Supplementary material

Section S1 gives the proofs of the theorems.

Section S2 gives parametric examples for the completeness conditions.

Section S3 gives counterexamples and further discussion for the unidentifiable cases.
Section S4 provides details for the parametric estimation.

Section S5 provides details on the simulation studies.

Section S6 provides sensitivity analysis results on the NJCS.

S1 Proofs

S1.1 Proof of Theorem 1

The identification of P(Y =y | M =m, T =t, X = x) follows from
PY=ylM=mT=tX=2)=PY =y|RM=1,M=mT=tX=2),
We now focus on identifying P(M = m | T'=t, X = z). Define
Poyijte = P(M=m,Y =y, RM =1|T=1tX =uz),

HJ>—|ry0|t,:v = P(Y:y,RM:O|T=t,X:x),

P(RM =0 | M=m,T=tX =ux)
P(RM =1|M=m,T=t,X=x)

Gtz (m) =
Since

Poyippe =P(M =m,Y =y | T=t,X =2)P(RM =1| M =m,T=t,X = x),
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we have:

P+y0|t,x:/ P(M=m,Y =y, RM =0 |T =t,X =x)dm
meM
:/ PM=m,Y=y|T=t,X=2)P(RY=0|M=m,T=tX =ux)dm
meM
/ p ]P’(RM:0|M:m,T:t,X:x)d
= m T m
ent, T P(RM = 1M =m, T =t,X = )
:/ Pmyl\t,m(t,x(m)dm
meM

for each y € Y. The uniqueness of solutions (; ,(m) requires that P(Y, M,R® =1 | T =
t,X = x)is complete in Y for all ¢t and x. For discrete M and discrete Y, the completeness
assumption is equivalent to Rank (0,) = J, where ©,, is a J x K matrix with Pryi)t,e as
the (m, y)th element. For binary M, the rank condition further reduces to M 1. Y | (T, X),
which is equivalent to the testable condition M /. Y | (T, X, RM™ = 1). For continuous M
and continuous Y, the dimension of ¥ must be no smaller than that of M in general, as
required by the completeness assumption.

We can subsequently identify P(R® =1 | M = m,T = t,X = z) once (;,(m) is
identified. Then, the identification of P(M =m | T =t, X = z) follows from

P(M=m,RM=1|T=tX =ux)

(M =m| X =) = B R M —m. T =1, X = 1)

S1.2 Proof of Theorem 2
Theorem 2 (i)
The identification of P(Y =y | M =m,T =t, X = x) follows from

PY=y|M=mT=t,X=2)=PY =y|R"=1,R"=1,M=m,T=tX =2).
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We now focus on identifying P(M =m | T =t, X = z). Define
Pryiijte = P(M=m,Y = Yy, RM =1, R =1|T=tX =2),

Piyorjte = P(Y:y,RMZO,RYZI|T:t,X:x),

P(RM =0 | M=m,T=tX =ux)

Ct,w(m) = ]P)(RM: 1 | M:m’T:t,X:l‘)'

Since
Prgtifte = P(IM=m,Y =y |T =1t,X = x)
PR =1|RM=1,T=t,X=0)P(RM =1 | M =m,T =t,X = 1),
we have:

]P’eron,x:/ P(M:m,Y:y,RM:O’RYzl|T:th:$)dm
meM
_/ . P(RY =1|RM =0,T=t, X =2)P(RM =0 | M =m,T =t,X = 2)
" oens MMPRY =1 RM =1, T =t, X =x)P(RM =1 | M =m,T =t, X = )
P(RY=1|RM=0,T=t,X =1x)
P(RY =1|RM =1,T = t,X = x) /meM oo (m)dm

for each y € Y. The uniqueness of solutions (;,(m) requires that P(Y, M, R™ = 1, RY =

dm

1T =tX = x)is complete in Y for all ¢ and z. For discrete M and discrete Y, the
completeness assumption is equivalent to Rank (Oy,) = J, where ©,, is a J x K matrix
with Ppy11je. as the (m,y)th element. For binary M, the rank condition further reduces
to M LY | (T, X), which is equivalent to the testable condition M /A Y | (T, X, RM =
1, RY =1). For continuous M and continuous Y, the dimension of ¥ must be no smaller
than that of M in general, as required by the completeness assumption.

We can subsequently identify P(R® =1 | M = m,T = t,X = z) once (;.(m) is
identified. Then, the identification of P(M =m | T =t, X = z) follows from

P(M=m,RM=1|T=tX =)

(M=m| X =) = R T M =T =t X =)
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Theorem 2 (i7)
The identification of P(Y =y, M =m | T =t, X = x) follows from

PY=yM=m|T=t,X=2)=PY =y M=m|RM=1,R =1,T=tX=2).

S1.3 Proof of Theorem 3

We discuss the identification of P(M =m,Y =y | T =t,X = x). Define
Pmy11|t,x = P(M:m,yzy,RM:LRY:l|T:t,X:£L'),
Piyorjte = P(Y =y, RM = O,RY =1|T=tX=ux),

Prtiope = PM:m,RM:1,RY:0|T:t,X:x),

(
P(RM=0|M=m,T=tX =ux)
Ct,z(m> = M _ _ _ — )’
PRM=1|M=m,T=t,X =ux)
PRY =0|Y=yT=t,X=u
Ma(y) = E | )

P(RY=1]|Y =y, T=tX =ux)

Since
Poyiipe = P(IM=m,Y =y |T =t X =x)
PR =1|Y=yT=t,X=2)P(RM =1|M=m,T=t,X = 1),
we have:

P+y01|t,z: P(M:m,y:y’RMZO’Ryzl ’T:t)X:Q;)dm

<

P(RM =0 M=m,T=tX =uz)

Pyoyiijie d
o MR 1 [M=m, T =t,X =a)

[
e e

Pmyll \t,:r:Ct,x (m) dm

<

S
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for each y € Y, and
Prt10)t, :/ P(Mzm,Y:y,RM =1,RY =0 | T =1t X =x)dy
yey

_/ p P(RY=0|Y =y,T=tX=nx)
" ey MMBRY =1 (Y =y, T =1, X =)

dy

= / Pyt (y)dy
yey

for each m € M. The uniqueness of solutions ¢; ,(m) requires that P(Y, M, R =1, RY =
1|T=tX =) is complete in Y for all ¢ and x, and the uniqueness of solutions 7 ,(y)
require that P(Y, M, RM =1, RY =1 |T =t,X = x) is complete in M for all t and z. For
discrete M and discrete Y, the above completeness assumptions are equivalent to J = K
and Rank (©y,) = J, where Oy, is a J x J matrix with P11/, as the (m, y)th element. For
binary M and binary Y, the rank condition reduces to M A Y | (T, X). For continuous
M and continuous Y, the dimension of Y needs to be the same as the dimension of M in
general as required by P(Y, M, RY = 1,RM =1 | T, X) being complete in M and being
complete in Y.

