of the predicted values

of the mean block-level response versus the observed block-level response. Specifically, let
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ϵ̂
(median)
ij = Yij − µ̂(median)(Aij , Ai(−j),Xij ,Xi(−j)) be the residuals where µ̂(median) is the me-

dian of the outcome regression from 100 cross-fitting procedures. We compare the residuals

across the outcome regression estimate and the regressors (Aij , Ai(−j),Xij ,Xi(−j)) and check

whether the residuals deviate from zero in Figure A.7. Since the dimension of Xi(−j) varies,

we use the average of Xi(−j), i.e., Xi(−j) =
∑

ℓ̸=j Xiℓ/(ni − 1). In general, the residuals are

close to zero across the regressors, implying that the outcome regression under Assumption

(A4) is not severely violated. That is, while the diagnostic is not perfect, we find the predicted

means do not show trends across the x-axis and Assumption (A4) could be plausible, subject

to inherent limitations of the diagnostic plot.

Figure A.7: Residual Plots. The x-axis shows the outcome regression estimate µ̂(median) (top left)

and the regressors (Ai,Xi). The y-axis shows the residuals ϵ̂
(median)
i . The red curves are smoothing

lines drawn for visual guidance. The blue dashed lines show the zero residual.

(A5) Finally, for Assumption (A5), many prior works (Esrey et al., 1985; Daniels et al., 1990; Clasen

et al., 2007; Ejemot-Nwadiaro et al., 2015; McMichael, 2019) suggest that installing WASH

facilities will not have a negative impact on incidence of diarrhea; however, it may have a

negative effect on other, non-health outcomes. Also, when we empirically assess Assumption

(A5), we find that the monotonicity assumption is rarely violated in the Senegal DHS and if

violated, the deviation from monotonicity is small. Specifically, we first consider the difference

between two cluster-level outcome regressions:

V (a, a′, s, s′) = µ

(
a′,

s′

ni − 1
,Xi

)
− µ

(
a,

s

ni − 1
,Xi

)
, µ

(
a, a′,Xi

)
=

1

ni

ni∑
j=1

µ
(
a, a′,Xij ,Xi(−j)

)
.
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In particular, we focus on the variations contrasting two adjacent outcome regressions. As

a consequence, there are 3ni − 2 finest variations where ni − 1 variations have the form

V (0, 0, s, s + 1), ni − 1 variations have the form V (1, 1, s, s + 1), and ni variations have the

form V (0, 1, s, s); see the diagram below.

µ
(
0, 0

ni−1 ,Xi

) Vi(0,0,0,1)→ µ
(
0, 1

ni−1 ,Xi

) Vi(0,0,1,2)→ · · · µ
(
0, ni−1

ni−1 ,Xi

)
Vi(0,1,0,0) ↓ Vi(0,1,1,1) ↓ Vi(0,1,ni−1,ni−1) ↓

µ
(
1, 0

ni−1 ,Xi

) Vi(1,1,0,1)→ µ
(
1, 1

ni−1 ,Xi

) Vi(1,1,1,2)→ · · · µ
(
1, ni−1

ni−1 ,Xi

)
In the Senegal DHS, we have

∑N
i=1(3ni − 2) = 38614 variations in total. Let V̂

(t)
i (a, a′, s, s′)

be the estimated variation of cluster i obtained from the tth cross-fitting procedure, and let

V̂
(m)
i (a, a′, s, s′) be the median of the variation, i.e.,

V̂
(m)
i (a, a′, s, s′) = median

{
V̂

(1)
i (a, a′, s, s′), . . . , V̂

(S)
i (a, a′, s, s′)

}
Assumption (A5) can be empirically assessed by two means. First, out of 38614 variations,

we count the number of times monotonicity is violated. Second, we measure the worst-case

slope of the estimated µ as follows. Let TVi(a, a
′, s, s′) be the absolute value of Vi(a, a

′, s, s′).

Thus, the sum of 38614 TVi(a, a
′, s, s′) is the total variation of the cluster-level outcome

regression. We compute the relative magnitude of the slopes that are decreasing compared

to the total variation, i.e.,
∑

1(V < 0)TV/
∑
TV . Overall, under the first assessment, we

found that the monotonicity is violated 1.11% of the time and under the second assessment,

the relative magnitude of decreasing slopes is 6.01× 10−4. In short, the empirical validations

show that the monotonicity assumption is rarely violated in the Senegal DHS and if violated,

the deviation from monotonicity is small.

A.14 Details of Figures 5.2-5.4 of the Main Paper

We additionally describe how we draw Figures 5.2-5.4 of the main paper. The reported estimated

MRTPs in Figures 5.2 and 5.4 are weighted average of the estimated MRTPs in each administrative

region where weights are the number of households in a census block, i.e., census block size ni. That

is, the values represent θgs, which are defined as

θg =

∑
i∈D2018

1{i ∈ administrative area g} · ni · θ̂(xi)∑
i∈D2018

1{i ∈ administrative area g} · ni

where D2018 is the collection of census blocks in the 2018 Senegal DHS. In words, θg is the pro-

portion of households in administrative area g that require WASH facilities. Similarly, the average
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household sizes in Figure 5.4 of the main paper represent

x̄g,Household Size =

∑
i∈D2018

1{i ∈ administrative area g} · ni · x̄i,Household Size∑
i∈D2018

1{i ∈ administrative area g} · ni

=

∑
i∈D2018

1{i ∈ administrative area g}
∑ni

j=1 xij,Household Size∑
i∈D2018

1{i ∈ administrative area g} · ni
.

