
Supplementary material

Section S1 gives the proofs of the theorems.

Section S2 gives parametric examples for the completeness conditions.

Section S3 gives counterexamples and further discussion for the unidentifiable cases.

Section S4 provides details for the parametric estimation.

Section S5 provides details on the simulation studies.

Section S6 provides sensitivity analysis results on the NJCS.

S1 Proofs

S1.1 Proof of Theorem 1

The identification of P(Y = y |M = m,T = t,X = x) follows from

P(Y = y |M = m,T = t,X = x) = P(Y = y | RM = 1,M = m,T = t,X = x).

We now focus on identifying P(M = m | T = t,X = x). Define

Pmy1|t,x = P(M = m,Y = y,RM = 1 | T = t,X = x),

P+y0|t,x = P(Y = y,RM = 0 | T = t,X = x),

ζt,x(m) =
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.

Since

Pmy1|t,x = P(M = m,Y = y | T = t,X = x)P(RM = 1 |M = m,T = t,X = x),
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we have:

P+y0|t,x =

∫
m∈M

P(M = m,Y = y,RM = 0 | T = t,X = x)dm

=

∫
m∈M

P(M = m,Y = y | T = t,X = x)P(RM = 0 |M = m,T = t,X = x)dm

=

∫
m∈M

Pmy1|t,x
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
dm

=

∫
m∈M

Pmy1|t,xζt,x(m)dm

for each y ∈ Y . The uniqueness of solutions ζt,x(m) requires that P(Y,M,RM = 1 | T =

t,X = x) is complete in Y for all t and x. For discrete M and discrete Y , the completeness

assumption is equivalent to Rank (Θtx) = J , where Θtx is a J ×K matrix with Pmy1|t,x as

the (m, y)th element. For binaryM , the rank condition further reduces toM ̸⊥⊥ Y | (T,X),

which is equivalent to the testable condition M ̸⊥⊥ Y | (T,X,RM = 1). For continuous M

and continuous Y , the dimension of Y must be no smaller than that of M in general, as

required by the completeness assumption.

We can subsequently identify P(RM = 1 | M = m,T = t,X = x) once ζt,x(m) is

identified. Then, the identification of P(M = m | T = t,X = x) follows from

P(M = m | T = t,X = x) =
P(M = m,RM = 1 | T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.

S1.2 Proof of Theorem 2

Theorem 2 (i)

The identification of P(Y = y |M = m,T = t,X = x) follows from

P(Y = y |M = m,T = t,X = x) = P(Y = y | RM = 1, RY = 1,M = m,T = t,X = x).
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We now focus on identifying P(M = m | T = t,X = x). Define

Pmy11|t,x = P(M = m,Y = y,RM = 1, RY = 1 | T = t,X = x),

P+y01|t,x = P(Y = y,RM = 0, RY = 1 | T = t,X = x),

ζt,x(m) =
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.

Since

Pmy11|t,x = P(M = m,Y = y | T = t,X = x)

·P(RY = 1 | RM = 1, T = t,X = x)P(RM = 1 |M = m,T = t,X = x),

we have:

P+y01|t,x =

∫
m∈M

P(M = m,Y = y,RM = 0, RY = 1 | T = t,X = x)dm

=

∫
m∈M

Pmy11|t,x
P(RY = 1 | RM = 0, T = t,X = x)P(RM = 0 |M = m,T = t,X = x)

P(RY = 1 | RM = 1, T = t,X = x)P(RM = 1 |M = m,T = t,X = x)
dm

=
P(RY = 1 | RM = 0, T = t,X = x)

P(RY = 1 | RM = 1, T = t,X = x)

∫
m∈M

Pmy11|t,xζt,x(m)dm

for each y ∈ Y . The uniqueness of solutions ζt,x(m) requires that P(Y,M,RM = 1, RY =

1 | T = t,X = x) is complete in Y for all t and x. For discrete M and discrete Y , the

completeness assumption is equivalent to Rank (Θtx) = J , where Θtx is a J × K matrix

with Pmy11|t,x as the (m, y)th element. For binary M , the rank condition further reduces

to M ̸⊥⊥ Y | (T,X), which is equivalent to the testable condition M ̸⊥⊥ Y | (T,X,RM =

1, RY = 1). For continuous M and continuous Y , the dimension of Y must be no smaller

than that of M in general, as required by the completeness assumption.

We can subsequently identify P(RM = 1 | M = m,T = t,X = x) once ζt,x(m) is

identified. Then, the identification of P(M = m | T = t,X = x) follows from

P(M = m | T = t,X = x) =
P(M = m,RM = 1 | T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.
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Theorem 2 (ii)

The identification of P(Y = y,M = m | T = t,X = x) follows from

P(Y = y,M = m | T = t,X = x) = P(Y = y,M = m | RM = 1, RY = 1, T = t,X = x).

S1.3 Proof of Theorem 3

We discuss the identification of P(M = m,Y = y | T = t,X = x). Define

Pmy11|t,x = P(M = m,Y = y,RM = 1, RY = 1 | T = t,X = x),

P+y01|t,x = P(Y = y,RM = 0, RY = 1 | T = t,X = x),

Pm+10|t,x = P(M = m,RM = 1, RY = 0 | T = t,X = x),

ζt,x(m) =
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
,

ηt,x(y) =
P(RY = 0 | Y = y, T = t,X = x)

P(RY = 1 | Y = y, T = t,X = x)
.

Since

Pmy11|t,x = P(M = m,Y = y | T = t,X = x)

·P(RY = 1 | Y = y, T = t,X = x)P(RM = 1 |M = m,T = t,X = x),

we have:

P+y01|t,x =

∫
m∈M

P(M = m,Y = y,RM = 0, RY = 1 | T = t,X = x)dm

=

∫
m∈M

Pmy11|t,x
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
dm

=

∫
m∈M

Pmy11|t,xζt,x(m)dm
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for each y ∈ Y , and

Pm+10|t,x =

∫
y∈Y

P(M = m,Y = y,RM = 1, RY = 0 | T = t,X = x)dy

=

∫
y∈Y

Pmy11|t,x
P(RY = 0 | Y = y, T = t,X = x)

P(RY = 1 | Y = y, T = t,X = x)
dy

=

∫
y∈Y

Pmy11|t,xηt,x(y)dy

for each m ∈ M. The uniqueness of solutions ζt,x(m) requires that P(Y,M,RM = 1, RY =

1 | T = t,X = x) is complete in Y for all t and x, and the uniqueness of solutions ηt,x(y)

require that P(Y,M,RM = 1, RY = 1 | T = t,X = x) is complete in M for all t and x. For

discrete M and discrete Y , the above completeness assumptions are equivalent to J = K

and Rank (Θtx) = J , where Θtx is a J×J matrix with Pmy11|t,x as the (m, y)th element. For

binary M and binary Y , the rank condition reduces to M ̸⊥⊥ Y | (T,X). For continuous

M and continuous Y , the dimension of Y needs to be the same as the dimension of M in

general as required by P(Y,M,RY = 1, RM = 1 | T,X) being complete in M and being

complete in Y .

We can subsequently identify P(RM = 1 | M = m,T = t,X = x) and P(RY = 1 |

Y = y, T = t,X = x) once ζt,x(m) and ηt,x(y) are identified. Then, the identification of

P(Y = y,M = m | T = t,X = x) follows from

P(Y = y,M = m | T = t,X = x)

=
Pmy11|t,x

P(RM = 1 |M = m,T = t,X = x)P(RY = 1 | Y = y, T = t,X = x)
.