We can subsequently identify P(RY =1 | M = m, T =t,X = x) and P(RY =1 |
Y =y, T =t,X = z) once (,(m) and n,,(y) are identified. Then, the identification of
PY=y M=m|T =t X =x) follows from

PY=y M=m|T=tX=rx)

IP>myll\t,:z:

P(RM=1|M=m,T=t,X=x)P(RY=1|Y =y, T=tX=x)

S1.4 Proof of Theorem 4

The identification of P(Y =y | M =m, T =t, X = x) follows from

PY=y|M=mT=t,X=2)=PY =y|RM=1,R"=1,M=m,T=tX=n2).
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We now focus on identifying P(M =m | T =t, X = z). Define
Pryiije = P(M=m,Y =y RM =1|T =t,X =),
Poyiife = P(IM=m,Y =y, RM =1, R  =1|T=t,X =),
Pooe = PY =y, RY=0,R" =1|T=tX =u1),
Priipe = P(M=m,RM=1,R" =0|T=tX =1),

Pitoojte = P(RMIO,RY:O|T:t7X:x),

P(RM=0|M=m,T=tX =)

Ct,:c(m) = ]P)(Rle ’ M:m’T:t,X:l')

Since
Prytipe = P(IM=m,Y =y |T =t X =x)
PRY=1|M=mT=t,X=2)P(R" =1|M=m,T=tX =uz),
and
Pt = PM=m|T =t,X =ux)
PRY=1|M=mT=t,X=2)P(R¥ =0|M=m,T=tX =ux),
we have:

Poyorjte = P(M=m,Y =y, R =0,RY =1|T =t,X =z)dm

<

P(RM =0 M=m,T=tX =ux)

d
PRY=1|M=mT=t,X=a)

]P)myll\t,m

<

S

I
ST 5T 5

]P)myll\t,th,z (m) dm

<

S

for each y € Y, and

P, oot = P(M=m,RM=0,RY =0 |T=1tX =2x)dm

<

S
P(RM=0|M=m,T=t,X =x)

Py 10)t.0 d
e MO P(RM Z T [ M =m, T =t X =)

I
ST 5T

<

IP)771—&-10|t,:vct,m (m) dm.
S
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The uniqueness of solutions ¢;,(m) requires that P(M, YT, RM =1 | T = t,X = z) is
complete in Y for all ¢ and . For discrete M and discrete Y, the completeness assumption
is equivalent to Rank (0,) = J, where Oy, is a J x (K + 1) matrix with Py, 11¢, as the
(m,y)th element and Py, 10, as the (m, K + 1)th element. If it exists, the effect of A on
RY provides one additional constraint to identify (; ,(m). For binary M, the rank condition
further reduces to M /L YT | (T, X), thatis M L Y | (T, X) or M L RY | (T, X), which
is equivalent to the testable condition M AL Y | (T, X,R™ = 1,RY =1)or M /L RY |
(T, X, RM = 1). For continuous M and continuous Y, the dimension of YT needs to be no
smaller than the dimension of M in general, as required by the completeness assumption.

We can subsequently identify P(R® =1 | M = m,T = t,X = z) once (;.(m) is
identified. Then, the identification of P(M =m | T = t, X = z) follows from

P(M=m,RM =1|T=t,X =2x)

(M =m| X =) = R M =T =X =)

S2 Parametric examples

Theorem 2.2 in Newey and Powell (2003) presents the following result on the completeness

of data distributions from an exponential family.

Result 1 The distribution P(Y, M) = (M)h(Y) exp{\(Y)™n(M)} is complete in'Y if (i)
(M) > 0, (ii) the support of A(Y') is an open set, and (iii) the mapping M — n(M) is

one to one.

For illustration, we present examples of parametric models below that satisfy the cor-

responding completeness assumption for each of Theorems 1 to 4.
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S2.1 An example for Theorem 1

Proposition 1 For continuous Y, under a linear model
Y = Bo+ BonM + BT + B M - T + B3, X + ¢
with € ~ N(0,02), if B # 0 and By + Bt # 0, the distribution
P(Y, M,R™ =1|T =t,X =2)

= PY |MT=tX=2)P(M,RM =1|T=tX =)

1 (Y — o — BuM — Byt — BpuM -t — )2
= Cro2)2 P {_ 552

}IP(M,RM:1|T:t,X:x)

1s complete in'Y for all t and x.

Proposition 1 follows from Result 1 with A(Y) = 072(8,, + Bmet)Y and n(M) = M.

S2.2 An example for Theorem 2

Proposition 2 For continuous Y, under a linear model
Y =80+ BnM + BT + BouM - T + B, X + €
with € ~ N(0,02), if B # 0 and B + Bt # 0, the distribution
P(Y,M,RM =1,RY =1|T=1t,X =2)

= PY|MT=t,X=2)P(M,RM =1,RY =1|T=tX =xz)
_ 1 { (Y—ﬁo—BmM—Btt—ﬁth-t—ﬁxxV}

(2mo?)1/2 202

P(M,R" =1,RY =1|T=1t,X = 1)

1s complete in'Y for all t and x.

Proposition 2 follows from Result 1 with A(Y) = 072(8,, + Bnet)Y and n(M) = M.
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S2.3 An example for Theorem 3

Proposition 3 For continuous Y and continuous M, under a linear model
Y = Bo+ BonM + BT + B M - T + B3, X + ¢
with € ~ N(0,02), if B # 0 and By + Bt # 0, the distribution
P(Y,M,R" =1,R" =1|T=t,X =1z)

= PY |MT=tX=2)P(M,RM =1|T=t,X =2)P(R¥ =1|Y,T=t,X =)

_ 1 (Y — Bo = BuM — Bit = BpuM -t — Box)?
 (2m0?)1/2 exXp {_ 252 }

P(M,RM =1|T=t,X =0)P(R¥ =1|Y,T=tX =2x)

is complete in'Y and is complete in M for all t and x.

Proposition 3 follows from Result 1 with A(Y) = 07 2(8,, + Bmit)Y and n(M) = M and

with A(M) = 0728y + Brt)M and n(Y) =Y.

S2.4 Examples for Theorem 4

Proposition 4 For continuous Y, under a linear model
Y = 6o+ BM + BT + BpuM - T + 5, X + €
with € ~ N(0,02), if B # 0 and By + Bt # 0, the distribution
P(Y,M,RM =1,RY =1|T=1t,X =2)

= PY|MT=t,X=2)P(M,RM =1,RY =1|T=tX ==z)
_ 1 { (Y_ﬁo_5mM—ﬁtt—ﬁth-t—ﬁxx)2}

(2mo?)1/2 202

P(M,R™ =1,RY =1|T=1t,X = 1)

1s complete in'Y for all t and x.

Proposition 4 follows from Result 1 with A(Y) = 072(8,, + Bmet)Y and n(M) = M.
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Proposition 5 For binary M and binary RY , under a logistic regression model
logit P(RY =1 | M,T,X) = By + BuM + BT + BouM - T + 3. X,
if B # 0 and By, + Bt # 0, the distribution
P(M,RM =1,RY | T =t,X =2)

= P(RY | M,T=t,X =0)P(M,RM =1|T=tX =2)

exp{ RY (Bo + B M + Bit + BeM -t + B,7)}

P(M,RM =1|T=tX =

is complete in RY for all t and .

For binary M and binary RY | the completeness condition reduces to M U RY | (T =t, X =

x) for all ¢ and z, and therefore, Proposition 5 follows when (3, # 0 and 5, + By # 0.

S3 The unidentifiable cases: counterexamples and con-

ditions for identification

As discussed in section 2, identifying the NIE and NDE relies on identifying the joint
distribution P(Y, M | T, X). Below, we first show that the observable data probabilities
cannot uniquely determine P(Y, M | T, X) without further assumptions if RY depends on
more than one of (RM,Y, M) as the missingness mechanisms in Figure S1 or the com-
pleteness assumption is violated. We explain the reasons and provide concrete examples
in subsection S3.1. We then show that the identification is plausible for these complex
MNAR mechanisms by exploiting the information on a future outcome in subsection S3.2.

