
Supplements to “Convolutional Non-Homogeneous

Poisson Process and its Application to Wildfire

Ignition Risk Quantification for Power Delivery

Networks”

Guanzhou Wei1
1H. Milton Stewart School of Industrial & Systems Engineering,

Georgia Institute of Technology
Feng Qiu2

2Advanced Grid Modeling, Optimization and Analytics,
Argonne National Lab

Xiao Liu1
1H. Milton Stewart School of Industrial & Systems Engineering,

Georgia Institute of Technology

Supplement A: Derivation of h(i, t)

Based on the NC operator (5) and the model (3), h(i, t) in (4) can be written as

h(i, t) =
∑∞

n=1 ξ
nNC(n){c}(i, t− n∆). The derivation is given as follows:

h(i, t) = ξNC{log λ}(i, t−∆) = ξNC{c}(i, t−∆) + ξNC{h}(i, t−∆)

= ξNC{c}(i, t−∆) + ξ2NC{NC{log λ}}(i, t− 2∆)

= ξNC{c}(i, t−∆) + ξ2NC(2){log λ}(i, t− 2∆)

= ξNC{c}(i, t−∆) + ξ2NC(2){c}(i, t− 2∆) + ξ2NC(2){h}(i, t− 2∆)

· · ·

=
∞∑
n=1

ξnNC(n){c}(i, t− n∆) + lim
n→+∞

ξnNC(n){h}(i, t− n∆)

=
∞∑
n=1

ξnNC(n){c}(i, t− n∆).

(1)

1



Supplement B: Representation of cNHPP using the Ar-

chitecture of RNN

In Appendix B, we show that the proposed cNHPP can be represented using the ar-

chitecture of a Recurrent Neural Network (RNN). Note that, the proposed linear model in

(13) suggests that the intensity function at time t depends on the historical and current

covariate information. Such a structure enables us to draw a connection between the pro-

posed model and an RNN—a feed-forward neural network with an input layer, a recurrent

layer, and an output layer.

𝜉𝑾

log 𝝀

log 𝝀

𝑿

log 𝝀(t-1)

log 𝝀(t−1)

𝑿(t-1)

𝜉𝑾

log 𝝀(t)

log 𝝀(t)

𝑿(t)

𝜉𝑾

𝑿(t+1)

𝜉𝑾

log 𝝀(t+1)

log 𝝀(t+1)unfold

𝑰 𝑰 𝑰 𝑰

𝜷 𝜷 𝜷 𝜷

𝜉𝑾

Figure 1: The RNN representation of the proposed cNHPP.

The RNN representation of the proposed model is shown in Figure 1. Motivated from

the proposed model (13), the input layer takes the input of the N×(q+1) covariate matrix

X(·), while the output layer outputs the intensity functions logλ(·). The recurrent layer

consists of the recurrent edge and hidden state, in which the recurrent edge repeatedly

feeds the previous hidden state to the current state. The unfolded version of this RNN has

a many-to-many structure (i.e., many inputs and outputs) that can be represented by the

following forward-propagation equations (Fan et al., 2021):

h(t) = ξWh(t− 1) +X(t)β, o(t) = Ih(t) ≜ logλ(t), (2)

2



where h(t) and o(t) are, respectively, the hidden and output states at time t, the hidden-to-

output connection I is an identity matrix in our case, and the weight vector β and weight

matrix ξW are the input-to-hidden and hidden-to-hidden connections respectively. It is

immediately seen that (2) implies that the intensity function at time t is given by the sum

of X(t)β (i.e., the current effects of covariates) and ξWh(t − 1) = ξW logλ(t − 1) (i.e.,

the cumulative effects through spatio-temporal dependency), which is exactly the same as

the proposed model (13). Because this RNN representation is originated from the proposed

model, we call it the model-inherited RNN (mRNN) in this paper.

In the mRNN (2), the parameters to be learned are the same as in the model (13),

i.e., θ = (ξ, β0, β1, · · · , βq)
T , which can be estimated through maximizing the log-likelihood

function ℓ(θ) in (16) using the back-propagation through time (BPTT). The BPTT provides

a computational procedure for obtaining the gradients of the unknown parameters, which

can be used to train the RNN with gradient-based techniques (Goodfellow et al., 2016).

Following this mRNN representation, computing {logλ(t)}Tt=0 primarily involves multipli-

cations between between ξW and {X(t)β}Tt=0. This process requires T +1 multiplications

between an N × N matrix and an N -vector. On the other hand, for the representation

(13) in the main manuscript, logλ(t) = (
∑K

k=0 ξ
kW kX(t − k∆))β. To obtain logλ(t),

the main computation involves K multiplications between ξkW k and X(t − k∆). Then,

to obtain {logλ(t)}Tt=0, we need (T + 1) × K multiplications between an N × N matrix

and an N × (p + 1) matrix. As a result, leveraging the mRNN representation can reduce

the computational cost. For illustrative purposes, we compare the computational time of

evaluating {logλ(t)}Tt=0 respectively based on (13) in the manuscript and its RNN represen-

tation. To ensure a fair comparison, we use PyTorch with the tensor data type to calculate

{logλ(t)}Tt=0 for both approaches. The dimensions of W and X(t) are kept the same as in

3



Section 3.2, and the comparison result is shown in Figure 2. We see that the computational

time for the proposed model increases almost linearly with the increase of the truncation

number K. Even for K = 1, the computation cost of the proposed model is still higher

than that of the mRNN. In the application example presented in Section 3.2, we set K = 7

and the computational time associated with the statistical model is approximately 12 times

longer than using its RNN representation.

Figure 2: Comparison of the computational time of evaluating {logλ(t)}Tt=0 respectively
based on (13) in the manuscript and its RNN representation.

4



Supplement C

In Section 3.3.1, we implement the RNN with PyTorch, and employ the Adam optimizer

(learning rate = 0.001) to train the model. Convergence of the loss function and unknown

parameters are shown in the figure below where a total number of 20,000 epochs are trained.

Figure 3: Convergence of the loss function and parameters for mRNN.

5



References

Fan, J., Ma, C., and Zhong, Y. (2021). A selective overview of deep learning. Statistical

Science, 36(2):264.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

6


