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Abstract

Alzheimer’s disease (AD) poses a significant challenge globally, impacting millions with its progressive memory loss and cognitive
decline. Despite lacking a cure, early detection and intervention can mitigate its effects and improve patients’ quality of life. Recent
advancements in AD research have leveraged deep learning algorithms applied to brain MRI images, showing promising results
in predicting its stages. However, sustainable techniques necessitate further exploration. This paper presents a novel approach
integrating two CNN algorithms, ResNet and EfficientNet, along with a post-processing algorithm, to enhance AD diagnosis.
Empirical analyses are conducted on two public datasets, ADNI and OASIS, to develop and evaluate the proposed technique. The
utilized method capitalizes on the complementary nature of the two CNN models and the tailored post-processing step, employing
a weighted averaging ensemble learning technique, achieve superior predictive performance. The uniqueness of the proposed
approach lies in its integration of multiple CNN architectures and the inclusion of a specialized post-processing algorithm. By
explicitly addressing the limitations of existing methods and showcasing notable accuracies of 98.59% for EfficientNet, 94.59% for
ResNet, and 98.97% with post-processing on the first dataset, and 97.25% for EfficientNet, 99.36% for ResNet, and 99.41% with
post-processing on the second dataset, the presented work contributes to advancing AD diagnosis and underscores the potential of
deep learning in healthcare applications.
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1. Introduction

Alzheimer’s disease is a neurological condition that progres-
sively impairs memory, thinking, and behaviour, particularly
among the elderly people. Early detection of AD is crucial for
timely intervention and treatment. As per the report, the pro-
jected growth of the U.S. population affected by AD anticipates
an increase from 6.5 million to 13.8 million by the year 2060
under current medical circumstances [13] and a global burden
of approximately 55 million individuals are affected by demen-
tia, with over 60% of cases found in middle- and low-income
countries.

In recent years, deep learning models, particularly convolu-
tional neural networks (CNNs) and transformer-based models,
have shown promise in automatic detection and classification
of AD using neuroimaging data, such as magnetic resonance
imaging (MRI) scans [17] [18]. However, there are still signif-
icant gaps in the existing models that need to be addressed for
more accurate and reliable diagnosis.

CNN-based models have been widely used for AD detec-
tion, leveraging their ability to extract spatial features from
neuroimaging data. Several studies have proposed innovative
CNN architectures, such as 3D CNN frameworks with multi-
level features [54], adaptive hybrid attention networks [47],
and deep feature fusion networks [46], to improve the accu-
racy of AD classification. However, despite these advance-

ments, CNN-based models often struggle with capturing long-
range dependencies and global context information from MRI
scans, which are essential for accurate diagnosis, especially in
the early stages of AD.

On the other hand, transformer-based models, such as Swin
Transformer [45] and dimension-centric proximate attention
networks [24], have gained attention for their ability to capture
long-range dependencies and global context information more
effectively than traditional CNNs. These models leverage self-
attention mechanisms to analyze relationships between differ-
ent regions of the brain in MRI scans, thereby improving the ac-
curacy of AD classification. However, transformer-based mod-
els have their own limitations, including computational com-
plexity and the need for large amounts of training data.

Despite the advancements in both CNN-based and
transformer-based models for AD detection, there is still
a need for more robust and interpretable models that can
effectively integrate spatial and contextual information from
neuroimaging data. Additionally, existing studies often focus
on individual aspects of AD diagnosis, such as classification
or staging, rather than providing comprehensive solutions
that address the entire diagnostic pipeline. Therefore, there
is a gap in the literature for holistic approaches that combine
the strengths of CNN-based and transformer-based models to
improve the accuracy, reliability, and interpretability of AD
diagnosis.
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Addressing the limitations of existing approaches, this paper
proposes a novel and efficient ensemble approach for the au-
tomatic detection and classification of AD using MRI images.
Our approach integrates two powerful CNN algorithms, Effi-
cientNet and ResNet, along with a post-processing ensemble
learning algorithm, combining both CNN algorithms and us-
ing a weighted averaging technique, to leverage their respective
strengths in spatial feature extraction and long-range depen-
dency modeling, improving the accuracy and the performance
of the model.

Additionally, we contribute to the field by conducting
extensive experiments on two publicly available datasets,
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
Open Access Series of Imaging Studies (OASIS), containing
MRI brain images. Through rigorous experimentation, we
demonstrate the superiority or parity of our method compared
to state-of-the-art techniques in supervised medical image clas-
sification tasks across both datasets. By addressing the gaps
in existing CNN-based and transformer-based models, our pro-
posed framework offers a holistic approach that combines spa-
tial feature extraction and long-range dependency modeling,
thus improving the accuracy, reliability, and interpretability of
AD diagnosis. We have also performed a comparison of ensem-
ble and individual deep learning models.

Furthermore, we provide insights into the potential implica-
tions of our findings for clinical practice and discuss future re-
search directions in the field of AD diagnosis. By synthesizing
key studies and referencing notable research contributions, we
aim to contextualize our contributions within the broader land-
scape of AD detection using deep learning models and neu-
roimaging data.

The structure of the remaining sections of this paper is out-
lined as follows: In Section 2, recent research on supervised
learning, medical image classification, and various brain dis-
eases along with comparative analysis is reviewed. Section 3
encompasses all the preliminaries and algorithms employed in
this study. The method proposed in this paper is detailed in
Section 4. Section 5 delves into the public datasets utilized for
the development and evaluation of this paper model. It also
presents and analyzes the experimental evaluation results. A
discussion of the proposed method is presented in Section 6.
Finally, Section 7 concludes the paper with closing remarks.

2. Related Work

Clinical data, image analysis, and associated artificial intelli-
gence (AI) models may hold significant potential for positively
impacting people’s lives in a relatively short time span ([29]).
Indeed, image classification using machine learning and deep
learning for medical images such as MRI, PET, and CT scans
has proven highly beneficial, enabling new possibilities in med-
ical image analysis.

2.1. Medical Image Classification
As machine learning and deep learning have evolved, break-

through discoveries have been made in medical image classi-
fication, a critical task in medical image analysis. Supervised

learning methods, in particular, have played a significant role
in training algorithms to analyze medical images, including X-
rays, MRI scans, and CT scans, accurately categorizing them
into various classes. This aids in the detection and diagnosis
of diseases and abnormalities. In this paper, the proposed ap-
proach is validated and recent literature reviews are summa-
rized as follows.