S1.4 Proof of Theorem 4

The identification of P(Y = y |M = m,T = t,X = x) follows from

P(Y = y |M = m,T = t,X = x) = P(Y = y | RM = 1, RY = 1,M = m,T = t,X = x).
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We now focus on identifying P(M = m | T = t,X = x). Define

Pmy†1|t,x = P(M = m,Y † = y†, RM = 1 | T = t,X = x),

Pmy11|t,x = P(M = m,Y = y,RM = 1, RY = 1 | T = t,X = x),

P+y01|t,x = P(Y = y,RM = 0, RY = 1 | T = t,X = x),

Pm+10|t,x = P(M = m,RM = 1, RY = 0 | T = t,X = x),

P++00|t,x = P(RM = 0, RY = 0 | T = t,X = x),

ζt,x(m) =
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.

Since

Pmy11|t,x = P(M = m,Y = y | T = t,X = x)

·P(RM = 1 |M = m,T = t,X = x)P(RY = 1 |M = m,T = t,X = x),

and

Pm+10|t,x = P(M = m | T = t,X = x)

·P(RM = 1 |M = m,T = t,X = x)P(RY = 0 |M = m,T = t,X = x),

we have:

P+y01|t,x =

∫
m∈M

P(M = m,Y = y,RM = 0, RY = 1 | T = t,X = x)dm

=

∫
m∈M

Pmy11|t,x
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
dm

=

∫
m∈M

Pmy11|t,xζt,x(m)dm

for each y ∈ Y , and

P++00|t,x =

∫
m∈M

P(M = m,RM = 0, RY = 0 | T = t,X = x)dm

=

∫
m∈M

Pm+10|t,x
P(RM = 0 |M = m,T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
dm

=

∫
m∈M

Pm+10|t,xζt,x(m)dm.

S6



The uniqueness of solutions ζt,x(m) requires that P(M,Y †, RM = 1 | T = t,X = x) is

complete in Y † for all t and x. For discreteM and discrete Y , the completeness assumption

is equivalent to Rank (Θtx) = J , where Θtx is a J × (K + 1) matrix with Pmy11|t,x as the

(m, y)th element and Pm+10|t,x as the (m,K + 1)th element. If it exists, the effect of M on

RY provides one additional constraint to identify ζt,x(m). For binaryM , the rank condition

further reduces to M ̸⊥⊥ Y † | (T,X), that is M ̸⊥⊥ Y | (T,X) or M ̸⊥⊥ RY | (T,X), which

is equivalent to the testable condition M ̸⊥⊥ Y | (T,X,RM = 1, RY = 1) or M ̸⊥⊥ RY |

(T,X,RM = 1). For continuous M and continuous Y , the dimension of Y † needs to be no

smaller than the dimension of M in general, as required by the completeness assumption.

We can subsequently identify P(RM = 1 | M = m,T = t,X = x) once ζt,x(m) is

identified. Then, the identification of P(M = m | T = t,X = x) follows from

P(M = m | T = t,X = x) =
P(M = m,RM = 1 | T = t,X = x)

P(RM = 1 |M = m,T = t,X = x)
.

S2 Parametric examples

Theorem 2.2 in Newey and Powell (2003) presents the following result on the completeness

of data distributions from an exponential family.

Result 1 The distribution P(Y,M) = ψ(M)h(Y ) exp{λ(Y )tη(M)} is complete in Y if (i)

ψ(M) > 0, (ii) the support of λ(Y ) is an open set, and (iii) the mapping M → η(M) is

one to one.

For illustration, we present examples of parametric models below that satisfy the cor-

responding completeness assumption for each of Theorems 1 to 4.
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S2.1 An example for Theorem 1

Proposition 1 For continuous Y , under a linear model

Y = β0 + βmM + βtT + βmtM · T + βxX + ϵ

with ϵ ∼ N (0, σ2), if βm ̸= 0 and βm + βmt ̸= 0, the distribution

P(Y,M,RM = 1 | T = t,X = x)

= P(Y |M,T = t,X = x)P(M,RM = 1 | T = t,X = x)

=
1

(2πσ2)1/2
exp

{
−(Y − β0 − βmM − βtt− βmtM · t− βxx)

2

2σ2

}
P(M,RM = 1 | T = t,X = x)

is complete in Y for all t and x.

Proposition 1 follows from Result 1 with λ(Y ) = σ−2(βm + βmtt)Y and η(M) =M .

S2.2 An example for Theorem 2

Proposition 2 For continuous Y , under a linear model

Y = β0 + βmM + βtT + βmtM · T + βxX + ϵ

with ϵ ∼ N (0, σ2), if βm ̸= 0 and βm + βmt ̸= 0, the distribution

P(Y,M,RM = 1, RY = 1 | T = t,X = x)

= P(Y |M,T = t,X = x)P(M,RM = 1, RY = 1 | T = t,X = x)

=
1

(2πσ2)1/2
exp

{
−(Y − β0 − βmM − βtt− βmtM · t− βxx)

2

2σ2

}
·P(M,RM = 1, RY = 1 | T = t,X = x)

is complete in Y for all t and x.

Proposition 2 follows from Result 1 with λ(Y ) = σ−2(βm + βmtt)Y and η(M) =M .
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S2.3 An example for Theorem 3

Proposition 3 For continuous Y and continuous M , under a linear model

Y = β0 + βmM + βtT + βmtM · T + βxX + ϵ

with ϵ ∼ N (0, σ2), if βm ̸= 0 and βm + βmt ̸= 0, the distribution

P(Y,M,RM = 1, RY = 1 | T = t,X = x)

= P(Y |M,T = t,X = x)P(M,RM = 1 | T = t,X = x)P(RY = 1 | Y, T = t,X = x)

=
1

(2πσ2)1/2
exp

{
−(Y − β0 − βmM − βtt− βmtM · t− βxx)

2

2σ2

}
·P(M,RM = 1 | T = t,X = x)P(RY = 1 | Y, T = t,X = x)

is complete in Y and is complete in M for all t and x.

Proposition 3 follows from Result 1 with λ(Y ) = σ−2(βm + βmtt)Y and η(M) = M and

with λ(M) = σ−2(βm + βmtt)M and η(Y ) = Y .

S2.4 Examples for Theorem 4

Proposition 4 For continuous Y , under a linear model

Y = β0 + βmM + βtT + βmtM · T + βxX + ϵ

with ϵ ∼ N (0, σ2), if βm ̸= 0 and βm + βmt ̸= 0, the distribution

P(Y,M,RM = 1, RY = 1 | T = t,X = x)

= P(Y |M,T = t,X = x)P(M,RM = 1, RY = 1 | T = t,X = x)

=
1

(2πσ2)1/2
exp

{
−(Y − β0 − βmM − βtt− βmtM · t− βxx)

2

2σ2

}
·P(M,RM = 1, RY = 1 | T = t,X = x)

is complete in Y for all t and x.

Proposition 4 follows from Result 1 with λ(Y ) = σ−2(βm + βmtt)Y and η(M) =M .
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Proposition 5 For binary M and binary RY , under a logistic regression model

logit P(RY = 1 |M,T,X) = β0 + βmM + βtT + βmtM · T + βxX,

if βm ̸= 0 and βm + βmt ̸= 0, the distribution

P(M,RM = 1, RY | T = t,X = x)

= P(RY |M,T = t,X = x)P(M,RM = 1 | T = t,X = x)

=
exp{RY (β0 + βmM + βtt+ βmtM · t+ βxx)}
1 + exp(β0 + βmM + βtt+ βmtM · t+ βxx)

P(M,RM = 1 | T = t,X = x)

is complete in RY for all t and x.

For binaryM and binary RY , the completeness condition reduces toM ⊥̸⊥ RY | (T = t,X =

x) for all t and x, and therefore, Proposition 5 follows when βm ̸= 0 and βm + βmt ̸= 0.

S3 The unidentifiable cases: counterexamples and con-

ditions for identification

As discussed in section 2, identifying the NIE and NDE relies on identifying the joint

distribution P(Y,M | T,X). Below, we first show that the observable data probabilities

cannot uniquely determine P(Y,M | T,X) without further assumptions if RY depends on

more than one of (RM , Y,M) as the missingness mechanisms in Figure S1 or the com-

pleteness assumption is violated. We explain the reasons and provide concrete examples

in subsection S3.1. We then show that the identification is plausible for these complex

MNAR mechanisms by exploiting the information on a future outcome in subsection S3.2.