Again, x̄g,Household Size is the average household wise in administrative area g. The proportions of

rural area in Figure 5.4 of the main paper represent

cg,Rural =

∑
i∈D2018

1{i ∈ administrative area g} · ci,Rural∑
i∈D2018

1{i ∈ administrative area g}
.

Here cg,Rural is the proportion of the rural census blocks in administrative area g. Note that θg,

x̄g,Household Size, and cg,Rural do not address the geographical distance between census regions in

different administrative areas. But, we believe that these statistics are geographically meaning-

ful summaries to highlight the heterogeneity across administrative areas; see Figures 1 and 2 of

Houngbonon et al. (2021) for similar summary statistics aggregated at Senegalese administrative

areas.

Lastly, Figure 5.3 of the main paper shows the weighted average of the estimated MRTPs across

all 45 administrative areas where weights are the number of households in a census block, i.e., census

block size ni. That is, the y-axis represents θ, which is defined as

θ =

∑
i∈D2018

ni · θ̂(xi)∑
i∈D2018

ni
.

In words, θ is the proportion of households in Senegal that require WASH facilities.

B Proof of Lemmas and Theorems

B.1 Useful Lemmas

Lemma B.1. Suppose that θ∗ belongs to a Besov space on Rd with smoothness parameter β > 0,

i.e., Bβ1,∞(Rd) = {θ ∈ L∞(Rd)
∣∣ supt>0 t

−β{ωr,L1(Rd)(θ, t)} < ∞, r > β} where ωr is the modulus

of continuity of order r. Then, for any positive ϵ, p, τ satisfying d/(d + τ) < p < 1, we have the

following excess risk bound of θ̂ with probability not less than 1− 3e−τ :

R
(
θ̂
)
−R

(
θ∗
)
≤ c1λNγ−d

N + c2γ
β
N + c3

{
γ
(1−p)(1+ϵ)d
N λpNN

}− 1
2−p

+ c4N
−1/2τ1/2 + c5N

−1τ

Lemma B.2. Let R̂(−ℓ)(θ) = E
{
L̂(−ℓ)

(
θ(Xi),Oi

) ∣∣Dc
ℓ

}
be the estimated risk function where the

expectation is taken with respect to Oi while L̂(−ℓ) is considered as a fixed function which is clarified

by denoting Dc
ℓ in the conditioning statement. Let Θ[0,1] =

{
f
∣∣ f(xi) ∈ [0, 1]

}
be the collection of

policies ranging over the unit interval. Under Assumption (A1)-(A5) and (E1)-(E3) of the main
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paper, we have
∣∣R(θ)− R̂(−ℓ)

(
θ
)∣∣ ≤ 0.5c6rN with probability greater than 1−∆N for any θ ∈ Θ[0,1]

where c6 is a fixed constant, rN = re,N if the inverse probability-weighted loss function is used,

rN = rµ,N if the outcome regression loss function is used, and rN = re,Nrµ,N if the doubly robust

loss function is used.

See Sections B.3 and B.4 for the proof.

B.2 Proof of Lemma 3.1 of the Main Paper

We only show the result about the overall outcome case because the result about the spillover

outcome case is obtained from a similar manner. Let Θ[0,1] =
{
f
∣∣ f(xi) ∈ [0, 1]

}
be the collection

of policies ranging over the unit interval and W(θ) ∈ Θ[0,1] be the winsorized function of θ ∈ Θ

over the unit interval, i.e.

W(θ)(xi) = 0 · 1
{
θ(xi) < 0

}
+ θ(xi) · 1

{
0 ≤ θ(xi) ≤ 1

}
+ 1 · 1

{
1 < θ(xi)

}
.

From the definition of L, we find L(0,Oi) ≤ L(t,Oi) for any t ∈ (−∞, 0) and L(1,Oi) ≤ L(t,Oi) for

any t ∈ (1,∞). As a consequence, for any policy θ ∈ Θ satisfies L
(
W(θ)(Xi),Oi

)
≤ L

(
θ(Xi),Oi

)
and R(W(θ)) ≤ R(θ). This implies that θ′, the minimizer of R, must belong to Θ[0,1].

For any function θ ∈ Θ[0,1], we find L
(
θ(Xi),Oi

)
= ν

(
θ(Xi),Oi

)
and R(θ) = R[0,1](θ) =

E
{
ν
(
θ(Xi),Oi

)}
due to the constructions of L and R. Combining the above results, we observe

the following relationship.

argmin
θ∈Θ

R(θ) = argmin
θ∈Θ[0,1]

R(θ) = argmin
θ∈Θ[0,1]

R[0,1](θ)

Thus, it suffices to show that θ∗ defined in equation (6) of the main paper minimizes R[0,1], which

is represented as follows.

