
Supplementary Materials for “Fitting log-Gaussian

Cox processes using generalized additive model

software” published in the American Statistician

Elliot Dovers, Jakub Stoklosa and David I. Warton

S1 Full Simulation Results

In addition to the simulation results presented in the manuscript we explored broader simulation settings
for the log-Gaussian Cox processes (LGCPs) generated, including:

• β0 = −4.5,−3.5,−2.5 to produce smaller, moderate and larger point patterns on average (i.e. E (N) =
266, 730, 1994 respectively).

• ρ = 10, 30, 50, to produce latent fields that varied at finer, moderate and coarser spatial scales relative
to the size of the domain (that spanned 100 units in each coordinate direction).

• ρX = 10, 30, 50, to produce a fixed effect field that varied at finer, moderate and coarser spatial scales
relative to the domain. However, the results were consistent across these values and so we only report
scenarios in which ρX = 30.

For our main comparison of fitting LGCPs with mgcv (as specified in Section 3) and R-INLA, results were
broadly consistent across the scenarios above (Figures S1-S3). However, these scenarios provided some useful
insights for the specific settings required for mgcv to be able to choose the basis dimension (as in Section 3.1)
and estimate the spatial range parameter (as in Section 3.2).

Table S1 shows the full simulation results for the scenario presented in the main paper (i.e. β0 = −3.5
and ρ = ρX = 30), for which Figure 1 shows the main comparison between mgcv and R-INLA under simple
specifications. We additionally explored different settings for each software. For mgcv our key comparisons
for fitting LGCP are: methods REML or UBRE via method="REML" or method="GCV.Cp" respectively, as
well as basis functions as Gaussian Processes (GP) or thin plate regression splines (TPRS), via bs="gp"

or bs="tprs". These comparisons are shown under “Method Spec.” and “Basis Type” respectively in
Table S1. For R-INLA we compared the results using both the default settings for priors on hyperparameters
(i.e. parameters of the latent field’s covariance function, including ρ), as well as commonly used, penalized
complexity priors (Fuglstad et al., 2019) — these are shown as “Default” and “P.C. Priors” respectively
under “Method Spec.” in Table S1 however, as these produced near identical results we focus on the latter
throughout.

1

Figure S1: Performance of point estimation from the fitted LGCPs using various approaches, with a range
of basis function configurations — represented by increasing basis function dimension for mgcv, and mesh
vertices for R-INLA. Approaches compared were using mgcv under default settings presented in Section 3
(mgcv Default); mgcv with ρ estimated via the REML and UBRE criteria (mgcv ρ̂ via REML and UBRE
resp.); as well as using R-INLA with penalized complexity priors. The y-axes are the mean absolute error

(MAE) between the true intensity field λ to that fitted by the model λ̂ over the 10 000 point grid representing
the domain, averaged over simulations. We found that, provided we choose enough basis functions, the models
fitted by either approach typically do equally well at fitting the intensity field.

2

Figure S2: Performance of interval estimation from the fitted LGCPs using various approaches, with a range
of basis function configurations — represented by increasing basis function dimension for mgcv, and mesh
vertices for R-INLA. Approaches compared were using mgcv under default settings presented in Section 3
(mgcv Default); mgcv with ρ estimated via the REML and UBRE criteria (mgcv ρ̂ via REML and UBRE
resp.); as well as using R-INLA with penalized complexity priors. The y-axes are coverage probabilities (Cover.
Prob.) of 95% Wald confidence intervals constructed for β1 (dashed line indicates nominal coverage).

3

Figure S3: Average computation time of the various approaches to fit simulated LGCPs, with a range of basis
function configurations — represented by increasing basis function dimension for mgcv, and mesh vertices for
R-INLA. Approaches compared were using mgcv under default settings presented in Section 3 (mgcv Default);
mgcv with ρ estimated via the REML and UBRE criteria (mgcv ρ̂ via REML and UBRE respectively); as
well as using R-INLA with penalized complexity priors. We found that computation times for mgcv became
increasingly long with the more basis functions used whereas computation times for R-INLA were relatively
unaffected by choice of k. Moreover, computation times were far longer for mgcv when additionally estimating
ρ which requires the additional optimization outlined in Section 3.2.

