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This document contains supplementary materials for “Minimum Resource Threshold Policy Under

Partial Interference.” Section A presents additional results related to the main paper. Section B

proves lemmas and theorems stated in the paper.
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Additional Details of the Main Paper

Examples of Beneficial Intervention/Treatment for Most of the Population

We provide plausible examples where the intervention/treatment seems beneficial for almost all

members of the population.

Prior works have shown that improving household access to improved water, sanitation, and
hygiene (WASH) resources are critical to reduce rates of diarrhea-related diseases (Esrey
et al., 1985; Clasen et al., 2007), especially among children (Daniels et al., 1990; McMichael,
2019). Additionally, there is no biological rationale that well-managed WASH facilities cause

diarrhea-related diseases.

Devoto et al. (2012) studied the effect of getting easier access to piped water on various kinds
of outcomes such as quality and quantity of water consumed, water-related time and financial
costs incurred by the household. In particular, based on the results in Table 3 and related
discussions, we can deduce that getting easier access to piped water results in a substantial

increase in the quantity of water for most of the population.

As discussed in page 10 of Cohen and Dupas (2010), higher insecticide-treated bed nets (ITN)
coverage rates would be beneficial for the population because the use of I'TN in a household

may have positive health externalities for neighboring households.

Feikin et al. (2022) conducted a meta-analysis of studying the effect of COVID-19 vaccines
against SARS-CoV-2 infection. Their work and references therein suggest that COVID-19

vaccines are beneficial for most of the population.



e Miguel and Kremer (2004) studied the effect of school-level deworming projects on students’
health status and academic achievements. They remarked that there were within- and across-
school spillover effects, indicating that students who did not directly receive deworming treat-
ment still benefited from those who did. Therefore, combined with the biological reasons, we

can infer that deworming drugs are beneficial for most of a majority of students.

A.2 Examples of Real-world Applications Targeting a Certain Level of Out-

comes

In this section, we present examples of real-world applications that target a specific level of outcomes

rather than the maximum level of outcomes.

e High levels of protein in the urine, known as proteinuria, may be caused by diabetes, high
blood pressure, autoimmune disorders, infections, and kidney diseases. Thus, for a normal
adult, it is recommended to maintain the total urinary protein excretion less than 150 mg/day
(Carroll and Temte, 2000).

e HDL cholesterol is commonly referred to as “good” cholesterol because it plays a crucial role
in removing harmful cholesterol from the bloodstream. As a result, maintaining high levels
of HDL cholesterol is associated with a lower risk of cardiovascular disease. It is generally

recommended to maintain HDL cholesterol levels above 60 mg/dL (Grundy et al., 2002).

e Warfarin, a blood-thinning medication, is used to increase the international normalized ratio
(INR), a measure of the time for the blood to clot, and it should be prescribed to keep patients’
INR within the desired range, usually between 2 and 3, according to the recommendations

from American Heart Association (January et al., 2014).

e Major medical associations recommend targeting proper ranges for chronic disease manage-
ment measures such as hemoglobin level (male: 138-172 g/L; female: 121-151 g/L) (American
Association of Clinical Endocrinologists and Others, 2019).

e UN has established the Sustainable Development Goals in 2015 (United Nations, 2016), which
consists of 17 specific goals. In particular, Goal 1 is to eradicate extreme poverty for all people
everywhere by 2030 and Goal 3 is to ensure healthy lives and promoting well-being at all ages.

Some specifics of these goals target certain levels of outcomes of interest as follows:

— 1.1: By 2030, eradicate extreme poverty for all people everywhere, currently measured
as people living on less than $1.25 a day

— 1.2: By 2030, reduce at least by half the proportion of men, women and children of all
ages living in poverty in all its dimensions according to national definitions

— 3.1: By 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live
births



— 3.2: By 2030, end preventable deaths of newborns and children under 5 years of age,
with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000

live births and under-5 mortality to at least as low as 25 per 1,000 live births

e The Global Technical Strategy for malaria 2016-2030 was adopted by the World Health As-
sembly in May 2015 (World Health Organization, 2021). It has set a target of reducing
malaria incidence by 40, 75, and 90 percent by 2020, 2025, and 2030, respectively, compared

with malaria incidence in 2015.

A.3 Application of Our Method to Other Real-World Examples

Motivated from the examples in Sections A.1 and A.2, we lay out some concrete examples where

our approach can be used.

e Motivated by Cohen and Dupas (2010) and World Health Organization (2021), we can study
the minimum ITN coverage necessary to meet the thresholds set by the Global Technical
Strategy for malaria control Also, because an ITN is likely to reduce malaria incidence in
both the household where it is installed and nearby (but not too far away) households,
partial interference is a viable framework for modeling the effect of ITN installation on malaria
incidence. Furthermore, there are biological reasons to believe that malaria incidence would
exhibit a monotonic response to ITN coverage. Combined together, we can use our method
to determine the Minimum Resource Threshold Policy (MRTP) of ITN coverage to achieve

a desired malaria incidence level.

e Motivated by Devoto et al. (2012), we can study the minimum proportion of households with
piped water that will meet or exceed the levels of existing hygiene and/or welfare indicators.
For instance, as Tables 3 and 4 of Devoto et al. (2012) reported, one may use the numbers of
baths and showers and the number of times a child fetched water in recent days as a basis for
the hygiene and welfare indicators, respectively. Also, as suggested by Devoto et al. (2012),
these indicators are likely to show monotonic response to water pipe installation. Finally,
partial interference is reasonable in this context because the hygiene and welfare indicators
of a household are affected by piped water in nearby (but not too far away) households.
Therefore, we can use our method to determine the smallest water pipe coverage necessary

to achieve the desired hygiene and/or welfare levels.

e We can consider a policy for allocating water, sanitation, and hygiene (WASH) in developing
countries to achieve the Sustainable Development Goals 3.2 by targeting under-5 mortality
being lower than 25 per 1000 live births. The context is similar to the application of the
main paper except that the outcome is under-5 mortality. As before, partial interference and
monotonicity are reasonable assumptions for the context, and investigators may determine

the MRTPof the amount of WASH facilities that achieves the desired under-5 mortality rate.



A.4 A Graphical Illustration for the Setup

We provide a visual illustration for the setup in Figure A.1. For simplicity, we consider N = 2
clusters where each cluster has n; = 2 study units. The black arrows from A;; to Yj; (i,j = 1,2)
depict the direct effect of the treatment, and the red arrows from A;; to Yy (i,5,7' =1,2,5 # j')
depict the indirect effect of the treatment. No connection between two clusters illustrate the

cluster-level independence.

Cluster 1 Cluster 2

Figure A.1: A Graphical Illustration for the Setup. The blue arrows from A;; to Y;; (i,5 = 1,2)
depict the direct effect of the treatment, and the red arrows from A;; to Yy (4,7,7 = 1,2,5 # j')
depict the indirect effect of the treatment.

A.5 The (Mostly) Wrong Approach: Analysis With Aggregated, Cluster-Level
Data

We briefly discuss a tempting approach based on aggregating the data at the cluster-level. This ag-
gregation approach has been discussed in the literature (e.g., Section 2.3 of Imbens and Wooldridge
(2009) and Kilpatrick and Hudgens (2021)) as a simple way to deal with interference. While
this approach will clearly not work for estimating MRTPs like 6 (x;) or other MRTPs targeting
spillover-specific outcomes, from a practitioner’s point of view, it is worth asking whether this ap-
proach can be used to estimate, or at least approximate, MRTPs like 6§, (x;) which combine both
the direct and spillover effects of treatment in a block. Unfortunately, as we illustrate below, this
aggregation approach will lead to grossly misleading estimates of 6y (x;) except in very restrictive
settings.