R[0,1](θ)− C0

= E
{
ν
(
θ(Xi),Oi

)}
− C0

= E

[
1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
ψDR(a, s,Oij ,Oi(−j))

ni−a−s∑
ℓ=0

(
ni − a− s

ℓ

)
(−1)ℓ

{
θ(Xi)

}ℓ+a+s+1

ℓ+ a+ s+ 1
− T

{
θ(Xi)

}]

= E

[∫ 1

0

[
1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
αs(1− α)ni−a−s − T

]
1
{
α ≤ θ(Xi)

}
dα

]

= E

[∫ 1

0

{
1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
µ∗
(
a,

s

ni − 1
,Xij ,Xi(−j)

)
αs(1− α)ni−a−s − T

}
1
{
α ≤ θ(Xi)

}
dα

]
. (4)

The first and second identities are trivial from the definition of R[0,1] and ν. The third identity is
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from the law of iterated expectation and the following algebra:

H(Oi)

ni−a−s∑
ℓ=0

(
ni − a− s

ℓ

)
(−1)ℓtℓ+a+s+1

ℓ+ a+ s+ 1
− T t

=

∫ t

0

{
H(Oi)α

s(1− α)ni−a−s − T
}
dα

=

∫ 1

0

{
H(Oi)α

s(1− α)ni−a−s − T
}
1{α ≤ t} dα , ∀H(Oi) ,

∀t ∈ [0, 1] .

The fourth identity is from E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
= µ∗(a, s

ni−1 ,Xij ,Xi(−j)) for s = 0, 1, . . . , ni−
1; we remark that any ψ′ satisfying E

{
ψ′(a, s,Oij ,Oi(−j))

∣∣Xi

}
= µ∗(a, s

ni−1 ,Xij ,Xi(−j)) (e.g., in-

verse probability-weighted or outcome regression-based) can be used instead of ψDR. From the

monotonicity condition (A5), it is straightforward to check that the following sets are intervals if

they are non-empty:

S−(Xi) :=

{
α

∣∣∣∣∣ 1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
αs(1− α)ni−a−s < T

}

S+(Xi) :=

{
α

∣∣∣∣∣ 1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
αs(1− α)ni−a−s ≥ T

}
.

Since S−(Xi) and S+(Xi) are non-overlapping intervals, we establish that supS−(Xi) and inf S+(Xi)

are equivalent. If S−(Xi) and S+(Xi) are empty, we define S−(Xi) = {0} and S+(Xi) = {1}, re-
spectively. In these cases, we also establish that supS−(Xi) and inf S+(Xi) are equivalent as 0 or

1, respectively. We remark that, without the monotonicity condition (A5), these two sets may be

disconnected sets, i.e., not intervals, and we cannot establish that supS−(Xi) and inf S+(Xi) are

equivalent.

The last representation (4) suggests that that R[0,1](θ) is minimized at θ′ where θ′(Xi) =

supS−(Xi) = inf S+(Xi), i.e.,

1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
αs(1− α)ni−a−s ≤ T for all α ∈

[
0, θ′(Xi)

]
,

1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)
E
{
ψDR(a, s,Oij ,Oi(−j))

∣∣Xi

}
αs(1− α)ni−a−s ≥ T for all α ∈

[
θ′(Xi), 1

]
.

As a consequence, θ′ agrees with θ∗OV defined in (6) of the main paper. We can establish the result

about θ∗SO by fixing a = 0. This concludes the proof.

B.3 Proof of Lemma B.1

We only show the result about the overall outcome case because the result about the spillover

outcome case is obtained from a similar manner. The proof of B.1 is similar to that of Theorem 2
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of Chen et al. (2016) which use Theorem 7.23 of Steinwart and Christmann (2008) and Theorem

2.2 and 2.3 of Eberts and Steinwart (2013). For completeness, we present a full exposition to our

setting below. We first introduce Theorem 7.23 of Steinwart and Christmann (2008).

Theorem 7.23. (Oracle Inequality for SVMs Using Benign Kernels; Steinwart and Christmann

(2008)) Let L be a loss function having non-negative value. Also, let HK be a separable RKHS of

a measurable kernel K over X = supp(Xi) ⊂ Rd. Let P be a distribution on Oi. Furthermore,

suppose the following conditions are satisfied.

(C1) For all (t,oi), there exists a constant B > 0 satisfying L(t,oi) ≤ B.

(C2) L(t,oi) is locally Lipschitz continuous with respect to t.

(C3) For all (t,oi), we have L(Wc0(t),oi) ≤ L(t,oi) whereWc0(t) = t·1
{
|t| ≤ c0

}
+sign(t)c0·1

{
c0 <

|t|
}
.

(C4) E
[{
L
(
Wc0(θ)(Xi),Oi

)
− L

(
θ∗(Xi),Oi

)}2] ≤ V ·
[
E
{
L
(
Wc0(θ)(Xi),Oi

)
− L

(
θ∗(Xi),Oi

)}]v
is satisfied for constant v ∈ [0, 1], V ≥ B2−v, and for all θ ∈ HK.

(C5) For fixed N ≥ 1, there exists constants p ∈ (0, 1) and a ≥ B such that the dyadic entropy

number EDX∼PN
X

[
ei
(
identity map : HK → L2(DX)

)]
≤ a · i−

1
2p (i ≥ 1) where ei(A) is the

entropy number of A.