2.1.1. Brain tumors
The authors in [26] suggested two deep learning models. One

can perform binary classification with the classes being normal
and abnormal for brain cancer. The other is a multiclass clas-
sifier with the classes being pituitary, meningioma, and glioma
brain cancers. The dataset used is a public dataset of MRI scans,
and the models achieved an accuracy of 99.5% for binary clas-
sification and 98.7% for multiclass classification.

On the other hand, to identify brain cancers in MRI images,
the authors of [32] suggest a deep learning framework based
on a CNN. The dataset consists of 3264 MRI images, and the
model achieved an accuracy of 93.3%.

Furthermore, [37] offers a thorough overview of deep learn-
ing applications for the study of brain tumors. The authors dis-
cuss the many deep learning models that have been applied to
classify, predict, and segment brain tumors, as well as listing
some of the unsolved problems in this field.

Meanwhile, [33] reviews the most current deep and federated
learning-based approaches for diagnosing brain tumors. The
authors discuss the deep learning models utilized for identify-
ing and categorizing brain tumors, as well as the difficulties in
applying these models in practical contexts. They also explore
how federated learning could help with some of these issues.

Additionally, [31] offers a thorough analysis of deep learn-
ing techniques for segmenting brain tumors. The authors dis-
cuss the various deep learning models employed for brain tu-
mor segmentation, along with their difficulties and drawbacks.
They also highlight some of the positive potentials for this field
of study.

Finally, [34] enhanced previously disclosed tumor classifica-
tion findings by employing a generic neural network (NN) ap-
proach rather than specific processing techniques. Using CNN,
the model achieved an accuracy of 90.26%.

2.1.2. Alzheimer
The authors in [30], utilize MRI images for diagnosing AD

using deep learning. The method involves extracting informa-
tion from MRI scans using a CNN.

Furthermore, in [20], the authors employed two strategies.
The first technique utilizes 2D and 3D convolution-based basic
CNN architectures to process structural brain scans in 2D and
3D T1-weighted MRI modalities from ADNI dataset. The sec-
ond approach involves using the VGG19 [41] model and other
previously trained medical image classification models by ap-
plying the transfer learning principle on the same dataset. These
techniques were highly effective, achieving AD stage classifi-
cation accuracies of 93.61% and 95.17% for 2D and 3D scans,
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respectively. The pre-trained VGG19 model was further im-
proved, achieving an accuracy of 97% for multiclass classifica-
tion.

Moreover, in [8], the authors developed a unique and im-
proved Computer-Aided Diagnosis (CAD) system based on a
CNN capable of distinguishing between individuals with nor-
mal cognitive function and those with AD. The suggested
method was evaluated using 18FDG-PET scans from 855 in-
dividuals, including 220 AD patients and 220 normal control
subjects from the ADNI dataset. The results indicated that
the proposed CAD system achieved accuracy, sensitivity, and
specificity values of 96%, 96%, and 94%, respectively.

On another note, in [16], the authors presented a novel un-
supervised technique that makes use of the ADNI dataset and
unsupervised CNN algorithms. The outcomes were encourag-
ing. The method’s accuracy when analysing single-slice data
was 95.52% for separating AD from mild cognitive impairment
(MCI) and 90.63% for separating MCI from normal cognition.
But when three orthogonal panels (TOP) of MRI images were
used as the data set, the accuracy peaked at 97.01% for AD
versus MCI and 92.6% for MCI versus Normal Cognition. In-
terestingly, the technique combines a supervised classification
step with a Support Vector Machine (SVM) and unsupervised
feature learning with CNNs, specifically PCANet. As a result,
even though the feature extraction process is unsupervised, the
entire technique consists of both supervised and unsupervised
steps.

Furthermore, the authors in [10] trained four different mod-
els using the ADNI dataset: Deep Neural Networks (DNN)
achieved 99.2% accuracy, CNN achieved 99.9% accuracy,
Deep Autoencoder (DA) achieved 91.95% accuracy, and Deep
Boltzmann Machine (DBM) achieved 95.35% accuracy.

At this juncture, the work of authors is delved into in [39],
who propose a versatile method utilizing structural MRI and
machine learning (ML) for diagnosing AD and moderate cog-
nitive impairment (MCI). They leveraged data from 570 partic-
ipants in the ADNI dataset and 531 subjects from the OASIS
project database to train and test the classifiers. Various clas-
sifiers were evaluated and integrated through voting to make
judgments. Additionally, they assessed the classifiers’ poten-
tial for clinical application, their applicability across datasets
and techniques (IR-SPGR and MPRAGE), the impact of incor-
porating graph theory metrics on diagnostic performance, and
the relative importance of different brain regions. The ”healthy
controls (HC) vs. AD” classifier, when trained and evaluated on
the combined ADNI and OASIS datasets, achieved a balanced
accuracy (BAC) of 90.6% and a Matthew’s correlation coeffi-
cient (MCC) of 0.811. Similarly, the ”HC vs. MCI vs. AD”
classifier, trained and evaluated on the ADNI dataset, obtained
a MCC of 0.438 and a BAC of 62.1% (with a 33.3% by-chance
limit). Notably, hippocampal traits emerged as the most signif-
icant contributors to categorization judgments (approximately
25–45%), followed by temporal (roughly 13%), cingulate, and
frontal areas (each around 8–13%). The classifiers exhibited
robust cross-dataset and cross-protocol generalization. Further-
more, the addition of graph theory metrics did not improve clas-
sification performance.

Furthermore, in [50], the authors conducted an extensive
cross-dataset evaluation of machine learning models for AD
identification. They evaluated models such as Random For-
est, Support Vector Machine, Decision Tree, XGBoost, Vot-
ing Classifier, AdaBoost, and Gradient Boosting using OASIS
dataset. The findings revealed that models incorporating fea-
ture selection techniques outperformed those without. Notably,
models such as Random Forest, Voting, and Extra Tree demon-
strated good accuracy, precision, recall, and F1-Score, rang-
ing from 88% to 93%, when applied to longitudinal datasets.
Conversely, models trained without feature selection exhib-
ited lower accuracy, ranging from 40% to 92%. Furthermore,
feature-selected models consistently outperformed non-feature-
selected models across datasets, with accuracy scores for Ran-
dom Forest, Gradient Boosting, and XGBoost ranging from
67% to 72%. The importance of feature selection in enhancing
the accuracy of AD detection was underscored by variations
in precision, recall, and F1-Score metrics among models and
datasets.

