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Appendix A Gradient and Hessian of ℓjg(γj,θj)

For g = 1, . . . , G, i = 1, . . . , ng, and j = 1, . . . ,m, we define

S
(u)
jgi (γj,θj, Xgi) :=

∑
r∈Rg(Xgi)

exp{L⊤gr(Xgi)γj +W⊤
grθj}

[
Lgr(Xgi)

Wgr

]⊙u
, u = 0, 1, 2,

where Lgr(Xgi) := Zgr ⊗ B̆(X̆gr)⊗B(Xgi), and for a vector v ∈ Rp, v⊙0 := 1, v⊙1 := v, and

v⊙2 := vv⊤. The gradient ℓ̇jg(γj,θj) and Hessian ℓ̈jg(γj,θj) of ℓjg(γj,θj) are hence given by

ℓ̇jg(γj,θj) =

ng∑
i=1

∆jgi

{[
Lgi(Xgi)

Wgi

]
−U

(1)
jgi(γj,θj, Xgi)

}
, (1)

ℓ̈jg(γj,θj) = −
ng∑
i=1

∆jgiVjgi(γj,θj, Xgi), (2)

in which

U
(w)
jgi (γj,θj, Xgi) :=

S
(w)
jgi (γj,θj, Xgi)

S
(0)
jgi(γj,θj, Xgi)

, w = 1, 2,

Vjgi(γj,θj, Xgi) := U
(2)
jgi(γj,θj, Xgi)− {U(1)

jgi(γj,θj, Xgi)}⊙2.

Appendix B Tensor-Product Proximal Newton Algorithm

Let Xjg1 < · · · < Xjgnjg
denote the njg distinct times of type j failures within stratum g.

For failure time Xjgb, b = 1, . . . , njg, let Zjgb, Wjgb, and X̆jgb denote Zgi, Wgi, and X̆gi,

respectively, such that ∆jgi = 1 and Xgi = Xjgb. The tensor-product proximal Newton

algorithm is outlined as Algorithm 1. Readers are referred to Wu et al. (2022) for theoretical

arguments justifying the convergence of the algorithm. In the algorithm, ξ is used to control

the modified Hessian in Line 18; a large value of 108 is used as default since it leads to a

slight modification of the Hessian. The parameter δ is used to control the expansion of the

1



series of ξ across iterations. By default, 1 is used, indicating that ξ remains constant across

iterations. One may consider any value greater than 1 to obtain an increasing sequence of ξ

so that the modification to the Hessian is shrinking. The parameter ϵ indicates the tolerance

level with respect to the squared Newton increment η2, with 10−10 as the default.

Algorithm 1: Tensor-Product Proximal Newton

1 for j ← 1 to m do // m failure types

2 initialize s← 0, ξs > 0, γ
(s)
j = 0, and θ

(s)
j = 0;

3 set ϕ ∈ (0, 0.5), ψ ∈ (0.5, 1), δ ≥ 1 and ϵ > 0;
4 do
5 for g ← 1 to G do // G distinct strata

6 for b← 1 to njg do // njg distinct failure times

7 for u← 0 to 2 do

8 S
(u)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb) =

∑
r∈Rg(Xjgb)

exp{L⊤
gr(Xjgb)γ

(s)
j +W⊤

grθ
(s)
j }

[
Lgr(Xjgb)

Wgr

]⊙u

;

9 end
10 for w ← 1 to 2 do

11 U
(w)
jgb (γ

(s)
j ,θ

(s)
j , Xjgb) = S

(w)
jgb (γ

(s)
j ,θ

(s)
j , Xjgb)/S

(0)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb);

12 end

13 Vjgb(γ
(s)
j ,θ

(s)
j , Xjgb) = U

(2)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)−

[
U

(1)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)

]⊙2
;

14 end

15 end

16 ℓ̇j(γ
(s)
j ,θ

(s)
j ) =

∑G
g=1

∑nj

q=1

{[
Ljgb(Xjgb)

Wjgb

]
−U

(1)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)

}
;

17 ℓ̈j(γ
(s)
j ,θ

(s)
j ) = −

∑G
g=1

∑nj

q=1 Vjgb(γ
(s)
j ,θ

(s)
j , Xjgb);

18

[
∆γ

(s)
j

∆θ
(s)
j

]
=

[
Qj(µj , µ̆j) + nI/ξs − ℓ̈j(γ

(s)
j ,θ

(s)
j )

]−1
{
ℓ̇j(γ

(s)
j ,θ

(s)
j )−Qj(µj , µ̆j)

