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Supplement A: Derivation of h(i,1)

Based on the NC operator (5) and the model (3), h(i,t) in (4) can be written as

hi t) = 3200 €"NC™{c}(i,t — nA). The derivation is given as follows:

h(i,t) = ENC{log A} (i,t — A) = ENC{c} (i, t — A) + ENC{h}(i,t — A)
= ENC{e} (it — A) + ENC{NC{log A} } (i, t — 2A)
= ENC{c}(i,t — A) + ENCPD{log A (i, t — 2A)

= ENC{c}(i, t — A) + ENCO{cY (i, t — 2A) + ENCO{h} (i, t — 2A) (1)

=Y ENC™{c}(i,t — nA) + lim E'NC™{h} (i, t — nA)
n=1

= > ENC™{c}(i,t — nA).
n=1



Supplement B: Representation of cNHPP using the Ar-

chitecture of RNN

In Appendix B, we show that the proposed cNHPP can be represented using the ar-
chitecture of a Recurrent Neural Network (RNN). Note that, the proposed linear model in
(13) suggests that the intensity function at time ¢ depends on the historical and current
covariate information. Such a structure enables us to draw a connection between the pro-
posed model and an RNN—a feed-forward neural network with an input layer, a recurrent

layer, and an output layer.
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Figure 1: The RNN representation of the proposed cNHPP.

The RNN representation of the proposed model is shown in Figure 1. Motivated from
the proposed model (13), the input layer takes the input of the NV x (¢+1) covariate matrix
X (-), while the output layer outputs the intensity functions log A(:). The recurrent layer
consists of the recurrent edge and hidden state, in which the recurrent edge repeatedly
feeds the previous hidden state to the current state. The unfolded version of this RNN has
a many-to-many structure (i.e., many inputs and outputs) that can be represented by the

following forward-propagation equations (Fan et al., 2021):

h(t) =EWh(t—1)+ X(1)B,  oft) = Ih(t) = log A(t), (2)



where h(t) and o(t) are, respectively, the hidden and output states at time ¢, the hidden-to-
output connection I is an identity matrix in our case, and the weight vector 3 and weight
matrix (W are the input-to-hidden and hidden-to-hidden connections respectively. It is
immediately seen that (2) implies that the intensity function at time ¢ is given by the sum
of X (t)B (i.e., the current effects of covariates) and EWh(t — 1) = EW log A(t — 1) (i.e.,
the cumulative effects through spatio-temporal dependency), which is exactly the same as
the proposed model (13). Because this RNN representation is originated from the proposed
model, we call it the model-inherited RNN (mRNN) in this paper.

In the mRNN (2), the parameters to be learned are the same as in the model (13),
ie., 0 =(Bo, B, ,B,)", which can be estimated through maximizing the log-likelihood
function £(0) in (16) using the back-propagation through time (BPTT). The BPTT provides
a computational procedure for obtaining the gradients of the unknown parameters, which
can be used to train the RNN with gradient-based techniques (Goodfellow et al., 2016).

Following this mRNN representation, computing {log A(¢)}L_, primarily involves multipli-
cations between between EW and { X (t)B}L,. This process requires 7'+ 1 multiplications
between an N x N matrix and an N-vector. On the other hand, for the representation
(13) in the main manuscript, log A(t) = (31, E"W*X (t — kA))B. To obtain log A(t),
the main computation involves K multiplications between £¥W* and X (t — kA). Then,
to obtain {log A(¢)}]_,, we need (T + 1) x K multiplications between an N x N matrix
and an N x (p 4+ 1) matrix. As a result, leveraging the mRNN representation can reduce
the computational cost. For illustrative purposes, we compare the computational time of
evaluating {log A(t)}L_, respectively based on (13) in the manuscript and its RNN represen-
tation. To ensure a fair comparison, we use PyTorch with the tensor data type to calculate

{log A(t)}L_, for both approaches. The dimensions of W and X (¢) are kept the same as in



Section 3.2, and the comparison result is shown in Figure 2. We see that the computational
time for the proposed model increases almost linearly with the increase of the truncation
number K. Even for K = 1, the computation cost of the proposed model is still higher
than that of the mRNN. In the application example presented in Section 3.2, we set K =7
and the computational time associated with the statistical model is approximately 12 times

longer than using its RNN representation.
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Figure 2: Comparison of the computational time of evaluating {log A(#)}L_, respectively
based on (13) in the manuscript and its RNN representation.



Supplement C

In Section 3.3.1, we implement the RNN with PyTorch, and employ the Adam optimizer
(learning rate = 0.001) to train the model. Convergence of the loss function and unknown

parameters are shown in the figure below where a total number of 20,000 epochs are trained.
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Figure 3: Convergence of the loss function and parameters for mRNN.
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