Moreover, in [48], the authors propose an early diagnosis
approach for AD using machine learning, employing a vari-
ety of algorithms. The GaussianNB probabilistic technique,
which assumes feature independence and utilizes a Gaussian
distribution for continuous data, achieved a remarkable accu-
racy of 96%. Decision Tree, utilizing a tree-like structure of
decisions, achieved an accuracy of 89.33% in result predic-
tion. The Random Forest ensemble of decision trees, aimed
at improving prediction and mitigating overfitting, also demon-
strated noteworthy accuracy of 96%. XGBoost, known for cre-
ating gradient-boosted decision trees efficiently and scalably,
achieved an accuracy score of 93.33%. Notably, the Voting
Classifier, an ensemble approach combining predictions from
multiple algorithms, achieved the highest validation accuracy
of 96%, highlighting its effectiveness. Lastly, GradientBoost
achieved a 92% accuracy rate by optimizing a loss function us-
ing a group of weak prediction models. These outcomes un-
derscore the efficacy of the ensemble-based Voting Classifier,
which exhibited the highest accuracy of 96% in AD prediction
using the OASIS dataset. The study underscores the significant
promise of machine learning algorithms in facilitating early di-
agnosis of AD.

In [25], the authors utilize the OASIS dataset to explore
early-stage AD prediction. The study employs a range of ma-
chine learning methods, including Random Forest, Decision
Tree, Support Vector Machine (SVM), Gradient Boosting, and
Voting classifiers, achieving an impressive validation average
accuracy of 83%. Performance metrics used for evaluation
include F1-score, Precision, Recall, and Accuracy. Decision
Tree, with data division based on feature cutoff values, achieves
an accuracy of 80.46%, with precision, recall, and F1-score
values ranging from 78% to 80%. Notably, Random Forest,
an ensemble of decision trees aimed at reducing overfitting,
achieves an accuracy of 86.92% with 85% precision at 81%
recall and a corresponding F1-score of 80%. Support Vector
Machine, utilizing hyperplanes to classify data points, achieves
an accuracy of 81.67%, with precision, recall, and F1-score val-
ues at 77%, 70%, and 79% respectively. XGBoost, employing
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gradient boosting for enhanced speed and performance, attains
a high accuracy of 85.92%, with precision and recall both at
85%. Similarly, the Voting Classifier achieves an accuracy of
85.12%, with precision and recall both at 83%. The study con-
cludes that the Voting Classifier, Random Forest, and XGBoost
are the most effective models for predicting AD in its early
stages, verified by cross-validation to ensure reliability. In addi-
tion to traditional machine learning algorithms, the study incor-
porates deep learning techniques. Specifically, deep convolu-
tional autoencoders are used to extract high-level features from
the imaging data. These features are then used in conjunction
with machine learning algorithms (SVM, Random Forest, De-
cision Tree, XGBoost, Voting Classifiers) to enhance the anal-
ysis of AD. The deep convolutional autoencoder architecture
consists of multiple convolutional and deconvolutional layers
designed to capture the intricate patterns in the imaging data,
which are critical for accurate early-stage AD prediction.The
models are trained using publicly accessible datasets from Kag-
gle and OASIS in these experiments. The use of these public
datasets ensures a degree of reproducibility, as other researchers
can access the same data and replicate the experiments. How-
ever, the paper acknowledges the inherent complexity of early
AD prediction, particularly for accurate and timely diagno-
sis (potentially aiding clinicians and lowering mortality rates).
To address the complexity of the problem, the study empha-
sizes careful feature selection and data preparation. It uses
advanced tools and techniques to remove unnecessary features
and include pertinent metrics like education and MMSE (Mini-
Mental State Examination) scores. These steps are crucial for
achieving high accuracy and reliable performance in predict-
ing early-stage AD. Overall, the integration of deep learning
with traditional machine learning models, along with the use of
public datasets, enhances the robustness and reproducibility of
the study’s findings, providing valuable insights into early-stage
AD prediction.

This study [11] considered data from the National
Alzheimer’s Coordinating Center with a host of clinical vari-
ables including prior medical conditions, neuropsychological
tests, and neuroimaging tests. In this paper, a deep ensemble
learning framework was leveraged for enhancing the predictive
accuracy. This framework employs a triple-layer architecture:
in the first layer, sparse auto-encoders reduce features and then
a deep belief network ranks various garnered predictions with
the aid of an additional layer termed the voting layer, before
finally being optimized by the neural networks in the optimiza-
tion layer into the final prediction. The proposed method out-
performed others in ensemble methods in terms of classifica-
tion accuracy by about 4%, making it a potential tool that could
help in the diagnosis and management of Alzheimer’s disease
in general practice.

The researchers in [27] drew 2125 brain scans against the
ADNI database, which were categorized by the Alzheimer’s
disease, mild cognitive impairment, and normal cognitive func-
tion of subjects. In this study, an ensemble model was pro-
posed to increase the accuracy of classification, which inte-
grates extreme gradient boosting, decision trees, support vector
machines with polynomial kernel techniques. This is an exam-

ple of a Master-Slave architecture with grid-based tuning done
for better optimization and cross-validation for the robust eval-
uation of performance. The results from the ensemble model
were good: an accuracy of 89.77 percent before optimization
and a further improvement in accuracy to 95.75 percent after
the optimization of parameters, thereby outperforming all other
machine learning models tested in this study.

This paper [15] focused on the examination of Alzheimer’s
disease with the help of an OASIS dataset that colleague im-
age and MRI reports. This paper implements ensemble learn-
ing, which involves the combination of machine learning al-
gorithms: Random Forest, SVM, XGBoost, Adaboost, Deci-
sion Trees, Voting Classifier, and Gradient Boosting. In this
study, an Artificial Neural Network model was developed with
features such as a dense layer, dropout rate, and specific ac-
tivation functions, after which its performance was evaluated.
The known metrics used in evaluating it were accuracy, preci-
sion, and sensitivity. The ANN had the greatest test accuracy of
91.96%, thereby outperforming gradient boosting at 85.7% and
voting classifier methods at 83.04%; this indicates improved
AD diagnosis capability.

In this research [18], MRI files from the ADNI dataset and
a local dataset from Firoozgar hospital were used to train and
validate a model with regard to Alzheimer’s brain disease de-
tection. The MRI images used were T2-weighted and axial-
view. They have developed in this line a weighted probability-
based ensemble method that integrates six different CNN clas-
sifiers: DenseNet201, DenseNet169, DenseNet121, ResNet50,
Inception-Resnet V2, and VGG19. The formula that math-
ematically determines the output of the ensemble model is
O j =

∑6
i=1 wi × α

i
j, where O j is the sum of weighted proba-

bilities for class j, wi is the weight of the i-th classifier, and
αi

j is the probability value of class j in the i-th classifier. The
paper achieved good results in differentiating between LMCI
and AD: ensemble approach delivered 98.57% for NC vs. AD,
96.37% for NC vs. EMCI, 94.22% for EMCI vs. LMCI, and
99.83% for LMCI vs. AD. Validation on the classification of
the three categories yielded 88.46% on the local dataset. Even
though the individual class CNN models were not performing
very well, this ensemble method provided promising potential.
The authors confirm that more comprehensively sized valida-
tion datasets would be needed to further establish the general-
izability of results.

