ARTICLE TEMPLATE

The convergence of a generalized convex neural network

Lei Chen?, Yilin Wangb, Yunhe Wu®, Lixiao Zhang?

#Kitchen & Water Heater Appliance Division, Midea Group, China; bCollege of Aeronautics and
Astronautics, Shenyang Aerospace University, China; ‘College of Information Science and
Engineering, Northeastern University, China

ARTICLE HISTORY
Compiled November 7, 2023

ABSTRACT

The convergence of neural networks is a central area of research that is essential in understand-
ing the universal approximation capability and the structural complexity of these systems. In
this study, we investigate a generalized convex incremental iteration method. This iteration
method is presented in a more general form than previous studies, and is capable of scraping a
broader range of weight parameters. Additionally, we systematically demonstrate the conver-
gence rate of the convex iteration. Our findings are also easily extensible to deep convolutional
neural networks, which helps to explain their effectiveness in various real-world applications.
Furthermore, we provide a discrete statistical perspective to address issues of input data non-
compactness and unknowability of the objective function in practical settings. To support our
conclusions, we propose two algorithms, namely back propagation and random search, the
latter of which can prevent the network from getting stuck in a local minimum during training.
Finally, we present results from several regression problems, which indicate that our algo-
rithms exhibit superior performance and are consistent with our theoretical predictions. These
results provide a more comprehensive understanding of the convergence of neural networks
and its significance in the universal approximation capability of these systems.

KEYWORDS
Generalized convex iteration; convergence rate; universal approximation; neural networks

1. Introduction

Deep neural networks (DNNs) have become a popular topic of research due to their excep-
tional performance in a wide range of tasks [1-3]. Despite their success, the complex and
deep structures of DNNs often elude clear mathematical explanations. A commonly cited
reason for the outstanding performance of DNNS is their universal approximation capability,
which enables them to approximate target functions with high accuracy [4-18]. This capabil-
ity has been extensively studied in the literature and it has been shown that a well-designed
neural network with an increased number of hidden neurons can lead to an approximation
of the target function. However, researchers are also concerned with the convergence rate of
DNNs. The convergence rate is important as it allows for the estimation of the size of the
network, and for determining the optimal balance between computation burden and target
accuracy. Furthermore, the convergence rate can serve as an indirect verification of the uni-
versal approximation capability of DNNs. Many theories have been proposed to study the
convergence rate of DNNs, with many of them based on the classical convex structure, as

CONTACT A. N. Author. Email: chenlei92 @midea.com

they possess desirable mathematical properties in function space [12,19-21].

This paper presents a comprehensive examination of a generalized convex incremental
neural network. Building on the work presented in [21], we provide a thorough proof of the
convergence rate for a more general form of the convex iteration than the one previously dis-
cussed in [21]. Our theory offers a wider range of options for the convex iteration, and several
previous convex design structures are shown to be special cases of our theory. Additionally,
networks that utilize our theory exhibit the same convergence rate. From the perspective of
universal approximation, our theory reinforces the universal approximation capability of sin-
gle hidden layer neural networks. Although single hidden layer neural network structures are
not currently prevalent in the field, our conclusions can be easily extended to deep neural
networks, including convolutional neural networks. It is known that deep convolution has a
larger receptive field than shallow convolution, and as the number of layers in a convolutional
neural network increases, the deep convolutions can cover the entire input range. In other
words, these deep convolutions function like single-layer fully connected networks, making
our research relevant to deep neural networks as well. Furthermore, our convergence rate the-
ory also helps explain why single hidden layer neural networks are able to perform universal
approximation.