Formally, following the above advice from the literature, suppose an investigator attempts to
bypass the problem from interference at the unit/household-level by aggregating their data at the
cluster /block-level. That is, for each cluster i, the investigator can consider O; = (Y, 4;, X;) to
be the available data and use existing techniques in the optimal treatment regime literature for
a continuous treatment, such as Chen et al. (2016), to obtain the minimum proportion of WASH

facilities necessary to achieve a certain target 7. For example, given a cluster-level outcome model



for the expected value of Y; as a function of cluster-level variables A; and X;, the investigator can
find the smallest A; € [0, 1] where the expected outcome exceeds T

Despite its simplicity, the above analysis is only appropriate in very restrictive settings, which
we illustrate with an example. Suppose the treatment assignment depends on the measured covari-
ates, and the outcome regression is given as E{Y (a2,84(-5) ‘ Xl} = Braij + Baay—j) + ,B?IXijaij +
ﬁ4Xijai(,j) where f31,..., 34 are non-negative coefficients to guarantee Assumption (A5). Some

algebra reveals the average potential outcome at the cluster-level is

X}_<Bl+6 +mﬁpi>a,»+{( _1)ﬁ3+ﬁ4}< Zaw U). (1)

If the investigator uses the aggregated, cluster-level data to estimate the MRTP, the resulting

E{Y az)

estimate will be biased because the cluster-level outcome model of Y; given A4; and X; is mis-
specified. Or equivalently, there is an omitted variable bias because of the term Z;“:l a;j Xij,
which roughly measures the covariance between the unit-level treatment variable and the unit-
level covariate. The magnitude and the direction of the bias will depend on (a) the magnitude of
treatment effect heterogeneity, as measured by B3 and B4, and (b) the magnitude and the sign of
the measured, unit-level confounding, as measured by the covariance of A;; and X;;.

More generally, if the outcome model is nonlinear, which is often the case in popular epidemiolog-
ical models (e.g., Magal and Ruan (2014)), no amount of modeling with aggregated, cluster-level
data (Y;, A;, X;) will completely remove this bias as the cluster-level data cannot capture both
unit-level treatment heterogeneity and unit-level confounding. As a concrete example, suppose the
treatment is completely randomized and there are no interactions between the covariates and the

treatment, but there exists non-linear relationship between the treatment on the outcome:

E{Y (aij,ai—j)) ’X } BO —+ Blam + 52{ }+ (2)

where 81 and (2 are non-negative coefficients, g, € [0,1], and p is a positive integer. Roughly
speaking, the model states that the household’s outcome can be affected by its peer households
through a non-linear function z — (z — ¢q,)? if at least (100 X ¢,)% of their peers are treated; see
Granovetter (1978), Watts (2002), and Kempe et al. (2003) and references therein for other types
of threshold models in networks. As before, Assumptions (A4) and (A5) hold for this model and
some algebra will reveal that the cluster-level outcome model will be mis-specified when using only

aggregated, cluster-level data (Y;, A;, X;) due to the non-linearity of @j(—jy in the household-level

)
outcome model. Consequently, the resulting MRTP with the cluster-level data will be biased.

We provide a graphical illustration of model (2). To demonstrate, we fix the cluster size n; = 10
and the coefficients Byp = 51 = 0, and choose (5 so that the range of the outcome regression becomes
[0,1]. We consider three levels for ¢, € {0.4,0.6,0.8} and p € {1,2,5}, respectively, and we choose
the threshold 7 = 0.2. Figure A.2 visually presents the differences between the MRTPs based on

Tov and the aggregated cluster-level outcome regression. We find that the differences vary between



0.07 and 0.17. The toy example suggests that estimating the MRTP based on the aggregated
outcome regression may yield significantly biased estimates of oy in equation (6) of the main

paper.
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Figure A.2: Graphical Comparison between the MRTPs Based on the Aggregated Cluster-level
Outcome Regression and 7oy («). Black dotted and red dashed lines indicate the MRTP based on
the aggregated cluster-level outcome regression and that based on 7ov(«) (i.e., Oov), respectively.

However, we mention that this simple aggregation approach may work under different assump-
tions. For instance, Kilpatrick and Hudgens (2021) assumed that the cluster-level potential outcome
only depends on the total number of treatment implemented in a cluster, i.e., the cluster-level strat-
ified interference. This implies that the average potential outcome at the cluster-level has a form
of E{?Z(a” ) | X} = pt (@i, X;) for some function uf, which can be identified as (nonparametric)
regression models of Y; on (A;, X;). In turn, using their g-formula approach and/or the indirect
approach in Section 3.1 of the main paper, we can get a valid estimate of 0¢,;;. We remark that the
cluster-level stratified interference assumption lacks the necessary flexibility to define 65,. This is
because it eliminates the possibility of having distinct cluster-level outcomes based on the treatment
recipients, which is a critical aspect of interference.

Next, we compare the classification performance measures of the true policy of the main
manuscript and the policy obtained from the aggregated cluster-level outcome regression. We

consider the following simple data generating process:

n; = 10 y Xi]' ~ Ber(05) y Aij ‘ Xij ~ Ber(05)
Yig | (Aig, Ai(—), Xijs Xi(—j)) = Aig + 0545 + 05435 X5 + eij, €5 ~ N(0,1) -



The aggregated cluster-level outcome regression is given as E(?i ‘Zi,yi) = (1.5 4+ 0.5X;)A;, and

the simple policy is obtained as follows:

egimple(ji) = min {CL € {0,0.1, ce 1} ‘ E(?z ‘Zz a,yi = fz) > 9} .

The true policy ¢y (o) is defined based on equation (6) of the main paper.
We generate N = 10° observations from the above data generating process, and compare the

three classification performance measures of 05, 1, and 0¢y across 7 € [0.8,1.6]. We use the

*

Simple- As a result, the discrepancies in

true outcome regressions p* and uf to construct 05y and 6
the performance measures can be attributed to the use of the aggregated approach instead of the
approach proposed of the main paper. The range of 7 has been chosen such that the lower bound
of the interval is not significantly smaller than the average outcome of E(?l) = 0.875. Figure A.3
graphically summarizes the result. We find that ¢, uniformly yields better classification perfor-
mance measures compared to 9§imple, suggesting that using the aggregated cluster-level outcome

regression is suboptimal even in the simple model.
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Figure A.3: Classification Performance Measures of 6, and 9§imple.

In summary, an analysis based on aggregated, cluster-level data will often lead to biased es-
timates of MRTP. Also, if the investigator is interested in MRTPs based on spillover-specific

outcomes such as 05 (x;), a cluster-level analysis is simply infeasible.

A.6 Inverse Probability-Weighted and Outcome Regression-based Loss Func-

tions
We introduce the IPW and outcome regression-based loss functions. Specifically, we can replace
¥pr in equation (9b) of the main paper with the following functions.

0;:;,0;_) = J J 2 Zid)
wlPW(ava Jr i( J)) e*(a,s}Xi)

ni—l

% S
, Yor(a,s,0i5,0i_j) = p (%aXiiji(j)) :



A.7 Machine Learning Methods Used for the Outcome Regression Estimation

As candidate machine learning methods, we include the following methods and R packages in our
super learner library: linear regression (glm), Lasso/elastic net (glmnet (Friedman et al., 2010)),
spline (earth (Friedman, 1991), polspline (Kooperberg, 2020)), generalized additive model (gam
(Hastie and Tibshirani, 1986)), boosting (xgboost (Chen and Guestrin, 2016), gbm (Greenwell
et al., 2019)), random forest (ranger (Wright and Ziegler, 2017)), and neural net (RSNNS (Bergmeir
and Benitez, 2012)).

A.8 Computation: Training the Support Vector Machine in (10) of the Main
Paper

This section presents the computational details on training the support vector machine in (10) of
the main paper. The algorithm to train SVMs under this type of nonconvex function is already
discussed in prior works (An and Tao, 1997; Chen et al., 2016) and we present a summary of it
for completeness. Also, to keep the notation clear, the discussion below assumes that the nuisance
functions are known, but the identical computation algorithm is used to train the SVM when the
nuisance functions are estimated.