Lastly, authors in [22] examined how well brain imaging data
could be used to distinguish between subjects with AD, mild
cognitive impairment (MCI), and cognitively normal (CN) sub-
jects using an Adaptive Deep Belief Network (Adaptive DBN)
model. The study made use of MRI and 18F-FDG-PET scans
from the ADNI archive. The main technique was optimising
the network structure by layering Adaptive RBMs with a neu-
ron generation-annihilation algorithm, and subsequently creat-
ing a DBN by stacking these RBMs. To improve classification
power and facilitate group learning, the DBN also adopted a
teacher-student based learning strategy. The outcomes showed
promise, especially when it came to differentiating between AD
and CN. In this classification task, the Adaptive DBN achieved
a test set accuracy of 96.7% for MRI images and 98.8% for
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PET images. The test set accuracy for MCI vs. AD using MRI
scans was 98.3%, even though accuracy for the MCI vs. CN
and MCI vs. AD classifications wasn’t stated explicitly for the
training set. In terms of early AD and MCI detection, the Adap-
tive DBN model performed better overall than other CNN (Con-
volutional Neural Network) models, indicating its potential for
precise brain pathology classification

2.1.3. Huntington’s Disease
Authors in [53] explore the possibility of categorizing patient

illness severity based on each footstep’s pressure data through
the use of deep learning algorithms. Tests utilizing the Unified
Huntington’s Disease Rating Scale (UHDRS) Motor Subscale
showed that the use of VGG16 and related modules resulted in
a classification accuracy of 89%.

On the other hand, the authors of [35] employed multidimen-
sional pattern evaluation approaches to a number of derived
voxel-based and segmented region-based datasets to see if in-
formation about illness state could be decoded from MRI im-
ages. Utilizing support vector machines (SVM) and linear dis-
criminant analysis (LDA), it was discovered that several funda-
mental, emission-weighted, and functional MRI measurements
could accurately distinguish pre-Huntington’s disease (HD) and
controls with up to 76% accuracy.

2.1.4. Amyotrophic Lateral Sclerosis (ALS)
The goal of [49] was to predict the survival of ALS patients

using clinical traits and MRI data with deep learning. The au-
thors classified 135 ALS patients as short, medium, or long sur-
vivors. The accuracy of the deep learning model employing
data from brain morphology was 62.5%, clinical features was
62.5%, and MRI accuracy was 68.8%. The accuracy rose to
84.4% when the three models were combined.

2.1.5. Traumatic Brain Injury (TBI)
In the case of TBI in both humans and small animals, the

authors in [36] offered a CNN-based brain extraction system
for skull stripping based on multi-contrast MR imaging. Skull
stripping accuracy improved significantly in experiments using
MR images of mice and humans. The model was tested on 19
human patients with mild to severe TBI and scored 97.19% ac-
curacy. Furthermore, the same model was applied to 16 images
of normal mice, scoring 94.86% accuracy, and to 10 mice brains
with TBI, scoring 95.43% accuracy.

2.1.6. Comparative Analysis
As this study is dealing with CNN models, highlighting

the difference between CNN and other methods such as Vi-
sion Transformer (ViT), diffusion models, and Recurrent Neu-
ral Network (RNN) is a must.

In fact, In [44], [54], and [18], the authors emphasize the sig-
nificance of CNNs in image processing and AD identification.
For the purpose of extracting features and identifying spatial
hierarchies and local patterns, CNNs are crucial. But they can

miss crucial information, especially when working with com-
plex neuroimaging data, and they have trouble capturing wide-
ranging, long-range dependencies across all brain volumes. De-
spite the difficulties, the authors in [54] and [18] revealed an
accuracy of 94.61% and 88.46%, respectively.

Moreover, as there are usually few annotated datasets in the
field of medical imaging, CNNs’ need on huge datasets poses
a substantial challenge. This emphasizes the necessity of com-
ing up with innovative solutions to the data shortage problem.
The limitations of CNNs in image-based disease diagnosis are
analysed by the authors in [47] and [43], who note that model
performance may be hampered by the models’ reliance on do-
main expertise for feature selection. They achieved accuracies
of 98.53% and 82.2%, in turn. Notwithstanding these difficul-
ties, CNNs are still crucial for enhancing visual comprehension
and advancing a variety of applications.

On the other hand, things are both challenging and exciting in
the case of transformer-based solutions, such the Vision Trans-
former (ViT). Transformers (like ViT) are promising in many
areas, but they pose a significant challenge to medical imaging
because of their voracious appetite for data [44]. Furthermore,
despite transformers’ exceptional ability to capture long-range
relationships, a significant issue with their interpretability re-
mains, making it challenging for doctors to trust and understand
the choices made by the models [44]. However, transformer-
based models show that they can express global dependencies
and can handle both sequential and non-sequential input intel-
ligently, thanks to the self-attention mechanism [54]. Nonethe-
less, careful design and training are needed due to their broad
use in natural language processing tasks and the intricate re-
quirements of adapting them to 3D medical data [54]. A novel
deep feature fusion network that integrates EfficientNet-B01,
Global Context Network (GCN), Hybrid Multi-Focus Atten-
tion Block (HMAB), and Group Shuffle Depth-wise Convolu-
tion (GSDW) is proposed by the authors in [47] and [46]. This
technique combines the advantages of transformers and CNNs
to effectively incorporate spatial data and global contextual in-
formation to enhance MCI classification performance. It of-
fers a potential remedy for the issues pertaining to the inter-
pretation of sMRI data in neurological conditions, by achiev-
ing accuracies of 98.53% and 77.2%, respectively. In [45], the
writers conduct a comprehensive examination of vision trans-
formers (VTs) and their hybrid counterparts, attaining a pre-
cision of 79.8%. Vision transformers, with their self-attention
processes, have emerged as a potential replacement for CNNs.
Their proficiency is in recognising interrelated elements in pic-
tures. Their capacity to represent local correlations might be
limited, in contrast to CNNs, which would affect generalisation.
Scientists have created Hybrid Vision Transformers (HVTs),
which blend convolutional and self-attentional processes, in an
effort to overcome issue. These CNN-Transformer designs of-
fer exceptional performance for various vision applications by
combining the advantages of local and global picture represen-
tations. The research also provides a taxonomy of modern HVT
designs, outlining positional embeddings, convolutional com-
ponents, attention mechanisms, and multi-scale processing to
aid in the comprehension of hybrid model landscapes. The pa-
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per suggests more investigation and study in this emerging field
of architecture by emphasizing the usefulness of hybrid vision
transformers in a variety of computer vision applications. It
also emphasizes how vital HVTs are in establishing a connec-
tion between local and global picture representations.