To simplify the notation, all DAGs and probabilities below condition on 7" and X.
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RM —— RY

L

- M Y

\/

() unidentifiable case

(4¢) unidentifiable case

RY

Y

(#7) unidentifiable case

(7v) unidentifiable case

T Y

Figure S1: The DAGs in (¢) to (iv) describe the unidentifiable missingness mechanisms
when missingness exists in both the mediator and outcome. All DAGs condition on X

and allow X to have directed arrows to all variables in the DAGs.

S3.1 Counterexamples

Define
Py = P(M=mY =y, RY =1R" =1),
P = PY=y,R"=0,R"=1),
Ppio = P(M=m,RM =1,R" =0),
P, = P(RM=0R" =0).
In (i) to (iv) below, we present examples where the identification cannot be achieved
without further assumptions if RY depends on more than one of (RM,)Y, M) in a simple

setup of a binary mediator M and a binary outcome Y. Based on the observable data

probabilities, we can identify P11, Piyor, Prsio and Poyoo, and 3, 0370 (Pryir +
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Z;l,:o Piyo1 + Zyln:o P10+ Piioo = 1. In (v), we present an unidentifiable case when M
has more categories than Y under Assumptions 1 to 4. In (vi), we present an unidentifiable

case when Y has more categories than M under Assumption 3.

(i) We present below an unidentified case when RY depends on both Y and RY

as described by Figure S2

RM —— RY

M

Y

Figure S2: RY depends on both Y and RM

Consider the following observable data probabilities:

6 2 1 1 2 1 2 1 4
(P1111, Porr, Prors, Poort, Praor, Proors Pigios Potios Pyvoo) = ( —————————

20720720720720° 20" 207 20" 20
The key to identify P(Y = y, M = m) is to identify both P(RM =1 | M = m) and
P(RY =1]Y =y, R™ = 1) in the following formula

IP)myll

P(RM =1|M=m)P(R¥ =1|Y =y, RM = 1)’

PY=y,M=m)=

We now show that the identification of P(RY =1 |Y =y, R = 1) can be achieved.

We have

Puio=Y P(M=mY =y R =1R" =0)

yey

> P(RY =0|Y =y, RM =1)
= myll Yy _ — M .
2 I B(RY =TV =y, R = 1)

By plugging in the two possible values for m and y in the above formula, we have

P(RY=0|Y =1,RM =1)
P(RY=1|Y =1,RM =1)

P(RY =0|Y =0,RM =1)
P(RY =1]Y =0,RM = 1)’

Piti0 = P + Pion (S1)
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p_p PR =0[Y=1RY=1) o PR =0[Y=0R"=1)
PO T pRY 1y = 1L,RM =1) ' "“MP(RY =1|Y =0,RM = 1)’

(52)

Therefore, P(RY = 1| Y = y, R = 1) can be identified by solving the linear equations

(S1) and (S2). Based on the observable data probabilities, P(RY =1|Y =1,RM =1) =

(SN

and P(RY =1|Y =0,RM =1) = 2.
We now focus on the identifiability of P(RM =1 | M = m) and show that P(RM =1 |

M = m) cannot be identified without further assumptions. We have

P, 01 = ZP(Mzm,Y:y,RM:o,RY:D
meM
— myll _1\Y:y,RM= )I[D(RlelM

m)

I
2

meM

IP’(RY:HY:y,RM:O) P(RM =0 | M = m)
= ]Pmyll

P(RY =1|Y =y, RM = 1) mZeM

and as a result,

P(RY=1|Y =y, R RM—O|M m)
P P
O P(RY 1|Y_y,RM—0 Z THP(RM = 1| M =m)’

By plugging in the two possible values for m and y in the above formula, we have

p P(RY =1|Y =1,RM =1) _p IP(RM:O|M:1)+P P(RM =0| M =0)
PRV =1|Y=1,RM=0)  "MPRM=1|M=1) ""MP(RM =1|M =0)
p P(RY=1|Y =0,RM=1) _p P(RM:O]M:1)+P P(RM =0| M =0)
PRV =1|Y =0,RM =0)  MPRM=1|M=1)  ""P(RM =1|M=0)

Since P(RY =1|Y =y, RM = 1) are identified from the previous step, the identifiabil-

ity of P(R™ =1 | M = m) depends on the identifiability of P(RY = 1|Y =y, RM =0).
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We have

P(R¥=1|Y =y, RM =0)

P(Y =y, RM =0,R" =1)
P(Y =y, RM =0)
P(Y =y, RM =0,R" = 1)
P(Y =y, RM = 0,RY = 0) + P(Y =y, RM =0, RY = 1)
P(Y =y, RM =0,R" =1)
P(Y =y | RM=0,R" =0)P(RM =0,RY =0) +P(Y =y, RM =0, R =1)
P+y01
PY =y | RM =0,R" = 0)P; 400 + Pyyor

In the above expression, P01 and P, g9 are known, but P(Y =y | R =0, RM = 0)
is not observable or identifiable. Different values of P(Y =y | RY = 0, RM = 0) will result
in different values of P(RM = 1| M = m), which in turn will give different values of P(Y =
y,M = m). For example, let P(Y =1 | R = 0,R™ = 0) = 2, and the corresponding

P(R¥ =1|Y =1,RM =0) and P(RY =1|Y =0,RM = 0) equal 2 and 2

2, respectively.

As a result, we have P(RM =1 | M =1) = 2 and P(RM = 1| M = 0) = 2. Subsequently,
wehave P(Y =1, M =1) =g, P(Y =0,M =1)= 5, P(Y =1,M =0) =  and P(Y =
0, M =0) = 2. Alternatively, let P(Y = 1| R¥ =0, R™ =0) = {, and the corresponding
P(R¥ =1|Y =1,RM =0) and P(RY =1|Y =0,RM =0) equal -= and 2, respectively.
As a result, we have P(RM =1 | M =1) = 2 and P(RM =1 | M = 0) = 2. Subsequently,
we have P(Y = 1L, M =1) =23, P(Y =0,M =1) = 2, P(Y = 1,M = 0) = 5 and
P(Y = 0,M = 0) = 2L

The two sets of values of P(Y = y, M = m) correspond to the same observable
data probabilities: (P1111, Poi11, Pro11; Poor1: P10t Proors Pit10, Pot10, Pyto0), and therefore,
P(Y =y, M = m) can not be uniquely identified without further assumptions.

This unidentifiable result does not contradict the conclusion in Li et al. (2023) discussing

the identifiability of the self-censoring model under assumptions imposed by chain graphs
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instead of DAGs.

(ii) We present below an unidentified case when RY depends on both M and

RM as described by Figure S3

RMg’RY

Figure S3: RY depends on both M and RM

M

Y

Consider the following observable data probabilities:

12 4 2 4 4 1 4 4 5

P P P P P P P P P = (= - - - - - - - =
( 1111, +%0111,4 1011, L0011, L +101, L 400154 14105 £ 0+10> ++00) (40740740740740740740740740

Define
Py =P(M =1),
Py =P(Y =1|M=1)
PYOZP(Y:1|M:0)>
Prpu; =P(RM =1| M =1),
Prag = B(RM = 1| M = 0),
Pryoo =P(RY =1 | M =0,R™ =0),
Pryor =P(RY =1 | M =0,RM =1),
Pryio=P(RY =1| M =1,RM™ =0),
Prviy =P(RY =1| M =1,RM =1).
Below, we study the identifiability of the above 9 parameters describing the graphical model

in Figure S3 based on the observable data probabilities. Although there are 9 observable
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data probabilities, the degree of freedom in the probabilities is only 8 given that they sum

up to 1.