In order to validate our theories, it is imperative to provide supporting algorithms that can
be implemented in practice. Based on our theoretical descriptions, it is necessary to calculate
the minimal residual error of target functions at each step. However, due to the incomplete-
ness of input data and the unpredictability of objective functions in real-world applications,
it is infeasible to obtain an exact mathematical expression of the minimal residual error. As
a result, we also provide discrete form descriptions of our theories, utilizing limiting inputs
to approximate the minimal residual error. To showcase the effectiveness of our generalized
convex iteration algorithm, we implement it using two methods: back propagation (BP) and
random searching. The random searching method does not require the calculation of gradient
of activation functions, which enables it to circumvent the limitations of local minima, van-
ishing gradients, and exploding gradients associated with BP. Despite the fact that the input
data may not encompass the entire input space, our generalized algorithms still exhibit good
performance in various regression problems, and the overall testing errors decrease as the
number of hidden neurons increases. All simulation results are consistent with our theories.

This paper is structured as follows. In Section 2, we provide an overview of fundamental
concepts related to function space, including a convex incremental iteration and a classical
convex convergence lemma which serve as the foundation for the subsequent sections. In
Section 3, we present the generalized convex iteration and provide a detailed proof of its
convergence rate. To address the practical challenges of incomplete input data and unknown
objective functions, we present corresponding discrete approximation theories in Section 4.
In order to validate our proposed theories, we implement them using backpropagation and
random neuron searching methods in Section 5. The performance of our method is evaluated
using a variety of classical regression problems in Section 6. We conclude with a summary of
the main findings and suggestions for future research in Section 7.

2. Preliminary

A single hidden layer neural network with n neurons is denoted as f,(x) =
Yo, cig(wi, by, x), where w; is the hidden neuron weight, b; is the hidden neuron bias,
a; is the weight connecting the i-th hidden neuron to the output neuron, g is the activation
function and g(w;, b;, x) is the output of the i-th hidden neuron for the input x.

We say that a function f is integrable, ie., || f||* = [y [f(x)||*dx < oo, where X is

a compact subset in the d-dimensional Euclidean space R?. Let f,, denote an incremental
convex feedforward neural network with n hidden neurons, i.e.,

fn = Cann—l + Qngn (1)

where 0 < o, < 1, @, = 1—q,, and a; = 1. The below lemma demonstrates the convergence
rate of a specified convex iteration (1):

Lemma 2.1. [21] Let G be a subset of a Hilbert space H, with ||g|| < B for each g € G. Let
m = infpeeoq) [|[F — fll, where f € H and co(G) is the convex hull of G.

Then for every ¢ > v/ B? + m?,
I = Fll Sm+ =
_ m-4 —
n — \/ﬁ
where f,, n=1,2,---, is any sequence chosen to satisfy

Ifv = FII? < inf |lg = fII* + &1
geG
and, forn > 2,
an - fH2 < inf ||anfn—1 + ang — f||2 +én
geG

2

— _ 2_RB2__
where o, = ”Tl, ay = % and g, < CBTm.

Lemma 2.1 provides a theoretical framework for determining the convergence rate of a
specified convex neural network. Motivated by Lemma 2.1, we propose to expand the range of
parameter selection for the convex iteration, while maintaining the same level of convergence
rate. Additionally, it should be noted that the calculation of an infimum is required for each
iteration. However, in real-world applications, the objective function is often unknown, and
the exact integral expression is difficult to calculate due to the incompleteness of input data.
To address this challenge, this paper presents an alternative implementation solution.

Definition 2.2. The hidden neuron {g, = g(w,, by, x)} is said randomly generated if the
corresponding parameters (wy,, b,) are randomly generated following the uniform distribu-
tion probability.

The above definition is utilized to generate a set of hidden neuron weights for the random
searching algorithm.

3. Generalized Convex Networks

In this section, we will prove a kind of generalized incremental convex iteration with the same
convergence rate as that of Lemma 2.1.

Theorem 3.1. Let G be a subset of a Hilbert space H, with ||g|| < B for each g € G.
Let m = infpeeoq) | B — f, where f € H and co(G) is the convex hull of G. For every

¢> (p+1)VB?+m?and p > —1, there exists a sequence f, = frn—1 + Qngn such that

Cc

NG

[fn = FI <m+

n—1 — _ p+l
= and o, = nip

where oy, = nTp

Proof. Similar to the proof of Lemma 2.1, for any « € [0, 1], we have

inf |lan " + ag — fII? < @®|F = fII? + 20am||F — f|| + a*(B? + m?) 2)
g
where @ = 1 — .