4

Software Method Spec. Basis Type Range Crit. k MAE λ̂ Coverage β1 Comp. Time RMSE β̂1 RMSE ρ̂
mgcv REML GP 25 0.027 89% 4.597 0.301
mgcv REML GP 100 0.022 98% 5.722 0.225
mgcv REML GP 200 0.022 98% 11.681 0.225
mgcv REML GP 300 0.022 98% 22.872 0.225
mgcv REML GP 400 0.022 98% 38.788 0.226
mgcv REML GP log-Lik. 25 0.026 82% 25.630 0.311 22.664
mgcv REML GP log-Lik. 100 0.024 75% 48.542 0.272 26.601
mgcv REML GP log-Lik. 200 0.025 68% 98.049 0.271 27.755
mgcv REML GP log-Lik. 300 0.026 62% 172.083 0.280 28.204
mgcv REML GP log-Lik. 400 0.026 61% 263.534 0.277 28.361
mgcv REML GP AIC 25 0.026 82% 24.768 0.300 21.865
mgcv REML GP AIC 100 0.023 86% 44.783 0.239 21.323
mgcv REML GP AIC 200 0.022 91% 85.011 0.224 19.103
mgcv REML GP AIC 300 0.022 92% 151.082 0.221 18.316
mgcv REML GP AIC 400 0.022 95% 261.103 0.219 18.239
mgcv REML GP REML/UBRE 25 0.026 81% 23.032 0.297 21.658
mgcv REML GP REML/UBRE 100 0.023 91% 35.881 0.227 17.639
mgcv REML GP REML/UBRE 200 0.022 94% 68.393 0.222 17.069
mgcv REML GP REML/UBRE 300 0.022 93% 133.130 0.223 17.321
mgcv REML GP REML/UBRE 400 0.022 95% 226.027 0.224 16.941
mgcv UBRE GP 25 0.027 77% 3.783 0.573
mgcv UBRE GP 100 0.023 98% 6.218 0.227
mgcv UBRE GP 200 0.022 98% 12.299 0.229
mgcv UBRE GP 300 0.022 98% 22.289 0.229
mgcv UBRE GP 400 0.022 98% 35.168 0.229
mgcv UBRE GP log-Lik. 25 0.026 73% 20.805 0.499 22.245
mgcv UBRE GP log-Lik. 100 0.024 76% 47.052 0.270 26.567
mgcv UBRE GP log-Lik. 200 0.025 66% 91.258 0.272 27.932
mgcv UBRE GP log-Lik. 300 0.026 60% 171.658 0.278 28.293
mgcv UBRE GP log-Lik. 400 0.026 61% 268.804 0.276 28.375
mgcv UBRE GP AIC 25 0.026 73% 22.985 0.477 21.739
mgcv UBRE GP AIC 100 0.023 87% 43.500 0.240 21.350
mgcv UBRE GP AIC 200 0.022 93% 83.373 0.223 18.910
mgcv UBRE GP AIC 300 0.022 93% 153.553 0.224 18.329
mgcv UBRE GP AIC 400 0.022 95% 282.019 0.216 18.230
mgcv UBRE GP REML/UBRE 25 0.026 73% 22.726 0.477 21.739
mgcv UBRE GP REML/UBRE 100 0.023 87% 37.500 0.240 21.350
mgcv UBRE GP REML/UBRE 200 0.022 93% 70.391 0.223 18.910
mgcv UBRE GP REML/UBRE 300 0.022 93% 136.619 0.224 18.329
mgcv UBRE GP REML/UBRE 400 0.022 95% 238.066 0.216 18.230
mgcv UBRE TPRS 25 0.027 85% 1.790 0.540
mgcv UBRE TPRS 100 0.023 97% 5.235 11.163
mgcv UBRE TPRS 200 0.022 98% 11.473 0.291
mgcv UBRE TPRS 300 0.022 98% 20.571 0.296
mgcv UBRE TPRS 400 0.022 98% 34.055 0.292
INLA P.C. Priors SPDE Mesh Default 25 0.034 47% 22.945 0.351 48.773
INLA P.C. Priors SPDE Mesh Default 100 0.024 93% 22.786 0.247 38.928
INLA P.C. Priors SPDE Mesh Default 200 0.023 96% 22.945 0.242 40.177
INLA P.C. Priors SPDE Mesh Default 300 0.022 96% 23.333 0.241 37.281
INLA P.C. Priors SPDE Mesh Default 400 0.022 97% 23.560 0.235 37.153
INLA Default SPDE Mesh Default 25 0.034 45% 22.133 0.352 57.823
INLA Default SPDE Mesh Default 100 0.024 94% 22.360 0.251 23.747
INLA Default SPDE Mesh Default 200 0.023 95% 22.679 0.247 22.327
INLA Default SPDE Mesh Default 300 0.022 97% 22.964 0.245 19.900
INLA Default SPDE Mesh Default 400 0.022 97% 23.321 0.238 19.781

Table S1: Simulation results comparing fitted LGCP using a range of basis dimensions, k: mean absolute
error in the fitted intensity (MAE λ); Coverage probability of 95% Wald intervals for β1 (Coverage β1); Time

taken to fit the model (Comp. Time); Root-mean squared error of β̂1 (RMSE β̂1); and root-mean squared
error of ρ̂ (RMSE ρ̂). A variety settings were compared. 1. Software used. 2. Method Spec.: mgcv criterion,
either restricted maximum likelihood (REML), unbiased risk estimator (UBRE), and prior type for R-INLA.
3. Basis Type: the basis approximation to ξ — Gaussan process (GP), thin-plate regression splines (TPRS),
and the stochastic partial differential equation (SPDE Mesh used for R-INLA) . 4. Range Crit.: the criterion
used to estimate ρ. 5

S1.1 Choice of method in mgcv

When using the gam function in mgcv, the method argument specifies the criterion that is minimized when
fitting the model — like mixed modeling generally, a marginalized or otherwise penalized likelihood must be
used due to the penalized smoother(s) acting as random effects. We trialled the default (when modeling a
Poisson distribution) of UBRE, a generalization to the unbiased risk estimator of the expected mean square
error of model predictions (instead using model deviance) and which approximates AIC (Wood, 2004). In
the Poisson case, this is given by