To start off, we can decompose the loss function for the overall outcome case in equation
(9) of the main paper into the difference of two convex function L, (t,0;) and L_(t,O0;), i.e
L(t,0;) = Ly(t,0;) — L_(t,0;) for any t and O; where

v1(0,0;) — 25t it —co<t<0
Ly(t,0:) =< vi(t,05) ifo<t<1
vi(1,0;) + (6+28)(t—1) ifl<t<oo

v-(0,

0O;) — 26t — 6 + ¢! it —co<t<0
L_(t,0:)) = v_(t,0)) ifo<t<1

v_(1,0;) + (6 +26)(t —1) =0+ de' ™" if1<t< o0

ez TLZ'—I

1
n; — 1
Z . )@ZJDR(G, $,0i4,04(_j)

© j=1a=0 s=0

o S (e[ EDT N e |y
prd / l+a+s+1)

Here, (a); = max(a,0), (a)_ = —min(a,0), and ¢ is chosen as the maximum of the left derivatives
of v (t,0;) and v_(t,0;) at t = 1, i.e., § = max { limejo Vv (1 —€,0;),lime o Vr_(1 —, Ol)} and
Vi (t, O;) is the derivative of vy (¢, O;) with respect to t. Critically, the two loss functions L, and



L_ are convex and non-decreasing in ¢. For the spillover outcome case, we use

n; n;—1 n;—s
KA n; — . n; — S —1)¢ s
vs0,+(t, O;) Z Z < >¢DR(0,8,0ij70i(j)) Z < ’ ){Eisll} ts T (Tt
v =1 s=0 £=0 +

Given the decomposition of the loss function into the difference of two convex functions, we
use the DC algorithm (An and Tao, 1997), which is an iterative algorithm, to solve the original

non-convex optimization problem; see Algorithm 1 for details.

Algorithm 1 DC Algorithm

Require: Initialize values n(o) e RY, b e R. Set iteration number to zero, 7« 0.
1: Precompute the gradient VL_(t, O;) where

8tL (t,0;) t#0,1
VL_(t,0;) = 1 P P
QI:igl{mL_(t—i—e,Oi)—i—(%L_(t—e,Oi)} t=0,1

2: repeat
Let nUt1) and bU*D be the solution to the following convex optimization problem.

(G+1) 1~ [ Ly (kIn+0,0) A
TI : . + zn ) Z . l T
oo EM%TZ““[N;{ VL (k[0 +49,04) (b -+ kT) fo g
4 jeg+1

5: until convergence

6: return (ﬁ,@ — (n(j),b(j)).

To initiate the DC algorithm, we choose the initial value as follows. First, for each i, let the
solution be r;, i.e., r; = argmingco 47 L(¢, O;) which can be obtained from a grid-search. In words,
r; is an approximate of #(x;) that are found by a grid-search. But, since r; is bounded in the unit
interval, it may not be a suitable approximate of g(mz), the SVM solution before the winsorization.
As a consequence, directly using r; to construct initial points may lead to an estimate policy
shrinking to a certain value, i.e., a policy does not reflect the heterogeneity induced by =;. To

stretch r; outside of the unit interval, we consider the following steps.
(a) Let ¢ and ¢ be

L LYy A X X
/ N R ) ) . N j 79 “Li(—3)» Jr “xi(—j)
Pa,a’, X;) = n ;MGZ?G ’X”’X’(_])) (o) i ]:21 e(Aij, Si—j) | Xi) .

(b) By only using the clusters with non-0 and non-1 r;s, i.e., r; € (0,1), we fit linear regression
models where ¢(a,a’, X;) and ¢(X;) are regressed on ;8. We choose (a,a’) from {0,1} ®
{0,0.2,0.4,0.6,0.8,1} = {(0,0), (0,0.2),...,(1,0.8), (1,1)}, i.e., 12 levels. Let (Bo.model £ B1.model k)

are the estimated regression coefficients from kth model.



(c) Let 7; be the adjusted initial points which are defined as follows.

(c-1) If ; € (0,1), no adjustment is required, i.e., 7; = 7;.

(c-2) For clusters having r; = 1, we use the largest prediction values obtained from the 13

regression models and 1, i.e.,

Xi _Amoe Xz _Amoe
ﬂ_max{d)(o’o’A) Bo,model 1 ©(Xi) — Po, d113’1}_

g ooy

Bl,model 1 Bl,model 13

(c-3) Similarly, for clusters having r; = 0, we use the smallest prediction values obtained from

the 13 regression models and 0, i.e.,

o {¢(07 0, X;) — Bomodel 1 @(X3) — Bo.model 13 }
7; = min 0.

yeeey

Bl,model 1 /Bl,model 13

Second, we take b0 = Zf\il 7/N and 0¥ as a vector satisfying 7; = k:iTn(O) + 5O for all 4
ie, 7 =Kn® 4501 where 7 = [7,...,7n]T € RY and 1 = [1,...,1]T € RY. Even though the
kernel matrix K is invertible due to the positive definiteness of the kernel function K, the inverse
of K cannot be obtained due to the numerical singularity. Under such case, we add a tiny value to
diagonal of K until its inverse can be obtained. In line 1, VL _ is a subgradient of L_ that accounts
for the non-differentiability of L_ at t =0 and ¢t = 1.

The convex optimization in line 3 can be solved by using many standard algorithms and soft-
wares. The iteration stops when ||(n(+D 50 +D) — (n() p()]||, drops below some threshold value.
We remark that because the objective function in (10) of the main paper is bounded below, the

algorithm will always converge in finite steps (An and Tao, 1997; Chen et al., 2016).

A.9 Details of Cross-validation

We present the details on how to choose the SVM parameters v and A\. We consider a set of
candidate values for (vg, A¢) where £ = 1,..., K. Without loss of generality, let the estimation
data fold be D; = DS and, as a consequence, observations in Dj is used to evaluate the estimated
loss function E(_1)(757 O;) for i € Dy. We further split Dy into training and tuning sets, denoted
by D2 train and Dz tuning, respectively, based on the number of cross-validation folds. For each
candidate parameter (-, A¢), we estimate the direct MRTP HAtrain(Xi ; £) by only using the training
set Da train and obtain the empirical risk using the tuning set Dj tuning. The optimal parameters

(7v*, \*) are the minimizer of the average of the empirical risks across the tuning sets, i.e.

Z E(—l) (é\train(Xi ; €), O'L) ’

ieDQ,tuning

1
(v*,\") = arg min
(=1,...,.K DQ,tuning}

10



A.10 Details of Undersampling and Cross-fitting Procedures

We discuss the details on how to negate the impact of a particular realization of undersampling
procedure. We randomly choose a subset of observations so that the cluster sizes are (nearly)
balanced, and we repeat the undersampling for U times indexed by u. Let ﬁ(“) and €™ be the
estimated outcome regression and propensity score obtained from uth undersample. Then, we take
the median-adjusted nuisance function across U estimated functions as the final estimate of the
nuisance function, i.e., i := median,— ¢ ﬁ(“) and € := median,—i,_ e,

Next, we discuss the median-adjustment of cross-fitting procedure. Once we split the data
into two folds D; and D», we obtain two directly estimated policies 5(4) for k = 1,2 where Dj
is used as the estimation data fold and Dy, is used as the evaluation data fold. Investigators
may use either (/9\(,1) or 79\(,2) as the final estimate of the MRTP, denoted by o). However, we
recommend to use 8 (x) = W({@\(_l) + 5(_2)}/2) (x), the winsorized policy of the average of two
non-winsorized policies, for the new x as the estimate of the MRTP to fully use the data. If the
evaluation point is one of the points in the data, i.e., * = @; for some i € D;, we recommend using
§(F)(ac) = 5(_@(%-) because é\(_@ does not depend on ¢ while 5(3) depends on ¢ which may lead to
an overfitted value. Second, to construct a more robust estimate of the MRTP under cross-fitting,
we use the recommendation in Chernozhukov et al. (2018) to our setting by taking the mean or the
median of multiple MRTP estimates. Specifically, we repeat the estimation of o) multiple times,
say T times, and obtain @F) (t =1,...,T) where the sample partitions are randomly done across
splits. We define the mean-MRTP estimate 6" mean) (gp) — ?:1 @EF) (z)/T and the median-MRTP

estimate g(F’median)(a:) = median;—y 7 @F)(a:)

A.11 Details of the Data Generating Process of the Simulation

We provide details of the data generating process of the simulation in Section 4 of the main
paper. First, we provide the distribution of the cluster size n;, which is the same as the empirical

distribution of n; in the dataset used in Section 4 of the main paper.

n; 3 4 5 6 7 8 9 10 11 12
Frequency 4 4 11 22 30 55 61 76 80 88
Probability | 0.004 | 0.004 | 0.011 | 0.021 | 0.029 | 0.054 | 0.059 | 0.074 | 0.078 | 0.086

n; 13 14 15 16 17 18 19 20 21 22
Frequency | 92 90 113 86 72 71 39 22 6 5
Probability | 0.090 | 0.088 | 0.110 | 0.084 | 0.070 | 0.069 | 0.038 | 0.021 | 0.006 | 0.005

Next, in Figure A.4, we provide graphical summaries of the distributions of A; in the 2014-2017
Senegal DHS and the simulated datasets. The two distributions are similar to each other with the

common support of [0, 1].
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Figure A.4: Histograms of the treated households (i.e., A;) in the 2014-2017 Senegal DHS (left) and
simulated datasets (right). The distribution of A; in the simulation shows the distribution across
50 repetitions.