Set o, = Z—jrl and o, = %. When n = 1, we obtain a; = 0 and &; = 1, so equation

(2) naturally holléls.
When n > 1, for any ¢ > —1, we have o, € (0,1) and &, € (0,1). Assume that the
desired inequality holds for f,_1, i.e.,

C

Vn—1

Based on Lemma 2.1 and (2), for the n-th iteration, we have

| fro1 — fII? < (m+)? 3)

an - f“2 S ;Ielg Hanfnfl +04_ng - f“2 +én
< apll a1 = fIP + 2an@nm| fo1 — fI| + @ (B +m?) + &,
(n—1) 2, ,(n=1)(p+1)
= 7 o llJn—-1— + 22— n—1 —
(n+p)2‘|f 1 f” (n+p>2 me 1 f“
(p+1)°
+m(32 —|—m2) +€n

With equation (3), the above formula can be modified as

o (n-17(e -1+l [c
=117 < (n+p)2< +x/n—l) 2 (n+p)? < " n—1>

+éiigz (B2 +m?) + ey
[)], (DRt - Dt
- { (n+p)? }“ { (ntp)Pvn 1 }

n—1 2 (p+1)>
(n + p)? (n+p)?
m2(n—1+p+1)2 2mc[(n—1)2+(n—1)(p+l)]
(n+p)? (n+p)2v/n—1

n— 2
e g ()
2 vn—1 n—1 2+(p~|—1)2

ntp | (n+p2 | (n+p)?

(32 + m2) +én

IN

(B*+m?) + e, 4)

For the second element in the right equation (4), we set hi(p) = Vnz_pl, thus hq(p) is

mono-decreasing function for p. When p = 0, h(0) = Y=L < L 5o for any p > 0,

n n’
1

hi(p) < NG then when p > 0, equation (4) can be modified as

)
l
—_

e

2c n—1
— 7 < m?P+—=m+ 2+
Ifn = FI7 < Vn (n+p)? (n+p)

5 (32 + m2) +éen (5)

So for any p > 0 and the third element in the right equation (5), we set ho(p) = ﬁcQ +
% (B% 4+ m?), so we have
20+ 1)(B2+m?)(n+p)* 2[(n—1)+ (p+1)*(B* +m?)]
(n+p) (n+p)*
2(71 -1) [(p +1)(B% +m?) — 62]
(n+p)3

ha(p) =

When ¢ > (p + 1)(B? + m?), ha(p) < 0, thus ha(p) is a mono-decreasing function.
he(0) = w, so when p > 0, equation (5) can be modified as

n2

2¢ n—1)c? + B2 + m?
= £ < o o4 =2 ten ©
< 2_B2_m?
nZ

Since ¢,, < , equation (6) can be modified as

2c n—1+B24+m?2 & —B2-—m?
Ifo = FI? < m2+—m+<) +

vn n? n?
2, 2c n c?
= m°+—=m+ —
vn n
2
= m —_—
(%)
So we have
c
an_f” < m+%
The theorem is proved. O

Remark I: The convex iteration Z—;} frno1+ n%rl g in Lemma 2.1 can be regarded as a spe-
cial case for the generalized convex iteration in Theorem 3.1, where we add a parameter p
to enlarge the whole iteration parameter range. In [22], the similar generalized convex con-
vergence rate is analyzed, but our convex structure is wider than its. Our Theorem 3.1 takes
a novel proof, which enlarges the scope of convex iteration p > —1, which allows a wider
freedom selection of p. Moreover, we present a new convergence rate without the square
expression so that the whole expression is simpler.

If co(G) is dense in Hilbert space H or target functions located in co(G), we naturally
obtain m = 0, i.e., lim,,_, || fn. — f|| = 0. So we naturally obtain the following corollary:

Corollary 3.2. If co(G) is dense in Hilbert space H or target functions located in co(G),
ie, f € co(G), then for every ¢ > (p+ 1)B and p > —1, there exists a sequence f, =
Omfn—l + angn such that

C
[fn = fII < NG

where o, = Z—jr}l), Qy, = % and ||g|| < B.