UBRE Criterion =
1

n
D(b̂) +

2

n
tr (A)− 1 (S:eq1)

where D(b̂) is the model deviance and A is the influence matrix so that tr (A) represents the effective degrees
of freedom. We additionally trialled method="REML" which uses a restricted maximum likelihood criterion
— the negative of the joint likelihood for all model parameters, marginalized over the smooth coefficients
(Wood, 2011) — that is

REML Criterion = −
∫

L (β, b) db (S:eq2)

The integral is computed using a Laplace approximation. We found that results were broadly consistent when
using either criterion for fitting the simulated LGCPs via mgcv— there was some indication that using the
REML criterion led to slightly better point and interval estimation of the additional fixed effect coefficient
β1 only when using a small basis function dimension (see columns “RMSE β̂1” and “Coverage β1 in Table S1
for k = 25 and where “Range Crit.” is blank).

Larger differences in results between the UBRE and REML criteria were observed when additionally
estimating the spatial range parameter (ρ) of the latent field. In Table S1, column “Range Crit.” indicates
the criterion by which we optimize the fitted model for ρ as described in Section 3.2. As this is a novel use
of the software, we trialled several approaches to optimizing for ρ̂: the log-likelihood (“log-Lik.”); Akaike’s
Information Criterion (AIC); and the default criterion according to the method specified (“REML/UBRE”)
— note that a blank entry for column “Range Crit.” in Table S1 indicates that ρ is not estimated. Figure S2
shows that coverage probabilities of Wald confidence intervals (for β1) are typically closer to the nominal
level when using method="REML" — most notably when the latent field is varying at relatively short spatial
scales (ρ = 10) and the data are numerous (β0 = −2.5, which typically leads to about 2000 point events
per pattern). Similarly, Figure S6 shows that the model tended to better estimate ρ when using the REML
criterion (i.e. in more of the simulation scenarios we explored).

S1.2 Type of basis functions used in mgcv

We also explored the sensitivity of simulation results to different basis functions used when fitting LGCPs
via mgcv. We compared the use of Gaussian processes (bs="gp") to the default for bivariate smooths —
thin-plate regression splines (TPRS) as used in Youngman and Economou (2017). Figure S4 shows the
simulation results for β0 = −3.5 and ρ = ρX = 30. We found almost no difference in estimating the true
intensity field (A), coverage probability of Wald confidence intervals for β1 (B, except at k = 25 which is an
inadequate number of basis functions see Section S1.3), and computation times (C). Using Gaussian process
basis functions has the additional benefit of being able to estimate the spatial range of the latent field, ρ, as
in Section 3.2.

6

Figure S4: Performance of point and interval estimators from models fitted to simulated LGCP via mgcv

using basis functions set as either Gaussian process smooths (GP) or Thin-Plate Regression Splines (TPRS)
across an increasing basis function dimension. A: Mean absolute error between the true intensity field λ
to that fitted by the model λ̂, estimated over a 10 000 point grid. B: Coverage probabilities of 95% Wald
confidence intervals constructed on β̂1 (dashed line indicates nominal coverage). C: Computation time in
seconds. We found that the basis function types typically do equally well at point and interval estimation,
in similar computation times.

7

S1.3 Choosing basis dimension

Our simulation results tended to show that the fitted model is consistent (in terms of point and interval
estimation of the LGCP intensity λ and fixed effect coefficient, β1 respectively), provided a “large enough”
basis dimension, k is used. Figure S1 shows that the mean absolute error in estimating λ typically levels off
for k = 200 or more in all scenarios, however we found that interval estimation was more sensitive to the
choice of k. Figure S2 shows that nominal coverage was reached at different values of k, depending on the
scenario. We typically needed a larger k to capture the latent field when it is operating at shorter spatial
scales (ρ = 10) and when the expected number of points was greater (E (N) = 1994).

So how can we determine the adequacy of k in real applications where we do not know the underlying
truth? As per Wood (2017, section 5.9) we examined the effective degrees of freedom (edf), which is
recommended to be “small” compared to k. Figure S5 shows the edf plotted against k for the simulations
scenarios examined. We found that a general rule of k = 4×edf suggests a large k when ρ is small and E(N)
is large, and which broadly aligns with the results in Figure S2.

8

Figure S5: The effective degrees of freedom from the fitted LGCP simulations using mgcv (with ρ either
taking the default value or being estimated, as indicated in legend) across a range of basis function dimensions
(k = 25, 100, 200, 300, 400). Panels indicate different values of spatial range of the latent field (ρ) and expected
point pattern size (E (N), i.e. the amount of data). The dashed line indicates our proposed stopping rule
for an adequately large k, i.e. when k is 4× the effective degrees of freedom. Since both the spatial range
and expected number of points determine the realized point pattern size, we found that larger E(N) and
smaller ρ require larger k to meet our proposed adequacy rule.

9

Figure S6: Estimated range parameters, ρ, for models fitted via R-INLA and mgcv, for a range of increasingly
large basis dimension (k = 25, 100, 200, 300, 400). Panels indicate different values of spatial range of the
latent field (ρ) and expected point pattern size (E (N), i.e. the amount of data). We found that models
fitted via mgcv tended to perform better than R-INLA under these simulation settings, and that when using
mgcv setting method="REML" outperformed the default in more scenarios.