We fix θ0 ∈ HK and a constant B0 ≥ B such that L
(
θ0(xi),oi

)
≤ B0 for any oi. Then, for all fixed

τ > 0 and λN , the SVM using HK and L satisfies

λN
∥∥θ∥∥2HK

+R
(
Wc0(θ)

)
−R

(
θ∗
)

(5)

≤ 9
{
λN

∥∥θ0∥∥2HK
+R

(
θ0
)
−R

(
θ∗
)}

+K0

(
a2p

λpNN

) 1
2−p−v+vp

+ 3

(
72V τ

N

) 1
2−v

+
15B0τ

N
.

with probability PN not less than 1 − 3e−τ , where K0 ≥ 1 is a constant only depending on p, c0,

B, v, and V .

We verify Assumptions (C1)-(C5) as follows:

Verification of Assumption (C1): From Assumptions (A1)-(A5) and Y i ∈ [0, 1], we find that

ψIPW, ψOR, and ψDR are bounded and, as a consequence, ν in equation (9a) of the main paper is

bounded. As a result, L in equation (9) of the main paper is bounded as well.

Verification of Assumption (C2): We find the derivative of L in equation (9) of the main paper
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is

∇L(t,oi) =


δet t ∈ (−∞, 0)∑ni

s=0 ψℓ(s,oi)t
s(1− t)ni−s − T t ∈ (0, 1)

δe1−t t ∈ (0,∞)

and we find that ∇L(t,Oi) is bounded for all t except t = 0, 1. Moreover, L(t,oi) is continu-

ous at t = 0 and t = 1. Thus, L(t,oi) is locally Lipschitz continuous with Lipschitz constant

B′ = sup(t,oi)∇L(t,oi).

Verification of Assumption (C3): We take c0 = 1. It is trivial that L(Wc0(θ),oi) ≤ L(θ,oi)

from the form of L in equation (9) of the main paper.

Verification of Assumption (C4): Note that L(t,oi) ≤ B. Thus, we find

E
[{
L
(
Wc0(θ)(Xi),Oi

)
− L

(
θ∗(Xi),Oi

)}2
]
≤ 2E

[{
L
(
Wc0(θ)(Xi),Oi

)}2
+
{
L
(
θ∗(Xi),Oi

)}2
]
≤ 4B2 .

We take v = 0 and V = 4B2 and the condition is satisfied.

Verification of Assumption (C5): Since we use the Gaussian kernel, we can directly use Theo-

rem 7.34 of Steinwart and Christmann (2008) which is given below.

Theorem 7.34. (Entropy Numbers for Gaussian Kernels; Steinwart and Christmann (2008)) Let

ν be a distribution on Rd having tail exponent τ ∈ (0,∞]. Then, for all ϵ > 0 and d/(d+τ) < p < 1,

there exists a constant cϵ,p ≥ 1 such that

ei
(
identity map : HK → L2(ν)

)
≤ cϵ,pγ−

(1−p)(1+ϵ)d
2p i

− 1
2p

for all i ≥ 1 and γ ∈ (0, 1].

Therefore, Assumption (C5) holds with a = cϵ,pγ
− (1−p)(1+ϵ)d

2p

N .

As a consequence, the result in equation (5) holds with c0 = 1, v = 1, V = 4B2, B0 = B, a =

cϵ,pγ
− (1−p)(1+ϵ)d

2p

N . Moreover, we find L(W(θ)(xi),oi) ≤ L(Wc0=1(θ)(xi),oi) since L(0,oi) ≤ L(t,oi)

for t ∈ [−1, 0] and this leads R(W(θ)) ≤ R(Wc0=1(θ)). Thus, we find the following result holds

22



with probability PN not less than 1− 3e−τ .

R
(
θ̂
)
−R

(
θ∗
)

(6)

≤ R
(
Wc0=1(θ̃)

)
−R

(
θ∗
)

≤ λN
∥∥θ̂∥∥2HK

+R
(
Wc0=1(θ̃)

)
−R

(
θ∗
)

≤ 9
{
λN

∥∥θ0∥∥2HK
+R

(
θ0
)
−R

(
θ∗
)}

+K0

{
γ
−(1−p)(1+ϵ)d
N

λpNN

} 1
2−p

+ 36
√
2B

√
τ

N
+ 15B

τ

N
.

The above result holds for any θ0 ∈ HK, so we can further bound the approximation error

λN
∥∥θ0∥∥2HK

+ R
(
θ0
)
− R

(
θ∗
)
by choosing θ0 in a specific way which is presented in Eberts and

Steinwart (2013). We first define a function Qr,γ : Rd → R as

Qr,γ(z) =
r∑

j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ2

) d
2

Kjγ/
√
2(z) , Kγ(z) = exp

{
− γ2

∥∥z∥∥2
2

}
(7)

for r ∈ {1, 2, . . .} and γ > 0. Since the range of θ∗ is bounded between [0, 1], we find θ∗ ∈
L2(Rd) ∩ L∞(Rd). Thus, we can define θ0 by convolving Qr,γ with θ∗ as follows (Eberts and

Steinwart, 2013).