Remark 2: Corollary 3.2 illustrates the universal approximation capability of neural net-
works from an alternative perspective. The similar density condition can be found in previous
studies such as [17,18,20]. Our conclusion is consistent with previous studies, providing fur-
ther evidence for the universality of neural networks.

Remark 3: Theorem 3.1 and Corollary 3.2 can be easily extended to deep convolutional
neural networks, as a deep small convolution is equivalent to a shallow big convolution. For
example, a two-layer 3x3 convolution is equivalent to a one-layer 5x5 convolution. In a tra-
ditional single hidden layer neural network, the input is a d-dimensional vector. However,
by using enough deep layers of 3x1 convolutions to construct the network, the entire input
range can be covered, effectively functioning as a single hidden layer neural network. Thus,
our theories provide a clear explanation for the universal approximation capability of deep
convolutional neural networks.

4. Discrete Approximation

In the previous section, we provided a theoretical proof for the convergence rate of neural
networks in Theorem 3.1. However, in practical applications, obtaining precise representa-
tions is difficult due to the incompleteness of input data and the unknown nature of objective
functions. To address this, we provide an indirect demonstration of the convergence rate of
neural networks. Our theorem provides a mathematical expression for convergence, however,
obtaining the infimum inf pc o) || £ — f|| is not always possible. To validate our conclusion,
we use random searching methods to approximate the infimum. In this section, we first intro-
duce definitions related to the inner product representation of discrete data and the random
neuron description, and then provide a discrete convergence description.

Definition 4.1. [23] We assume that K inputs follow a uniform probability distribution, and
for u, v € L?(X), the inner product (u, v) is defined by (u,v) = [u(x)v(x)dx. Its discrete
representation is defined as

K

(u(x),v(x)) = Hm Y u(x;)v(x;)

K—o00 4
=1

Subsequently, we utilize the random searching method to approximate the minimum resid-
ual error and construct the entire iteration process.

Theorem 4.2. Assume the inputs {(x;,i = 1,2,--- , K} generated with a uniform probabil-
ity distribution, where K is the number of training samples. Let G be a subset of a Hilbert
space H, with ||g|| < B for each g € G. Let m = infpc.oq) [|F — fl|, where f € H and

co(G) is the convex hull of G. For every ¢ > (p + 1)V B%2 +m? and p > —1, there exists a

sequence fn = o fn_1 + Qpngy such that

K
. 2 2
lim Y (falxi) = f(x:))? = m?| =0 (7)
n,K—oco Py
where o, = Z—_T_IIJ and &, = %'

Proof. Formula (7) can be modified as

K
odim ; (Fulx:) — F(x:))? — m?
K
n}?ilooz_:f"xl P = Nfa = LI + i [S = 1 = m?|

Based on the above definitions, we have

K
Jim ;m(xn = F))* = fn = 1P| = ®)
1=
Based on Theorem 3.1, we know
lim || fn — fl| —
n—oo
ie.,
lim ||f, — f|* —m*=0 9)
n—oo
Combining formula (9) and formula (8), we naturally obtain
K
im 137 (i) = i) —m?| =0
=1
The theorem is proved. 0

Similarly, if co(G) is dense in the Hilbert space H, or if the target functions are located
within co(G), we can infer that m = 0. This leads to the following corollary:

Corollary 4.3. Assume the inputs {(x;,i = 1,2,--- , K} generated with a uniform proba-
bility distribution, where K is the number of training samples. If co(G) is dense in Hilbert
space H or target functions located in co(G), i.e., f € co(Q), then for every c > (p+ 1)B
and p > —1, there exists a sequence [, = qp fn—1 + Qngn such that

K
tim S (falxi) = f(x0)%) = 0
’ i=1

Wy Gn = b and |lg]| < B.

where o, = njrp, ntp

Remark 4: Theorem 4.2 and Corollary 4.3 provide discrete convergent descriptions for the
case where input data satisfies a uniform distribution, thus allowing for the construction of
the entire network using limiting input data. However, it should be noted that this assumption
is often not satisfied in practical scenarios due to input uncertainty. Nonetheless, numerous
simulation results demonstrate that the networks constructed using our proposed methods can
achieve good performance despite input uncertainty, thus providing evidence that our theories
are robust. In the following section, we will present our algorithm based on these theories and
demonstrate its effectiveness through experimental results.