Moreover, diffusion models for AD diagnosis are thoroughly
examined, and the results show a number of creative strategies
and techniques [55; 14; 21; 17; 40]. [55] explores the spa-
tiotemporal dynamics of tau protein misfolding and suggests a
reaction-diffusion model supported by Physics-Informed Neu-
ral Networks (PINNs) and symbolic regression. Their model,
which simulates diffusion dynamics using a graph representa-
tion, captures the distribution of tau proteins in the brain us-
ing data from the ADNI. Similarly, to improve the accuracy
of illness categorization, [14] present a dynamically changed
hypergraph diffusion model for AD diagnosis, coordinating
semi-supervised hypergraph learning. Using an alternate op-
timization strategy, their solution combines labelled and unla-
beled datasets, promoting diffusion processes that are smoothly
driven by the hypergraph p-Laplacian, reaching an accuracy of
92.11%. Furthermore, [21] highlight the critical role that Diffu-
sion Tensor Imaging (DTI) plays in the early detection of AD,
clarifying the usefulness of DTI scalar metrics, such as mean
diffusivity (MD) and fractional anisotropy (FA), in identifying
white matter alterations that are suggestive of cognitive decline.
Their multi-modality MRI fusion method, that achieved an ac-
curacy of 97%, combines structural MRI and DTI data to pro-
vide a reliable way to classify AD phases. The importance
of DTI-derived features, especially in superficial white matter
(SWM), is further explained by [17], highlighting the useful-
ness of DTI reconstruction techniques like q-space diffeomor-
phic reconstruction (QSDR) as possible biomarkers for AD di-
agnosis. The authors attained an accuracy of 95.8%. Last but
not least, [40] offer a thorough analysis of diffusion models in
AD biomarker research, highlighting the significance of DTI in
defining brain anomalies at different phases of the illness. Even
with its effectiveness, DTI should be used in conjunction with
additional imaging modalities to provide a thorough diagnosis
of AD. When taken as a whole, these research highlight how
crucial diffusion models are to understanding AD pathophysi-
ology and improving diagnostic precision.

Finally, numerous studies investigate the potential of recur-
rent neural networks (RNNs), in particular the Long Short-
Term Memory (LSTM) architecture, in capturing temporal dy-
namics and sequential patterns present in patient data with re-
gard to AD diagnosis and prediction [12; 19; 9; 52; 51]. Us-
ing LSTM-based RNNs, [12] provide an automated prediction
framework that forecasts the course of AD by examining patient
biomarkers at various time points. Using the complex patterns
of disease progression, the model, trained on the ADNI dataset,
shows greater accuracy in distinguishing between AD and mild
cognitive impairment (MCI). The importance of LSTMs in AD
prediction is also highlighted by [19], who credit their success
to their ability to handle time-series data, which is essential for
early disease detection. LSTMs demonstrate their capacity to
capture temporal dynamics suggestive of disease development
by including patient data from prior visits into the prediction

process. To diagnose AD through EEG data categorization,
[9] expand on the use of LSTM-based RNNs by utilising the
architecture’s ability to process sequential inputs and store in-
formation for long stretches of time. Their research highlights
how important LSTM units are for reducing problems such as
gradient vanishing and explosion, which improves the model’s
ability to learn from long-term relationships in EEG signals.
Additionally, [52] examine how RNNs and LSTMs may be
integrated into speech analysis for the purpose of identifying
AD, emphasising how well these models can capture linguis-
tic and acoustic patterns linked to the illness. Researchers gain
significant improvements in classification accuracy by combin-
ing these architectures with other neural networks and attention
mechanisms, highlighting the promise of deep learning mod-
els in speech-based diagnostics. [51], on the other hand, de-
part from RNN and LSTM models and concentrate on a multi-
task deep learning (MTDL) framework that uses a deer hunt-
ing optimization (DHO) technique to optimize CNN model hy-
perparameters for AD classification and segmentation of the
hippocampus. Although their study does not directly address
RNNs or LSTMs, it does add to the larger body of work on
deep learning-based AD prediction models. All of these studies
highlight how flexible and effective RNNs are in capturing the
temporal dynamics and sequential patterns that are essential for
diagnosing and predicting AD, especially the LSTM variations.

3. Background & Preliminaries

3.1. Supervised Learning

Supervised learning, a subset of machine learning and arti-
ficial intelligence, is distinguished by its approach to training
algorithms to categorize data correctly using labeled datasets.
The model adjusts its weights as input data is provided, refin-
ing its adaptation during the cross-validation process. Super-
vised learning plays a crucial role in enabling organizations to
develop scalable solutions for various real-world challenges [7].

3.2. Deep Learning

Deep learning is a machine learning method that instructs
algorithms to learn by mimicking human cognitive processes.
Driverless cars utilize deep learning as a crucial technology to
recognize stop signs and distinguish individuals from objects. It
is essential for enabling voice commands on consumer electron-
ics, including tablets, smartphones, and TVs. Recently, deep
learning has garnered significant interest, and for good rea-
son—it is producing outcomes that were previously unattain-
able.

In deep learning, a computerized model learns to carry out
categorization tasks by analyzing images, text, or sound. Deep
learning models can achieve remarkable precision, sometimes
even surpassing human capability. Training these models re-
quires a substantial collection of labeled data and sophisticated
multi-layered neural network designs [6]. Deep learning relies
heavily on CNN, specialized architectures designed to process
data with grid-like topology, such as images and audio. Im-
age recognition tasks have been transformed by CNNs, which
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automatically learn hierarchical representations from raw pixel
data.

3.3. Convolutional Neural Network (CNN)
As stated in the Section 3.2, CNN is a type of neural network

composed of neurons primarily used for image identification
and processing, owing to its ability to detect similarities in im-
ages. CNNs are specifically designed to efficiently process and
analyze images through a series of convolutional and pooling
layers. These layers extract relevant features from the input im-
ages, capturing hierarchical patterns and spatial relationships.
Typically, deep learning models use CNNs with more than just
a few layers. The first notable deep model is AlexNet (2012),
which has 7 layers, as opposed to earlier ”shallow” models with
only 2-3 layers. Moreover, advancements in CNN architec-
tures, such as residual connections and attention mechanisms,
have further improved their performance and interpretability.
While CNNs are powerful tools, their training process requires
a large amount of labeled data. Fig. 1 illustrates how CNNs
work in image classification.