θ0(xi) =
(
Qr,γ ∗ θ∗

)
(xi) =

∫
Rd

Qr,γ(xi − z)θ∗(z) dz .

Next, we introduce theorem 2.2 and 2.3 of Eberts and Steinwart (2013).

Theorem 2.2. Let us fix some q ∈ [1,∞). Furthermore, assume that PX is a distribution on

Rd that has a Lebesgue density fX ∈ Lp(Rd) for some p ∈ [1,∞]. Let θ : Rd → R be such that

θ ∈ Lq(Rd) ∩ L∞(Rd). Then, for r ∈ {1, 2, . . .}, γ > 0, and s ≥ 1 with 1 = s−1 + p−1, we have∥∥Qr,γ ∗ θ − θ
∥∥q
Lq(PX)

≤ Cr,q ·
∥∥fX∥∥

Lp(Rd)
· ωq

r,Lqs(Rd)
(θ, γ/2)

where Cr,q is a constant only depending on r and q.

Theorem 2.3. Let θ ∈ L2(Rd), HK be the RKHS of the Gaussian kernel K with parameter

γ > 0, and Qr,γ be defined by (7) for a fixed r ∈ {1, 2, . . .}. Then we have Qr,γ ∗ θ ∈ HK with∥∥Qr,γ ∗ θ
∥∥
HK
≤

(
γ
√
π
)− d

2
(
2r − 1

)∥∥θ∥∥
L2(Rd)

.

Moreover, if θ ∈ L∞(Rd), we have |Qr,γ ∗ θ| ≤ (2r − 1)
∥∥θ∥∥

L∞(Rd)
.
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As a result, we obtain

λN
∥∥θ0∥∥2HK

+R
(
θ0
)
−R

(
θ∗
)

(8)

= λN
∥∥Qr,γN ∗ θ

∗∥∥2
HK

+R
(
Qr,γN ∗ θ

∗)−R(θ∗)
≤ λN

(
γN
√
π
)−d(

2r − 1
)2∥∥θ∗∥∥2

L2(Rd)
+R

(
Qr,γN ∗ θ

∗)−R(θ∗)
≤ λN

(
γN
√
π
)−d(

2r − 1
)2∥∥θ∗∥∥2

L2(Rd)
+B′ ·

∥∥Qr,γN ∗ θ
∗ − θ∗

∥∥
L1(PX)

≤ λN
(
γN
√
π
)−d(

2r − 1
)2∥∥θ∗∥∥2

L2(Rd)
+B′ · Cr,1 ·

∥∥fX∥∥
L∞(Rd)

· ωr,L1(Rd)(θ, γN/2)

≤ λN
(
γN
√
π
)−d(

2r − 1
)2∥∥θ∗∥∥2

L2(Rd)
+B′c′ · Cr,1 ·

∥∥fX∥∥
L∞(Rd)

γβN

The first equality is from the construction of θ0. The first inequality is from Theorem 2.3 of Eberts

and Steinwart (2013). The second inequality is from Lipschitz continuity of L. The third inequality

is from Theorem 2.2 of Eberts and Steinwart (2013) with q = s = 1 and p =∞. The last inequality

holds for some constant c′ since θ∗ ∈ Bβ1,∞(Rd) implies ωr,L1(Rd)(θ
∗, γN/2) ≤ c′γβN from the definition

of a Besov space. Combining the results in (6) and (8), we have the following result

R
(
θ̂
)
−R

(
θ∗
)
≤ 9

{
λN

(
γN
√
π
)−d(

2r − 1
)2∥∥θ∗∥∥2

L2(Rd)
+B′c′ · Cr,1 ·

∥∥fX∥∥
L∞(Rd)

γβN
}

+K0

{
γ
−(1−p)(1+ϵ)d
N

λpNN

} 1
2−p

+ 36
√
2B

√
τ

N
+ 15B

τ

N

≤ c1λNγ−d
N + c2γ

β
N + c3

{
γ
(1−p)(1+ϵ)d
N λpNN

}− 1
2−p

+ c4N
−1/2τ1/2 + c5N

−1τ .

B.4 Proof of Lemma B.2

We only show the result about the overall outcome case because the result about the spillover

outcome case is obtained from a similar manner. We find the following result for t ∈ [0, 1].∣∣∣L̂(−ℓ)(t,Oi)− L(t,Oi)
∣∣∣

=
∣∣∣ν̂(−ℓ)(t,Oi)− ν(t,Oi)

∣∣∣
=

∣∣∣∣∣ 1ni
ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

){
ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))

} ni−a−s∑
ℓ=0

(
ni − a− s

ℓ

)
(−1)ℓtℓ+a+s+1

ℓ+ a+ s+ 1

∣∣∣∣∣
≤ 1

ni

ni∑
j=1

1∑
a=0

ni−1∑
s=0

(
ni − 1

s

)∣∣∣ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))
∣∣∣ ni−a−s∑

ℓ=0

(
ni − a− s

ℓ

)
tℓ+a+s+1

ℓ+ a+ s+ 1

≤ C ′ max
(a,s)∈{0,1}⊗{0,...,M}

∣∣∣ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))
∣∣∣ (9)

for some generic constant C ′. The last inequality is from t ∈ [0, 1] and bounded ni. Also, we find

the following result for t ∈ (−∞, 0).∣∣∣L̂(−ℓ)(t,Oi)− L(t,Oi)
∣∣∣ =∣∣∣ν̂(−ℓ)(0,Oi)− ν(0,Oi)