[
γ
(s)
j

θ
(s)
j

]}
; // Newton step

19 η2 = n−1

{
ℓ̇j(γ

(s)
j ,θ

(s)
j )−Qj(µj , µ̆j)

[
γ
(s)
j

θ
(s)
j

]}⊤ [
∆γ

(s)
j

∆θ
(s)
j

]
; // η: Newton increment

20 ν ← 1;

21 while ℓ
(P)
j (γ

(s)
j + ν∆γ

(s)
j ,θ

(s)
j + ν∆θ

(s)
j ;µj , µ̆j) < ℓ

(P)
j (γ

(s)
j ,θ

(s)
j ;µj , µ̆j) + nϕνη2 do ν ← ψν;

22 γ
(s+1)
j = γ

(s)
j + ν∆γ

(s)
j ;

23 θ
(s+1)
j = θ

(s)
j + ν∆θ

(s)
j ;

24 ξs+1 = δξs;
25 s← s+ 1;

26 while η2 ≥ 2ϵ;

27 end

Appendix C Proof of Proposition 1

Proposition 1. Under H
(t)
0 : C(t)vec(γ⊤jl ) = 0, the test statistic

{vec(γ̃⊤jl )− b̃jl}⊤{C(t)}⊤
[
C(t)Ωjl{C(t)}⊤

]−1
C(t){vec(γ̃⊤jl )− b̃jl}

asymptotically follows a distribution characterized by

KK̆×KK̆∑
u=1

µuG
2
u,
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where Gu’s are independent standard normal random variables, and µu’s are the possi-

bly identical eigenvalues of the matrix product of [C(t)Ωjl{C(t)}⊤]−1 and the variance of

C(t){vec(γ̃⊤jl )− b̃jl}.

Proof. Let M := [C(t)Ωjl{C(t)}⊤]−1, let Σ denote the variance of x := C(t){vec(γ̃⊤jl ) − b̃jl},
and let Q := x⊤Mx denote the Wald test statistic. Since Σ is orthogonally diagonalizable,

there exists an orthogonal matrix P such that PΣP⊤ = Ψ, with Ψ being a diagonal matrix

of positive eigenvalues of Σ. Let R := Ψ−1/2P, a nonsingular matrix. Then RΣR⊤ =

I. Since (R⊤)−1MR−1 is symmetric and orthogonally diagonalizable, there exists another

orthogonal matrix T such that T(R⊤)−1MR−1T⊤ = Φ is a diagonal matrix sharing the

same eigenvalues µ1, . . . , µKK̆×KK̆ as those of (R⊤)−1MR−1. Let z := TRx. Then under

the null H
(t)
0 , we have z ∼ N (0, I). Since TR is nonsingular, x = R−1T⊤z. It follows

that Q = z⊤Φz =
∑KK̆×KK̆

u=1 µuG
2
u, where Gu’s independently follow the standard normal

distribution. Observe that

(R⊤T⊤)−1MΣR⊤T⊤ = T(R⊤)−1MΣR⊤T⊤ = T(R⊤)−1MR−1T⊤ = Φ.

This implies that MΣ and Φ have the same set of eigenvalues (since the mapping A 7→
B−1AB preserves eigenvalues).

Appendix D Test of Significance

In addition to tests of coefficient variation, a Wald statistic for the test of significance can

be derived. Following the notation in Section 2.2, one may consider the null hypothesis

H0 : Cβj(t, x̆) = 0, in which C is a given c×p contrast matrix. Note that H0 can be rewritten

as [C⊗ B̆⊤(x̆)⊗B⊤(t)]γj = 0, where γj = vec(Γ⊤j ) with Γj = [vec(γ⊤j1), . . . , vec(γ
⊤
jp)]
⊤. The

test statistic is thus given by

{γ̃j−b̂j}⊤[C⊤⊗B̆(x̆)⊗B(t)]{[C⊗B̆⊤(x̆)⊗B⊤(t)]Ωj[C
⊤⊗B̆(x̆)⊗B(t)]}−1[C⊗B̆⊤(x̆)⊗B⊤(t)]{γ̃j−b̂j},

where Ωj denotes an arbitrary pKK̆×pKK̆ symmetric and positive-definite matrix, e.g., the

top-left pKK̆ × pKK̆ block of ṼS
j or ṼM

j , and b̂j is a subvector of b̃j consisting of the first

pKK̆ rows of b̃j. The asymptotic distribution of the test statistic can be determined following

