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S1. Map use experiment 

S1.1. Participants 

The study complied with the guidelines of the Ethical Review Board of XXX University. 

We recruited 50 individuals (25 females; age 20-34 years, M = 25.4 years, SD = 3.35 

years) for the experiment. All participants had a normal or corrected-to-normal vision and 

no history of neurological disorders. They provided informed consent and completed all 

experimental procedures. They received €10 as compensation for their participation. 

S1.2. Map use tasks and stimuli 

In this study, participants performed four daily map use tasks (i.e., map activities), which 

are common activities people perform on Google Maps (or other web map services): 

 Global search (GS): Participants were asked to search for one food or drink type 

point of interest (POI) on the map.  

 Distance comparison (DC): Participants were required to determine the POI with 

the smallest Euclidean distance from their current location out of four potential 

targets.  

 Route following (RF): Participants were asked to count the number of 

intersections along a route marked on the map.  

 Route planning (RP): Participants were asked to identify the shortest path from 

their current location to a given destination, both marked on the map. 

To ensure ecological validity, we employed 16 state-of-the-art static Google Maps 

(1920 x 1080 screen resolution) as experimental stimuli. To prevent participants from 

having prior knowledge of the map area and to ensure a consistent language for map 

labels (i.e., English), all 16 maps were selected from North America, South America, and 

Oceania – regions that were unfamiliar to the participants, which was confirmed in the 

interviews after the experiment. The complexity of the map was quantified using Feature 

Congestion (Schnur et al., 2018) before selection, which describes a condition in which 

a given area of the visual scene is so densely populated with features that it becomes 

difficult to identify individual elements. This measure ensures that the content and 

information of these 16 maps remained at a similar complexity level (FC range: 4.96-

5.41, M = 5.14, SD = 0.137). All maps had the same zoom level (street level: 16 of the 

Google Maps) to maintain a consistent amount of map information across all four tasks.  

S1.3. Experimental procedure 

The experiment consisted of three main phases: the learning phase, the test phase, and the 

post-test phase (Supplementary Figure A1). During the learning phase, participants were 

given two trials per task to ensure they fully understood the procedure. In the test phase, 

each participant performed 64 trials (16 maps with 4 tasks each) in 4 runs, with breaks 

between runs. The 16 maps were presented in a fixed order to minimize the learning 

effects of the same map, and all trials followed a Latin square design to minimize the 

effects of trial order on the experiment. Each trial began with a 5-second instruction 



period, followed by a 3-second baseline period, and a maximum of 30-second stimuli 

period in which participants engaged with the map. They were instructed to press the 

'space' key to move on once they found the answer, and then to select their answer using 

the number keys 1, 2, 3, or 4 during the response period. We asked them to complete tasks 

as fast and accurate as possible. After the test phase, participants were interviewed about 

their task-solving strategies and asked to complete the NASA-TLX scale and 

questionnaire in the post-test phase. 

S1.4. ET and EEG data acquisition and preprocessing 

We collected eye-tracking data using a Tobii Pro Fusion eye tracker with a sampling rate 

of 250Hz. Only the recording data during the stimuli period (see Figure 2) was used for 

map activity recognition. The Tobii standard algorithm I-VT filter (Olsen, 2012) with a 

velocity threshold of 30 degrees/second was used to segment fixations and saccades.  

 Throughout the experiment, EEG data were recorded continuously using a 32-gel 

electrode cap following the extended 10-20 international layout connected to the Enobio 

NIC2 System. The raw EEG data were bandpass filtered between 1 and 50 Hz. Poor-

quality electrodes (M = 1.9, SD = 3.25) were visually inspected and interpolated using 

the spherical spline method. All electrodes were then re-referenced to the average. 

Independent component analysis (ICA) was performed using fastICA to correct for 

artifactual components, which were manually detected based on time course, topography, 

and power spectral density of the components. Preprocessing of the EEG data was 

performed using the Python programming language and the MNE library (Gramfort et al., 

2013). 

 To align the ET and EEG data on the same timeline, we used the predefined 

keyboard event (numeric keys 6,7,8,9) as markers (start timestamp and end timestamp of 

four runs) in the two-instrument software. In this way, ET metrics (such as the timestamp 

when the fixation was first located on the cAOI) and keyboard responses (such as the 

'space' key at the end of the trial) can be used as events in EEG time course signals. 
 