To simplify the notation, all DAGs and probabilities below condition on T and X.
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T M

RM

Y

RY

(i) unidentifiable case

T M

RM

Y

RY

(ii) unidentifiable case

T M

RM

Y

RY

(iii) unidentifiable case

T M

RM

Y

RY

(iv) unidentifiable case

Figure S1: The DAGs in (i) to (iv) describe the unidentifiable missingness mechanisms

when missingness exists in both the mediator and outcome. All DAGs condition on X

and allow X to have directed arrows to all variables in the DAGs.

S3.1 Counterexamples

Define

Pmy11 = P(M = m,Y = y,RM = 1, RY = 1),

P+y01 = P(Y = y,RM = 0, RY = 1),

Pm+10 = P(M = m,RM = 1, RY = 0),

P++00 = P(RM = 0, RY = 0).

In (i) to (iv) below, we present examples where the identification cannot be achieved

without further assumptions if RY depends on more than one of (RM , Y,M) in a simple

setup of a binary mediator M and a binary outcome Y . Based on the observable data

probabilities, we can identify Pmy11, P+y01, Pm+10 and P++00, and
∑1

m=0

∑1
y=0 Pmy11 +
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∑1
y=0 P+y01 +

∑1
m=0 Pm+10 + P++00 = 1. In (v), we present an unidentifiable case when M

has more categories than Y under Assumptions 1 to 4. In (vi), we present an unidentifiable

case when Y has more categories than M under Assumption 3.

(i) We present below an unidentified case when RY depends on both Y and RM

as described by Figure S2

M

RM

Y

RY

Figure S2: RY depends on both Y and RM

Consider the following observable data probabilities:

(P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00) =

(
6

20
,
2

20
,
1

20
,
1

20
,
2

20
,
1

20
,
2

20
,
1

20
,
4

20

)
.

The key to identify P(Y = y,M = m) is to identify both P(RM = 1 | M = m) and

P(RY = 1 | Y = y,RM = 1) in the following formula

P(Y = y,M = m) =
Pmy11

P(RM = 1 |M = m)P(RY = 1 | Y = y,RM = 1)
.

We now show that the identification of P(RY = 1 | Y = y,RM = 1) can be achieved.

We have

Pm+10 =
∑
y∈Y

P(M = m,Y = y,RM = 1, RY = 0)

=
∑
y∈Y

Pmy11
P(RY = 0 | Y = y,RM = 1)

P(RY = 1 | Y = y,RM = 1)
.

By plugging in the two possible values for m and y in the above formula, we have

P1+10 = P1111
P(RY = 0 | Y = 1, RM = 1)

P(RY = 1 | Y = 1, RM = 1)
+ P1011

P(RY = 0 | Y = 0, RM = 1)

P(RY = 1 | Y = 0, RM = 1)
, (S1)
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P0+10 = P0111
P(RY = 0 | Y = 1, RM = 1)

P(RY = 1 | Y = 1, RM = 1)
+ P0011

P(RY = 0 | Y = 0, RM = 1)

P(RY = 1 | Y = 0, RM = 1)
. (S2)

Therefore, P(RY = 1 | Y = y,RM = 1) can be identified by solving the linear equations

(S1) and (S2). Based on the observable data probabilities, P(RY = 1 | Y = 1, RM = 1) = 4
5

and P(RY = 1 | Y = 0, RM = 1) = 2
3
.

We now focus on the identifiability of P(RM = 1 | M = m) and show that P(RM = 1 |

M = m) cannot be identified without further assumptions. We have

P+y01 =
∑
m∈M

P(M = m,Y = y,RM = 0, RY = 1)

=
∑
m∈M

Pmy11
P(RY = 1 | Y = y,RM = 0)P(RM = 0 |M = m)

P(RY = 1 | Y = y,RM = 1)P(RM = 1 |M = m)

=
P(RY = 1 | Y = y,RM = 0)

P(RY = 1 | Y = y,RM = 1)

∑
m∈M

Pmy11
P(RM = 0 |M = m)

P(RM = 1 |M = m)
,

and as a result,

P+y01
P(RY = 1 | Y = y,RM = 1)

P(RY = 1 | Y = y,RM = 0)
=

∑
m∈M

Pmy11
P(RM = 0 |M = m)

P(RM = 1 |M = m)
.

By plugging in the two possible values for m and y in the above formula, we have

P+101
P(RY = 1 | Y = 1, RM = 1)

P(RY = 1 | Y = 1, RM = 0)
= P1111

P(RM = 0 |M = 1)

P(RM = 1 |M = 1)
+ P0111

P(RM = 0 |M = 0)

P(RM = 1 |M = 0)
,

P+001
P(RY = 1 | Y = 0, RM = 1)

P(RY = 1 | Y = 0, RM = 0)
= P1011

P(RM = 0 |M = 1)

P(RM = 1 |M = 1)
+ P0011

P(RM = 0 |M = 0)

P(RM = 1 |M = 0)
.

Since P(RY = 1 | Y = y,RM = 1) are identified from the previous step, the identifiabil-

ity of P(RM = 1 | M = m) depends on the identifiability of P(RY = 1 | Y = y,RM = 0).
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We have

P(RY = 1 | Y = y,RM = 0)

=
P(Y = y,RM = 0, RY = 1)

P(Y = y,RM = 0)

=
P(Y = y,RM = 0, RY = 1)

P(Y = y,RM = 0, RY = 0) + P(Y = y,RM = 0, RY = 1)

=
P(Y = y,RM = 0, RY = 1)

P(Y = y | RM = 0, RY = 0)P(RM = 0, RY = 0) + P(Y = y,RM = 0, RY = 1)

=
P+y01

P(Y = y | RM = 0, RY = 0)P++00 + P+y01

.

In the above expression, P+y01 and P++00 are known, but P(Y = y | RY = 0, RM = 0)

is not observable or identifiable. Different values of P(Y = y | RY = 0, RM = 0) will result

in different values of P(RM = 1 |M = m), which in turn will give different values of P(Y =

y,M = m). For example, let P(Y = 1 | RY = 0, RM = 0) = 5
6
, and the corresponding

P(RY = 1 | Y = 1, RM = 0) and P(RY = 1 | Y = 0, RM = 0) equal 3
8
and 3

5
, respectively.

As a result, we have P(RM = 1 |M = 1) = 45
68

and P(RM = 1 |M = 0) = 5
8
. Subsequently,

we have P(Y = 1,M = 1) = 17
30
, P(Y = 0,M = 1) = 17

150
, P(Y = 1,M = 0) = 1

5
and P(Y =

0,M = 0) = 3
25
. Alternatively, let P(Y = 1 | RY = 0, RM = 0) = 7

8
, and the corresponding

P(RY = 1 | Y = 1, RM = 0) and P(RY = 1 | Y = 0, RM = 0) equal 4
11

and 2
3
, respectively.

As a result, we have P(RM = 1 | M = 1) = 5
8
and P(RM = 1 | M = 0) = 5

7
. Subsequently,

we have P(Y = 1,M = 1) = 3
5
, P(Y = 0,M = 1) = 3

25
, P(Y = 1,M = 0) = 7

40
and

P(Y = 0,M = 0) = 21
200

.

The two sets of values of P(Y = y,M = m) correspond to the same observable

data probabilities: (P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00), and therefore,

P(Y = y,M = m) can not be uniquely identified without further assumptions.

This unidentifiable result does not contradict the conclusion in Li et al. (2023) discussing

the identifiability of the self-censoring model under assumptions imposed by chain graphs
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instead of DAGs.