The following relationships between the observable data probabilities and the parame-

ters hold,
P11 = PyPy1Praci Pryyy,
Pio11 = Par(1 — Py )Py Py,
Poi11 = (1 — Pas)PyoPruoPpryor,
Poo1r = (1 = Pas)(1 — Pyo)PruoPpryor,
Pi110 = PyPryy (1 = Prryy),
P10 = (1 = Par)Prarg(1 — Pryor),

Piri01 = PuPy1(1 — Prary)Pryvip + (1 — Pag)Pyo(1 — Prarg)Pryoo,

IP)+001 - PM(]_ - ]P)y1)(1 - PRMI)]P)RYIO —f— (1 - ]P)M)(]_ - Pyo)(l - IPRM())IP)RYO().

(S3)
(S4)
(S5)
(56)
(S7)
(S8)

(S9)

(S10)

By solving the equations (S3) to (S8), we can identify the parameters Py, Pyq, Prv iy

and PRY01:
Piin
Py = ——r—r,
Pi111 + Pio1s
Po111
Pyp= ———"7>—,
Po111 + Poo1s
Py — Pi111 + Prous
e Pi111 + Pio1n + Pryao’
P B Po111 + Poons
RY01 =

Po111 + Poor1 + Porio

Based on the observable data probabilities, Py; = g, Pyq = %, Pryvi = g and Ppvy; =

2
3

In addition, we can identify the following products of parameters based on equations (S7)

to (S].O) IP)MIP)RMI, (1 —]PM)]P)RM(), PM(]_ _]P)RMI)]P)RYIO and (1 —PM)(]_ _PRM(])PRYOO‘ As

a result, when P, is known, one can solve for Pruy, Prag, Pryviy and Prygg.
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For example, let Py, = %, we have Pryvy = Z%, Prug = %, Prvig = % and Pryvog = %

This set of parameter values gives us the following joint probabilities of M and Y as P(Y =

ILM=1)=2PY=00M=1)=2PY=1,M=0)=+and P(Y =0,M =0) =

(S

Alternatively, let ]PM = %, we haVe PRIMl = %, ]PRMO = g, PRYlo = Z—(l) and ]P)RYOO = %

This alternative set of parameter values gives us the following joint probabilities of M and
VaPY =1,M =1 =38 PY =0M=1) = PY =1,M =0) = & and
P(Y =0,M =0) = +.

The two sets of values of P(Y = y, M = m) correspond to the same observable

data probabilities: (P1111, Poi11, Pro11, Poor1, P10t Proor, Pit10, Pot10, Pyto0), and therefore,

P(Y =y, M = m) can not be uniquely identified without further assumptions.

(ii7) We present below an unidentified case when RY depends on both Y and M

as described by Figure S4

RM RY

Figure S4: RY depends on both Y and M

M

Y

Consider the following probabilities from the observable data:

18 6 3 2 12 3 15 16 21

P P P P P P P P P == - - = - - - - =
( 1111, 40111, 41011, £ 00115 £ 41015 £ 40015 £ 1410, & 0410, ++00) (96796796796796796796796796
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Define

Py =P(M = 1),

Py, =PY =1|M=1),

Pyo=P(Y =1| M =0),

Prpuy =P(RM =1 | M =1),

Prug=P(RM =1 | M = 0),

Pryoo =P(RY =1 | M =0,Y =0),

Prvron =P(R¥ =1|M=0,Y =1),

Prvip=P(R¥ =1|M=1,Y =0),

Ppy =PRY =1|M=1,Y =1).
Below, we study the identifiability of the above 9 parameters describing the graphical model
in Figure S4 based on the observable data probabilities. Although there are 9 observable
data probabilities, the degree of freedom in the probabilities is only 8 given that they sum

up to 1.

The following relationships between the observable data probabilities and the parame-

ters hold,
P1111 = PuPyiPrai PRy, (511)
Pio11 = Py (1 — Pyy)Prar Pry g, (512)
Poii1 = (1 = Par)PyoPraoPrryor, (513)
Pooi1 = (1 = Pas)(1 — Pyo)PrargPry oo, (514)
Piyi0 = PyuPyiPracy (1 — Pryyq) + Pa(1 = Py1)Pracy (1 — Pryyg), (S15)

]P)(H_l() — (]_ - ]PM)]P)YOPR]W(](l - ]P)RYOI) + (]. — ]PM)(]. - ]P)YO)IP)RM(](l - ]P)RYOO)7 (Sl6>
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]P+101 == PMPY1(1 — EDR]Ml)]PRYll + (1 - ]P)M)]P)Y(](l — ]P)RJ\/I())PRY(H, (Sl7>
IP)+001 — PM(l - ]PYl)(l — IP)RMI)]P)RYIO + (1 - ]P)M)(l - Pyo)(l - PRJ\/I())]P)RYO(). (818)

By solving the equations (S11) to (S18), we can identify the parameters Py, Pgay

and Pprag. Given the observable data probabilities, Py, = %, Pryvy = % and Pruvy = %

However, Py, Pyq, Prvi1, Prvig, Prvor and Pry(y are not identifiable. For example, we

1

_ 3 _ 1 __ 2 _ 1 _ _ 1 :
can have ]P)y1 = ]P)YO = 9 PRyll = 3 ]P)Ryl() = 3 ]P)RY01 = 5 and PRYOO = & which

in turn give us P(Y = 1L,M =1) = 2, P(Y =1, M =0) = 1, P(Y =0,M =1) = ¢
and P(Y = 0,M = 0) = ;. Alternatively, we can have Py = 2, Pyg = 3, Ppyyy = 2,
Pryviy = i, Prvoy = % and Prygy = %, which in turn give us P(Y = 1,M = 1) = %,
PY=1,M=0)=2PY =0M=1)=¢and P(Y =0,M =0) = 3.

The two sets of values of P(Y = y,M = m) correspond to the same observable

data probabilities: (P1111, Poi11, Pro11, Pooi1, Pyio1, Proors Pit10, Pot10, Pio0), and therefore,

P(Y =y, M = m) can not be uniquely identified without further assumptions.

(iv) We present below an unidentified case when RY depends on Y, M and RY

as described by Figure S5

RM —— RY

Figure S5: RY depends on Y, M and RM

M

Y

The counterexamples presented in (i) to (i7i) can all be viewed as special cases of the

missingness mechanism described by Figure S5.
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(v) We present below an unidentified case when M has more categories than Y

under Assumptions 1 to 4 as described by Figure S6

RM RM - 5 RY RM RY RM RY

M

Y M

Y M

Y M

(a) Assumption 1 (b) Assumption 2 (¢) Assumption 3 (d) Assumption 4

Figure S6: M has more categories than Y under Assumptions 1 to 4

As an illustration, we present a counterexample for the missingness mechanism under As-
sumption 1 (a). The counterexample for (a) can be viewed as a special case for the miss-
ingness mechanism under Assumptions 2, 3, and 4 with P(RY =1) = 1.

For (d), when M has more categories than Y, we can still achieve identification if the
rank condition holds as illustrated in Theorem 4. We provide a simulation result in section
S5 showing that the identifiability of model parameters is improved under Assumption 4

compared to Assumption 1 when M has more categories than Y.