Lastly, we provide the details of the outcome regression model:

—0.35 + {0.1 4 0.25(C; + Wi;1)* } Ay
Yij | (A, Xi) ~ Ber | expit | +{0.05 +0.15(Wi_j2 + Wic—js)* } Ai—s)
+0.1(Ci + 3252, Wigne) +0.25(CF + 325, Wili) + 0.05(325 -, Wi—jr)
Here, W;_j), = >0z Wijk/(n; —1). We remark that the outcome model satisfies Assumptions
(A1)-(Ab) of the main paper.

A.12 Details of Classification Performance Measures

For an given MRTP 6, we define the true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN) as follows:

TP = > 1{YV;>T,4>0(X)}, TN= Y W{V:<T A<oX)}, (3
1€ Dtest 1€ Dtest

FP= Y 1{Y;<T, 4 >0(X)}, FN= > 1{YV:>T,4 <0(X))}.
1€ Dtest 1€ Dtest

Given these definitions, we use the following classification performance measures: accuracy, two-
sided F1 score, and the Matthews correlation coefficient (MCC) (Matthews, 1975) which are defined

as follows:
N TP + TN - 9TP . 9TN
ccuracy = =
Y = TP L TN+ FP + FN 9TP + FP + FN ' 2TN + FP + FN ’
MCC — TP x TN — FP x FN

{(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)}1/2 *
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The usual F1 score does not use true negatives in its score, i.e., 2TP/(2TP+FP+FN), and is

sensitive to the definition of a positive label. For example, if we were to define the positive label as

the opposite of the definition in equation (3), i.e., positive label if Y; < T, the F1 score changes. To

avoid this, we consider the two-sided F1 score, the average of the usual F1 score and the “opposite”
F1 score, 2TN/(2TN+FP+FN).

A.13 Assessment of Assumptions of the Main Paper

We take a moment to discuss the plausibility of the bounded cluster size n; assumption and As-
sumptions (A1l)-(A5) in the Senegal DHS.

(Bounded n;)

(A1)

(A2)

The bounded block size assumption is plausible in the Senegal DHS because the data was
collected based on a stratified sampling design where a fixed number of households were
sampled from each block (ANSD and ICF, 2020). Also, the maximum number of households
among N = 1027 census blocks in the 2014-2017 Senegal DHS is M = 22, and the small
value of M/N = 0.021 (i.e., an upper bound on n;/N) suggests that the “large N, small n;”

asymptotic regime is a reasonable approximation for our data.

Assumption (A1) is plausible as long as households in different census blocks do not interact
with each other. In the data, 99.15% of the census blocks are geographically far apart from
each other. The average and median distances among 22,578 pairs of census blocks in the 2018
Senegal DHS are 245.04km and 230.17km, respectively; only 192 (0.85%) pairs of census blocks
have distance smaller than 10km. Given this, we find that the partial interference assumption
is plausible where interference likely occurs between households in the same census block and

not across different census blocks.

To check Assumptions (A2) and (A3), we check covariate balance and overlap by using the
binning approach in Hirano and Imbens (2004), Kluve et al. (2012) and Flores et al. (2012)
for a continuous treatment variable. Algorithm 2 shows the details on the covariate balance

assessment.

We use the median of the propensity score estimates from 100 cross-fitting procedures. As
a consequence, we obtain the unadjusted/adjusted t-statistics in Figure A.5, which suggests

covariate balance was satisfied for all cases.
Next, we assess the overlap assumption based on Algorithm 3. Again, we use the median of
the propensity score estimates from 100 cross-fitting procedures.

Figure A.6 shows histograms that visually assess the overlap assumption. Based on the

histograms, the overlap assumption seems to be satisfied or to be not severely violated.

Overall, all 9 observed covariates are balanced across different bins of treatment values and

overlap is reasonable.
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Algorithm 2 Assessment of Covariate Balance

1: Divide Zfil n; = 13556 units into four groups:

{0} x [0, 0] € {0,1} x [0,1]

.Ak;: {(%])‘(Azj,zz(_])) eRk} ’ Rk: {0} X

(
[

ap, 1] € {0,1} x [0, 1]

{1} x [0, 1] € {0,1} x [0, 1]

where ag and a7 are chosen so that Ay, ..

{1} x (au1,1] € {0,1} x [0, 1]

., A4 have similar sizes.

ifk=1
ifk=2
ifk=3
itk=4

2: for k=1,2,3,4do
3:  Obtain unadjusted t-statistics that compare the distribution of X; between A;, and A¢, i.e.,

{E,k S (i) € Akz}Xij} {Ek >y 1{(i,5) ¢ Ak}Xij}

2ot {3, ) € Ay} >ty {5, 5) ¢ Ax}
Calculate the estimated propensity score €;;, = ﬁ{(Aij,Zi(_j)) € Ry, ‘ Xij, Xi(_j)}.
Let —co=q9p < q1 <...<q9 < qio = o0 be the deciles of {/e\iM ‘ (1,7) € Ak}.
Let & = {(i,§) | €ijk € (-1, q]} (b=1,...,10).
Obtain t-statistics that compare the distribution of X; between &, N Ay, and &, N A, i.e.,

{XV- >y H{(i,5) € o N A} X } . {f S I{(i5) € Ep N Ag}xij}
" S ) € Grn Ay [ T T S 1{(1.J) € Enx N ALY
Aggregate the t-statistics obtained in Step 7 with weights from the size of &, ..., E10-

9:  Obtain adjusted t-statistics by taking the median of ¢-statistics in Step 6 across multiple
cross-fitting procedures.

Xir =

XZ'JCC ==

Xi,kc =

Xk =

10: end for
t-statistics for Covariate Balance Assessment
10 ° ° L4 » Unadjusted, A,
" * ° A Unadjusted, A,
. * & Unadjusted, A;
1.93 T ie -5 s * e S P S e Unadjusted, A,
® L 3 w A U A w L 2 Ll 2
-1.96 n . u = e P = Adjusted, A,
A R A - A Adjusted, A,
¢ Adjusted, A;
0 4 ) A - U e Adjusted, A,

I
Cluster size

I
HH size

I
HH adults' employment

I
Respondent's education

I
HH children's age

Cluster location HH's num of children HH head's education Respondent's age

Figure A.5: Covariate Balance Assessment
(A4) Assumption (A4) is plausible if the number of diarrhea-free children in a household can be

reasonably approximated by a summary of peers’ WASH status. However, the assumption

may fail if a few households’ presence (or absence) of WASH facilities is driving the incidence
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Algorithm 3 Assessment of Overlap

1: Divide Zfil n; = 13556 units into four groups:

{0} x [0,0) € {0,1} x [0,1] ifk=1

o ea w {0} x (a0, 1] € {0,1} x [0,1]  if k=2
Ay = {09 | (Aig, digp) € Ry o B = (1} % [0,a1] € {0,1} x [0,1] ifk=3
(1} % (a1,1] € {0,1} x [0,1] if k=4

where ag and «q are chosen so that A, ..., A4 have similar sizes.
2: Calculate the median of the estimated propensity scores obtained from multiple cross-fitting
procedures, i.e.,
di .5 —
e = median PO (A, Ay ) € Ric| Xij, Xi )
where the conditional probability P®) is calculated from the estimated propensity score ob-

tained from the sth cross-fitting procedure.