(ii) We present below an unidentified case when RY depends on both M and

RM as described by Figure S3

M

RM

Y

RY

Figure S3: RY depends on both M and RM

Consider the following observable data probabilities:

(P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00) =

(
12

40
,
4

40
,
2

40
,
4

40
,
4

40
,
1

40
,
4

40
,
4

40
,
5

40

)
.

Define

PM = P(M = 1),

PY 1 = P(Y = 1 |M = 1),

PY 0 = P(Y = 1 |M = 0),

PRM1 = P(RM = 1 |M = 1),

PRM0 = P(RM = 1 |M = 0),

PRY 00 = P(RY = 1 |M = 0, RM = 0),

PRY 01 = P(RY = 1 |M = 0, RM = 1),

PRY 10 = P(RY = 1 |M = 1, RM = 0),

PRY 11 = P(RY = 1 |M = 1, RM = 1).

Below, we study the identifiability of the above 9 parameters describing the graphical model

in Figure S3 based on the observable data probabilities. Although there are 9 observable

S15



data probabilities, the degree of freedom in the probabilities is only 8 given that they sum

up to 1.

The following relationships between the observable data probabilities and the parame-

ters hold,

P1111 = PMPY 1PRM1PRY 11, (S3)

P1011 = PM(1− PY 1)PRM1PRY 11, (S4)

P0111 = (1− PM)PY 0PRM0PRY 01, (S5)

P0011 = (1− PM)(1− PY 0)PRM0PRY 01, (S6)

P1+10 = PMPRM1(1− PRY 11), (S7)

P0+10 = (1− PM)PRM0(1− PRY 01), (S8)

P+101 = PMPY 1(1− PRM1)PRY 10 + (1− PM)PY 0(1− PRM0)PRY 00, (S9)

P+001 = PM(1− PY 1)(1− PRM1)PRY 10 + (1− PM)(1− PY 0)(1− PRM0)PRY 00. (S10)

By solving the equations (S3) to (S8), we can identify the parameters PY 1, PY 0, PRY 11

and PRY 01:

PY 1 =
P1111

P1111 + P1011

,

PY 0 =
P0111

P0111 + P0011

,

PRY 11 =
P1111 + P1011

P1111 + P1011 + P1+10

,

PRY 01 =
P0111 + P0011

P0111 + P0011 + P0+10

.

Based on the observable data probabilities, PY 1 = 6
7
, PY 0 = 1

2
, PRY 11 = 7

9
and PRY 01 = 2

3
.

In addition, we can identify the following products of parameters based on equations (S7)

to (S10): PMPRM1, (1− PM)PRM0, PM(1− PRM1)PRY 10 and (1− PM)(1− PRM0)PRY 00. As

a result, when PM is known, one can solve for PRM1, PRM0, PRY 10 and PRY 00.
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For example, let PM = 3
5
, we have PRM1 = 3

4
, PRM0 = 3

4
, PRY 10 = 7

10
and PRY 00 = 1

5
.

This set of parameter values gives us the following joint probabilities ofM and Y as P(Y =

1,M = 1) = 18
35
, P(Y = 0,M = 1) = 3

35
, P(Y = 1,M = 0) = 1

5
and P(Y = 0,M = 0) = 1

5
.

Alternatively, let PM = 13
20
, we have PRM1 = 9

13
, PRM0 = 6

7
, PRY 10 = 21

40
and PRY 00 = 2

5
.

This alternative set of parameter values gives us the following joint probabilities of M and

Y as P(Y = 1,M = 1) = 39
70
, P(Y = 0,M = 1) = 13

140
, P(Y = 1,M = 0) = 7

40
and

P(Y = 0,M = 0) = 7
40
.

The two sets of values of P(Y = y,M = m) correspond to the same observable

data probabilities: (P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00), and therefore,

P(Y = y,M = m) can not be uniquely identified without further assumptions.

(iii) We present below an unidentified case when RY depends on both Y and M

as described by Figure S4

M

RM

Y

RY

Figure S4: RY depends on both Y and M

Consider the following probabilities from the observable data:

(P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00) =

(
18

96
,
6

96
,
3

96
,
2

96
,
12

96
,
3

96
,
15

96
,
16

96
,
21

96

)
.
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Define

PM = P(M = 1),

PY 1 = P(Y = 1 |M = 1),

PY 0 = P(Y = 1 |M = 0),

PRM1 = P(RM = 1 |M = 1),

PRM0 = P(RM = 1 |M = 0),

PRY 00 = P(RY = 1 |M = 0, Y = 0),

PRY 01 = P(RY = 1 |M = 0, Y = 1),

PRY 10 = P(RY = 1 |M = 1, Y = 0),

PRY 11 = P(RY = 1 |M = 1, Y = 1).

Below, we study the identifiability of the above 9 parameters describing the graphical model

in Figure S4 based on the observable data probabilities. Although there are 9 observable

data probabilities, the degree of freedom in the probabilities is only 8 given that they sum

up to 1.

The following relationships between the observable data probabilities and the parame-

ters hold,

P1111 = PMPY 1PRM1PRY 11, (S11)

P1011 = PM(1− PY 1)PRM1PRY 10, (S12)

P0111 = (1− PM)PY 0PRM0PRY 01, (S13)

P0011 = (1− PM)(1− PY 0)PRM0PRY 00, (S14)

P1+10 = PMPY 1PRM1(1− PRY 11) + PM(1− PY 1)PRM1(1− PRY 10), (S15)

P0+10 = (1− PM)PY 0PRM0(1− PRY 01) + (1− PM)(1− PY 0)PRM0(1− PRY 00), (S16)
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P+101 = PMPY 1(1− PRM1)PRY 11 + (1− PM)PY 0(1− PRM0)PRY 01, (S17)

P+001 = PM(1− PY 1)(1− PRM1)PRY 10 + (1− PM)(1− PY 0)(1− PRM0)PRY 00. (S18)

By solving the equations (S11) to (S18), we can identify the parameters PM , PRM1

and PRM0. Given the observable data probabilities, PM = 1
2
, PRM1 = 3

4
and PRM0 = 1

2
.

However, PY 1, PY 0, PRY 11, PRY 10, PRY 01 and PRY 00 are not identifiable. For example, we

can have PY 1 = 3
4
, PY 0 = 1

2
, PRY 11 = 2

3
, PRY 10 = 1

3
, PRY 01 = 1

2
and PRY 00 = 1

6
, which

in turn give us P(Y = 1,M = 1) = 3
8
, P(Y = 1,M = 0) = 1

4
, P(Y = 0,M = 1) = 1

8

and P(Y = 0,M = 0) = 1
4
. Alternatively, we can have PY 1 = 2

3
, PY 0 = 3

4
, PRY 11 = 3

4
,

PRY 10 = 1
4
, PRY 01 = 1

3
and PRY 00 = 1

3
, which in turn give us P(Y = 1,M = 1) = 1

3
,

P(Y = 1,M = 0) = 3
8
, P(Y = 0,M = 1) = 1

6
and P(Y = 0,M = 0) = 1

8
.

The two sets of values of P(Y = y,M = m) correspond to the same observable

data probabilities: (P1111,P0111,P1011,P0011,P+101,P+001,P1+10,P0+10,P++00), and therefore,

P(Y = y,M = m) can not be uniquely identified without further assumptions.

(iv) We present below an unidentified case when RY depends on Y , M and RM

as described by Figure S5

M

RM

Y

RY

Figure S5: RY depends on Y , M and RM

The counterexamples presented in (i) to (iii) can all be viewed as special cases of the

missingness mechanism described by Figure S5.
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(v) We present below an unidentified case when M has more categories than Y

under Assumptions 1 to 4 as described by Figure S6

M

RM

Y

(a) Assumption 1

M

RM

Y

RY

(b) Assumption 2

M

RM

Y

RY

(c) Assumption 3

M

RM

Y

RY

(d) Assumption 4

Figure S6: M has more categories than Y under Assumptions 1 to 4

As an illustration, we present a counterexample for the missingness mechanism under As-

sumption 1 (a). The counterexample for (a) can be viewed as a special case for the miss-

ingness mechanism under Assumptions 2, 3, and 4 with P(RY = 1) = 1.