Define
IP)myl - P(M =m,Y =y, RM = 1)7
P = PY =y RM=0).

Consider a binary outcome Y and a discrete M with three categories, denoted as 0, 1,

and 2, respectively. Consider the following probabilities from the observable data:

4468862238)

P11, P111, Po11, P2o1, Pro1, Poors Py1o, P == = - — — — = —
(P211, Pr11, Porr, Paor, Prors Poors Pyio, Proo) (96’96’96’96’96’96’96’96
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Define

Py =P(M = 2),

Py =P(M = 1),

Py, =P(Y =1 | M =2),
Py, =P(Y =1|M=1),
Pyo=P(Y =1| M =0),
Priy =P(RM =1 | M =2),
Pruy =P(RM =1 | M =1),

Prig =P(RM =1| M =0).

The following relationships between the observable data probabilities and the parame-

ters hold,

Po11 = Ppr2PyoPrasy,

P11 = Py Py Prary,

Poi1 = (1 = Pasz — Ppp ) PyoPprasg,

Pog1 = Pas2(1 — Py)Pray,

Pio1 = Pap (1 — Py ) Prary,

Poor = (1 = Pasz — Ppp1 ) (1 — Pyo) P,

P.1o = PaPys(l — Pparg) + P Pyi(1 — Ppary)
+ (1 = Pppz — Pap1 )Pyo(1 — Pprag),

Proo = Parz(1 = Py2)(1 — Prarg) + Pagn (1 = Py1)(1 — Prary)

+ (1 — P — ]PMl)(l — Pyo)(l — ]P)RMo).

(S19)
(S20)
(S21)
(S22)
(S23)

(S24)

(S25)

(S26)

By solving the equations (S19) to (526), we can identify the parameters Pyq, Py; and
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Py(. Given the observable data probabilities, Py, = %, Py, = % and Py = % However,
Pz, Pyi, Pryy, Pravy and P are not identifiable. For example, we can have Py = i,
Py = %, Pruvy = %, Pruy = ;11 and Ppay = %, which in turn give us P(Y = 1, M = 2) = %,
PY=1M=1)=:;PY=1,M=0=%PY=0M=2)=;{PY=0,M=1)=3
and P(Y = 0,M = 0) = i. Alternatively, we can have Py2 = 2, Py = 2, Prary = 1,
Prvy = % and Ppuvy = %, which in turn give us P(Y = 1, M = 2) = %, PY =1,M =
D=5 PY =1M=0) =4 PY =0M=2)=1 PY =0M=1) =17 and
P(Y=0,M=0)= %.

The two sets of values of P(Y = y, M = m) correspond to the same observable data

probabilities: (P2117 ]P)llla POlla PZOl: ]P)1017 ]P)OOla ]P)+10, P+00), and therefore, P(Y =Y, M = m)

can not be uniquely identified without further assumptions.

(vi) We present below an unidentified case when Y has more categories than M

under Assumption 3 as described by Figure S7

RM RY

M

Y

Figure S7: Y has more categories than M under Assumption 3

Consider a binary M and an outcome Y with three categories, denoted as 0, 1, and 2,

respectively. Consider the following probabilities from the observable data:

(P1211, P1111, Pio11, Poz11, Por11, Poorts Pit10s Pot10s P20t P10t Pioot, Pitoo)

B 180 60 15 120 30 15 285 195 180 50 20 290
~ \ 14407 14407 1440’ 1440’ 1440° 1440’ 1440’ 1440° 1440’ 1440’ 1440° 1440 )
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Define

Py =P(M = 1),

Py2y =P(Y =2 | M = 1),
PY11:P(Y:1|M:1)a
Pyz2 =P(Y =2 | M =0),
Pyio =P(Y =1 | M =0),
Py =P(RM =1 | M =1),
PRMOZP(RM:HM:O)’
Pryvo =P(RY =1|Y =2),
Povy =P(RY =1|Y =1),

Prro=P(R¥ =1]Y =0).

The following relationships between the observable data probabilities and the parame-

ters hold,

Pio11 = PyPy21Prari PRy,

Pi111 = PyPy1 i Prany PRy g,

Pio11 = Pusr(1 — Py21 — Py1y)Prary Py,

Poo11 = (1 — Pas)Py20PrugPprye,

Poi11 = (1 — Pas)Py1gPragPpyy,

Poor1 = (1 = Pas)(1 — Py2g — Py19)PrargPryo,

Pro01 = PyPy21(1 = Pray )Prry + (1 — Par)Py2o(1 — Prarg) Py,
P.1o1 = PaPyis (1 — PPy + (1 — Pag)Pyio(l — Prar)Prvy,

]P)+001 — PM(]. — Py21 — Pyl1>(1 — ]P)RMI)PRYO
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+ (1 = Par)(1 = Py2g — Py1g) (1 — Pgrarg)Pryo, (S35)
Pii10 = PasPyayPrary (1 — Ppvs) + ParPyi Prary (1 — Prvy)

+ Pas(1 = Pyay — Pyiy)Ppary (1 — Prvo), ($36)
P10 = (1 — Par)PyzoPrao(l — Prva) + (1 — Py PyioPrarg(1 — Ppyy)

+ (1 = Par)(1 = Py2g — Py1g)Prarg(1 — Ppyy). (S37)

By solving the equations (S27) to (S37), we can identify the parameters Py, Pgay

_ 3

and Pprag. Given the observable data probabilities, Py, = %, Prvy = 1 and Py = %

However, Py2;, Py1y, Py2g, Pyi1g, Prvse, Pry; and Py, are not identifiable. For example,

1 1 1 1 2 1 1
we can have Py21 =3 Pyll =3 Py20 = 3 Pylo = 71 PRYQ =3 IPRYl =3 and IP)RYO =%

P(Y =2,M=0)=1,PY =1,M=0) =3 and P(Y =0, M = 0) = 1. Alternatively, we

8

__ 4 _ 2
157 ]PRYI =9 and PRYO = 9

_ 5 _ 1 _ 5 _ 3 —
can have ]Py21 =3 ]Pyll = 7 ]P)y20 = 3 ]P)ylo = = ]P)RYQ =

which in turn give us P(Y =2, M =1) = 2 P(Y =1,M = 1) = 1 P(YzO,le)zll—G,

=3

PY=2M=0)=2,PY=1M=0)=2 and P(Y =0,M =0) = 3.
The two sets of values of P(Y = y, M = m) correspond to the same observable data

probabilities: (Pun, Pi111, Piotr, Po2its Porin, Pootr, Pisios Poti0, Poor, Priors Pioor, ]P)++00), and

therefore, P(Y = y, M = m) can not be uniquely identified without further assumptions.

S3.2 Improve identifiability with a future outcome

Ma et al. (2003) proposed to enhance the identifiability of an unidentifiable model by in-
corporating a future outcome. We show similar ideas apply to our setting. We use Y*
to denote the future outcome with )* denoting its support, and let R¥" be the response

indicator for Y* such that RY" = 1 if Y* is observed and RY" = 0 otherwise. We provide
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some scenarios where the identification of P(Y = y, M = m) is plausible under the uniden-
tifiable case (iv) by exploiting the information on a future outcome as described in Figure
S8 (a) to (c¢). The same results can apply to the reduced unidentifiable cases (i) to (7).
To simplify notation, all DAGs and discussions in this subsection condition on 7" and X

and allow 7" and X to have directed arrows to all variables in the DAGs.