5. Algorithm Implementations

Based on the theories presented above, the entire network is constructed using a generalized
convex iteration. For each new added hidden neuron, it is necessary to find the minimum
residual error inf jeg ||, F + &g — f||?. There are two methods to obtain this minimum value.
One is to use the traditional backpropagation (BP) algorithm to find the optimal weights
for g,,. The other is to approximate the optimal weights by calculating the residual error
for randomly generated group weights. In the following sections, we will provide detailed
descriptions of the implementation of both methods.

5.1. Algorithm Based On Back Propagation(BP)

In this section, we will utilize the backpropagation (BP) algorithm to update the network
weights. For a newly added neuron g,, we first freeze the weights of the previous hidden
neurons g;,¢ = 1,---,n — 1. The network is then constructed using our proposed con-
vex iteration. Next, input data is used to obtain predicted outputs. Finally, a loss function
is constructed by comparing the predicted outputs and the actual outputs. Since the previous
weights have been frozen, the BP algorithm only updates the newly added neuron g,,. The
entire pseudo-code for this process is described as follows:

5.2. Algorithm Based On Random Searching

In this section, we propose an alternative method to obtain the minimum residual error, which
addresses the complexity of the backpropagation (BP) algorithm. For a newly added neuron
gn» a group of weights w and b’ are randomly generated, where i = 1,--- , K and K > 1
is a hyperparameter. The larger the value of K, the more likely we are to approximate the
minimum residual error. The following is the pseudo-code for the algorithm:

When comparing the above methods, it can be seen that our proposed random searching
method is superior to the traditional backpropagation (BP) algorithm. This is due to the fact
that BP may cause the entire network to converge to a local minimum, and the issues of van-
ishing and exploding gradients can make the network difficult to train. Our random searching
method addresses these shortcomings, making it a more effective method for network train-
ing.

6. Experiments

In this section, we apply our algorithm to a variety of regression problems in order to verify
our conclusions. However, due to the length constraints of the conference paper, we have

Algorithm 1 BP Algorithm Implementation

For the training data {(x;, ¥;)i=1,.. K }» We preset several super parameters: the last expected
accuracy ¢, the early stop maximum hidden neuron number ny,,x, any bounded nonlinear
activation function g, trial times k£ and any p > —1:

(1) Initialization: Set the beginning hidden neuron number as n = 0, the initial error
E = [y1,--- ,yk]T is the original data output, and F' = [fy,---, fx]|” is the target
vector of the target function and G = [g(1),- - - , g(K)]T is the activation vector of the
new neuron for all the K training samples.

(2) Learning step:
while n < npyax and || E|| > €

(a) Add one new hidden neuron: n = n + 1.
(b) Based Theorem 3.1, set the output weight o, = Z—jﬂly and recalculate all existing
hidden neuron weights:

a=ap- o, t=1,--- n—1

(c) Frozen previous hidden neurons.

(d) Finding new optimal neuron weights

(e) Randomly generate new added neuron weights (w,,, b,) and update G.
(f) Construct loss function loss(w,, by,)

loss(Wp, by) Z lan fi + (1 — o) gi — Uil

(g) Use BP algorithm to get optimal weights (w,,, b,) and update G.
(h) update £ = o, £ + (1 — o) (F — G)
endwhile

Algorithm 2 Random Searching Algorithm Implementation

For the training data {(x;, ¥;)i=1,.. K }» We preset several super parameters: the last expected
accuracy €, the early stop maximum hidden neuron number n,,x, any bounded nonlinear
activation function g, trial times k and any p > —1:

(1) Initialization: Set the beginning hidden neuron number as n = 0, the initial error
E = [y1,--- ,yk]|" is the original data output, and F' = [y1,--- ,yx]” is the target
vector of the target function and G = [g(1),- - - , g(K)]T is the activation vector of the
new neuron for all the K training samples.