For (d), when M has more categories than Y , we can still achieve identification if the

rank condition holds as illustrated in Theorem 4. We provide a simulation result in section

S5 showing that the identifiability of model parameters is improved under Assumption 4

compared to Assumption 1 when M has more categories than Y .

Define

Pmy1 = P(M = m,Y = y,RM = 1),

P+y0 = P(Y = y,RM = 0).

Consider a binary outcome Y and a discrete M with three categories, denoted as 0, 1,

and 2, respectively. Consider the following probabilities from the observable data:

(P211,P111,P011,P201,P101,P001,P+10,P+00) =

(
4

96
,
4

96
,
6

96
,
8

96
,
8

96
,
6

96
,
22

96
,
38

96

)
.
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Define

PM2 = P(M = 2),

PM1 = P(M = 1),

PY 2 = P(Y = 1 |M = 2),

PY 1 = P(Y = 1 |M = 1),

PY 0 = P(Y = 1 |M = 0),

PRM2 = P(RM = 1 |M = 2),

PRM1 = P(RM = 1 |M = 1),

PRM0 = P(RM = 1 |M = 0).

The following relationships between the observable data probabilities and the parame-

ters hold,

P211 = PM2PY 2PRM2, (S19)

P111 = PM1PY 1PRM1, (S20)

P011 = (1− PM2 − PM1)PY 0PRM0, (S21)

P201 = PM2(1− PY 2)PRM2, (S22)

P101 = PM1(1− PY 1)PRM1, (S23)

P001 = (1− PM2 − PM1)(1− PY 0)PRM0, (S24)

P+10 = PM2PY 2(1− PRM2) + PM1PY 1(1− PRM1)

+ (1− PM2 − PM1)PY 0(1− PRM0), (S25)

P+00 = PM2(1− PY 2)(1− PRM2) + PM1(1− PY 1)(1− PRM1)

+ (1− PM2 − PM1)(1− PY 0)(1− PRM0). (S26)

By solving the equations (S19) to (S26), we can identify the parameters PY 2, PY 1 and
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PY 0. Given the observable data probabilities, PY 2 = 1
3
, PY 1 = 1

3
and PY 0 = 1

2
. However,

PM2 , PM1 , PRM2, PRM1 and PRM0 are not identifiable. For example, we can have PM2 = 1
4
,

PM1 = 1
2
, PRM2 =

1
2
, PRM1 =

1
4
and PRM0 =

1
2
, which in turn give us P(Y = 1,M = 2) = 1

12
,

P(Y = 1,M = 1) = 1
6
, P(Y = 1,M = 0) = 1

8
, P(Y = 0,M = 2) = 1

6
, P(Y = 0,M = 1) = 1

3

and P(Y = 0,M = 0) = 1
8
. Alternatively, we can have PM2 = 3

8
, PM1 = 3

8
, PRM2 = 1

3
,

PRM1 = 1
3
and PRM0 = 1

2
, which in turn give us P(Y = 1,M = 2) = 1

8
, P(Y = 1,M =

1) = 1
8
, P(Y = 1,M = 0) = 1

8
, P(Y = 0,M = 2) = 1

4
, P(Y = 0,M = 1) = 1

4
and

P(Y = 0,M = 0) = 1
8
.

The two sets of values of P(Y = y,M = m) correspond to the same observable data

probabilities: (P211,P111,P011,P201,P101,P001,P+10,P+00), and therefore, P(Y = y,M = m)

can not be uniquely identified without further assumptions.

(vi) We present below an unidentified case when Y has more categories than M

under Assumption 3 as described by Figure S7

M

RM

Y

RY

Figure S7: Y has more categories than M under Assumption 3

Consider a binary M and an outcome Y with three categories, denoted as 0, 1, and 2,

respectively. Consider the following probabilities from the observable data:

(P1211,P1111,P1011,P0211,P0111,P0011,P1+10,P0+10,P+201,P+101,P+001,P++00)

=

(
180

1440
,

60

1440
,

15

1440
,
120

1440
,

30

1440
,

15

1440
,
285

1440
,
195

1440
,
180

1440
,

50

1440
,

20

1440
,
290

1440

)
.
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Define

PM = P(M = 1),

PY 21 = P(Y = 2 |M = 1),

PY 11 = P(Y = 1 |M = 1),

PY 20 = P(Y = 2 |M = 0),

PY 10 = P(Y = 1 |M = 0),

PRM1 = P(RM = 1 |M = 1),

PRM0 = P(RM = 1 |M = 0),

PRY 2 = P(RY = 1 | Y = 2),

PRY 1 = P(RY = 1 | Y = 1),

PRY 0 = P(RY = 1 | Y = 0).

The following relationships between the observable data probabilities and the parame-

ters hold,

P1211 = PMPY 21PRM1PRY 2, (S27)

P1111 = PMPY 11PRM1PRY 1, (S28)

P1011 = PM(1− PY 21 − PY 11)PRM1PRY 0, (S29)

P0211 = (1− PM)PY 20PRM0PRY 2, (S30)

P0111 = (1− PM)PY 10PRM0PRY 1, (S31)

P0011 = (1− PM)(1− PY 20 − PY 10)PRM0PRY 0, (S32)

P+201 = PMPY 21(1− PRM1)PRY 2 + (1− PM)PY 20(1− PRM0)PRY 2, (S33)

P+101 = PMPY 11(1− PRM1)PRY 1 + (1− PM)PY 10(1− PRM0)PRY 1, (S34)

P+001 = PM(1− PY 21 − PY 11)(1− PRM1)PRY 0
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+ (1− PM)(1− PY 20 − PY 10)(1− PRM0)PRY 0, (S35)

P1+10 = PMPY 21PRM1(1− PRY 2) + PMPY 11PRM1(1− PRY 1)

+ PM(1− PY 21 − PY 11)PRM1(1− PRY 0), (S36)

P0+10 = (1− PM)PY 20PRM0(1− PRY 2) + (1− PM)PY 10PRM0(1− PRY 1)

+ (1− PM)(1− PY 20 − PY 10)PRM0(1− PRY 0). (S37)

By solving the equations (S27) to (S37), we can identify the parameters PM , PRM1

and PRM0. Given the observable data probabilities, PM = 1
2
, PRM1 = 3

4
and PRM0 = 1

2
.

However, PY 21, PY 11, PY 20, PY 10, PRY 2, PRY 1 and PRY 0 are not identifiable. For example,

we can have PY 21 =
1
2
, PY 11 =

1
3
, PY 20 =

1
2
, PY 10 =

1
4
, PRY 2 =

2
3
, PRY 1 =

1
3
and PRY 0 =

1
6
,

which in turn give us P(Y = 2,M = 1) = 1
4
, P(Y = 1,M = 1) = 1

6
, P(Y = 0,M = 1) = 1

12
,

P(Y = 2,M = 0) = 1
4
, P(Y = 1,M = 0) = 1

8
and P(Y = 0,M = 0) = 1

8
. Alternatively, we

can have PY 21 = 5
8
, PY 11 = 1

4
, PY 20 = 5

8
, PY 10 = 3

16
, PRY 2 = 8

15
, PRY 1 = 4

9
and PRY 0 = 2

9
,

which in turn give us P(Y = 2,M = 1) = 5
16
, P(Y = 1,M = 1) = 1

8
, P(Y = 0,M = 1) = 1

16
,

P(Y = 2,M = 0) = 5
16
, P(Y = 1,M = 0) = 3

32
and P(Y = 0,M = 0) = 3

32
.