3: Compare histograms of é?z(.?]fdian)(X,-) for A and Af, for each k.

Group 1 vs Group 2,3,4

Group 2 vs Group 1,3,4

Group 3 vs Group 1,2,4

Group 4 vs Group 1,2,3

- o o
© Group 1:[0.027,0.711] - Group 2:[0.077,0.412] - Group 3: [0.035,0.382] Group 4: [0.062,0.828]
Group 2,3,4: [0.009,0.691] Group 1,3,4: [0.083,0.400] Group 1,2,4: [0.026,0.390] Group 1,2,3: [0.027,0.839]
w - © © wn
< <
z o o -
[2]
c ™ - ® =
[0
= <+ <
o ~ A
- N N9 —
o - o - o - o -
- et e -
AN | | HI-—+—
r T T T T 1 r T T T T 1 r T T T T 1 T T T T T 1
0.0 0.2 04 0.6 0.8 1.0 0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 04 0.5 0.0 0.2 04 0.6 0.8 1.0

Figure A.6: Overlap Assessment. The numbers in brackets show the range of the estimated propen-
sity scores for each group.

of diarrhea in the entire block, say if a few WASH-less households are located near com-
munal water sources and they are primarily responsible for the diarrhea in the entire block.
For example, if the census block has 20 households and the true response model for each
household is E(Yj; ! Ai, X;) = Bo + Bi1An + B24i; + B X,j, e, every household j’s outcome
depends on household 1’s treatment status, then E(Y; ‘ A, X)) = Bo+ Br1Ai + BoA; + B?T)Yi
and Assumption (A4) is violated because the average response of block i depends on the
treatment status of household 1. Unfortunately, the data does not contain information about
the location of households to test these hypothesized violations of Assumption (A4). In-
stead, we visually diagnose the assumption by using a residual plot of the predicted values

of the mean block-level response versus the observed block-level response. Specifically, let
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Eg;nedian) =Y — ﬁ(median)(Aij,Zi(_j), Xij, Xi(—j)) be the residuals where p(median) s the me-

dian of the outcome regression from 100 cross-fitting procedures. We compare the residuals
across the outcome regression estimate and the regressors (Aij,ﬂi(_j), Xij, Xj(—j)) and check
whether the residuals deviate from zero in Figure A.7. Since the dimension of X;_;) varies,
we use the average of Xj_j), i.e., Yi(_j) = 0z Xie/(ni — 1). In general, the residuals are
close to zero across the regressors, implying that the outcome regression under Assumption
(A4) is not severely violated. That is, while the diagnostic is not perfect, we find the predicted
means do not show trends across the z-axis and Assumption (A4) could be plausible, subject

to inherent limitations of the diagnostic plot.

OR Estimate Ego HH's treatment Proportion of treated neighboring HHs Cluster size Urban/Rural
w | e v | o | « | v d v |
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Figure A.7: Residual Plots. The z-axis shows the outcome regression estimate fi(™edian) (top left)

and the regressors (4;, X;). The y-axis shows the residuals émedian). The red curves are smoothing
lines drawn for visual guidance. The blue dashed lines show the zero residual.

(A5) Finally, for Assumption (A5), many prior works (Esrey et al., 1985; Daniels et al., 1990; Clasen
et al., 2007; Ejemot-Nwadiaro et al., 2015; McMichael, 2019) suggest that installing WASH
facilities will not have a negative impact on incidence of diarrhea; however, it may have a
negative effect on other, non-health outcomes. Also, when we empirically assess Assumption
(A5), we find that the monotonicity assumption is rarely violated in the Senegal DHS and if
violated, the deviation from monotonicity is small. Specifically, we first consider the difference

between two cluster-level outcome regressions:

/ 4
V<a7 a/7878/) _M<a/7é:I_aXi> —/,L<a,n‘81,Xi> ) ﬂ(aaa/7Xi) = iZII’L(CL:O’/:—X’L‘ja‘Xi(fj)) :
i =
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In particular, we focus on the variations contrasting two adjacent outcome regressions. As
a consequence, there are 3n; — 2 finest variations where n; — 1 variations have the form
V(0,0,s,s 4+ 1), n; — 1 variations have the form V(1,1,s,s + 1), and n; variations have the

form V(0,1,s,s); see the diagram below.

‘/2(0707071) ‘/7«(0707172)

B0, 5, X)) R w0, X)) TR (0, 2=, X;)
V;(0,1,0,0) ~L Vi(0,1,1,1) \L Vi(0,1,n;—1,n;—1) \l/
ALt x) MY g x) T AL 551 X)

In the Senegal DHS, we have Y1 | (3n; — 2) = 38614 variations in total. Let XZ(t)(a, a,s,s)
be the estimated variation of cluster ¢ obtained from the tth cross-fitting procedure, and let
‘Z(m)(a, a',s,s') be the median of the variation, i.e.,

~ ~

V;(m)(a, d,s,s') = median {XA/i(l)(a, a,s s, ..., Vi(S) (a,d, s, 3’)}
Assumption (A5) can be empirically assessed by two means. First, out of 38614 variations,
we count the number of times monotonicity is violated. Second, we measure the worst-case
slope of the estimated p as follows. Let TV;(a,d’, s,s’) be the absolute value of V;(a,d’, s, s).
Thus, the sum of 38614 T'V;(a,d’,s,s’) is the total variation of the cluster-level outcome
regression. We compute the relative magnitude of the slopes that are decreasing compared
to the total variation, i.e., > 1(V < 0)TV/> TV. Overall, under the first assessment, we
found that the monotonicity is violated 1.11% of the time and under the second assessment,
the relative magnitude of decreasing slopes is 6.01 x 10~%. In short, the empirical validations
show that the monotonicity assumption is rarely violated in the Senegal DHS and if violated,

the deviation from monotonicity is small.

A.14 Details of Figures 5.2-5.4 of the Main Paper

We additionally describe how we draw Figures 5.2-5.4 of the main paper. The reported estimated
MRTPs in Figures 5.2 and 5.4 are weighted average of the estimated MRTPs in each administrative
region where weights are the number of households in a census block, i.e., census block size n;. That
is, the values represent ggs, which are defined as

7 Y ieDynrs 117 € administrative area g} - n; - O(x;)
g =

Y ieDaors 17 € administrative area g} - n;

where Dag1g is the collection of census blocks in the 2018 Senegal DHS. In words, 6, is the pro-

portion of households in administrative area g that require WASH facilities. Similarly, the average
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household sizes in Figure 5.4 of the main paper represent

B Zi€D2018 1{i € administrative area g} - n; - Z; Household Size

jg,Household Size —

Y ieDaors 17 € administrative area g} - n;

. o . . ng
B ZiEDQ(ns 1{i € administrative area g} > 721 Tij Household Size

> ieDaors {7 € administrative area g} - n;

Again, Z4 Household Size 1S the average household wise in administrative area g. The proportions of

rural area in Figure 5.4 of the main paper represent

ZiED2018 1{i € administrative area g} - ¢; Rural

g,hura

Here €, Rural is the proportion of the rural census blocks in administrative area g. Note that @Q,
T4 Household Size; and Cg Rural do not address the geographical distance between census regions in
different administrative areas. But, we believe that these statistics are geographically meaning-
ful summaries to highlight the heterogeneity across administrative areas; see Figures 1 and 2 of
Houngbonon et al. (2021) for similar summary statistics aggregated at Senegalese administrative
areas.

Lastly, Figure 5.3 of the main paper shows the weighted average of the estimated MRTPs across
all 45 administrative areas where weights are the number of households in a census block, i.e., census

block size n;. That is, the y-axis represents 0, which is defined as

ZiEDmns i 9(331)

0 =
ZiE'DQ()lg g

In words, 6 is the proportion of households in Senegal that require WASH facilities.