S1.4 Estimating spatial range of the latent field

Table S1 shows that the default value for the spatial range parameter tends to work well (in terms of
estimating the underlying intensity and performing inference on fixed effects) however, it may sometimes
be desirable to estimate the range of the latent Gaussian field. Section 3.2 describes how the spatial range
parameter, ρ can be estimated when setting bs="gp" within the bivariate smooth that estimates the latent
field of LGCP. In the full simulations described in Section S1 we also compared the ability of mgcv (using
both criteria described in Section S1.1) and R-INLA to estimate the true spatial range parameter of the data
generating process.

Figure S6 shows the estimated spatial range parameter ρ̂ for R-INLA as well as mgcv when using the
different fitting criteria, (S:eq1) and (S:eq2). We found that using the REML criterion tended to more

10

accurately estimate ρ = 10 in the data poor settings (E(N) = 266, 730).
We note that the process for estimating the spatial range of the latent field is not particularly efficient.

There would be scope for improving this (and the efficiency of fitting models using the bs="gp" smoothers
in mgcv more broadly) if sparse basis function matrices could be utilized. Implementing this goes beyond
the scope of the current paper but we provide some discussion here. Since the range parameter dictates how
densely populated the basis function matrices are with non-zero elements, a combination of a short spatial
range parameter and sparse matrix calculations can vastly improve computation times (a similar principal
is used in Dovers et al., 2023). The key to efficient model fitting then becomes using as small a spatial range
as possible while still capturing the underlying spatial correlation of the Gaussian field. This strategy is at
odds with the current default, as recommended in Kammann and Wand (2003), which is set to be the largest
distance between locations in the data. However, this was not done with point process models in mind and
as such will be calculated on the quadrature points also, often resulting in a longer than necessary range and
in turn denser basis function matrices. Instead a default of the largest distance between point events only
could induce more sparsity to be utilized by sparse matrix calculations.

Beyond using sparse matrices, scope for improving the estimation of the spatial range parameter is
somewhat limited by the fact that most of the computationally demanding aspects of the optimization are a
function of ρ when using basis functions of the form of (9). INLA and nearest neighbour Gaussian processes
(Datta et al., 2016) mitigate this using different kinds of spatial structures as (what are essentially) positions
of the basis function nodes. Another approach would be to use automatic differentiation (AD) within mgcv.
This would lead to faster model fits since gradient information can speed up optimization algorithms (e.g.
Shanno, 1970) and enable automated approximation of intractable integrals using the Laplace approximation
— to approximate (S:eq2) for example. AD is used on R in modeling software, for example in scampr (Dovers
et al., 2023) and glmmTMB (Brooks et al., 2017) by interfacing with Template Model Builder (TMB Kristensen
et al., 2016).

Despite the efficiency drawbacks, we provide a wrapper function for users to implement the procedure
presented in Section 3.2 which additionally uses warm starts for parameter values and returns a final model
with an estimated spatial range parameter:

gam_lgcp <- function(formula, data, weights = NULL, coord.names = c("x", "y"), k = 200,

range.interval, opt.tolerance = 3, subset = NULL, na.action,

offset = NULL, optimizer = c("outer", "newton"), control = list(), scale = 0,

select = FALSE, knots = NULL, sp = NULL, min.sp = NULL, H = NULL, gamma = 1,

fit = TRUE, paraPen = NULL, G = NULL, in.out = NULL, drop.unused.levels = TRUE,

drop.intercept = NULL, nei = NULL, discrete = FALSE, ...) {

mc <- match.call() # gets the arguments (must be updated for LGCP as below)

call.list <- as.list(mc)

check the form of the weights

object.supplied <- tryCatch(!is.null(weights), error = function(e) FALSE)

if (!object.supplied) {

weight.name <- deparse(substitute(weights))

if (weight.name == "NULL") {

stop("weights must be supplied for fitting a LGCP")

} else {

wt.vec <- as.vector(data[,weight.name])

}

} else {

wt.vec <- weights

}

checks

if ((!all(coord.names %in% colnames(data)))) {

stop(paste0("One of ’coord.names’, ", paste(coord.names, collapse = " or "),

11

", not found ’data’"))

}

get the response variable out of the formula

resp <- all.vars(formula[[2]])

data$new.response <- data[, resp] / wt.vec

alter the call according to requirements for a LGCP

call.list$family <- poisson()

call.list$data <- data

call.list$weights <- wt.vec

call.list$method <- "REML"

update the formula for an initial fit

call.list$formula <- as.formula(paste0("new.response ~ ", as.character(formula)[3],

" + s(", paste(coord.names, collapse = ", "), ", bs=\"gp\", k=", deparse(k), ", m=3)"))

remove the function of the call

call.list[[1]] <- NULL

fit an initial model to obtain warm starting parameters

init.mod <- do.call(mgcv::gam, call.list)

warm.starts <- init.mod$coefficients

set basis function coefs to zero

warm.starts[(length(init.mod$coefficients) - k + 1):length(init.mod$coefficients)] <- 0

update the starting parameters

call.list$start <- warm.starts

set up the object function to be optimized

objective_fn <- function(rho) {

call.list$formula <- as.formula(paste0("new.response ~ ", as.character(formula)[3],