The two sets of values of P(Y = y,M = m) correspond to the same observable data

probabilities: (P1211,P1111,P1011,P0211,P0111,P0011,P1+10,P0+10,P+201,P+101,P+001,P++00), and

therefore, P(Y = y,M = m) can not be uniquely identified without further assumptions.

S3.2 Improve identifiability with a future outcome

Ma et al. (2003) proposed to enhance the identifiability of an unidentifiable model by in-

corporating a future outcome. We show similar ideas apply to our setting. We use Y ∗

to denote the future outcome with Y∗ denoting its support, and let RY ∗
be the response

indicator for Y ∗ such that RY ∗
= 1 if Y ∗ is observed and RY ∗

= 0 otherwise. We provide
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some scenarios where the identification of P(Y = y,M = m) is plausible under the uniden-

tifiable case (iv) by exploiting the information on a future outcome as described in Figure

S8 (a) to (c). The same results can apply to the reduced unidentifiable cases (i) to (iii).

To simplify notation, all DAGs and discussions in this subsection condition on T and X

and allow T and X to have directed arrows to all variables in the DAGs.

M

RM

Y

RY

Y ∗

(a)

M

RM

Y

RY

Y ∗

RY ∗

(b)

M

RM

Y

RY

Y ∗

RY ∗

(c)

Figure S8: The DAGs in (a) to (c) describe the unidentifiable case (iv) that can become

identifiable with a fully observed Y ∗ or Y ∗ subject to missingness.

According to the structures of the DAGs in Figure S8, the identification of P(Y = y) in

(a) to (c) can be established based on the theoretical results presented in the main paper

under some completeness assumptions. Specifically, let Y , Y ∗, RY , RY ∗
play the roles as

M , Y , RM , RY , respectively, the identification of P(Y = y) in (a) to (c) can be achieved

following the identification of P(M = m) in the proofs of Theorems 1 to 4.

In all of the DAGs in Figure S8, RM ⊥⊥ Y | M , we can identify P(Y = y | M = m) if

P(RY = 1 | Y = y,M = m,RM = 1) is identifiable. We have

P(Y = y |M = m) = P(Y = y |M = m,RM = 1)

=
P(Y = y,RY = 1 |M = m,RM = 1)

P(RY = 1 | Y = y,M = m,RM = 1)
. (S38)

In the expression (S38), P(Y = y,RY = 1 | M = m,RM = 1) is observable. Below, we

show that the identification of P(RY = 1 | Y = y,M = m,RM = 1) can be achieved with
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a fully observed Y ∗ or Y ∗ subject to missingness according to (a) to (c). Define

Py∗y1|m1 = P(Y ∗ = y∗, Y = y,RY = 1 |M = m,RM = 1),

Py∗+0|m1 = P(Y ∗ = y∗, RY = 0 |M = m,RM = 1),

Py∗y11|m1 = P(Y ∗ = y∗, Y = y,RY ∗
= 1, RY = 1 |M = m,RM = 1),

Py∗+10|m1 = P(Y ∗ = y∗, RY ∗
= 1, RY = 0 |M = m,RM = 1),

P+y01|m1 = P(Y = y,RY ∗
= 0, RY = 1 |M = m,RM = 1),

P++00|m1 = P(RY ∗
= 0, RY = 0 |M = m,RM = 1).

In (a), we have

Py∗y1|m1 = P(Y ∗ = y∗ | Y = y)P(Y = y |M = m)P(RY = 1 | Y = y,M = m,RM = 1),

and therefore, for each y∗ ∈ Y∗,

Py∗+0|m1 =

∫
y∈Y

P(Y ∗ = y∗, Y = y,RY = 0 |M = m,RM = 1)dy

=

∫
y∈Y

Py∗y1|m1
P(RY = 0 | Y = y,M = m,RM = 1)

P(RY = 1 | Y = y,M = m,RM = 1)
dy.

The uniqueness of solutions P(RY = 1 | Y = y,M = m,RM = 1) in (a) requires that

P(Y ∗, Y, RY = 1 |M = m,RM = 1) is complete in Y ∗ for all m.

In (b), we have

Py∗y11|m1 = P(Y ∗ = y∗ | Y = y)P(Y = y |M = m)

·P(RY ∗
= 1 | RY = 1)P(RY = 1 | Y = y,M = m,RM = 1),

and therefore, for each y∗ ∈ Y∗,

Py∗+10|m1 =

∫
y∈Y

P(Y ∗ = y∗, Y = y,RY ∗
= 1, RY = 0 |M = m,RM = 1)dy

=

∫
y∈Y

Py∗y11|m1
P(RY = 0 | Y = y,M = m,RM = 1)P(RY ∗

= 1 | RY = 0)

P(RY = 1 | Y = y,M = m,RM = 1)P(RY ∗ = 1 | RY = 1)
dy.

The uniqueness of solutions P(RY = 1 | Y = y,M = m,RM = 1) in (b) requires that
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P(Y ∗, Y, RY ∗
= 1, RY = 1 |M = m,RM = 1) is complete in Y ∗ for all m.

In (c), we have

Py∗y11|m1 = P(Y ∗ = y∗ | Y = y)P(Y = y |M = m)

·P(RY ∗
= 1 | Y = y, Y ∗ = y∗)P(RY = 1 | Y = y,M = m,RM = 1),

and

P+y01|m1 = P(Y = y |M = m)P(RY ∗
= 0 | Y = y)P(RY = 1 | Y = y,M = m,RM = 1).

Therefore, we have

Py∗+10|m1 =

∫
y∈Y

P(Y ∗ = y∗, Y = y,RY ∗
= 1, RY = 0 |M = m,RM = 1)dy

=

∫
y∈Y

Py∗y11|m1
P(RY = 0 | Y = y,M = m,RM = 1)

P(RY = 1 | Y = y,M = m,RM = 1)
dy

for each y∗ ∈ Y∗, and

P++00|m1 =

∫
y∈Y

P(Y = y,RY ∗
= 0, RY = 0 |M = m,RM = 1)dy

=

∫
y∈Y

P+y01|m1
P(RY = 0 | Y = y,M = m,RM = 1)

P(RY = 1 | Y = y,M = m,RM = 1)
dy.

Further define a random vector Y ∗† = (Y ∗ ·RY ∗
, RY ∗

). The uniqueness of solutions P(RY =

1 | Y = y,M = m,RM = 1) in (c) requires that P(Y ∗†, Y, RY = 1 | M = m,RM = 1) is

complete in Y ∗† for all m.

So far, we have shown that the identification of P(Y = y) and P(Y = y | M = m)

can be established in (a) to (c) under some completeness assumptions. Subsequently, if

the joint distribution P(Y,M) is complete in Y , we can identify P(M = m) by solving the

following linear equations:

P(Y = y) =

∫
m∈M

P(Y = y |M = m)P(M = m)dm

for each y ∈ Y .

Therefore, the identification of P(Y = y,M = m) can be achieved in (a) to (c) by

S27



exploiting the information on a future outcome. Since all the probabilities and statements

involved conditions on T and X, the corresponding completeness conditions need to hold

for all t and x.

S4 Details for the parametric estimation

For illustration, we describe the parametric methods in the scenarios considered in Theo-

rem 1 when missingness exists only in the mediator. The likelihoods below are implicitly

conditional on T and X to simplify the notation.

Under Assumption 1, the log of the complete-data likelihood is

ℓc(θ) =
n∑

i=1

log P(Yi = yi |Mi = mi, Ti = ti, Xi = xi) + log P(Mi = mi | Ti = ti, Xi = xi)

+ log P(RM
i = rMi |Mi = mi, Ti = ti, Xi = xi).

Under Assumption 1, the observed-data likelihood is

Lobs(θ) =
∏

{i:RM
i =1}

P(Yi = yi |Mi = mi, Ti = ti, Xi = xi)P(Mi = mi | Ti = ti, Xi = xi)

· P(RM
i = 1 |Mi = mi, Ti = ti, Xi = xi)

·
∏

{i:RM
i =0}

∫
M

P(Yi = yi |Mi = m,Ti = ti, Xi = xi)P(Mi = m | Ti = ti, Xi = xi)

· P(RM
i = 0 |Mi = m,Ti = ti, Xi = xi) dm.