 



Supplementary Figure A1. The experimental framework and procedure (Note that the 

target for the instruction period of the global search task was a food or drink POI on the 

map, ‘staropolaska’ in this figure). The high resolution of response period stimuli is 

shown in the Supplementary Figure A2. 
 
 

 

Supplementary Figure A2. Subplot A: A response period stimulus for a global search 

task; Subplot B: A response period stimulus for a distance comparison task; Subplot C: 

A response period stimulus for a route following task; Subplot D: A response period 

stimulus for a route planning task. 

 

Supplementary Table A1.  Behavioral results (mean, standard error and 95% of 

confidence intervals for response time (RT) and accuracy) of the 2073 trials for the four 

different tasks 

 RT (ms)            Accuracy 

 Mean SE 95% CI  Mean SE 95% CI 

Global search 7126.6 153.6 (6825.6,7427.7) 0.992 0.004 (0.984,1.000) 

Distance comparison 6691.8 137.0 (6423.2,6960.4) 0.899 0.013 (0.874,0.924) 

Route following 12009.5 145.5 (11724.4,12294.6) 0.726 0.020 (0.687,0.765) 

Route planning 9334.9 181.2 (8979.8,9690.0) 0.664 0.021 (0.623,0.705) 

 

 

Supplementary Table A2.  Default hyperparameter settings for 9 classifiers. 

Classifiers Hyperparameters 

LogisticRegression  penalty = 'l2'; C = 1.0; solver = 'lbfgs' 

KNeighborsClassifier n_neighbors = 5; weights = 'uniform'; leaf_size = 30; p =2;  

metric = 'minikowski' 

LinearDiscriminantAnalysis solver = 'svd' 



SVC C = 1.0; kernel = 'rbf'; degree = 3 

DecisionTreeClassifier criterion = 'gini'; splitter = 'best'; min_samples_split = 2; 

min_samples_leaf = 1; min_weight_fraction_leaf = 0.0 

RandomForestClassifier n_estimators = 100; criterion = 'gini'; min_samples_split = 2; 

min_samples_leaf = 1; min_weight_fraction_leaf = 0.0 

AdaBoostClassifier estimator = None; n_estimators = 50; learning_rate = 1.0;  

algorithm = 'SAMME.R' 

GradientBoostingClassifier loss = 'log_loss'; learning_rate = 0.1; n_estimators = 100;  

subsample = 1.0; criterion = 'friedman_mse'; min_samples_split = 2; 

min_samples_leaf = 1; min_weight_fraction_leaf = 0.0 

MLPClassifier activation = 'relu'; solver = 'adam'; alpha = 1e-4;  

learning_rate = 'constant'; max_iter = 500 

XGBClassifer Booster = ‘gbtree’; learning_rate = 0.3; min_split_loss = ‘gamma’; 

subsample = 1; colsample_bytree = 1 

LGBMClassifer n_estimators = 100; boosting = ‘gbdt’;  learning_rate = 0.1; num_leaves 

= 31; max_depth = -1; subsample = 1; colsample_bytree = 1; 

min_child_samples = 20 

 

 

 

Supplementary Figure A3.  Subplot A shows the illustration of a saccade sequence (the 

number of saccades = 5). Subplots B and C show the 4-directional and 8-directional 

schemes for encoding the saccade sequence, respectively. 

 



 
Supplementary Figure A4.  The recognition accuracy for 3 feature selection methods. 

The embedded tree-based feature selection method achieves the highest average 

accuracy when using EEG only (52.8%) and ET+EEG features (87.4%), and the 

accuracy when using only ET (87.0%) was comparable to the highest accuracy (87.9%), 

across five training/test splits. 



 
Supplementary Figure A5. The feature importance (top 10) ranking for recognition 

using ET-only features (A) and EEG-only features (B). 



 
Supplementary Figure A6.  The values of selected important features (top 5) for 

different map activities (Upper right subplots reflect the differences between the 

pairwise tasks. p<0.001: ***; p<0.01: **; p<0.05: *; p>0.05: blank). 

 
 

 



Supplementary Figure A7.  The recognition accuracy for five different (overlay) time 

windows: (0-1000 ms; 500-1500 ms; 1000-2000 ms; 1500-2500 ms; 2000-3000 ms) 
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