Proposition 1. That is, the test statistic asymptotically follows a distribution characterized

by
c∑

u=1

µuG
2
u,

where Gu’s are independent standard normal random variables, and µu’s are the possibly

identical eigenvalues of the matrix product of {[C⊗ B̆⊤(x̆)⊗B⊤(t)]Ωj[C
⊤⊗ B̆(x̆)⊗B(t)]}−1

and the variance of [C⊗ B̆⊤(x̆)⊗B⊤(t)]{γ̃j − b̂j}.
Based on 1000 simulated data replicates, Web Figure 7 displays a scatter plot of the
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probability of rejecting the null hypothesis that β1(t, x̆) = 0 versus the true value of β1(t, x̆) =

sin(3πt/4) exp(−0.5x̆). As expected, the probability of rejection increases with |β1(t, x̆)|. For
β1(t, x̆) = 0, the type I error rate is mostly less than 0.05, while for |β1(t, x̆)| > 0.2, the

statistical power is generally above 0.8.

Appendix E Proof of Proposition 2

Proposition 2. Let λ̂0jg(·) be the estimated baseline hazard function derived from the unpe-

nalized bivariate varying coefficient model. Let

M̃jgi := ∆jgi − exp(W⊤
giθ̃
−f
j )

∫ Xgi

0

exp
{
Z⊤giβ̃

−f
j (t, X̆gi)

}
λ̂0jg(t) dt

be the martingale residual for subject i in the gth stratum, where β̃−fj (·, ·) and θ̃−fj are the

penalized estimates from the corresponding fold f to which subject i in the gth stratum belongs.

Then the deviance residual for subject i in the gth stratum with respect to the jth failure type

is written as

djgi := sign(M̃jgi)

√
−2

[
∆jgi

{
Z⊤giβ̃

−f
j (Xgi, X̆gi) +W⊤

giθ̃
−f
j + log

∫ Xgi

0

λ̂0jg(t) dt

}
+ M̃jgi

]
.

Proof. Given estimates θ̂j, β̂j(·, ·) for the bivariate varying coefficient model (1), the martin-

gale residuals can be defined as

M̂jgi := M̂jgi(∞, X̆gi) = ∆jgi − exp(W⊤
giθ̂j)

∫ Xgi

0

exp
{
Z⊤giβ̂j(t, X̆gi)

}
λ̂0jg(t) dt,

where the baseline hazard estimates λ̂0jg(·) are determined via the Breslow estimator. Fur-

ther, the log-likelihood with respect to the jth failure type can be written as

G∑
g=1

ng∑
i=1

{∆jgi log λjgi(Xgi | Zgi,Wgi, X̆gi) + logSjgi(Xgi | Zgi,Wgi, X̆gi)}

=
G∑
g=1

ng∑
i=1

[
∆jgi{Z⊤giβj(Xgi, X̆gi) +W⊤

giθj + log λ0jg(Xgi)

−
∫ Xgi

0

exp{Z⊤giβj(t, X̆gi) +W⊤
giθj}λ0jg(t) dt

]
,

where Sjgi(t | Zgi,Wgi, X̆gi) is the corresponding survivor function. Assuming that the
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baseline hazard λ0jg(·) is known, we have the deviance D written as

D = 2 sup
βjgi,θjgi

G∑
g=1

ng∑
i=1

{
∆jgi[Z

⊤
gi{βjgi − β̂j(Xgi, X̆gi)}+W⊤

gi(θjgi − θ̂j)]

−
∫ Xgi

0

[
exp(Z⊤giβjgi +W⊤

giθjgi)− exp{Z⊤giβ̂j(t, X̆gi) +W⊤
giθ̂j}

]
λ0jg(t) dt

}
,

where βjgi and θjgi are subject-cause-specific estimates allowed in a saturated model. Now,

we have the first order condition

∆jgi = exp(Z⊤giβjgi +W⊤
giθjgi)

∫ Xgi

0

λ0jg(t) dt, g = 1, . . . , G, i = 1, . . . , ng.

With this condition, the deviance D reduces to

D = −2
G∑
g=1

ng∑
i=1

{
∆jgi log

exp{Z⊤giβ̂j(Xgi, X̆gi) +W⊤
giθ̂j}

∫ Xgi

0
λ0jg(t) dt

∆jgi

+ M̃jgi

}

= −2
G∑
g=1

ng∑
i=1

[
∆jgi

{
Z⊤giβ̂j(Xgi, X̆gi) +W⊤

giθ̂j + log

∫ Xgi

0

λ0jg(t) dt

}
+ M̃jgi

]
,

where

M̃jgi := M̃jgi(∞, X̆gi) = ∆jgi − exp(W⊤
giθ̂j)

∫ Xgi

0

exp
{
Z⊤giβ̂j(t, X̆gi)

}
λ0jg(t) dt

is the martingale residual with known baseline hazard λ0jg(·). Then the deviance residual

djgi for subject i in the gth stratum with respect to the jth failure type can be written as

djgi = sign(M̂jgi)

√
−2

[
∆jgi

{
Z⊤giβ̂j(Xgi, X̆gi) +W⊤

giθ̂j + log

∫ Xgi

0

λ̂0jg(t) dt

}
+ M̂jgi

]
,

where M̂jgi is the martingale residual M̃jgi with λ0jg(·) replaced by λ̂0jg(·).