When M is discrete, the integral involved in the above expression is reduced to sum-

mation. Since the value of M is missing for some subjects, we implement the expectation-

maximization algorithm (Dempster et al., 1977) to obtain the maximum likelihood esti-

mates by treating the missing M as a latent variable. Specifically, in the E-step, we find

the conditional expectation of complete-data log-likelihood by calculating the conditional
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expectation of M for subjects with missing M . For example, if M is binary,

E{I(Mi = m) | Yi, RM
i = 0, Ti, Xi; θ

(t)} =
P(Yi,Mi = m,RM

i = 0 | Ti, Xi)∑
m=0,1 P(Yi,Mi = m,RM

i = 0 | Ti, Xi)
.

When M is continuous, the conditional expectation of complete-data log-likelihood may

be complicated to calculate. Therefore, we apply fractional imputation (Kim, 2011) using

the idea of importance sampling and weighting method to approximate the conditional

expectation. Specifically, we generate the fractionally imputed data m
(1)
i , . . . ,m

(S)
i from a

proposed distribution h(Mi | Ti, Xi) for subjects with missing M . Then, we compute the

fractional weight for each imputed observation. The Monte Carlo approximation of the

conditional expectation becomes more accurate when S is large:

E{ℓci(Mi = m; θ)|Yi, RM
i = 0, Ti, Xi; θ

(t)} ≈
S∑

j=1

ℓci(Mi = m
(j)
i ; θ)ŵ(m

(j)
i ),

where

ŵ(m
(j)
i ) ∝ P(Yi,Mi = m

(j)
i , RM

i = 0 | Ti, Xi)

h(Mi = m
(j)
i | Ti, Xi)

is the fractional weight for m
(j)
i that satisfies ŵ(m

(j)
i ) ≥ 0 and

∑S
j=1 ŵ(m

(j)
i ) = 1. We

iterate between the E-step and M-step until convergence.

The same estimation methods can be applied to the situation where missingness exists

in both the mediator and outcome. We generate the imputed data sequentially for subjects

with both Mi and Yi missing. For binary M and binary Y , we generate the possible value

of (mi, yi). For binary M and continuous Y , we generate the possible value of mi and then

the fractionally imputed data y
(1)
i , . . . , y

(S)
i for each possible value of mi. For continuous

M and continuous Y , we generate the fractionally imputed data (m
(1)
i , y

(1)
i ),...,(m

(S)
i , y

(S)
i ).

For continuous M and binary Y , we generate the fractionally imputed data m
(1)
i , . . . ,m

(S)
i

and then the possible value of yi for each fractionally imputed mi.

The outcome model is identifiable using complete cases under Assumptions 1, 2, and
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4. Therefore, an alternative approach for those scenarios is to estimate the outcome model

first using complete cases, then estimate the parameters in other models through the

expectation-maximization algorithm by plugging in the estimated outcome model. We

tried those two slightly different approaches to our simulation settings, and both provided

consistent results, with the alternative approach enjoying higher computation efficiency as

expected. However, under Assumption 3, the alternative approach does not work because

P(Y |M,T,X) is not identifiable using complete cases.

S5 Details on the simulation studies

In this section, we show that when M ⊥⊥ Y | (T,X), our methods recover the underlying

true values of the NIE and NDE under Assumptions 1, 2, and 4 as expected. However, we

observe biases under Assumption 3 when M ⊥⊥ Y | (T,X). In addition, we demonstrate

that when M has more categories than Y , the identifiability of the model parameters is

improved under Assumption 4 compared to Assumption 1 due to the additional constraint

provided by the effect ofM on RY . Furthermore, our results suggest that certain parametric

assumptions outperform others in recovering the underlying model parameter values when

the completeness assumption is violated.

Continuing the simulation studies in the main paper, Figure S9 presents the boxplots of

percentages of bias with respect to the true values for each of the simulation scenarios when

M ⊥⊥ Y | (T,X) across 500 replications. Under Assumption 1, as shown in Figure S9 A.I

(0) to D.I (0) with (0) indicating that NIE = 0, the percentages of bias for both the NIE and

NDE estimated using all three methods are close to zero. This is because P(Y | M,T,X)

is identifiable using complete cases under Assumption 1. Under Assumption 2 (A.II(0)

to D.II(0)) and Assumption 4 (A.IV(0) to D.IV(0)), we reach the same conclusions as
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those under Assumption 1 except the fact that the estimated NIE and NDE from the

multiple imputation under MAR have biases in some cases (e.g. C.II(0) and C.IV(0))

where the NIE and NDE are identifiable using complete cases. Under Assumption 3, when

M ⊥⊥ Y | (T,X), both P(Y | M,T,X) and P(M | T,X) are not identifiable, and we

observe biases using all three methods.

We also check the performance of the proposed estimator for a discrete M with three

categories and a binary Y under Assumptions 1 and 4, respectively, where M is generated

according to a multinomial logistic regression model and Y is generated according to a

logistic regression model. We consider a single covariate X ∼ N (0, 1) and a randomized

T ∼ Bernoulli(0.5). We generate the mediator M from

log
P(M = 1 | T,X)

P(M = 0 | T,X)
= α10 + α1tT + α1xX,

log
P(M = 2 | T,X)

P(M = 0 | T,X)
= α20 + α2tT + α2xX.

We generate the outcome Y from

logit P(Y = 1 |M,T,X) = β0 + βm1I(M = 1) + βm2I(M = 2) + βtT

+ βmt1I(M = 1) · T + βmt2I(M = 2) · T + βxX.

The binary variable RM is generated from

logit P(RM = 1 |M,T,X) = λ0 + λm1I(M = 1) + λm2I(M = 2) + λtT + λxX.

Under (IV) Assumption 4, the binary variable RY is generated from

logit P(RY = 1 |M,T,X) = γ0 + γm1I(M = 1) + γm2I(M = 2) + γtT + γxX.

Table S1 (Setting E) presents the specifications of parameter values. The missing rates,

sample size, and number of replications are consistent with the simulation studies in the

main paper.

Under Assumption 1, whenM ̸⊥⊥ Y | (T,X) but the completeness assumption in Theo-
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rem 1 does not hold, the Y model is identifiable using complete cases, but the identification

of both theM and RM models requires the completeness assumption in Theorem 1 accord-

ing to our nonparametric identification results. In Figure S10, we observe that although

the proposed estimators of the NIE and NDE are approximately unbiased, the parameter

estimates in both the M and RM models exhibit more complex characteristics compared

to the parameter estimates in the Y model. Specifically, the estimates of α10 and α20 are

concentrated around two distinct modes rather than a single point, which indicates that

the parameters cannot be uniquely identified based on the observable data. Also, the es-

timates of α1x and α2x display an imbalance or non-symmetry in the distribution shape,

with a long tail on one side while being relatively concentrated on the other. In addition,

the irregular distribution patterns of the estimates of λ0, λm1 and λm2 suggest that the

parameter estimates may fail to converge to a reasonable region, which raises issues about

identifiability of the model parameters even with parametric assumptions. Furthermore,

the proposed estimators of the parameters in the M model are biased. On the other hand,

when data are under Assumption 4 (E.IV) or when M is under a linear regression model

(D.I), the parameter estimates have an approximately normal distribution shape, and the

means of the parameter estimates are close to the true values as shown in Figures S11 and

S12.
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Figure S9: Simulation results when M ⊥⊥ Y | (T,X). A, Binary M and Binary Y ; B,

Binary M and Continuous Y ; C, Continuous M and Continuous Y ; D, Continuous M

and Binary Y ; I, Assumption 1; II, Assumption 2; III, Assumption 3; IV, Assumption 4;

CC, complete-case analysis; MI, multiple imputation estimators; MLE, our proposed

methods; OR, oracle estimators; (0), M ⊥⊥ Y | (T,X); Bias (%),

{(estimate-truth)/truth}*100; The true values of the effects are nonzero except for NIE,

and Bias (%) for NIE is calculated as (estimate/NDE)*100.
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Figure S10: Simulation results under Assumption 1 when M is under a multinomial

logistic regression model and Y is under a logistic regression model.