(2) Learning step:
while n < npax and || E|| > €

(a) Add one new hidden neuron: n = n + 1.
(b) Based Theorem 3.1, set the output weight o, = Z—;}) and recalculate all existing
hidden neuron weights:

(c) Fori=1:k . ‘
(i) Randomly create neuron weights (wﬁf), B!)).
(i1) Calculate every error E®

EY = B+ (1 — ap)(F — GW)

(d) end For ‘ A
() Leti* = {i|| miny<;<; | ED|}. Set E = EG), w, = w('L and b, = b\
endwhile

10

only selected 10 regression datasets to demonstrate the performance of our algorithm. Table
1 provides descriptions of the 10 datasets that have been selected. All the simulations were
run in a MATLAB environment without GPU acceleration, as the focus of this paper is to
demonstrate the correctness of our proposed theory.

Name Data Attributes
Training | Testing

Abalone 2000 2177 8
Ailerons 7154 6596 39
Airplane 450 500 9
Bank 4500 3692 8
Boston 250 256 13
California 8000 12640 8
Computer Activity 4000 4192 12
Delta Ailerons 3000 4129 5
Delta Elevators 4000 5517 6
Kinematics 4000 4192 8

Table 1. Descriptions of 10 Selected Regression Datasets

In our experiments, all inputs were normalized to the range [—1, 1], and the outputs were
transformed to [0, 1]. The input weights a; and biases b; were randomly generated from the
range [—1, 1]. Our target termination error was set to € = 0.001, and the maximum number of
hidden neurons was 1000. For each result, we recorded 30 times and calculated the average
value as the final result, which demonstrates the stability and robustness of our experiments.

Name p=—0.5 p=20.5

100th 200th 500th ~ 1000th 100th 200th 500th 1000th
Abalone 0.0925 0.0919 0.0914 0.0912 0.0922 0.0915 0.0911 0.0909
Ailerons 0.0802 0.0792 0.0784 0.0783 0.0799 0.0791 0.0786 0.0784
Airplane 0.1515 0.1505 0.1492 0.1488 0.1513 0.1503 0.1494 0.1493
Bank 0.1723 0.1715 0.1711 0.1709 0.1716 0.1715 0.1713 0.1711
Boston 0.1461 0.1451 0.1461 0.1451 0.1467 0.1453 0.1448 0.1443
California 0.2089 0.2084 0.2079 0.2078 0.2081 0.2079 0.2071 0.2070
Computer 0.1562 0.1561 0.1558 0.1556 0.1546 0.1543 0.1539 0.1538
Delta Ailerons 0.0483 0.0479 0.0475 0.0473 0.0495 0.0488 0.0484 0.0482
Delta Elevators 0.0621 0.0616 0.0611 0.0609 0.0636 0.0629 0.0624 0.0622
Kinematics 0.1453 0.1445 0.1439 0.1437 0.1448 0.1440 0.1435 0.1434

Table 2. Testing mean squared error comparison of different neurons (100th, 200th, 500th, 1000th) under different p =
—0.5, 0.5 in Sigmoid activation function

The mean squared errors for different numbers of neurons (100th, 200th, 500th, 1000th)
under different p = —0.5, 0.5 values in the Sigmoid activation function are presented in Ta-
ble 2. The results indicate that the testing errors decrease as the number of neurons increases.
Even for the negative parameter value p = —0.5, our algorithm still exhibits a stable down-
ward trend, which is in agreement with Theorem 3.1. To further reinforce the validity of our
results, we also used Gaussian activation functions with different p = —0.2, 0.8 values for the
same numbers of neurons (100th, 200th, 500th, 1000th) in Table 3. The results are consistent
with the aforementioned analysis.