B Proof of Lemmas and Theorems

B.1 Useful Lemmas

Lemma B.1. Suppose that 8* belongs to a Besov space on RY with smoothness parameter 3 > 0,
i.e., Blﬁvoo(Rd) = {0 € Loo(RY) | sup;~g t*B{wnLl(Rd)(H,t)} < 00,1 > B} where wy is the modulus
of continuity of order r. Then, for any positive €,p, T satisfying d/(d + 1) < p < 1, we have the

following excess risk bound ofé\ with probability not less than 1 — 3e™ 7" :
1
R(@ — R(@*) < cl)\N’Y;/d + czyjﬂv + c;z,{’yﬁfp)ﬁﬂ)d/\f,’vN} P L NV L Ny

Lemma B.2. Let ﬁ(_g)(ﬁ) = E{E(_g) (0(Xi),0;) | D5} be the estimated risk function where the
expectation is taken with respect to O; while E(_g) is considered as a fixed function which is clarified
by denoting Df in the conditioning statement. Let el = {f ‘ f(x;) € [0,1]} be the collection of
policies ranging over the unit interval. Under Assumption (A1)-(A5) and (E1)-(E3) of the main
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paper, we have ‘R(G) — ﬁ(,g) (9)‘ < 0.5¢ern with probability greater than 1 — Ay for any 0 € ©0:1
where cg is a fized constant, 1y = re n if the inverse probability-weighted loss function is used,
ry = 1uN if the outcome regression loss function is used, and rn = re yry N if the doubly robust

loss function is used.

See Sections B.3 and B.4 for the proof.

B.2 Proof of Lemma 3.1 of the Main Paper

We only show the result about the overall outcome case because the result about the spillover
outcome case is obtained from a similar manner. Let ©01 = {f | f(z;) € [0,1]} be the collection
of policies ranging over the unit interval and W(6) € ©[%1 be the winsorized function of § € ©

over the unit interval, i.e.
W()(z;) =0-1{0(x;) <0} +60(x;) - 1{0 < O(a;) <1} +1-1{1 < b(x;)} .

From the definition of L, we find L(0, O;) < L(t, O;) for any t € (—o0,0) and L(1,0;) < L(t, O;) for
any ¢ € (1,00). As a consequence, for any policy 6 € © satisfies L(W(0)(X;),0;) < L(0(X;), 0;)
and ROWV(#)) < R(6). This implies that ¢’, the minimizer of R, must belong to %1,

For any function § € O we find L(0(X;),0;) = v(0(X;),0;) and R(§) = RO () =
E{I/(G(XZ‘), OZ)} due to the constructions of L and R. Combining the above results, we observe
the following relationship.

arg min R(#) = arg min R(#) = arg min R[OJ}(Q)
6co 9celo.1] 9ecol0,1]

Thus, it suffices to show that 6* defined in equation (6) of the main paper minimizes RI%!| which
is represented as follows.

R (9) — Cy
=E{v(0(X:),0:)} — Co

ng 1 n;—1 n;—a—s } l+a+s+1

ni—a—s 0(
=E nilzz Z < 1>¢DR(Q757O”’,O¢(_]-)) Z < ’ > E{+CL+S+ 1 — T{Q(Xl)}:|

j=1a=0 s=0 £=0

n

=E / [nllzlz Z < )E{wpr{ a,s,0i5,0i_j) | Xia (1 —a)™ 77" - ]Jl{a<0 }da}

j=1a=0 s=0

—F / {nzﬁ:s—f( ) (“vms_leifaXz’(j>>as(1—a)”"_"‘s—T}l{aﬁﬂ(Xi)}da]. (4)

j=1a=0 s=0

The first and second identities are trivial from the definition of RI%! and v. The third identity is
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from the law of iterated expectation and the following algebra:

M iy —a—s (—1)ftratstl
H(O: COT
() Z ( 14 > l+a+s+1 T

£=0
- /0 {H(O)a*(1—a)y ==~ T} da
- /O1 {H(Oi)as(l — )T T}]l{a <tlda, YH(O;) , "te[0,1] .

The fourth identity is from E{?/)DR(a, 5,045, 05—jy) ‘ Xl} = ,u*(a, Xl], Xi(—j)) fors =0,1,...,n;
1; we remark that any ¢’ satisfying E{¢/(a, s, O, Oi—j) ‘ X} = pr( Xij, Xi—j) (e.g., in-

verse probability-weighted or outcome regression-based) can be used instead of ¢Ypr. From the

7 n@_l?

monotonicity condition (A5), it is straightforward to check that the following sets are intervals if
they are non-empty:

n; 1 n;—1

S_(Xi) = {a ;ZZ Z (nl N )E{IZJDR a,s OU,O }X }a —a)hT < T}

j=1a=0 s=0
1 n;—1

S+(X;) = {a iiz Z <nZ B )E{T/JDR a, 8,0, 04— }X }a — )T > ’7'} )

]1@050

Since S_(X;) and S4+(X;) are non-overlapping intervals, we establish that sup S_(X;) and inf S; (X;)
are equivalent. If S_(X;) and S (X;) are empty, we define S_(X;) = {0} and S+ (X;) = {1}, re-
spectively. In these cases, we also establish that sup S_(X;) and inf S;(X;) are equivalent as 0 or
1, respectively. We remark that, without the monotonicity condition (A5), these two sets may be
disconnected sets, i.e., not intervals, and we cannot establish that sup S_(X;) and inf S; (X;) are
equivalent.

The last representation (4) suggests that that R(#) is minimized at 6’ where #'(X;) =
supS_(X;) = inf S (X)), ie.,

n; 1 n;—

722 Z <m . )E{wDR a, s, 0ij, Oy ‘X }a —a)" T < T foralla € [07 el(Xi)] )
j=1a=0 s=0

n; 1 n;

ZZZ(“F )E{wDRaSOWO )| Xitas(1— ) > T foralla € [0/(X;),1] .

]1@050

As a consequence, 6’ agrees with 0, defined in (6) of the main paper. We can establish the result

about ¢, by fixing a = 0. This concludes the proof.

B.3 Proof of Lemma B.1

We only show the result about the overall outcome case because the result about the spillover

outcome case is obtained from a similar manner. The proof of B.1 is similar to that of Theorem 2
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of Chen et al. (2016) which use Theorem 7.23 of Steinwart and Christmann (2008) and Theorem
2.2 and 2.3 of Eberts and Steinwart (2013). For completeness, we present a full exposition to our
setting below. We first introduce Theorem 7.23 of Steinwart and Christmann (2008).

Theorem 7.23. (Oracle Inequality for SVMs Using Benign Kernels; Steinwart and Christmann
(2008)) Let L be a loss function having non-negative value. Also, let Hx be a separable RKHS of
a measurable kernel K over X = supp(X;) C R? Let P be a distribution on O;. Furthermore,

suppose the following conditions are satisfied.
(C1) For all (¢, 0;), there exists a constant B > 0 satisfying L(¢,0;) < B.
(C2) L(t,0;) is locally Lipschitz continuous with respect to t.

(C3) Forall (¢, 0;), we have L(W,, (t), 0;) < L(t, 0;) where W, (t) = t-1{|¢| < co}+sign(t)co-1{co <
t]}-
(C4) E[{LWe (0)(Xi), 0:) — L(67(X,),0,)}°] <V - [E{L(Weo(6)(X,), O;) — L(6%(X,), 0;)}]"

is satisfied for constant v € [0,1], V' > B2, and for all § € Hy.

(C5) For fixed N > 1, there exists constants p € (0,1) and a > B such that the dyadic entropy
1
number Ep, _py [e; (identity map : Hx — Lo(Dx))] < a-i 2 (i > 1) where ¢;(A) is the

entropy number of A.

We fix 0y € Hx and a constant By > B such that L(90 (x;), oi) < By for any o;. Then, for all fixed
7> 0 and Ay, the SVM using Hx and L satisfies

(0], + R(Weo(0)) — R(67) (5)

72V7‘> = N 15ByT

. a2 \ ot
§9{)\NH90}|;K+R(6’0)—R(9)}+K0< ) +3(N i

NN
with probability PV not less than 1 — 3e™", where Ky > 1 is a constant only depending on p, ¢,
B, v,and V.