α10, α1t, α1x, α20, α2t, α2x, parameters in the M model; β0, βm1, βm2, βt, βx, βmt1, βmt2,

parameters in the Y model; λ0, λm1, λm2, λt, λx, parameters in the RM model; MLE, our

proposed methods; OR, oracle estimators.
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Figure S11: Simulation results under Assumption 4 when M is under a multinomial

logistic regression model and Y is under a logistic regression model.

α10, α1t, α1x, α20, α2t, α2x, parameters in the M model; β0, βm1, βm2, βt, βx, βmt1, βmt2,

parameters in the Y model; λ0, λm1, λm2, λt, λx, parameters in the RM model;

γ0, γm1, γm2, γt, γx, parameters in the RY model; MLE, our proposed methods; OR, oracle

estimators.
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Figure S12: Simulation results under Assumption 1 when M is under a linear regression

model and Y is under a logistic regression model. α0, αt, αx, σm (residual standard error),

parameters in the M model; β0, βm, βt, βx, βmt, parameters in the Y model; λ0, λm, λt, λx,

parameters in the RM model; MLE, our proposed methods; OR, oracle estimators.
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Table S1: Specifications of the parameter values.

Setting Model Parameters M ̸⊥⊥ Y | (T,X) M ⊥⊥ Y | (T,X)

A binary M (α0, αt, αx) (0, 1, 1) (0, 1, 1)

binary Y (β0, βm, βt, βmt, βx) (0,−1, 1,−1, 1) (0, 0, 1, 0, 1)

RM (λ0, λm, λt, λx) (0.3, 2, 1, 1) (0.3, 2, 1, 1)

RY (II) (γ0, γrM , γt, γx) (0.4, 1, 1, 1) (0.4, 1, 1, 1)

RY (III) (γ0, γy, γt, γx) (0.6, 2, 1, 1) (0.3, 2, 1, 1)

RY (IV) (γ0, γm, γt, γx) (0.3, 2, 1, 1) (0.3, 2, 1, 1)

B binary M (α0, αt, αx) (0, 1, 1) (0, 1, 1)

continuous Y (β0, βm, βt, βmt, βx) (0,−1, 1,−1, 1) (0, 0, 1, 0, 1)

RM (λ0, λm, λt, λx) (0.3, 2, 1, 1) (0.3, 2, 1, 1)

RY (II) (γ0, γrM , γt, γx) (0.4, 1, 1, 1) (0.4, 1, 1, 1)

RY (III) (γ0, γy, γt, γx) (0.8,−1, 1, 1) (1.4, 1, 1, 1)

RY (IV) (γ0, γm, γt, γx) (0.3, 2, 1, 1) (0.3, 2, 1, 1)

C continuous M (α0, αt, αx) (0, 1, 1) (0, 1, 1)

continuous Y (β0, βm, βt, βmt, βx) (0, 1, 1, 1, 1) (0, 0, 1, 0, 1)

RM (λ0, λm, λt, λx) (1.4, 1, 1, 1) (1.4, 1, 1, 1)

RY (II) (γ0, γrM , γt, γx) (0.4, 1, 1, 1) (0.4, 1, 1, 1)

RY (III) (γ0, γy, γt, γx) (1.8, 1, 1, 1) (1.4, 1, 1, 1)

RY (IV) (γ0, γm, γt, γx) (1.4, 1, 1, 1) (1.4, 1, 1, 1)

D continuous M (α0, αt, αx) (0, 1, 1) (0, 1, 1)

binary Y (β0, βm, βt, βmt, βx) (0, 1, 1, 1, 1) (0, 0, 1, 0, 1)

RM (λ0, λm, λt, λx) (1.4, 1, 1, 1) (1.4, 1, 1, 1)

RY (II) (γ0, γrM , γt, γx) (0.4, 1, 1, 1) (0.4, 1, 1, 1)

RY (III) (γ0, γy, γt, γx) (0.4, 2, 1, 1) (0.3, 2, 1, 1)

RY (IV) (γ0, γm, γt, γx) (1.4, 1, 1, 1) (1.4, 1, 1, 1)

E discrete M (α10, α1t, α1x, α20, α2t, α2x) (0, 1, 1, 0, 1, 1)

binary Y (β0, βm1, βm2, βt, βmt1, βmt2, βx) (0, 1,−1, 1, 1,−1, 1)

RM (λ0, λm1, λm2, λt, λx) (0, 2, 2, 1, 1)

RY (IV) (γ0, γm1, γm2, γt, γx) (0, 2, 2, 1, 1)
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S6 Sensitivity analysis

We consider the two-part Gamma model under Assumption 2 from the data analysis as a

starting model for building the sensitivity analysis. It is possible that the missingness of

earnings also depends on the earnings itself and the educational and vocational attainment,

in addition to the missingness of the educational and vocational attainment, as described

in Figure S13. Now we assess the sensitivity of our conclusions to the additional impacts

of H on RY and M on RY . We revise the model for RY as follows:

logit P(RY = 1 | RM = rM , H = h,M = m,T = t,X = x)

= γ0 + γrM r
M + γhh+ γmm+ γtt+ γtxx,

where γh and γm are the sensitivity parameters. We consider a large log odds ratio (Chen

et al., 2010) and let both sensitivity parameters vary among −2, 0 and 2. When γh = 0

and γm = 0, it is the same as the MNAR mechanism under Assumption 2 that stands out

in the data analysis.

T M

RM

Y (H)

RY

Figure S13: The DAG describes the missing mechanism for the sensitivity analysis. The

DAG conditions on X and allows X to have directed arrows to all variables in the DAG.

Table S2 presents the sensitivity analysis results. The estimated NIE increases more

than 10% in the case where γm = −2 and γh = 2, and where γm = 0 and γh = 2. The

estimated NDE decreases more than 10% in the case where γm = 0 and γh = 2 and increases

more than 10% in the case where γm = 2 and γh = 2. However, the estimated NIEs are
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positive and significant at the 0.05 significance level, and the estimated NDEs are positive

but not significant at the 0.05 significance level for all pairs of values (γm, γh) considered.

In summary, the conclusions on the NIE and NDE in the NJCS are not sensitive to some

strong impacts of H on RY and M on RY in addition to the impact of RM on RY .

Table S2: Sensitivity analysis results from the two-part Gamma model under Assumption

2. Est, estimate; CI, confidence interval based on 500 bootstrap samples; γh (sensitivity

parameter), coefficient of H in the RY model; γm (sensitivity parameter), coefficient of M

in the RY model.

γh = −2 γh = 0 γh = 2

Parameters γm Est 95% CI Est 95% CI Est 95% CI

NIE −2 11.15 (7.97, 14.49) 11.49 (8.24, 14.83) 14.33 (11.02, 17.89)

0 11.30 (8.12, 14.58) 10.94 (7.94, 14.29) 13.40 (10.22, 16.78)

2 11.39 (8.19, 14.63) 10.83 (7.98, 14.25) 10.48 (7.15, 14.81)

NDE −2 13.18 (−1.53, 27.88) 13.90 (−1.00, 28.57) 11.72 (−2.33, 26.34)

0 12.82 (−1.90, 27.52) 12.93 (−1.95, 27.64) 11.27 (−3.12, 25.57)

2 12.50 (−2.24, 27.16) 12.25 (−2.38, 27.33) 15.43 (−0.18, 29.47)
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