∣∣∣ = 0 .
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Finally, we find the following result for t ∈ (1,∞) for all s = 0, 1, . . . , ni.∣∣∣L̂(−ℓ)(t,Oi)− L(t,Oi)
∣∣∣ = ∣∣∣ν̂(−ℓ)(1,Oi)− ν(1,Oi)

∣∣∣
≤ C ′ max

(a,s)∈{0,1}⊗{0,...,M}

∣∣∣ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))
∣∣∣

where constant C ′ is given in (9). Therefore, for any θ, we find∣∣∣R(θ)− R̂(−ℓ)

(
θ
)∣∣∣ ≤ E

[∣∣∣L(θ(Xi),Oi

)
− L̂(−ℓ)

(
θ(Xi),Oi

)∣∣∣ ∣∣∣∣Dc
ℓ

]
≤ E

[∣∣∣L(θ(Xi),Oi

)
− L̂(−ℓ)

(
θ(Xi),Oi

)∣∣∣2 ∣∣∣∣Dc
ℓ

]1/2
≤ C ′E

[
max

(a,s)∈{0,1}⊗{0,...,M}

∣∣∣ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))
∣∣∣2 ∣∣∣∣Dc

ℓ

]1/2
≤ C ′ max

(a,s)∈{0,1}⊗{0,...,M}

∥∥ψ̂k(a, s,Oij ,Oi(−j))− ψk(a, s,Oij ,Oi(−j))
∥∥
P,2

The first inequality is from the definition of R. The second inequality is from the Jensen’s inequality.

The third inequality is from the above results. The last inequality is from the definition of ∥ · ∥P,2.
Therefore, it suffices to bound

∥∥ψ̂k(a, s,Oij ,Oi(−j))−ψk(a, s,Oij ,Oi(−j))
∥∥
P,2

for all three types of

ψk where k ∈ {IPW,OR,DR}.
First, the difference between ψ̂IPW and ψIPW(a, s,Oij ,Oi(−j)) is∣∣∣ψ̂IPW(a, s,Oij ,Oi(−j))− ψIPW(a, s,Oij ,Oi(−j))

∣∣∣
=

∣∣∣∣∣Yij1(Aij = a, Si(−j) = s)

ê(−ℓ)

(
a, s

∣∣Xi

) −
Yij1(Aij = a, Si(−j) = s)

e∗
(
a, s

∣∣Xi

) ∣∣∣∣∣
≤

∣∣∣Yij1(Aij = a, Si(−j) = s)
∣∣∣ ∣∣e∗(a, s ∣∣Xi

)
− ê(−ℓ)

(
a, s

∣∣Xi

)∣∣
ê(−ℓ)

(
a, s

∣∣Xi

)
e∗
(
a, s

∣∣Xi

)
≤

∣∣e∗(a, s ∣∣Xi

)
− ê(−ℓ)

(
a, s

∣∣Xi

)∣∣
cc′

.

The upper bound is from the bounded outcome and Assumptions (A3) and (E1) of the main paper.

Thus, we find the following result with probability greater than 1−∆N :∥∥ψ̂IPW(a, s,Oij ,Oi(−j))− ψIPW(a, s,Oij ,Oi(−j))
∥∥
P,2
≤ 1

cc′
∥∥e∗(a, s ∣∣Xi)− ê(−ℓ)(a, s

∣∣Xi)
∥∥
P,2

≤ CIPW · re,N (a, s)

where CIPW = 1/(cc′).

Second, we study the difference between ψ̂OR and ψOR which is∣∣ψ̂OR(a, s,Oij ,Oi(−j))− ψOR(a, s,Oij ,Oi(−j))
∣∣

=
∣∣µ̂(−ℓ)(a, s/(ni − 1),Xij ,Xi(−j))− µ∗(a, s/(ni − 1),Xij ,Xi(−j))

∣∣ .
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Therefore, we find the following result with probability greater than 1−∆N .∥∥ψ̂OR(a, s,Oij ,Oi(−j))− ψOR(a, s,Oij ,Oi(−j))
∥∥
P,2

=

∥∥∥∥µ̂(−ℓ)

(
a,

s

ni − 1
,Xij ,Xi(−j)

)
− µ∗

(
a,

s

ni − 1
,Xij ,Xi(−j)

)∥∥∥∥
P,2

= COR · rµ,N

where COR = 1.