Figure 1 illustrates the testing mean squared error (MSE) curves as a function of the num-
ber of neurons for the California dataset. To differentiate from previous convex iterations,

11

Name p=-—02 p=0.8

100th 200th 500th 1000th 100th 200th 500th 1000th
Abalone 0.0944 0.0938 0.0933 0.0930 0.0948 0.0941 0.0935 0.0933
Ailerons 0.3951 0.3832 0.3919 0.3925 0.3914 0.3926 0.3899 0.3910
Airplane 0.1847 0.1835 0.1831 0.1826 0.1844 0.1828 0.1816 0.1815
Bank 0.1657 0.1653 0.1652 0.1651 0.1653 0.1651 0.1649 0.1649
Boston 0.1866 0.1858 0.1852 0.1849 0.1900 0.1887 0.1883 0.1880
California 0.2178 0.2173 0.2169 0.2167 0.2179 0.2174 0.2169 0.2168
Computer 0.2831 0.2817 0.2848 0.2851 0.2861 0.2856 0.2845 0.2847
Delta Ailerons 0.0571 0.0562 0.0553 0.0548 0.0574 0.0563 0.0550 0.0545
Delta Elevators 0.0734 0.0723 0.0714 0.0711 0.0720 0.0708 0.0696 0.0690
Kinematics 0.1608 0.1595 0.1588 0.1585 0.1606 0.1594 0.1586 0.1583

Table 3. Testing mean squared error comparison of different neurons (100th, 200th, 500th, 1000th) under different p =
—0.2, 0.8 in Gaussian activation function

| — =0
0.2140 - i == p=05

012135 1

012130 1

02125 1

- .
Ty -u-'._.__.—____l-

Testing Mean Squared Error

02120 1

] 200 400 B00 ao0 1000
Number of Neurons

Figure 1. Testing mean squared errors with different p for California case.

we selected p = 0, 0.5 and used Gaussian activation functions. The results in Fig. 1 demon-
strate that the MSE curves for different p values exhibit a consistent decreasing trend, which
confirms the validity of our convergence theories.

For the sake of simplicity, all the following simulations use p = 0 and the sigmoid acti-
vation function to describe our results. Fig.2 shows the training and testing MSE curves with
the growth of the Sigmoid neuron number. Seen from Fig.2, our algorithm can achieve a bet-
ter generalization performance with the growth of neurons, which verifies our approximation
results.

The above paragraph describes the results of an experimental evaluation of the proposed
algorithm using the sigmoid activation function and p = 0. Fig.2 illustrates the training and
testing mean squared error (MSE) as a function of the number of sigmoid neurons used. The
results demonstrate that the algorithm can achieve improved generalization performance as
the number of neurons increases, which confirms the validity of the approximation results
presented in the paper.

The results presented in Fig.2 and Fig.3 demonstrate the effectiveness of the proposed al-

12

0.1445

0.1440 4

0.1435 A

01430 1

01425 1

Mean Squared Error

0.1420 1

0.1415

— Testing

Training

T
200

T T
400 GO0 00
Number of Neurons

T
1000

Figure 2. Training and testing mean squared errors for Kinematics case.

= =] =
P P Fud
= =1 =]
= LA &,
i i i

Testing Mean Squared Error
=]
2]
o

0202 A

10 trials
20 trials

||||||||||||||||||||||||
.............

T
400 B00 and
Mumber of Neurocns

Figure 3. Testing mean squared error with different k for California case.

13

—— 10 trials
20 4 e 20 trials
i
=
S
5 15 A
.
£
= 10 A
oh
[
E
g 7]
[:I -

0 200 400 GO0 aoa 1000
Number of Neurons

Figure 4. Training time comparision with different k for California case.

gorithm in achieving better generalization performance as the number of neurons increases,
which confirms the validity of the approximation theories presented in this paper. In par-
ticular, Fig.3 illustrates that increasing the number of trial choices in the random searching
method leads to improved approximation performance. However, it should be noted that this
improvement comes at the cost of increased training time, as shown in Fig.4. This figure il-
lustrates that the training time increases linearly with the number of trial choices, highlighting
the trade-off between approximation performance and computational cost.