" + s(", paste(coord.names, collapse = ", "), ", bs=\"gp\", k=", deparse(k),

", m=c(3,", deparse(rho), "))"))

tmp.m = do.call(mgcv::gam, call.list)

return(tmp.m$gcv.ubre) # the "method" specific criterion

}

calculate the optimum

opt <- optimize(objective_fn, interval = range.interval,

tol = opt.tolerance)

adjust the formula for the optimized spatial range parameter

call.list$formula <- as.formula(paste0("new.response ~ ", as.character(formula)[3],

" + s(", paste(coord.names, collapse = ", "), ", bs=\"gp\", k=", deparse(k),

", m=c(3,", deparse(opt$minimum), "))"))

fit the final model

res <- do.call(mgcv::gam, call.list)

return(res)

}

The above takes the same arguments as mgcv::gam() — except for method and family which we fix as
needed for fitting a LGCP — along with additional arguments:

• coord.names to provide the names of spatial coordinates found in the data provided.

• k to specify the basis dimension.

• range.interval to specify the interval over which to estimate the spatial range. Can be narrowed to
improve computation time.

• opt.tolerance to control the tolerance level within optimize(). Can be altered to improve

computation time.

12

The right hand side of the formula argument specifies the linear predictor excluding the bivariate smoother
(which is added automatically using coord.names) and the left hand side is simply the binary point
event/quadrature identifier within the data provided — this will automatically be divided by the weights as
in (4). For example, the model fitted in Section 3 could be fitted with an estimated spatial range parameter
via:

m <- gam_lgcp(pt ~ X, data = data, weights = wt, range.interval = c(min_dist, max_dist))

S1.5 INLA specification

The following code was used to fit R-INLA in the simulations presented. We set up the mesh object, used as
integration points used to approximate the marginalization of the latent field:

mesh <- inla.mesh.2d(loc.domain = quad[, c("x", "y")],

max.edge=c(5,10), cutoff=2, offset = c(5,10), max.n.strict = c(k, 0))

where quad is a data frame of the regular grid of quadrature points, spanning the domain and k is the “basis
function dimension” to be fitted — we use this term loosely since these are actually mesh vertices but are
the nearest equivalent to basis function dimension in mgcv. Priors for the hyperparameters of the Matérn
covariance are specified two ways:

set the spde representation to be the mesh with penalized complexity priors

spde.pcmatern <- inla.spde2.pcmatern(mesh, alpha = 1.5, prior.sigma = c(10, 0.01),

prior.range = c(1, 0.01))

and with the default Matern settings

spde.matern <- inla.spde2.matern(mesh)

These correspond to penalized complexity priors (Fuglstad et al., 2019) and the default respectively. The
model is then fitted using standard code according to Illian et al. (2012); Simpson et al. (2016):

make A matrix for point pattern

data_A <- inla.spde.make.A(mesh = mesh, loc = as.matrix(pp[,c("x","y")]))

make A matrix for quadrature points

quad_data_A <- inla.spde.make.A(mesh = mesh, loc = as.matrix(quad[,c("x","y")]))

make A matrix for the prediction points

pred_data_A <- inla.spde.make.A(mesh = mesh, loc = as.matrix(pred[, c("x","y")]))

set the numbers of various points

nq <- nrow(quad)

n <- nrow(pp)

np <- nrow(pred)

change data to include 0s for nodes and 1s for presences

y.pp <- rep(0:1, c(nq, n))

add expectation vector (area for integration points/nodes and 0 for presences)

e.pp <- c(quad$quad.size, rep(0, n))

combine integration point A matrix over quadrature with point pattern data A matrix

A.pp <- rbind(quad_data_A, data_A)

create data stack

13

stk_data <- inla.stack(data=list(y=y.pp, e = e.pp),

effects=list(list(data.frame(Intercept=rep(1,nq+n)), env = c(quad$env, data$env)),

list(i=1:mesh$n)), A=list(1,A.pp), tag="data")

create the prediction stack

stk_pred_response <- inla.stack(data=list(y=NA),

effects = list(list(data.frame(Intercept=rep(1,np))), env = pred$env, list(i=1:mesh$n)),

A=list(1,1, pred_data_A), tag=’pred_response’)

combine the stacks

stk <- inla.stack(stk_data, stk_pred_response)

fit the models

result_pcmatern <- inla(y ~ Intercept + env + f(i, model = spde.pcmatern) - 1,

family="poisson", data=inla.stack.data(stk),

control.predictor=list(A=inla.stack.A(stk), compute=TRUE),

control.family = list(link = "log"), E = inla.stack.data(stk)$e,

control.compute = list(cpo=TRUE, waic = TRUE, dic = TRUE)

)

result_default <- inla(y ~ Intercept + env + f(i, model = spde.matern) - 1,

family="poisson", data=inla.stack.data(stk),

control.predictor=list(A=inla.stack.A(stk), compute=TRUE),

control.family = list(link = "log"), E = inla.stack.data(stk)$e,

control.compute = list(cpo=TRUE, waic = TRUE, dic = TRUE)

)

S2 Analysing the Gorilla Nesting Data

This section serves as a vignette demonstrating the analyses conducted throughout Section 5 on the gorillas
nesting data (Funwi-Gabga and Mateu, 2012) in R, including:

• Converting the data into the appropriate format to fit point process models (PPMs) with mgcv

• Fitting a LGCP model to the data via the mgcv package and selecting an appropriate basis dimension
k and estimating the spatial range parameter ρ.