Fig. 1: An example of a CNN model that has c output classes comprised of a
softmax layer, convolutional layers, pooling layers, and h dense layers. After
deep features are extracted, convolutional and pooling layers handle the input
data before sending it to dense layers [23].

3.3.1. Activation Functions
In deep neural networks, the result of the transfer function is

passed through an activation function at each node of the net-
work to identify non-linear relationships between the inputs and
transform them into more meaningful outputs. Activation func-
tions are utilized to introduce non-linearity into the network.
Each activation function has its own unique properties and is
suitable for certain use cases.

Different activation functions have different mathematical
formulas. Below the two main activation functions that were
employed for the purpose of this paper are discussed.

1. Rectified Linear Unit (ReLU)
Next, let us discuss the activation function utilized for the
research purposes. In deep neural networks, ReLU (Rec-
tified Linear Unit) is a non-linear activation function. It
addresses the vanishing gradient issue, enabling models to
be trained more rapidly and perform more effectively. The
ReLU formula is as follows:

g(z) = max(0, z) (1)

The ReLU activation function is differentiable at all val-
ues except at zero. For values greater than zero, the func-
tion outputs the input. However, for negative values, the

function returns zero. Thus, the ReLU activation function
effectively replaces negative values with zero, while pre-
serving positive values unchanged. This behavior can be
expressed as follows:

g(z) = max(0, z) =
z+ | z |

2
=

0, if z ≤ 0
1, if z > 0

(2)

Due to its capability in addressing the issue of vanishing
gradients, ReLU is commonly employed in all convolu-
tional layers except the final convolutional layer, which
serves as the output layer providing the final prediction.
Fig. 2 depicts the ReLU Function Graph that shows the
output of ReLU activation function plotted against its
input.

Fig. 2: ReLU Function Graph

2. SoftMax
A vector of K real numbers is transformed into a distribu-
tion of K potential outcomes using the SoftMax function.
It is applied in multinomial logistic regression and is a
generalization of the logistic function to many dimensions.
According to Luce’s choice axiom, the SoftMax function
is frequently employed as the final activation function of a
neural network to normalize the output of the network to
a probability distribution across expected output classes.
The SoftMax function normalizes a vector z of K real
numbers into a probability distribution with K probabili-
ties corresponding to the exponentials of the input values.
It accepts this vector as an input. In other words, certain
vector components before applying SoftMax could be neg-
ative or higher than one, and they might not add up to 1.
However, after using SoftMax, every factor will be in the
range (0,1), and each of them will add up to 1, thus they
can be interpreted as probabilities. Additionally, higher
probability will result from greater input components. The
SoftMax formula is as follows.

g(z) = so f tmax(zk) =
ezk∑K
j=1 ez j

(3)

for k = 1, . . . ,K and z = (z1, . . . , zK) ∈ RK .
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As mentioned before, the SoftMax activation function is
utilized as the final activation function of a neural network,
typically in scenarios where classification involves multi-
ple classes. Generally, the Softmax function ”softens” the
differences between the scores, ensuring a more balanced
distribution of probabilities. In this case, with a total of
four classes, this paper will be employing SoftMax as the
activation function in the output layer for all deep learning
algorithms. Fig. 3 depicts the graph of the SoftMax func-
tion, that shows the output probability for each class in a
classification problem.

Fig. 3: SoftMax function graph

3.3.2. Loss Function
Let us now discuss the Loss Function, which is a mathemat-

ical function that calculates the discrepancy between a neural
network’s predicted output and the ground-truth output. It is
utilized to train the neural network by adjusting its weights and
biases in order to minimize this discrepancy. The type of prob-
lem being addressed, such as regression or classification, deter-
mines the appropriate loss function to be used.

A commonly used loss function in machine learning is cate-
gorical cross-entropy, which quantifies the discrepancy between
the predicted and actual probability distributions. It is fre-
quently employed in multi-class classification scenarios where
the output may belong to more than one class. The categori-
cal cross-entropy loss function of the distribution p relative to a
distribution y over a given set is given as:

L(y, p) = −
c∑

i=1

yilog(pi), for c classes, (4)

where, yi is the truth label and pi is the SoftMax probability for
the ith class. In this paper, as there are a total of four classes,
categorical cross-entropy will be used as loss function.

3.3.3. Optimizers
Optimizers are methods used in deep learning to adjust the

model’s parameters during training, aiming to minimize a loss
function. By iteratively updating weights and biases, they en-
able neural networks to learn from input data.

Several optimizers are available, with one of the most com-
monly used being the Adam optimizer, which adapts the learn-
ing rates for each parameter. It combines the advantages of
AdaGrad and RMSProp. Indeed, Adam is widely recognized in
deep learning for its ability to achieve good results quickly. Fig.
4, taken from [28], illustrates the effectiveness of the Adam op-
timizer compared to other optimizers. The following formula
represents the Adam Optimizer:

θt+1 = θt −
α · m̂t
√
ν̂t + ϵ

(5)

where, θt+1 represents the parameters after the update, θt repre-
sents the current parameters before the update, α is the learn-
ing rate, a hyperparameter that determines the size of the step
taken towards the minimum of the loss function, m̂t is the
bias-corrected first-moment(mean) vector estimate of the gra-
dients(the slope of the loss function) at iteration t, ν̂t is the bias-
corrected second-moment(uncentered variance) vector estimate
of the gradients at iteration t and ϵ is a small scalar added to pre-
vent division by zero and maintain numerical stability.

Fig. 4: Comparison of Adam to other optimization algorithms training a multi-
layer perceptron taken from [28]

3.3.4. EfficientNet

EfficientNet is a CNN design and scaling technique that em-
ploys an additive coefficient to uniformly scale all dimensions
of depth, breadth, and resolution. The EfficientNet scaling tech-
nique consistently increases network breadth, depth, and reso-
lution using a set of predefined scaling coefficients, contrasting
with the conventional practice of arbitrarily scaling these vari-
ables [42].