RY RM > RY > RY* RM

/ /

RM

/

/

RY RY

*

M Y - Y M Y - Y M Y - Y

(a) (b) (¢)

Figure S8: The DAGs in (a) to (c¢) describe the unidentifiable case (iv) that can become

identifiable with a fully observed Y* or Y* subject to missingness.

According to the structures of the DAGs in Figure S8, the identification of P(Y = y) in
(a) to (c) can be established based on the theoretical results presented in the main paper
under some completeness assumptions. Specifically, let Y, Y*, RY, RY" play the roles as
M, Y, RM RY respectively, the identification of P(Y = y) in (a) to (c) can be achieved
following the identification of P(M = m) in the proofs of Theorems 1 to 4.

In all of the DAGs in Figure S8, RM 1L Y | M, we can identify P(Y =y | M = m) if
P(RY =1|Y =y, M = m, RM = 1) is identifiable. We have

PY=y|M=m)=P(Y =y|M=m,R"=1)

_P(Y=y,R"=1|M=m,R" =1) ($38)
S PRY=1|Y =y, M=m,RM=1)

In the expression (S38), P(Y =y, RY = 1| M =m, RM = 1) is observable. Below, we

show that the identification of P(RY =1 |Y =y, M = m, RM = 1) can be achieved with
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a fully observed Y* or Y* subject to missingness according to (a) to (¢). Define
Pyyipmi = PY* =y Y =y, R  =1|M =m,R" =1),
Pyyop1 = PY* =y R" =0| M =m,R" =1),
Pyt = PY* =y Y=y, R =1R =1|M=m,R" =1),
Pysiopm = PY* =y R =1,R =0|M=m,R" =1),
Piorm = PY =y, R =0,R" =1|M=m,R" =1),
P = PR =0,R =0|M=m,R" =1).

In (a), we have
Pyyipmn = P(Y" =y" | Y =y)P(Y =y | M =m)P(R" =1|Y =y, M =m,R" =1),
and therefore, for each y* € Y*,
Pyiom1 = / yIP(Y* =y Y =y, R =0| M =m,R” = 1)dy
ye

dy.

/ > P(RY =0|Y =y, M =m,RM =1)
yey y*yllmlp(RY =1|Y=y,M=m,RM=1)

The uniqueness of solutions P(RY =1 |Y =y, M = m,R™ = 1) in (a) requires that
P(Y*)Y,RY =1| M =m, RM = 1) is complete in Y* for all m.
In (b), we have
Pyyiipm = PYT=y" |V =y)PY =y [ M =m)
P(RY =1|RY =1)P(RY =1|Y =y,M =m,RM =1),
and therefore, for each y* € V*,

Py t10pm1 = / P(Y*=y"Y =y, RY =1,RY =0| M =m,RM =1)dy
yey

PRY =0|Y =y, M=m, R =1)P(RY =1| RY =0)

= | Prym dy.
/yey VM B(RY = 1Y =y, M = m, RM = DP(R" = 1| RY = 1) *

The uniqueness of solutions P(RY =1 |Y = y,M = m, R® = 1) in (b) requires that
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P(Y*Y,RY =1,RY =1| M =m,RM =1) is complete in Y* for all m.

In (¢), we have
Pyyiimi = PY =y |Y =y)PY =y | M =m)
P(RY =1|Y =y Y =y )PR  =1|Y =y, M =m,RM =1),
and
Prorm =PY =y | M =m)P(R" =0|Y =y)P(R" =1|Y =y,M =m,RY =1).
Therefore, we have

Py t10m1 = / P(Y*=y"Y =y, R =1,RY =0| M =m,RM =1)dy
yey

/ P(RY =0|Y =y, M =m,RM =1)
y

Py y11jm
ey "MP(RY = 1Y =y, M =m, RM = 1)

for each y* € Y*, and

P +ooim1 = / P(Y =y, R =0,RY =0| M =m,R" =1)dy
yey

P(RY =0|Y =y, M —=m, RM = 1
[ P01 iy
yey

P(RY=1|Y =y, M =m,RM =1)

Further define a random vector Y*I = (Y*- RY", RY"). The uniqueness of solutions P(RY =

1Y =y,M=m,RM = 1) in (c) requires that P(Y*T,Y,RY = 1| M =m,RM = 1) is
complete in Y*T for all m.

So far, we have shown that the identification of P(Y = y) and P(Y =y | M = m)

can be established in (a) to (¢) under some completeness assumptions. Subsequently, if

the joint distribution P(Y, M) is complete in Y, we can identify P(M = m) by solving the

following linear equations:

for each y € V.

Therefore, the identification of P(Y = y, M = m) can be achieved in (a) to (c) by
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exploiting the information on a future outcome. Since all the probabilities and statements
involved conditions on 7" and X, the corresponding completeness conditions need to hold

for all ¢ and xz.

S4 Details for the parametric estimation

For illustration, we describe the parametric methods in the scenarios considered in Theo-
rem 1 when missingness exists only in the mediator. The likelihoods below are implicitly
conditional on T" and X to simplify the notation.

Under Assumption 1, the log of the complete-data likelihood is

Ce(0) = log P(Y; =y | My = my, Ty = t;, X; = x;) +log P(M; = m; | Ty = t;, X; = ;)
i=1

+log P(RM =} | My =m, T; = t;, X; = my).
Under Assumption 1, the observed-data likelihood is

Las(0) = [] POi=wi| Mi=m; T =t;, X;=2)P(M; =m; | T = t;, X; = ;)
{i:RM=1}

H / P(Yi=yi | Mi=m T =t;, X; = 2 )P(M; =m | T; = t;, X; = ;)
{i:RM=0} M

P(RY =0 | M; =m,T; = t;, X; = z;) dm.

When M is discrete, the integral involved in the above expression is reduced to sum-
mation. Since the value of M is missing for some subjects, we implement the expectation-
maximization algorithm (Dempster et al., 1977) to obtain the maximum likelihood esti-
mates by treating the missing M as a latent variable. Specifically, in the E-step, we find

the conditional expectation of complete-data log-likelihood by calculating the conditional
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expectation of M for subjects with missing M. For example, if M is binary,

P(Y;, M; = m, RZM =0|T;,X)

E{I(M, = Y;,, RM = 0.7, X;; 0M) = .
{( m)‘ o T ’ } Zm:O,lPO/ivMi:m?sz’V[:O’T%Xi)

When M is continuous, the conditional expectation of complete-data log-likelihood may
be complicated to calculate. Therefore, we apply fractional imputation (Kim, 2011) using

the idea of importance sampling and weighting method to approximate the conditional

(1) (

expectation. Specifically, we generate the fractionally imputed data m;’, ... ,mis) from a

proposed distribution h(M; | T;, X;) for subjects with missing M. Then, we compute the
fractional weight for each imputed observation. The Monte Carlo approximation of the

conditional expectation becomes more accurate when S is large:

S
E{la(M; = m; 0)|Yi, R = 0,T;, X090} = Y la(M; = mf); 0)io(m),

j=1
where
(Y., M; =m{ R =0 T;, X))
h(M; = m{? | T;, X;)
is the fractional weight for ml(j) that satisfies w(m(j)) > 0 and Zlew(m(j)) = 1. We

A 7

w(m{) o

iterate between the E-step and M-step until convergence.