• Performing model diagnostics by interfacing with the spatstat package

• Performing model selection, comparing inhomogeneous Poisson and log-Gaussian Cox processes and
the form of the fixed effect covariates.

Load/install the required packages:

if(!require(mgcv, quietly = T)){

install.packages("mgcv")

library(mgcv)

}

if(!require(spatstat, quietly = T)){

install.packages("spatstat")

library(spatstat)

}

14

S2.1 Data Preparation

The gorillas data is available in the required format within the scampr package but can be built from
spatstat according to the following code. Additionally, this sets up the point weights for fitting the PPM,
and centers and scales covariates to assist convergence of fitting routines.

data(gorillas, package = "spatstat.data")

pp = data.frame(gorillas,

lapply(gorillas.extra,function(x){x[gorillas]}),pt=1,wt=1e-6)

q_xy = data.frame(gorillas.extra[[1]])[,c("x","y")] # extract x and y from window

quad = data.frame(q_xy,lapply(gorillas.extra,function(x){x[q_xy]}),

pt=0,wt=area(gorillas$window)/nrow(q_xy))

dat = merge(pp, quad, all=T)

center and scale covariates

dat$elevation <- scale(dat$elevation)

dat$slopeangle <- scale(dat$slopeangle)

dat$waterdist <- scale(dat$waterdist)

head(dat)

x y aspect elevation heat slopeangle slopetype vegetation

1 580455.7 676812.9 W -0.4254230 Moderate -1.3677928 Valley Grassland

2 580455.7 676843.6 NW -0.4305752 Warmest -1.0094739 Midslope Grassland

3 580455.7 676874.3 NW -0.5027051 Coolest -0.8500476 Valley Primary

4 580486.4 676536.5 NW -0.3945102 Moderate -0.2545790 Valley Disturbed

5 580486.4 676567.2 W -0.5078572 Moderate 0.8568781 Valley Disturbed

6 580486.4 676597.9 W -0.5233137 Warmest 0.5965742 Valley Disturbed

waterdist pt wt group season date

1 1.2223995 0 944.4757 <NA> <NA> <NA>

2 0.9175975 0 944.4757 <NA> <NA> <NA>

3 0.6493147 0 944.4757 <NA> <NA> <NA>

4 -0.9844239 0 944.4757 <NA> <NA> <NA>

5 -0.8152447 0 944.4757 <NA> <NA> <NA>

6 -0.4795709 0 944.4757 <NA> <NA> <NA>

S2.2 Choose an appropriate basis dimension

First, we fit a LGCP to the data using a couple of candidate basis dimensions, k = 200, 400 and then check
the effective degrees of freedom to determine the adequacy of k. For demonstrative purposes we fit linear
terms for covariates for now.

m_k200 <- gam(pt/wt ~ elevation + waterdist + slopeangle + heat + slopetype + vegetation +

s(x, y, bs = "gp", k = 200),

data=dat, family=poisson(), weights=wt, method="REML")

m_k400 <- gam(pt/wt ~ elevation + waterdist + slopeangle + heat + slopetype + vegetation +

s(x, y, bs = "gp", k = 400),

data=dat, family=poisson(), weights=wt, method="REML")

Then, check the ratio of effective degrees of freedom (of the total model) to the basis dimension used:

sum(m_k200$edf)/m_k200$smooth[[1]]$margin[[1]]$bs.dim

[1] 0.3240267

sum(m_k400$edf)/m_k400$smooth[[1]]$margin[[1]]$bs.dim

[1] 0.1839065

15

Since we are working off a rule of 1
4 , we decide that k = 400 is sufficient. There is probably some 200 <

k < 400 that would also meet this threshold — we do not explore this here, however obtaining a smaller k
may be useful to reduce computation times for subsequent analyses, such as estimating spatial range and/or
model selection.

S2.3 Estimate the spatial range parameter

The above models were fitted with the default range parameter which we can optimize by minimizing the
REML criterion over a candidate interval, using optimize(). We recommend the candidate interval be the
minimum (excluding zero) to maximum between-point distances found in the point pattern. There are a
variety of ways to calculate such a range — we have found the rdist() function from the fields package
to be the fastest approach.

determine the range of between-point distances

dists <- fields::rdist(dat[dat$pt == 1, c("x", "y")])

range_interval <- range(dists[dists != 0])

set up the function to be minimized

objective_fn = function(rho) {

tmp.m = gam(

pt/wt ~ elevation + waterdist + slopeangle + heat + slopetype + vegetation +

s(x, y, bs = "gp", k = 400, m = c(3,rho)),

data=dat, family=poisson(), weights=wt, method="REML")

return(tmp.m$gcv.ubre) # the "method" specific criterion

}

find the optimized range parameter

opt = optimize(objective_fn, interval = range_interval)

This gives an estimated ρ that can be retrieved as:

opt$minimum

[1] 568.5373

We can then fit the final model — using linear terms and default the Matérn covariance function (Kammann
and Wand, 2003) with the estimated spatial range:

m <- gam(pt/wt ~ elevation + waterdist + slopeangle + heat + slopetype + vegetation +

s(x, y, bs = "gp", k = 400, m = c(3, opt$minimum)),

data=dat, family=poisson(), weights=wt, method="REML")