We verify Assumptions (C1)-(C5) as follows:
Verification of Assumption (C1): From Assumptions (A1)-(A5) and Y; € [0, 1], we find that
Y1Pw, Yor, and ¥pgr are bounded and, as a consequence, v in equation (9a) of the main paper is

bounded. As a result, L in equation (9) of the main paper is bounded as well.

Verification of Assumption (C2): We find the derivative of L in equation (9) of the main paper
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is
et t € (—o00,0)
VL(t,0;) = ¢ S0 abe(s,00)t(1 =)= =T t€(0,1)
Sel=t t € (0,00)
and we find that VL(t,O;) is bounded for all ¢ except t = 0,1. Moreover, L(t,0;) is continu-

ous at t = 0 and t = 1. Thus, L(t,0;) is locally Lipschitz continuous with Lipschitz constant
B’ = sup o,) VL(t, 0;).

Verification of Assumption (C3): We take ¢y = 1. It is trivial that L(W,,(6),0;) < L(6,0;)

from the form of L in equation (9) of the main paper.

Verification of Assumption (C4): Note that L(t,0;) < B. Thus, we find
E[{L(Wa(6)(X:), 0:) = L(6°(X:), 0)}] < 2B[{L(Wan(6)(X:), 0) } + {L(6"(X),0,) }] < 4B* .

We take v = 0 and V = 4B? and the condition is satisfied.

Verification of Assumption (C5): Since we use the Gaussian kernel, we can directly use Theo-

rem 7.34 of Steinwart and Christmann (2008) which is given below.

Theorem 7.34. (Entropy Numbers for Gaussian Kernels; Steinwart and Christmann (2008)) Let
v be a distribution on R? having tail exponent 7 € (0, 00]. Then, for all € > 0 and d/(d+7) < p < 1,

there exists a constant c;, > 1 such that

. . _(-p(+ed 1
€; (1dent1ty map : Hx — Lg(y)) < Cepy 2p ¢ 2p

for all > 1 and v € (0, 1].
_(=p)(d+e)d
Therefore, Assumption (C5) holds with a = ccpyy %
As a consequence, the result in equation (5) holds with cg = 1, v =1,V =4B? By = B, a =

_(=p)(d+e)d

CepYn 7. Moreover, we find LOW(0)(x;),0;) < L(Wey=1(0)(;), 0;) since L(0,0;) < L(t, 0;)
for t € [-1,0] and this leads ROW(0)) < R(W,y=1(0)). Thus, we find the following result holds
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with probability PV not less than 1 — 3e™7.

R(®) - R(®") ©
< R(We=1(0)) — R(67)
< M[6][3, + B(Weo=1(6)) — R(67)

> RAPHd ) 2L = _
< 9{An|00][3, + R(0) — R(6%)} + KO{APNN} +36V2B, [+ + 1B -

The above result holds for any 6y € Hx, so we can further bound the approximation error
)‘NH‘%H?{K + R(Go) — R(G*) by choosing 6y in a specific way which is presented in Eberts and
Steinwart (2013). We first define a function Q, : RY — R as

0 =3 ()L (2) k). B0 —e(— 21 @

=\ J4\

for r € {1,2,...} and v > 0. Since the range of #* is bounded between [0,1], we find 6* €
La(RY) N Lo(R?). Thus, we can define 6y by convolving Q.. with §* as follows (Eberts and
Steinwart, 2013).

(1) = (Qur  07) (1) = /R Qi — )0 (=) dz

Next, we introduce theorem 2.2 and 2.3 of Eberts and Steinwart (2013).

Theorem 2.2. Let us fix some g € [1,00). Furthermore, assume that Px is a distribution on
R? that has a Lebesgue density fx € Lp(Rd) for some p € [1,00]. Let 6 : R* — R be such that
0 € Ly(RY) N Loo(RY). Then, for r € {1,2,...},7 >0, and s > 1 with 1 = 571 + p~!, we have

HQTKY * 9 — GHiq(PX) S qu . HfXHLp(]Rd) . wg,qu(Rd)(0’7/2)

where C. 4 is a constant only depending on r and gq.

Theorem 2.3. Let § € Ly(R?), Hx be the RKHS of the Gaussian kernel X with parameter
v >0, and Q,~ be defined by (7) for a fixed r € {1,2,...}. Then we have Q,~ * 0 € Hy with

oz *HHH,C < (W) 2 (27 - 1)H0HL2(R‘1) :

Moreover, if § € Loo(RY), we have |Q,. * 0] < (27 — 1)”9HL (RY)"

[SI[o8
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As a result, we obtain

A[fo 3, + R(60) = R(67) (®)
= M| @ray % 0"y + B(Qron +67) = R(E)

< A (/) "2 = 110717 gy + R(Qry % 07) — R(67)

< (/) "2 = 110717y + BT 1@ 67 = 61 oy

< (mvm) 2T - 1) HH*HiQ(]Rd) + B Cry - | x| ey - i ey (0:78/2)

< Av(wwvm)” (2r - 1) He*Hig(Rd) + B¢ G HfXHLOO(Rd)VJ%

The first equality is from the construction of @y. The first inequality is from Theorem 2.3 of Eberts
and Steinwart (2013). The second inequality is from Lipschitz continuity of L. The third inequality
is from Theorem 2.2 of Eberts and Steinwart (2013) with ¢ = s = 1 and p = co. The last inequality

holds for some constant ¢ since §* € Bﬁ « (R%) implies Wy L, () (07,78 /2) < ¢ ’y]ﬁ\, from the definition

of a Besov space. Combining the results in (6) and (8), we have the following result

R(O) ~ 7(0") < 900w (/) (2 = D2J0° 2, gy + B Crn- fomdnfv}

1

7—(1—p)(1+6)d o T3

1
< et + e + 03{7](\} ~P)1+ad Ag’vN} TP L NTV22 e N

B.4 Proof of Lemma B.2

We only show the result about the overall outcome case because the result about the spillover

outcome case is obtained from a similar manner. We find the following result for ¢ € [0, 1].

‘E(_g) (t,0;) — L(t, Ol)

- ‘a(_f) (t,0:) — v(t, 0;)

n; 1 n;—1 n;—a—s Lil+a+s+1
1 n; — ni—a—s\ (—1)%
n ZZ( >{wk(a50”’0 ) = (0.5, 05, 0 ) 3 ( ¢ >(€+)a+s+1
Y j=1a=0 s=0 £=0
n; 1 n;—1 n;—a—s l+a+s+1
1 n;—a—S t
<ZZZ( )’1/}]&:(1807/]70 ])) @bk(aSOuaOz( ]))‘ Z ( / >€+a+s+1
7=1a=0 s=0 £=0
< max ’@Dk a,s O’Ljao ) Yr(a, s, OU’O( ))‘ (9)

(a,s)€{0,1}®{0,...,M}

for some generic constant C’. The last inequality is from ¢ € [0, 1] and bounded n;. Also, we find

the following result for ¢t € (—o0,0).

L ot,00) - Lt —0.

)| =|V-)(0,0;) — v(0,0;)
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Finally, we find the following result for t € (1,00) for all s =0,1,...,n;.

L_p(t,0;) — L(t,0;)

= [70(1,0) = v(1,0))

<’ DT A ‘W(a, 5,0ij, 0y—5) — Vi(a, s, 0ij, 05_j))

where constant C” is given in (9). Therefore, for any 6, we find

pg}
1/2
Dg}

Dk, 5,045, 04_j)) — nla 5,05, Oi_p)

9 1/2
i

E[ max
(a,5)€{0,1}®10,...,M}

<’ max H@Dk a,8,0ij, 0i_j)) — Vr(a, s, 045, O

(a,s)€{0,1}®{0,...,M} HPQ

The first inequality is from the definition of R. The second inequality is from the Jensen’s inequality.
The third inequality is from the above results. The last inequality is from the definition of || - || p2.
Therefore, it suffices to bound Hd)k a, 8, 0ij, Oi—jy) — Yr(a, s, 0ij, O
Y where k € {IPW,OR, DR}.