Lastly, we prove the result when ψDR is chosen. From (9), we have

− C ′
[
ψ̂DR(a, s,Oij ,Oi(−j))− ψDR(a, s,Oij ,Oi(−j))

]
≤ L̂(−ℓ)(t,Oi)− L(t,Oi) ≤ C ′

[
ψ̂DR(a, s,Oij ,Oi(−j))− ψDR(a, s,Oij ,Oi(−j))

]
where the sign of C ′ is chosen to satisfy the inequality above. The expectation of ψ̂DR − ψDR is

E
{
ψ̂DR(a, s,Oij ,Oi(−j))− ψDR(a, s,Oij ,Oi(−j))

∣∣∣Dc
ℓ

}
= E

[{
Yij − µ̂(−ℓ)(a,

s
ni−1 ,Xij ,Xi(−j))

ê(−ℓ)(a, s
∣∣Xi)

−
Yij − µ(a, s

ni−1 ,Xij ,Xi(−j))

e∗(a, s
∣∣Xi)

}
1(Aij = a, Si(−j) = s)

+ µ̂(−ℓ)

(
a,

s

ni − 1
,Xij ,Xi(−j)

)
− µ∗

(
a,

s

ni − 1
,Xij ,Xi(−j)

) ∣∣∣∣∣Dc
ℓ

]

= E

[{
µ∗(a, s

ni−1 ,Xij ,Xi(−j))− µ̂(−ℓ)(a,
s

ni−1 ,Xij ,Xi(−j))
}
e∗(a, s

∣∣Xi)

ê(−ℓ)(a, s
∣∣Xi)

+ µ̂(−ℓ)

(
a,

s

ni − 1
,Xij ,Xi(−j)

)
− µ∗

(
a,

s

ni − 1
,Xij ,Xi(−j)

) ∣∣∣∣∣Dc
ℓ

]

= E

[{
µ∗(a, s

ni−1 ,Xij ,Xi(−j))− µ̂(−ℓ)(a,
s

ni−1 ,Xij ,Xi(−j))
}{
e∗(a, s

∣∣Xi)− ê(−ℓ)(a, s
∣∣Xi)

}
ê(−ℓ)(a, s

∣∣Xi)

∣∣∣∣∣Dc
ℓ

]
.

The equalities are straightforward from the definition of ψDR and the law of total expectation.

Since c′ ≤ ê(−ℓ), we find

E

[{
µ∗(a, s

ni−1 ,Xij ,Xi(−j))− µ̂(−ℓ)(a,
s

ni−1 ,Xij ,Xi(−j))
}{
e∗(a, s

∣∣Xi)− ê(−ℓ)(a, s
∣∣Xi)

}
ê(−ℓ)(a, s

∣∣Xi)

∣∣∣∣∣Dc
ℓ

]

≤ 1

c′
E

[∣∣∣∣µ(a, s

ni − 1
,Xij ,Xi(−j)

)
− µ̂(−ℓ)

(
a,

s

ni − 1
,Xij ,Xi(−j)

)∣∣∣∣∣∣∣∣e(a, s ∣∣Xi)− ê(−ℓ)(a, s
∣∣Xi)

∣∣∣∣ ∣∣∣∣Dc
ℓ

]
≤ 1

c′

∥∥∥∥∥µ̂(−ℓ)

(
a,

s

ni − 1
,Xij ,Xi(−j)

)
− µ∗

(
a,

s

ni − 1
,Xij ,Xi(−j)

)∥∥∥∥∥
P,2

∥∥∥e∗(a, s ∣∣Xi)− ê(−ℓ)(a, s
∣∣Xi)

∥∥∥
P,2

.

The first inequality is straightforward. The second inquality is from the Hölder’s inequality. From

the last line, we find E
{
ψ̂DR(a, s,Oij ,Oi(−j)) − ψDR(a, s,Oij ,Oi(−j))

∣∣Dc
ℓ

}
= OP (re,Nrµ,N ). As a
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result, we have the following result with probability greater than 1−∆N .∣∣∣R(θ)− R̂(−ℓ)

(
θ
)∣∣∣

=

∣∣∣∣E{L(θ(Xi),Oi

)
− L̂(−ℓ)

(
θ(Xi),Oi

) ∣∣∣Dc
ℓ

}∣∣∣∣
≤ C ′ max

(a,s)∈{0,1}⊗{0,...,M}

∣∣∣∣E{ψ̂DR(a, s,Oij ,Oi(−j))− ψDR(a, s,Oij ,Oi(−j))
∣∣∣Dc

ℓ

}∣∣∣∣
≤ C

c′
max

(a,s)∈{0,1}⊗{0,...,M}


∥∥∥µ∗(a, s

ni−1 ,Xij ,Xi(−j))− µ̂(−ℓ)(a,
s

ni−1 ,Xij ,Xi(−j))
∥∥∥
P,2

×
∥∥∥e∗(a, s ∣∣Xi)− ê(−ℓ)(a, s

∣∣Xi)
∥∥∥
P,2


≤ CDR · re,Nrµ,N

where CDR = C/c′.

Combining the established results, we have the following results with probability greater than

1−∆N .

∣∣∣R(θ)− R̂(−ℓ)

(
θ
)∣∣∣ ≤


CIPW · re,N if ψIPW is chosen

COR · rµ,N if ψOR is chosen

CDR · re,Nrµ,N if ψDR is chosen

.

This implies
∣∣R(θ) − R̂(−ℓ)

(
θ
)∣∣ ≤ 0.5c6rN with probability greater than 1 − ∆N where c6 = 2 ·

max{CIPW, COR, CDR}, rN = re,N if the inverse probability-weighted loss function is used, rN =

rµ,N if the outcome regression loss function is used, and rN = re,Nrµ,N if the doubly robust loss

function is used.