Appendix F Alternative Cross-Validation Methods

F.1 Fold-constrained (FC) cross-validated partial likelihood

In this approach, the cross-validation error (CVE) is proportional to the sum of fold-specific

log-partial likelihood functions in which risk sets are constrained by the corresponding folds,

i.e.,

CVEj := −2
F∑
f=1

ℓfj (η̃
−f
j ).
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F.2 Complementary fold-constrained (CFC) cross-validated partial likelihood

As the name suggests, the CVE is proportional to the sum of complementary fold-constrained

log-partial likelihood functions, i.e.,

CVEj := −2
F∑
f=1

{ℓj(η̃−fj )− ℓ−fj (η̃−fj )}.

This approach was applied in Verweij and Van Houwelingen (1993) and Simon et al. (2011).

F.3 Unconstrained (UC) cross-validated partial likelihood

First introduced by Breheny and Huang (2011) as cross-validated linear predictors, this

approach features risk set construction unconstrained by folds in that fold-specific estimates

η̃−fj ’s are assigned to all units of the sample according to their fold identities. With a slight

abuse of notation, the CVE is written as

CVEj := −2ℓj(η̃
−1
j , . . . , η̃−Fj ),

where η̃−fj is assigned to observations of fold f .

F.4 Generalized cross-validation (GCV)

Extending the approach of Yan and Huang (2012) to this setting with bivariate varying

coefficients, we can write the CVE for the jth failure type as

CVEj = − ℓj(ηj)

n(1− fj(µj, µ̆j)/n)2
,

where fj(µj, µ̆j) := trace
(
{ℓ̈(P)j (ηj;µj, µ̆j)}−1ℓ̈j(ηj)

)
, i.e., the number of effective parame-

ters (Yan and Huang, 2012), or the “degrees of freedom” of the model (Gray, 1992).
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Appendix G Supplementary Figures
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Supplementary Figure 1: (a) Integrated mean squared error (IMSE), average bias, and average variance of

the estimated surface β̂1(t, x̆) with varied sample sizes on event and calendar timescales. In each scenario,

100 data replicates were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions
form a basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. (b) Mean and 95% percentile
range (2.5th and 97.5th percentiles as lower and upper limits) of pointwise estimates of β1(t, x̆) at selected
event times and calendar times. In each scenario, 100 data replicates were generated with sample size equal
to 10,000. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a basis. True values
are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. An unpenalized approach was used in (a) and (b).
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Supplementary Figure 2: Integrated mean squared error (IMSE), average bias, and average variance of the

estimated surface β̂1(t, x̆) across event time with sample size fixed at 10,000. In each scenario, 100 data

replicates were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a basis.
True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. Various levels of penalization were introduced
to β1(·, ·), where mu1 and mu2 denote tuning parameters for calendar and event time, respectively, as in (4)
of the manuscript. Both the bivariate varying coefficient model and the univariate time-varying coefficient
model (Wu et al., 2022) were considered.
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Supplementary Figure 3: Integrated mean squared error (IMSE), average bias, and average variance of the

estimated surface β̂1(t, x̆) across calendar time with sample size fixed at 10,000. In each scenario, 100 data