S2.4 Model Diagnostics

We can use an inhomogeneous K function to examine the validity of the Poisson assumption by interfacing
with functionality from the spatstat library to:

• predict the intensity over a fine enough resolution grid of the domain (so that it can form a pixel
image/raster)

• convert the vector of predictions into an im object for interfacing with spatstat

• simulate point patterns over the domain from the im object to create a simulation envelope

Here we have used a dense, regular grid of the domain as quadrature points so we can use these to form a pixel
image of the intensity surface to simulate point patterns from. The following also fits an inhomogeneous
Poisson process (IPP) for comparison. Note that an IPP can be fitted via glm() (as presented in the
manuscript), or via gam(). We use the latter here as we wish to later compare these models to an IPP fitted
with smooth terms on covariates.

16

fit an IPP model to contrast with the fitted LGCP

m_ipp <- gam(pt/wt ~ elevation + waterdist + slopeangle + heat + slopetype + vegetation,

data=dat, family=poisson(), weights=wt, method="REML")

set the domain data points (in this case the quadrature we used)

domain.grid <- dat[dat$pt == 0,]

predict intensity values

domain.grid$z_ipp = predict(m_ipp, newdata=domain.grid, type = "response")

domain.grid$z = predict(m, newdata=domain.grid, type = "response")

create the pixel images (uses the window supplied in the original gorillas data)

pred_ipp.im = as.im(domain.grid[,c("x","y","z_ipp")], W = gorillas$window)

pred.im = as.im(domain.grid[,c("x","y","z")], W = gorillas$window)

calculate the observed K functions

K_obs_ipp <- Kinhom(gorillas, lambda = pred_ipp.im, correction = "border")

K_obs <- Kinhom(gorillas, lambda = pred.im, correction = "border")

simulate the envelopes/bounds

K_env_ipp <- envelope(gorillas, fun = Kinhom,

simulate = expression(rpoispp(lambda = pred_ipp.im)))

K_env <- envelope(gorillas, fun = Kinhom,

simulate = expression(rpoispp(lambda = pred.im)))

The observed K functions use a “border” correction, see Baddeley and Turner (2000) for details. The K
functions and corresponding envelopes can be plotting using the following code which produces Figure 2 in
the main manuscript.

layout(mat=matrix(1:2, nrow=2, ncol=1, byrow=TRUE), widths=1, heights=c(0.5,0.5))

par(mar = c(2.1,3.1,2.1,0))

plot(K_env_ippr, K_env_ippmmean, type="n",

ylim=range(c(K_env_ippobs, K_env_ipphi, K_env_ipp$lo)), ylab="", xlab="",

xaxt="n", yaxt="n")

axis(side = 2, at = seq(0,3e6,by=1e6), labels = c("0", seq(1e6,3e6,by=1e6)))

polygon(c(rev(K_env_ipp$r), K_env_ipp$r), c(rev(K_env_ipp$hi), K_env_ipp$lo),

col="grey80", border=NA)

lines(K_env_ippr, K_env_ippmmean, lty="dashed")

lines(K_obs_ippr, K_obs_ippborder, col="red")

mtext(text="A: Poisson Process", side=3, cex=1, line=0.5, adj=0)

par(mar = c(3.1,3.1,1.1,0))

plot(K_envr, K_envmmean, type="n", ylim = range(c(K_envobs, K_envhi, K_env$lo)),

ylab="", xlab="", yaxt="n")

axis(side=2, at=seq(0,3e6,by = 1e6), labels = c("0", seq(1e6,3e6,by=1e6)))

polygon(c(rev(K_env$r), K_env$r), c(rev(K_env$hi), K_env$lo), col="grey80", border=NA)

lines(K_envr, K_envmmean, lty="dashed")

lines(K_obsr, K_obsborder, col="red")

mtext(text = "distance (m)", side=1, srt=90, cex=1, line=2)

mtext(text = "Inhomogeneous K Function", side=2, srt=90, cex=1, xpd=T, outer=T, line=-1)

mtext(text = "B: log-Gaussian Cox Process", side=3, cex=1, line=0.5, adj=0)

17

legend(x=0, y=4e6, legend = c("Observed", "Theoretic", "95% Sim. Bounds"),

col = c("red", "black", "grey80"), lty = c("solid", "dashed", "solid"), cex=1,

lwd=c(2, 2, 2), bty="n")

The IPP model appears to violate the Poisson assumption across all distances whereas, the LGCP is within
the simulation envelope at short ranges, i.e. distances < 1km roughly. Note that we use simulation envelopes
here for demonstration however, a formal (global) envelope test can be performed used the GET package
(Myllymäki and Mrkvička, 2019).

