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Abstract

Appendix A provides details in the proof of Proposition 6.1. Appendix B provides
covariance calculation needed in the proof of Proposition 2.1. Appendix C provides
proofs of all results in results in Section 2.2. Appendix D provides additional simulation
results.

A Details in the proof of Proposition 6.1

Based on the first order conditions derived from the log-likelihood function, the MLE (¥, &)

can be obtained as follows. Firstly, solve the following equation

hn<t> = fn(t)gn(t) —-1=0,
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to obtain a solution t* # 0. Then 5 = f,(t*) — 1 and 6 = 4/t*; see Zhou (2009) and
Grimshaw (1993). Note that t* = 5/5.

In the proof of Theorem 4.1 in Zhou (2009) provided two bounds for ¢*, denoted as ¢t and
t.! Using the tail quantile process result in Lemma 6.3, following exactly the same steps in
the proof of Theorem 4.1 in Zhou (2009), we can show that as n — oo, with probability
tending to 1, h,(t) < 0 < h,(t). Together with the continuity of the function h,,, we obtain
the existence of a solution t* in between ¢ and ¢.

In addition, based on the specific construction of the two bounds, using the tail quan-
tile process result in Lemma 6.3, we can verify that both |ta(n/k) — | = O,(1/vk) and
lta(n/k) —~| = O,(1/ V'k) as n — co. This again follows exactly the same steps in the proof
of Theorem 4.1 in Zhou (2009). As a consequence, since t* = 4/4, the solution (9, &) satisfies

that

U/a(n/k 7‘ L,(1/vk) and log sy = = Op(1). Notice that these two conditions are
required in the proof in Drees et al. (2004).

Next, one can linearize f,(-) and g,(-) in the neighborhood of v/a(n/k); see Proposition

'The two bounds differ for the three cases v < 0, vy = 0 and v > 0.



3.1 in Drees et al. (2004). For v # 0, the solution (¥, &) satisfies that

V= f(¥/0) =1
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The first term [; is dealt with by an inequality in Lemma 3.2 in Drees et al. (2004). We
get that I, = 0,(1/vk) as n — oo. In addition, I, is handled by combining the fact that

a/a(n/k) 7‘ 1/\/_) and
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uniformly for all s € [1/(2k), 1]. Eventually, we obtain that as n — oo,
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A similar linearization for the function g, leads to that as n — oo,
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Multiplying both sides of the equation (S.2) by (2y+1) and adding to the equation (S.1),

we get that, as n — oo,

sl 2yl f/ — (2 + 1)2) Zo(5)ds + 0,(1/VE).

y+1 v+1

The proposition is then proved by applying the Delta method. The case v = 0 is handled in

a similar way.

B Calculation of covariance in Proposition 2.1

We calculate the covariance of  and Q as follows. Note that Cov(W,(s), =W (t)) = (1 —
v*)R(s,t). Then, we have that

Cov(Q,Q) = (1 — 172 (v +1)2%(g+1)?
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Using a change of variables and the first order homogeneity of R, we obtain:
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and similarly
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Substituting the expressions for these four integrals involving R(s,?) in the formula for

Cou(€,Q) above, we obtain that this covariance is equal to (1 — v2)(y + 1)(g + 1)R,.

C Proofs of results in Subsection 2.2

For the proof of Theorem 2.2 we first need an approximations of ¢ and &, similar to those

obtained for 4 and g.

Proposition C.1. Assume that (3) and (4) hold and VkA (%) = O(1), as n — oo. Then
for v > —1/2, and v # 0, with probability tending to 1, there exist a unique mazimizer of

the likelihood functions based on {X;} , denoted as &, such that as n — oo,

~

v ( Gl 1) - 1((7 +1)(2y + 1)s™ = 87) Z,(s)ds = op(1),

a (%) v Jo



and, for v =0,

Proof. The existence of ¢ follows from Theorem 4.1 in Zhou (2009); see the explanation in
the proof of Proposition 6.1 above. Next, from the expansion of 4 —~ and the relation (S.1),
we can derive the expansion of W — 7. The proposition is proved by further calculation

using the Delta method. O]

Proposition C.2. Assume that Fy is continuous and k satisfies (3). For g > —1/2 and
g # 0, with probability tending to 1, there exists a unique mazimizer of the likelihood function

based on {Y/i}?:l, denoted as &,, such that, as n — oo,

vk ((‘Zig N 1) B g%l (gD + 1)s* — s%)H,,(s)ds = op(1),
and, for g =0,

VEk(5,—1) — /0 (3 +log s)H,(s)ds = op(1).

Proof. The proof follows exactly the same step as that of Proposition C.1. The main differ-
ence is again that {Y;}”_, are not i.i.d. observations. Nevertheless, all asymptotic expansions
such as that of § — g are still valid with the only difference that the random limit is driven
by a proper functional of W instead. Such asymptotic expansions are sufficient to ensure

that the proof can still be realized. O

Proof of Theorem 2.2. From Proposition C.1, it follows that for v > —% and v # 0,
~ 1 1
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as n — oo. Similarly it follows from Proposition C.2 that for g > —% and g # 0,

vk ((Zig - 1) 500 [a+ g+ )52 = 50) (1) 57017 (0)) ds = 5,
Hence, as n — oo,
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It follows from the uniform consistency of R on [0,1]?, that Sg LN Sy. Using this, 6/a (%) —

1, and (S.3), we obtain, as n — oo,
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see the proof of Proposition 2.1 for the definitions of Q and €, R, is defined as in (5). By

Lemma 6.3 with s = 1, as n — o0,
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It remains to be shown that the random vector on the right in (S.7) has the trivariate



normal distribution specified in (11). The trivariate normality and the mean vector are
straightforward from the definitions. The variance of the first component is given in (8).
The variance of the third component is obviously equal to 1. For the variance of the second
component we readily obtain (and it is well-known) that Var(X,) = 1+ (1 + 4)? and
Var(X,) = (1 —v?)(1 4 (1 + g)?). Moreover,
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This yields the variance of the second component.
We finally consider the three covariance terms in the matrix K in (11). We begin with
the covariance of the first and second component on the right in (S.7). It easily follows

(and is again well-known) that Cov(€, 2,) = —(1 4+ ) and Cov(,%,) = —(1 — v?)(1 + g).



Further,
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Note that Cov(X,, W;(1)) = v (and not 0 as incorrectly assumed in de Haan and Ferreira



(2006), page 139). Hence
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Proof of Theorem 2.3. Using Theorem 2.2 in combination with Theorem 4.3.1 in de Haan

and Ferreira (2006) yields, as n — oo,
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where y_ := min(0, ). The distribution of the limiting random variable is easily seen to be
that in (12). O

D Additional simulation results

We provide additional simulation results when the target variable and the covariate are tail
independent. More specifically, we begin with simulating data from the bivariate normal
distribution with standard normal marginals and correlation 0.5, restricted to the first quad-
rant. Again, these data are denoted by (X;,Y;). To obtain the data for estimation, (X;,Y;)
with X; having extreme value index v = —0.3,0, 0.3, we transform X; in the same way as in
(16).

Table 1 shows the empirical percentages of variance reduction for different values of g.
The results are based on 10,000 replications with n = 500, m = 1000 and k& = 125. There is

a variance inflation ranging from less than 5% to slightly more than 10%.

10



Table 1: Variance reduction for different extreme value indices under tail independence

g 0
-0.3 0 0.3
-0.25 —121% —9.0% —5.6%
—0.125 —12.9% —-9.4% —5.6%
0 —12.2% —-89% —5.0%
0.125 —11.3% —-81% —4.3%
025 —104% —-74% —-3.7%
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