replicates were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a basis.
True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. Various levels of penalization were introduced
to β1(·, ·), where mu1 and mu2 denote tuning parameters for calendar and event time, respectively, as in (4)
of the manuscript. Both the bivariate varying coefficient model and the univariate time-varying coefficient
model (Wu et al., 2022) were considered. In the latter model, the estimated coefficient was constant across
calendar time.
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Supplementary Figure 4: (a) Coverage probability curves of β1(t, x̆) via pointwise 95% confidence intervals on
event and calendar time scales, with varied sample sizes. In each scenario, 100 data replicates were generated
with sample size equal to 10,000. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form
a basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. (b) Type I error rate and power curves
for tests of univariate and bivariate variation with varied sample sizes. In each scenario, 1,000 data replicates
were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a basis. True
values are β1(t, x̆) = 1 and β2 = 1 in the left panel, and β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1 in the
right panel. An unpenalized approach was used in (a) and (b).
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Supplementary Figure 5: The ratio of the empirical standard deviation to the estimated standard error for
β1(t, x̆) averaged across grid points. In each scenario, 1,000 data replicates were generated. True values are
β1(t, x̆) = 0.5 and β2 = 1. A sandwich and a model-based variance estimator were used. Throughout all
experiments, 7 cubic B-splines form a basis on both timescales, and tuning parameters vary with sample size,
i.e., µ = n1/8/500 and µ̆ = n1/8/200.
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Supplementary Figure 6: A comparison of the distribution of selected tuning parameters for five cross-
validation methods: fold-constrained (FC), complementary fold-constrained (CFC), and fold-unconstrained
(UC) cross-validated partial likelihood, cross-validated deviance residuals (DR), and generalized cross-
validation (GCV). In each scenario, 100 training and validation data replicates were generated independently.
A 5-by-5 grid of tuning parameters was formed such that µ/

√
n (with n denoting sample size) and µ̆/

√
n

varied from 10−5 to 10−1. Each cross-validation method was applied to a training data replicate to determine
the optimal tuning parameters. True values were β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2(t, x̆) = 1.
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Supplementary Figure 7: A scatter plot of the probability of rejecting the null hypothesis that β1(t, x̆) = 0
versus the true value of β1(t, x̆) = sin(3πt/4) exp(−0.5x̆). In the experiment, 1000 data replicates were
generated with sample size n = 10, 000 and β2 = 1, and 7 cubic B-splines were used to form a basis on both
timescales. A sandwich variance estimator was used with test statistics approximately following a chi-squared
distribution. Tuning parameters were set as mu1=0.5 and mu1=0.2. Two dashed horizontal lines correspond
to 0.05 and 0.8, respectively.
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Table 1: Type I error rate and power for tests of univariate and bivariate variation with different test
statistics and varied sample sizes. In each scenario, 1,000 data replicates were generated. True values are
β1(t, x̆) = sin(3πt/4) and β2 = 1 in Panel A, and β1(t, x̆) = exp(−0.5x̆) and β2 = 1 in Panel B. In the first
and second columns of each sub-panel, a sandwich and a model-based variance estimator were used with
test statistics approximately following a chi-squared distribution. In the third column of each sub-panel,
the test statistic in Gray (1992) was compared with a distribution of a linear combination of chi-squared
random variables (Davies, 1980). We used 7 cubic B-splines to form a basis on both timescales, and tuning
parameters vary with sample size, i.e., µ = n1/8/500 and µ̆ = n1/8/200. SC, sandwich estimator with chi-
squared distribution; MC, model-based estimator with chi-squared distribution; MD, model-based estimator
with a distribution of a linear combination of chi-squared random variables.

Panel A: β1(t, x̆) = sin(3πt/4)

sample size
power (event time) type I error rate (calendar time) power (event & calendar time)

SC MC MD SC MC MD SC MC MD

1000 1 1 1 0.006 0.006 0.010 1 1 0.999
2000 1 1 1 0.006 0.008 0.004 1 1 1
3000 1 1 1 0.003 0.002 0.009 1 1 1
4000 1 1 1 0.004 0.002 0.004 1 1 1
5000 1 1 1 0.007 0.002 0.003 1 1 1
6000 1 1 1 0.003 0.003 0.002 1 1 1
7000 1 1 1 0.002 0.001 0.003 1 1 1
8000 1 1 1 0.006 0.001 0.002 1 1 1
9000 1 1 1 0.001 0.001 0.003 1 1 1
10000 1 1 1 0.002 0.003 0.006 1 1 1

Panel B: β1(t, x̆) = exp(−0.5x̆)

sample size
type I error rate (event time) power (calendar time) power (event & calendar time)

SC MC MD SC MC MD SC MC MD

1000 0.008 0.005 0.003 0.602 0.58 0.59 0.596 0.607 0.596
2000 0.005 0.009 0.005 0.974 0.97 0.973 0.970 0.973 0.973
3000 0.001 0.003 0.003 1 0.999 1 1 0.997 1
4000 0.004 0.004 0.003 1 1 1 1 1 1
5000 0.004 0.002 0.002 1 1 1 1 1 1
6000 0.004 0.003 0.001 1 1 1 1 1 1
7000 0.006 0.004 0.002 1 1 1 1 1 1
8000 0.001 0.003 0.004 1 1 1 1 1 1
9000 0.002 0.004 0.002 1 1 1 1 1 1
10000 0.002 0.002 0.005 1 1 1 1 1 1
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