S2.5 Model Selection

We can perform model selection using some information criterion, such as AIC. First, we fitted second-order
polynomial terms on the covariates since we might expect gorillas to have a preferred (or avoided) elevation,
gradient and distance from water, rather than linear relationships to these.

fit an IPP for comparison

m_ipp_poly <- gam(pt/wt ~ poly(elevation, 2) + poly(waterdist, 2) + poly(slopeangle, 2) +

heat + slopetype + vegetation , data=dat, family=poisson(), weights=wt, method="REML")

fit the LGCP

m_poly <- gam(pt/wt ~ poly(elevation, 2) + poly(waterdist, 2) + poly(slopeangle, 2) +

heat + slopetype + vegetation +

s(x,y, bs = "gp", k = 400, m = c(3, opt$minimum)),

data=dat, family=poisson(), weights=p.wt, method="REML")

We then fitted the covariates more flexibly using smooths within the GAM framework:

fit an IPP for comparison

m_ipp_sm <- gam(pt/wt ~ s(elevation) + s(waterdist) + s(slopeangle) + heat + slopetype +

vegetation, data=dat, family=poisson(), weights=wt, method="REML")

fit the LGCP

m_sm <- gam(pt/wt ~ s(elevation) + s(waterdist) + s(slopeangle) + heat + slopetype +

vegetation + s(x, y, bs = "gp", k = 400, m = c(3, opt$minimum)),

data=dat, family=poisson(), weights=wt, method="REML")

We can compare a range of information criteria between the models that use linear, polynomial and smooth
terms for covariates, as well as those that with (or without) a latent field:

info_crit <- function(x){c(‘GAM criterion‘=ifelse(is.null(x$gcv.ubre),NA,x$gcv.ubre),

logLik = logLik(x), AIC = AIC(x), BIC = AIC(x, k = log(sum(dat$pt))))}

data.frame(‘IPP Linear‘=info_crit(m_ipp), ‘IPP Poly‘=info_crit(m_ipp_poly),

‘IPP Smoooth‘=info_crit(m_ipp_sm), ‘LGCP Linear‘ = info_crit(m),

‘LGCP Poly‘ = info_crit(m_poly), ‘LGCP Smoooth‘ = info_crit(m_sm))

IPP.Linear IPP.Poly IPP.Smoooth LGCP.Linear LGCP.Poly LGCP.smooth

GAM criterion 15239.06 15189.40 15186.14 14816.92 14790.53 14816.80

logLik -15222.26 -15196.00 -15157.49 -14673.91 -14672.70 -14673.35

AIC 30476.53 30429.99 30362.40 29526.57 29529.30 29531.85

BIC 30548.09 30514.97 30468.44 29926.27 29940.54 29945.90

Results show that there is strong support for the inclusion of the latent field (via a LGCP, i.e. including a
bivariate smoother on coordinates) whereas, there is little support for the use of polynomial or smooth terms
on the covariates.

18

References

Baddeley, A. and Turner, R. (2000), “Practical Maximum Pseudolikelihood for Spatial Point Patterns: (with
Discussion),” Australian & New Zealand Journal of Statistics, 42, 283–322.

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug,
H. J., Machler, M., and Bolker, B. M. (2017), “glmmTMB balances speed and flexibility among packages for
zero-inflated generalized linear mixed modeling,” The R Journal , 9, 378–400.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016), “Hierarchical nearest-neighbor Gaussian
process models for large geostatistical datasets,” Journal of the American Statistical Association, 111,
800–812.

Dovers, E., Brooks, W., Popovic, G. C., and Warton, D. I. (2023), “Fast, Approximate Maximum Likelihood
Estimation of Log-Gaussian Cox Processes,” Journal of Computational and Graphical Statistics, 32, 1660–
1670.

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2019), “Constructing priors that penalize the
complexity of Gaussian random fields,” Journal of the American Statistical Association, 114, 445–452.

Funwi-Gabga, N. and Mateu, J. (2012), “Understanding the nesting spatial behaviour of gorillas in the
Kagwene Sanctuary, Cameroon,” Stochastic Environmental Research and Risk Assessment , 26, 793–811.

Illian, J. B., Sørbye, S. H., and Rue, H. (2012), “A toolbox for fitting complex spatial point process models
using integrated nested Laplace approximation (INLA),” The Annals of Applied Statistics, 6, 1499–1530.

Kammann, E. and Wand, M. P. (2003), “Geoadditive models,” Journal of the Royal Statistical Society:
Series C (Applied Statistics), 52, 1–18.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016), “TMB: Automatic Differentiation
and Laplace Approximation,” Journal of Statistical Software, 70, 1–21.

Myllymäki, M. and Mrkvička, T. (2019), “GET: Global envelopes in R,” arXiv preprint arXiv:1911.06583 .

Shanno, D. F. (1970), “Conditioning of quasi-Newton methods for function minimization,” Mathematics of
Computation, 24, 647–656.

Simpson, D., Illian, J., Lindgren, F., Sørbye, S. H., and Rue, H. (2016), “Going off grid: computationally
efficient inference for log-Gaussian Cox processes,” Biometrika, 103, 49–70.

Wood, S. N. (2004), “Stable and efficient multiple smoothing parameter estimation for generalized additive
models,” Journal of the American Statistical Association, 99, 673–686.

— (2011), “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric
generalized linear models,” Journal of the Royal Statistical Society Series B: Statistical Methodology , 73,
3–36.

— (2017), Generalized additive models: an introduction with R, CRC press.

Youngman, B. D. and Economou, T. (2017), “Generalised additive point process models for natural hazard
occurrence,” Environmetrics, 28, e2444.

19