The same estimation methods can be applied to the situation where missingness exists
in both the mediator and outcome. We generate the imputed data sequentially for subjects
with both M; and Y; missing. For binary M and binary Y, we generate the possible value

of (m;, y;). For binary M and continuous Y, we generate the possible value of m; and then

)

the fractionally imputed data yl-(l ,...,yi(s) for each possible value of m;. For continuous

M and continuous Y, we generate the fractionally imputed data (mgl), ygl)),...,(mgs), y,fs)).

o )

3 g e e ey i

For continuous M and binary Y, we generate the fractionally imputed data m
and then the possible value of y; for each fractionally imputed m;.

The outcome model is identifiable using complete cases under Assumptions 1, 2, and
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4. Therefore, an alternative approach for those scenarios is to estimate the outcome model
first using complete cases, then estimate the parameters in other models through the
expectation-maximization algorithm by plugging in the estimated outcome model. We
tried those two slightly different approaches to our simulation settings, and both provided
consistent results, with the alternative approach enjoying higher computation efficiency as
expected. However, under Assumption 3, the alternative approach does not work because

P(Y | M, T, X) is not identifiable using complete cases.

S5 Details on the simulation studies

In this section, we show that when M 1L Y | (T, X), our methods recover the underlying
true values of the NIE and NDE under Assumptions 1, 2, and 4 as expected. However, we
observe biases under Assumption 3 when M 1l Y | (T, X). In addition, we demonstrate
that when M has more categories than Y, the identifiability of the model parameters is
improved under Assumption 4 compared to Assumption 1 due to the additional constraint
provided by the effect of M on RY . Furthermore, our results suggest that certain parametric
assumptions outperform others in recovering the underlying model parameter values when
the completeness assumption is violated.

Continuing the simulation studies in the main paper, Figure S9 presents the boxplots of
percentages of bias with respect to the true values for each of the simulation scenarios when
M 1LY | (T, X) across 500 replications. Under Assumption 1, as shown in Figure S9 A.I
(0) to D.I (0) with (0) indicating that NIE = 0, the percentages of bias for both the NIE and
NDE estimated using all three methods are close to zero. This is because P(Y | M, T, X)
is identifiable using complete cases under Assumption 1. Under Assumption 2 (A.II(0)

to D.II(0)) and Assumption 4 (A.IV(0) to D.IV(0)), we reach the same conclusions as
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those under Assumption 1 except the fact that the estimated NIE and NDE from the
multiple imputation under MAR have biases in some cases (e.g. C.II(0) and C.IV(0))
where the NIE and NDE are identifiable using complete cases. Under Assumption 3, when
M 1Y | (T,X), both P(Y | M, T,X) and P(M | T, X) are not identifiable, and we
observe biases using all three methods.

We also check the performance of the proposed estimator for a discrete M with three
categories and a binary Y under Assumptions 1 and 4, respectively, where M is generated
according to a multinomial logistic regression model and Y is generated according to a
logistic regression model. We consider a single covariate X ~ N(0,1) and a randomized

T ~ Bernoulli(0.5). We generate the mediator M from

P(M=1|T,X
P(M=2|T,X
log IPEMzO : T,X§ = Qa9 + T + ag, X.

We generate the outcome Y from
logit P(Y =1 | M, T,X) = 0o+ Brnl(M = 1) + Bl (M = 2) + 5, T
+ Bt I(M =1) - T+ Bpyol (M =2) - T + B, X.

The binary variable RM is generated from

logit P(RM = 1| M, T, X) = Ao + At I(M = 1) + Ao I (M = 2) + N\T + N\ X.
Under (IV) Assumption 4, the binary variable RY is generated from

logit P(RY =1 | M, T, X) = v + Y1 [(M = 1) + Yol (M = 2) + 3T + 7. X.

Table S1 (Setting E) presents the specifications of parameter values. The missing rates,

sample size, and number of replications are consistent with the simulation studies in the

main paper.

Under Assumption 1, when M 1Y | (T, X) but the completeness assumption in Theo-
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rem 1 does not hold, the Y model is identifiable using complete cases, but the identification
of both the M and R™ models requires the completeness assumption in Theorem 1 accord-
ing to our nonparametric identification results. In Figure S10, we observe that although
the proposed estimators of the NIE and NDE are approximately unbiased, the parameter
estimates in both the M and RM models exhibit more complex characteristics compared
to the parameter estimates in the Y model. Specifically, the estimates of ay9 and agy are
concentrated around two distinct modes rather than a single point, which indicates that
the parameters cannot be uniquely identified based on the observable data. Also, the es-
timates of oy, and asg, display an imbalance or non-symmetry in the distribution shape,
with a long tail on one side while being relatively concentrated on the other. In addition,
the irregular distribution patterns of the estimates of A\g, A,,1 and Ao suggest that the
parameter estimates may fail to converge to a reasonable region, which raises issues about
identifiability of the model parameters even with parametric assumptions. Furthermore,
the proposed estimators of the parameters in the M model are biased. On the other hand,
when data are under Assumption 4 (E.IV) or when M is under a linear regression model
(D.I), the parameter estimates have an approximately normal distribution shape, and the
means of the parameter estimates are close to the true values as shown in Figures S11 and

S12.
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Figure S9: Simulation results when M 1l Y | (T, X). A, Binary M and Binary Y; B,

Binary M and Continuous Y'; C, Continuous M and Continuous Y; D, Continuous M

and Binary Y; I, Assumption 1; II, Assumption 2; III, Assumption 3; IV, Assumption 4;

CC, complete-case analysis; MI, multiple imputation estimators; MLE, our proposed

methods; OR, oracle estimators; (0), M 1Y | (T, X); Bias (%),

{(estimate-truth)/truth}*100; The true values of the effects are nonzero except for NIE,

and Bias (%) for NIE is calculated as (estimate/NDE)*100.

533




1.00

0.00

OR: g OR:ay; OR: 0y OR:ayg
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
0.00 0.00 0.00
-0.2 0.0 0.2 0.4 0.50 0.75 1.00 1.25 1.50 0.8 1.0 12 -0.25 0.00 0.25
OR:ay OR : 0ipy OR: By OR : Bm1
1.00 1.00 .
0.75 0.75 .
0.50 0.50 .
0.25 0.25 .
0.00 0.00 .

0.8 12 16 0.8 1.0 12 -050 -025 000 025 . 05 1.0 15
OR : Bm2 OR: B¢ OR: B« OR : Bmu
1.00 1.00 .

0.75 0.75 .

0.50 0.50 .

0.25 0.25 .

0.00 0.00 .

-15 -1.0 -0.5 0.5 1.0 15 08 1.0 12 0 1 2
OR : Btz OR: Ao OR: Amy OR : A
1.00 1.00 .

0.75 0.75 .

0.50 0.50 .

0.25 0.25 .

0.00 0.00 .

-20 -15 -10 -05 00  -050 -025 000 025 050 15 2.0 25 30 16 2.0 24

OR: A¢

OR 1 A

OR:NIE

OR:NDE

oLl

Ll
A
4

038 12 1 038 1.0 12 006 -004 -002 000 002 0.10 0.15 0.20
MLE : do MLE : o, MLE : oo
X 1.00
) 0.75
. 050
. 0.25
X 0.00
. : 05 15 05 10 05 00 05 10 L.
MLE:uz( MLE : o MLE : By MLE : By
1.00 1.00
0.75 ) 0.75
050 . 050
025 0.25
0.00 0.00
00 05 10 15 05 10 -0.5 0.0 05 05 10 15 20
MLE : Bz MLE : B, MLE : B, MLE : Byt
1.00 X X
075 ) .
0.50 . .
025 . .
0.00 X X
2.0 -15 -1.0 -0.5 00 05 10 15 20 038 10 12 0 1 2 3
MLE : Bz MLE : Ao MLE : Amt MLE : A2
X T 1.00 1.00
) { 075 075
. 0.50 0.50
. 025 0.25
X 0.00 0.00
20 -15 -10 -05 00 05 0 4 8 -io 0 10 -io 0 10
MLE : A\ MLE : A¢ MLE :NIE MLE : NDE
1.00 1.00 1.00
075 075 075
0.50 0.50 0.50
025 025 o 25
X : 0 . . .