B.5 Proof of Theorem 3.1 of the Main Paper

We only show the result related to the overall outcome case because the result related to the spillover

outcome case is obtained in a similar manner. We start with defining the risk function and the

MRTP associated with the estimated loss function. Let R̂(−ℓ)(θ) = E
{
L̂(−ℓ)

(
θ(Xi),Oi

) ∣∣Dc
ℓ

}
be the

estimated risk function where the expectation is taken with respect to Oi while L̂(−ℓ) is considered

as a fixed function which is clarified by denoting Dc
ℓ in the conditioning statement. Accordingly, let

θ∗(−ℓ) be the approximated MRTP which is the minimizer of R̂(−ℓ)(θ), i.e., R̂(−ℓ)(θ
∗
(−ℓ)) ≤ R̂(−ℓ)(θ)

for all θ ∈ Θ. We remark that θ∗(−ℓ) ∈ Θ[0,1] =
{
f
∣∣ f(xi) ∈ [0, 1]

}
, the collection of policies ranging

over the unit interval. Using θ∗(−ℓ) as the intermediate quantities, we can establish the excess risk

of θ̂(−ℓ).
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We decompose the excess risk as follows.∣∣∣R(θ̂(−ℓ)

)
−R

(
θ∗
)∣∣∣

=
∣∣∣R(θ̂(−ℓ)

)
− R̂(−ℓ)

(
θ̂(−ℓ)

)∣∣∣︸ ︷︷ ︸
(A)

+
∣∣∣R̂(−ℓ)

(
θ̂(−ℓ)

)
− R̂(−ℓ)

(
θ∗(−ℓ)

)∣∣∣︸ ︷︷ ︸
(B)

+
∣∣∣R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗
)∣∣∣︸ ︷︷ ︸

(C)

.

In the rest of the proof, we bound terms (A), (B), and (C).

From Lemma B.2 of the Supplementary Material, we find the upper bound of (A) with proba-

bility greater than 1−∆N : ∣∣∣R(θ̂(−ℓ)

)
− R̂(−ℓ)

(
θ̂(−ℓ)

)∣∣∣ ≤ 0.5c6rN .

Next, we bound (B). Since L̂(−ℓ) satisfies Assumptions (C1)-(C5) and θ∗(−ℓ) belongs to a Besov

space Bβ1,∞(Rd), Theorem B.1 can be applied. Hence, the following result is satisfied with probability

greater than 1− 3e−τ :∣∣∣R̂(−ℓ)

(
θ̂(−ℓ)

)
− R̂(−ℓ)

(
θ∗(−ℓ)

)∣∣∣
≤ c1λNγ−d

N + c2γ
β
N + c3

{
γ
(1−p)(1+ϵ)d
N λpNN

}− 1
2−p

+ c4N
−1/2τ1/2 + c5N

−1τ .

Lastly, we bound (C). Since θ∗ is the minimizer of R(θ), we find

R̂(−ℓ)

(
θ∗(−ℓ)

)
= R

(
θ∗(−ℓ)

)
+ R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗(−ℓ)

)
≥ R

(
θ∗
)
+ R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗(−ℓ)

)
,

and this implies R̂(−ℓ)

(
θ∗(−ℓ)

)
− R

(
θ∗(−ℓ)

)
≤ R̂(−ℓ)

(
θ∗(−ℓ)

)
− R

(
θ∗
)
. Similarly, since θ∗(−ℓ) is the

minimizer of R̂(−ℓ)(θ), we find

R
(
θ∗
)
= R̂(−ℓ)

(
θ∗
)
+R

(
θ∗
)
− R̂(−ℓ)

(
θ∗
)
≥ R̂(−ℓ)

(
θ∗(−ℓ)

)
+R

(
θ∗
)
− R̂(−ℓ)

(
θ∗
)
,

and this implies R
(
θ∗
)
− R̂(−ℓ)

(
θ∗
)
≤ R

(
θ∗
)
− R̂(−ℓ)

(
θ∗(−ℓ)

)
, i.e., R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗
)
≤ R̂(−ℓ)

(
θ∗
)
−

R
(
θ∗
)
. Combining two results, we have∣∣∣R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗
)∣∣∣ ≤ max

{∣∣∣R̂(−ℓ)

(
θ∗(−ℓ)

)
−R

(
θ∗(−ℓ)

)∣∣∣, ∣∣∣R̂(−ℓ)

(
θ∗
)
−R

(
θ∗
)∣∣∣} .

From Lemma B.2 of the Supplementary Material, the right hand side of the above term is upper

bounded by 0.5c6rN with probability greater than 1 −∆N because θ∗(−ℓ), θ
∗ ∈ Θ[0,1]. As a result,

we find an upper bound of (C), which is
∣∣R̂(−ℓ)

(
θ∗(−ℓ)

)
− R

(
θ∗
)∣∣ = OP (rN ). We remark that (A)

and (C) are both OP (rN ) with probability greater than 1−∆N . This concludes the desired result.
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