The multi-objective neural architecture employed by
EfficientNet-B0, a mobile-size baseline network, aims to
achieve accuracy and FLOPS objectives. The model’s archi-
tecture is depicted in Fig. 5 and was influenced by Mnas-Net.
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Fig. 5: EfficientNet-B0 Architecture [2]

3.3.5. ResNet
A CNN design known as Residual Network (ResNet) over-

comes the ”vanishing gradient” issue and enables the construc-
tion of networks with hundreds or even thousands of convo-
lutional layers, surpassing simpler systems [5]. By utilizing
the layer inputs as a guide, the weight layers within ResNet
learn residual functions. Bypassing connections facilitate iden-
tity mappings, which are added to the layer outputs [38]. The
ResNet architecture adheres to two fundamental design prin-
ciples: firstly, each layer contains the same number of filters;
secondly, to preserve the spatial dimension of the data feature
map processed by the convolutional layers,even if the size of
the data map is halved, it employs twice as many filters.

The bottleneck building block is utilized in the 50-layer
ResNet. A bottleneck residual block, sometimes referred to as
simply a ”bottleneck”, employs 11 convolutions to reduce the
number of parameters, thus significantly expediting the train-
ing of each layer. Instead of using a stack of two levels, it uti-
lizes three layers. An illustration of the ResNet50 architecture
is shown in Fig. 6.

Fig. 6: ResNet50 Architecture [3]

3.4. Evaluation Parameters

The following four metrics are commonly used to assess clas-
sifier performance: Accuracy, Precision, Recall, and F1-score.
To evaluate these metrics, the following indicators are utilized:

True positives (TP) are outcomes that are both anticipated
and actual.

False positives (FP) are predictions of positive results that
turn out to be negative.

True negatives (TN) are results that are both predicted and
actually negative.

False negatives (FN) are predicted negative results that turn
out to be positive.

3.4.1. Accuracy
The accuracy ratio, which measures the number of accurate

predictions to all predictions, is the simplest basic metric for
evaluating the model’s performance. However, accuracy may
not perform well with imbalanced datasets. The equation for
accuracy is as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(6)

3.4.2. Precision
The precision metric represents the ratio of true positives to

the sum of true positives and false positives. It essentially eval-
uates the accuracy of positive predictions. However, precision
does not consider true negatives and false negatives. The equa-
tion for precision is as follows:

Precision =
T P

T P + FP
(7)

3.4.3. Recall
The recall metric represents the proportion of true positives

to the sum of true positives and false negatives. Essentially, it
measures the amount of correctly identified positive data. How-
ever, recall can lead to a higher rate of false positives. The
equation for recall is as follows:

Recall =
T P

T P + FN
(8)

3.4.4. F1-Score
The F1 score is the harmonic mean of recall and precision.

When precision is improved at the expense of recall, or vice
versa, the F1 score aims to balance both precision and recall.
The equation for the F1 score is as follows:

F1 =
2 × Precision × Recall

Precision + Recall
(9)

4. Proposed method

In this paper, deep learning, particularly CNNs, was em-
ployed for the classification of Alzheimer’s images. Striv-
ing to achieve optimal results, models produced by two algo-
rithms: EfficientNet and ResNet were utilized, through fine-
tuning hyperparameters and employing several pre-processing
steps. Additionally, extra steps are taken by implementing post-
processing ensemble learning algorithm using the results of the
models generated from EfficientNet and ResNet. Specifically,
this algorithm merges both CNN architectures, thereby elevat-
ing predictive performance beyond the capabilities of any sin-
gular model. This integration results in more accurate, resilient
and reliable predictions. Fig. 7 represents the proposed work
methodology, while the ensemble learning post-processing al-
gorithm is detailed in Section 5.4.
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Fig. 7: Methodology of the proposed work, where ND, VMildD, MildD and
ModD stand for Non-Demented, Very Mild Demented, Mild Demented and
Moderate Demented Probabilities, respectively

4.1. Motivation
This section focused on our innovative ensemble learning

strategy aimed at improving the categorization of AD severity
from photographs, while Section 3 covered the fundamentals of
deep learning.

4.2. Drawbacks of Individual Deep Learning Models
CNNs, in particular, are deep learning models that have

shown impressive performance in image categorization tasks.
Single models, however, may be biased towards particular data
distributions or prone to overfitting. When used to unobserved
data, this may result in limitations in generalizability and ro-
bustness.

4.3. Ensemble Learning for Improved Outcomes
We propose an ensemble learning strategy that leverages the

strengths of two CNN architectures — EfficientNet and ResNet
— to overcome these drawbacks and produce the best classifi-
cation results. When numerous models’ predictions are com-
bined through ensemble learning, total performance may be en-
hanced beyond what would be possible with a single model.

4.4. Suggested Method for Ensemble Learning
Our ensemble technique integrates the predictions from the

EfficientNet and ResNet models, trained on images related to
AD. We employ a probabilistic rule-based decision-making ap-
proach using thresholds. Specifically, a weighted average tech-
nique and majority vote approach were employed to enhance
decision-making.

1. Weighted Average Technique: Predictions from Efficient-
Net and ResNet are combined using a weighted average.
We assign weights based on the performance metrics of
each model, giving more weight to the model with higher
accuracy and reliability.

2. Majority Vote Approach: In cases where the confidence
levels of predictions are close, we use a majority vote sys-
tem. Each model’s prediction is considered a vote, and
the final decision is based on the majority of votes. This

method helps mitigate the risk of over-reliance on a single
model and ensures robust predictions.

Section 5 provides a detailed explanation of the decision-
making procedure, including the specific thresholds and con-
ditions used.

4.5. Overfitting
To address the potential issue of overfitting, we included ad-

ditional experiments with cross-validation to ensure our model
generalizes well across different subsets of the data. While the
data used was already augmented, we have incorporated an-
other technique, namely the dropout, during training to mitigate
overfitting and to validate the model’s robustness.

4.6. Novelty and Processing Cost
Even though ensemble learning techniques are not brand-

new, our method offers a significant contribution by combin-
ing the complementary qualities of the EfficientNet and ResNet
architectures to classify the severity of AD from images. This
specific combination has not been previously used in this con-
text, nor has the probabilistic rule-based decision-making pro-
cess we employ (explained in Section 5).

We do, however, recognise that training two deep learning
models comes at a significant computational cost (as it is dis-
cussed in the Run-Time Performance in Section 5). Train-
ing EfficientNet and ResNet separately requires substantial re-
sources, which may not be feasible in all scenarios. We have
compared our method with other common approaches, such as
using a single model or simpler ensemble techniques like av-
eraging predictions. Our ensemble method has shown superior
performance in terms of accuracy and robustness, but at the cost
of increased computational demands.

We recognize the need for efficiency and are currently explor-
ing alternative ensemble techniques that could provide compa-
rable results with less computational overhead. For instance,
we are investigating methods like model distillation, where
the knowledge from multiple models is transferred to a single,
smaller model, or using more lightweight architectures in the
ensemble. Subsequent work will compare these options, con-
sidering both accuracy and computational efficiency, with our
current methodology.