)

075 100 125 150

True value of the parameter

X -0.050 -0.025 0.000 0.025 O. 050 0
Estimates

Mean of the parameter estimates

Figure S10: Simulation results under Assumption 1 when M is under a multinomial

logistic regression model and Y is under a logistic regression model.
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Figure S11: Simulation results under Assumption 4 when M is under a multinomial
logistic regression model and Y is under a logistic regression model.
Q10, Q11 1z, Q20, A2y, (2, Parameters in the M model; So, Bint, Bz, Bt Biy Brntrs Bz,
parameters in the Y model; Ao, A1, An2, A, Az, parameters in the R model;
Y05 Yim1s Ym2s Ve Yo Parameters in the RY model; MLE, our proposed methods; OR, oracle

estimators.
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Figure S12: Simulation results under Assumption 1 when M is under a linear regression
model and Y is under a logistic regression model. ag, ay, o, 0y, (residual standard error),
parameters in the M model; Bg, B, By Bz, Bmt, parameters in the Y model; Ao, A, Ar, Asy

parameters in the RM model; MLE, our proposed methods; OR, oracle estimators.
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Table S1: Specifications of the parameter values.

Setting Model Parameters M ALY | (T,X) MUY |(T,X)
A binary M (g, oty ) (0,1,1) (0,1,1)
binary Y (Bo, Bms Bt, Bmt, Ba) (0,-1,1,-1,1) (0,0,1,0,1)
RM (A0s Ams Aty Ag) (0.3,2,1,1) (0.3,2,1,1)
RY(IT) (Y0, Y1 V25 V) (0.4,1,1,1) (0.4,1,1,1)
RY (I11) (Y0, Yy> Vs Var) (0.6,2,1,1) (0.3,2,1,1)
RY (1v) (30 s 0 ) (0.3,2,1,1) (0.3,2,1,1)
B binary M (v, oy ) (0,1,1) (0,1,1)
continuous Y (8o, B, Bt, Bt Bz) (0,— -1,1) (0,0,1,0,1)
RM (Aos Ay Aty Az) (0.3,2,1,1) (0.3,2,1,1)
RY(IT) (Y0, Vet Y25 V) (0.4,1,1,1) (0.4,1,1,1)
RY (IIT) (Y05 Yy Yer V) (0.8,—-1,1,1) (14,1,1,1)
RY (IV) (Y0, Y Yt Var) (0.3,2,1,1) (0.3,2,1,1)
C continuous M («ap, o, ot) (0,1,1) (0,1,1)
continuous Y (Bo, B, Bt, Bmts Bz) (0,1,1,1,1) (0,0,1,0,1)
RM (A0s Ay Aty Ax) (1.4,1,1,1) (1.4,1,1,1)
RY(II) (Y0, Yr215 25 V) (0.4,1,1,1) (0.4,1,1,1)
RY (111) (0 s 72 72) (18,1,1,1) (1.4,1,1,1)
RY (IV) (Y0, Yrm> Ves Yz ) (1.4,1,1,1) (1.4,1,1,1)
D continuous M («v, oy, ) (0,1,1) (0,1,1)
binary Y (Bos Bons Bes Bt Be) (0,1,1,1,1) (0,0,1,0,1)
RM (Aos Ams Aty Az (1.4,1,1,1) (1.4,1,1,1)
RY (1) (Y0, Vet e5 Va) (0.4,1,1,1) (0.4,1,1,1)
RY (III) (70,797 72) (0.4,2,1,1) (0.3,2,1,1)
RY(IV) (Y0, Ym> Vs Va) (1.4,1,1,1) (1.4,1,1,1)
E discrete M (010, A1, Q1 4y 20, A2t Q2 ) (0,1,1,0,1,1)
binary Y’ (Bos Bm1, Bma2, Bts Bmi1s Bmiz, Bz)  (0,1,-1,1,1,-1,1)
RM (Aos A1, Am2, Ae, Ag) (0,2,2,1,1)
RY(IV) (Y0, Ym1s Ym2> V6> Vo) (0,2,2,1,1)
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S6 Sensitivity analysis

We consider the two-part Gamma model under Assumption 2 from the data analysis as a
starting model for building the sensitivity analysis. It is possible that the missingness of
earnings also depends on the earnings itself and the educational and vocational attainment,
in addition to the missingness of the educational and vocational attainment, as described
in Figure S13. Now we assess the sensitivity of our conclusions to the additional impacts

of H on RY and M on RY. We revise the model for RY as follows:
logit P(RY =1 | RM =M H=h, M =m,T=1t,X = x)
= Yo+ Y™ + b+ Ym + wt + o,

where 7y, and -, are the sensitivity parameters. We consider a large log odds ratio (Chen
et al., 2010) and let both sensitivity parameters vary among —2, 0 and 2. When ~;, = 0
and v, = 0, it is the same as the MNAR mechanism under Assumption 2 that stands out
in the data analysis.

RM —— RY
~_

Figure S13: The DAG describes the missing mechanism for the sensitivity analysis. The

(H)

DAG conditions on X and allows X to have directed arrows to all variables in the DAG.

Table S2 presents the sensitivity analysis results. The estimated NIE increases more
than 10% in the case where v,, = —2 and v, = 2, and where v,, = 0 and 7, = 2. The
estimated NDE decreases more than 10% in the case where 7, = 0 and 7, = 2 and increases

more than 10% in the case where ~,, = 2 and 7, = 2. However, the estimated NIEs are
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positive and significant at the 0.05 significance level, and the estimated NDEs are positive

but not significant at the 0.05 significance level for all pairs of values (,,,7s) considered.

In summary, the conclusions on the NIE and NDE in the NJCS are not sensitive to some

strong impacts of H on RY and M on RY in addition to the impact of RM on RY.

Table S2: Sensitivity analysis results from the two-part Gamma model under Assumption

2. Est, estimate; CI, confidence interval based on 500 bootstrap samples; v, (sensitivity

parameter), coefficient of H in the RY model; v, (sensitivity parameter), coefficient of M

in the RY model.

Tn= =2 =0 Vh =2
Parameters +,, Est  95% CI Est  95% CI Est  95% CI
NIE —2 11.15 (7.97, 14.49) 1149 (8.24, 14.83)  14.33 (11.02, 17.89)
0 1130 (8.12, 14.58) 1094 (7.94, 14.29)  13.40 (10.22, 16.78)
2 11.39 (8.19, 14.63) 10.83 (7.98, 14.25) 10.48 (7.15, 14.81)
NDE -2 13.18 (—1.53, 27.88) 13.90 (—1.00, 28.57) 11.72 (—2.33, 26.34)
0 12.82 (—1.90, 27.52) 12.93 (—1.95, 27.64) 11.27 (—3.12, 25.57)
2 12.50 (—2.24, 27.16) 12.25 (—2.38, 27.33) 15.43 (—0.18, 29.47)
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