First, the difference between @Ipw and Yipw(a, s, 05, O;(—j)) is

H P2 for all three types of

‘wlpw a,8,0ij, 04_j)) — Yipw(a, s, Oy, Oy — ))‘
|Yul(Ay =a, S5 =) Yl(Ay = a, 8 = 9)
e (a, 5| X5) e*(a, 5| X5)
e*(a,8| Xi) — &g (5| X)|

e (a s Xi)er(a,s] X)
I (ons1X) ~Eoas| X))

- cc!

< Yy 1(Aij = a, Sj—j) = s)

The upper bound is from the bounded outcome and Assumptions (A3) and (E1) of the main paper.
Thus, we find the following result with probability greater than 1 — Ay:

[dpw(a, 5, 0ij, Oi—j)) — Yrpw(a, 5, 0ij, Oy Mpa < o He a,s | X;) = €p(a,s| Xi)|
< Crpw * Te,N(ay )

where Crpw = 1/(cc).
Second, we study the difference between {ﬂ\OR and Yor which is

[Yor(a, 5,05, 0y j)) — tor(a, s, 0, Oi_j)|
= |f-pa,s/(ni = 1), X5, Xi—j)) = 1" (a, s/ (i = 1), Xij, Xy )| -
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Therefore, we find the following result with probability greater than 1 — Ay.

Hq/;OR a,8,0ij, 04—j)) — Yor(a, s, Oij, Oy _j) HPZ

-~ * S
H(—p) (a,waXmXi(j)) —H <a’nil’Xij’Xi(j)>

where Cor = 1.

=COR " Tu,N
P2

Lastly, we prove the result when ¢¥pg is chosen. From (9), we have

—C' [¢DR(@ 5, 0ij, Oi(—j)) = Ypr(a, 5, Oij, Oy(— ))}

< E(ff)(taoi) - L(t, O; ) < c’ [wDR(a S O’Lj7 O ) wDR(a S Oz]voz( ]))
where the sign of C’ is chosen to satisfy the inequality above. The expectation of @DR — YpR is

{¢DR(a 5,04, 04_j)) — YoR(a, 5, Oij, Oy ‘Dg}

_ Yij = i—p(a, 757, Xij, Xi—j) Yij_”( @ i Xigs X)) 1(Aij = a, Si—j) = 5)
6(_ a,S‘Xi a,s‘Xi ] » Di(—j5)
~ S * ¢
+ -0 (a,ﬁyxz‘j;Xi(fj)) s (a’ =1 X X ) Df]
g| 1@t X, X)) — Ao(@ 757, Xig, X)) ye'(a 5| Xo)
e-pa,s| Xy)

—i—ﬁ(,g) (aa n; — 1’ XuaX( )) M*(a7 n; — 1 Xzvaz( ])) /Dg

o] 1@ 5 Xijy X)) = Ao (@ w2, Xij, Xi-p) He (a, s | Xi) —8-g(a,s| Xi)}
e(_ a,s‘XZ

p;] |

The equalities are straightforward from the definition of ¢pgr and the law of total expectation.

Since ¢ < €(—p), we find

| @ w1 Xy X)) = Reole 5, Xig X ) Heas | Xi) =8 p(as| Xi)} De
e(, a,s‘XZ» ¢

1 S - S ~ c

< EE ['M(aa m, Xijs Xi(—j)> — K(—p) <a7 ma Xij, Xi(—j)) e(a,s ‘ Xi) — €(- D@]
1. N s N -

< M(z)( S s Xij, X~ J)) (a,m_lyXij,Xi(j)> . e*(a,s | Xs) — ¢ pa

The first inequality is straightforward. The second inquality is from the Hélder’s inequality. From
the last line, we find E{wDR (a,s,0i5,05—j)) — Ypr(a, s, 0ij, Oy — }DZ} = Op(reNTuN). As a
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result, we have the following result with probability greater than 1 — Ay.

= ‘E{L(H(Xi),Oi) — Z(_z) (0(X3), 0;)

D5}
< max ’ {wDR(a s,0ij,04—j)) — Ypr(a, s, Oy, Oy _j) ‘DE}

(a,5)€{0,1}®{0,...,M}
[ 5, X ))—ﬁ(,@( X Xi)
< = max 7

" @0E0) | xlet(a,5] X))

L Q

P2

< CDR * Te,NTu,N

where Cpr = C/¢.
Combining the established results, we have the following results with probability greater than
1—An.

Crpw - Te,N if ¢Yrpw is chosen
‘R(H) - ﬁ“(%) (9)‘ <3 Cor- Tu,N if ¥oRr is chosen

CpR * Te,NTu,n  if ¢pR is chosen

This implies ‘R(@) — fi(_g) (9)‘ < 0.5¢cgry with probability greater than 1 — Ax where ¢cg = 2 -
max{Cipw, Cor,Cpr}, "N = ren if the inverse probability-weighted loss function is used, ry =
r,,N if the outcome regression loss function is used, and rny = r. y7, n if the doubly robust loss

function is used.

B.5 Proof of Theorem 3.1 of the Main Paper

We only show the result related to the overall outcome case because the result related to the spillover
outcome case is obtained in a similar manner. We start with defining the risk function and the
MRTP associated with the estimated loss function. Let ﬁ(_g)(ﬁ) = E{E(_Z) (0(X:),0;) | D§} be the
estimated risk function where the expectation is taken with respect to O; while E(,Z) is considered
as a fixed function which is clarified by denoting Dy in the conditioning statement. Accordingly, let
67_) be the approximated MRTP which is the minimizer of R(_y)(6), i.c., R_y)(0;_,) < R(_)(0)
for all § € ©. We remark that HE‘_Z) e 0l01] = {f ‘ f(x;) € [0,1]}, the collection of policies ranging

over the unit interval. Using 9(_ ¢ 38 the intermediate quantities, we can establish the excess risk

of /9\(,@).
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We decompose the excess risk as follows.

~ ~ ~

= |R(0) = Bioy(B)|+|Ro0i0) = Reo(070)| + |[Rin (070) - R(E")

(4) (B) (©)

In the rest of the proof, we bound terms (A), (B), and (C).
From Lemma B.2 of the Supplementary Material, we find the upper bound of (A) with proba-
bility greater than 1 — Ap:

B(G0) = R (O-)| < 05com

Next, we bound (B). Since E(_g) satisfies Assumptions (C1)-(C5) and 0(_y) belongs to a Besov
space Bﬁ o (]Rd), Theorem B.1 can be applied. Hence, the following result is satisfied with probability

greater than 1 — 3e™":

~

R0 (@) = Bin (67|
__1
< eIt e+ 03{71(v1_p)(1+6)d>\’]’vN} P L N2 o N

Lastly, we bound (C'). Since #* is the minimizer of R(0), we find

~

R(—K) (9?—@) = R(G?—z)) + E(—é) (9(*—@) - R(HEF—E)) > R(Q*) + E(—Z) (9?—@) - R(e?—e)) J

~

) < Ry (0*4)) — R(G*). Similarly, since 92:5) is the

and this implies E(_g) (92‘4)) — R(H* (

" (=0
minimizer of R(_y(0), we find

R(0%) = Ri_y) (07) + R(0%) — R_g(0%) > R(_y(07_p)) + R(0%) — R_)(67) ,

and this implies R(@*) — E(_g) (0*) < R(Q*) — ﬁ(_g) (9*

o)l Rg(07_) = R(0") < Ri_g)(67) —

-0
}-

From Lemma B.2 of the Supplementary Material, the right hand side of the above term is upper

R(G*). Combining two results, we have

R(_¢)(67) — R(6")

)

R (070) = R(O")| < max {| R (07_)) = R(O7_0)

bounded by 0.5¢gry with probability greater than 1 — A because 9?715)"9* e 00, Ag a result,
we find an upper bound of (C), which is ‘}AE(_Z) (9:_4)) - R(Q*)! = Op(ry). We remark that (A)
and (C) are both Op(ry) with probability greater than 1 — Ap. This concludes the desired result.
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