7. Conclusion

In this paper, a generalized convex incremental structure is proposed which offers a greater
diversity in network design and maintains the same convergence rate. Additionally, our theory
also provides indirect evidence for the universal approximation capability of neural networks
when certain conditions are met. Due to the unknown nature of objective functions and the
incompleteness of inputs, it can be challenging to verify our theory. To address this, we in-
troduced the concept of discrete approximation and the use of random searching methods for
algorithm implementation. Although our implementation may not be mathematically precise,
our experimental results demonstrate the robustness and good generalization of our algorithm,
as demonstrated on several selected regression datasets. We hope that our research will draw
attention to the importance of theoretical research in neural networks.

Disclosure Statement
All authors have declared that: (i) no support, financial or otherwise, has been received from

any organization that may have an interest in the submitted work; and (ii) there are no other
relationships or activities that could appear to have influenced the submitted work.

14

Data Availability

The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.

References

(10]

(11]

[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]
(20]

(21]

(22]

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural
networks. In: NIPS; 2012.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition.
In: Computer Science; 2012.

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: CVPR; 2016.
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approxima-
tors. Neural Networks. 1989;2:359-366.

Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems. 1989;2:303-314.

Ito Y. Approximation of functions on a compact set by finite sums of a sigmoid function without
scaling. Neural Networks. 1991;4:817-826.

Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks.
1991;4:251-257.

Hornik K. Some new results on neural network approximation. Neural Networks. 1993;6:1069—
1072.

Leshno M, Lin VY, Pinkus A, et al. Multilayer feedforward networks with a nonpolynomial
activation function can approxiamate any function. Neural Networks. 1993;6:861-867.

Chen T, Chen H, Liu RW. Approximation capability in C' (ﬁn) by multilayer feedforward net-
works and related problems. IEEE Transactions on Neural Networks. 1995;6(1):25-30.

Chen T, Chen H. Approximation capability to functions of several variables, nonlinear func-
tionals, and operators by radial basis function neural networks. IEEE Transactions on Neural
Networks. 1995;6(4):904-910.

Lee WS, Bartlett PL, Williamson RC. Efficient agnostic learning of neural networks with bounded
fan-in. IEEE Transactions on Information Theory. 1996;42(6):2118-2132.

Maiorov V, Pinkus A. Lower bounds for approximation by mlp neural networks. Neurocomput-
ing. 1999;25:81-91.

Meir R, Maiorov VE. On the optimality of neural-network approximation using incremental al-
gorithms. IEEE Transactions on Neural Networks. 2000;11(2):323-337.

Lavretsky E. On the geometric convergence of neural approximations. IEEE Transactions on
Neural Networks. 2002;13(2):274-282.

Xiang C, Shenqgiang, Lee TH. Geometrical interpretation and architecture selection of mlp. IEEE
Transactions on Neural Networks. 2005;16(1):84-96.

Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feed-
forward networks with random hidden nodes. IEEE Transactions On Neural Networks. 2006;
17(4):879-892.

Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;
70:3056-3062.

Jones LK. A simple lemma on greedy approximation in hilbert space and convergence rates for
projection pursuit regression and neural networks. The Annals of Statistics. 1992;20(1):608-613.
Barron AR. Universal approximation bounds for superpositions of a sigmoid function. IEEE
Transactions on Information Theory. 1993;39(3):930-945.

Koiran P. Efficient learning of continuous neural networks. In: Proceedings of the Seventh Annual
ACM Conference on Computational Learning Theory; New Brunswick, New Jersey; 1994. p.
348-355.

Chen L, Huang GB, Pung HK. Systemical convergence rate analysis of convex incremental feed-

15

forward neural networks. Neurocomputing. 2009;72:2627-2635.
[23] Kaminski W, Strumillo P. Kernel orthonormalization in radial basis function neural networks.
IEEE Transactions On Neural Networks. 1997;8(5):1177-1183.

16