The originality of our method lies in the unique combination
of EfficientNet and ResNet for AD severity classification and
the innovative probabilistic rule-based decision-making pro-
cess. This approach has not been previously applied in this
context, making it a novel contribution to the field.

5. Experiments

The suggested method is evaluated on two publicly avail-
able datasets obtained from Kaggle [4], [1], OASIS and ADNI,
respectively. The data comprises MRI images collected from
various websites, hospitals, and public databases, with each
and every label being verified. These datasets underwent pre-
processing to ensure consistency before being utilized for train-
ing, validation, and testing purposes. The assessment focused
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Fig. 8: Ensemble Learning Diagram

on evaluating the performance of two prominent deep learn-
ing architectures, EfficientNet and ResNet, across various met-
rics such as accuracy, sensitivity, and specificity. The uti-
lized approach demonstrates competitive performance across
all datasets and the effectiveness of each component is vali-
dated.

5.1. Setup

5.1.1. Datasets
The first dataset [4], OASIS, containing 33,984 high-quality

augmented Alzheimer’s images, was utilized for training, val-
idation, and testing the model. Henceforth, this dataset will
be referred to as Dataset1. Furthermore, unique features
are found within each of the four classes in the Alzheimer
dataset: NonDemented, MildDemented, ModerateDemented,
and VeryMildDemented. There are 9600 photos in the ”Non-
Demented” class, most of which are in JPEG format. Of these,
6400 images have the most common size of 200× 190 px, with
the remaining 3200 images having the size of 180 × 180 px.
This class’s photos are all in RGB mode. JPEG is likewise the
most common format in the ”MildDemented” class, with 8960
photos. With 8064 examples, the size distribution is skewed
towards 200 × 190 px, with 896 photos of size 180 × 180 px
surviving. This class also uses RGB mode for all of its images.
Next, ”ModerateDemented” class is tackled, where 6464 pho-
tos mostly in JPEG format are found. The majority (6400) have
dimensions of 200 × 190 px, while a smaller fraction (64) has
dimensions of 180 × 180 px. Nevertheless, there is a notice-
able difference in the size distribution. In a similar vein, every
image in this class is RGB mode. Finally, with 8960 photos,
JPEG is the most common format in the ”VeryMildDemented”
class. The distribution of sizes is biassed towards 200× 190 px,
which includes 6720 images. The remaining 2240 images have
a size of 180 × 180 px. Every image in this category is in RGB
mode, just like the others. These insights enable more analysis

and modelling efforts by offering a thorough understanding of
the dataset’s nature. That is why it is decided to make the model
accept images with size 200 × 190 px as it is the dominant size
in the dataset.

The second dataset [1], ADNI, consisting of 6,400 pre-
processed MRI images, served as a validation dataset to
ensure that the pre-trained model provides accurate predic-
tions. Henceforth, this dataset will be referred to as Dataset2.
Furthermore, unique features are found in each of the four
classes (NonDemented, MildDemented, ModerateDemented,
and VeryMildDemented) in the dataset that depicts different
levels of dementia. JPEG is the most common format among
the 3200 photos in the ”NonDemented” class. All of the pho-
tos have the same size distribution 128 × 128 px and are in
grayscale mode (L). With 896 photos, JPEG format still has
the upper hand in the ”MildDemented” class. In a similar vein,
every image in this category is in grayscale mode (L) and has
a dimension of 128 × 128 px. Moving on to the ”ModerateDe-
mented” class, JPEG remains the only format, albeit there are
a significantly fewer number of images—64 total. Each and
every image in this class has a measurement of 128 × 128 px
and is in grayscale (L). Finally, JPEG format is dominant in
the ”VeryMildDemented” class with 2240 photos. The distri-
bution of sizes is identical to the other classes; all images are
in grayscale mode (L) and have a measurement of 128 × 128
px. These insights enable more analysis and modelling efforts
by offering a thorough picture of the dataset’s nature.

Both datasets contain four classes, arranged in chronological
order: Non-Demented, Very Mild Demented, Mild Demented,
and Moderate Demented. The distribution of each class for both
datasets is presented in Table 1.
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Class Images in Dataset1 Images in Dataset2
Non Demented 9600 3200
Very Mild Demented 8960 2240
Mild Demented 8960 896
Moderate Demented 6464 64
Total 33984 6400

Table 1: Class Distribution for the two datasets

Additionally, a tripartite strategy is employed, dividing the
dataset into three essential subsets: the training set, the valida-
tion set, and the test set, in a ratio of 7: 1: 2, which is further
explained in Section 5.1.2.

Fig. 9 displays a sample of the different Alzheimer images
from Dataset1.

Fig. 9: Example of Alzheimer images from the OASIS dataset showing the
four different classes NonDemented, MildDemented, ModerateDemented, and
VeryMildDemented

5.1.2. Pre-processing of MRI Datasets
Pre-processing stands as a crucial step in generating opti-

mal classification models. In this paper, the following pre-
processing steps were undertaken for Dataset1:

1. The dataset was partitioned into Training (70%), Valida-
tion (10%), and Testing (20%) subsets, employing the tri-
partite strategy, which ensures a balanced distribution.

2. Although most images possessed dimensions of 200x190,
a uniform size of 200x190 was enforced by resizing all
images.

3. Since the images were already subjected to data augmen-
tation, further augmentation was deemed unnecessary.

4. Given that the dataset was inherently balanced across
classes, no additional balancing procedures were per-
formed.

These steps ensure the preparedness of the dataset for the
subsequent model training and evaluation.

5.2. Implementation details

In this section the implementation of the two image classifi-
cation architectures that were employed on the two datasets is
described.

5.2.1. EfficientNet
To train EfficientNetB0, MobileNet is utilized as weights

with max pooling. Subsequently, batch normalization is incor-
porated and a dropout of 20% is applied. Following this, two
dense layers with 120 units each were added, each employing
a ReLU activation function, followed by a dropout of 20%. Fi-
nally, the output layer consisted of a dense layer with 4 units
(corresponding to the 4 classes) and employed a SoftMax acti-
vation function for categorical multiclass classification.

The Adam optimizer and categorical cross-entropy as the
loss function are employed. The model was trained using both
the training and validation datasets with a batch size of 16 and
15 epochs. Only the best epochs, determined by optimal loss
on the validation dataset, were selected.

A key visual depiction of the EfficientNet model’s training
and validation procedure is provided by Fig. 10, which dis-
plays metrics for accuracy and loss. The model’s convergence is
clearly shown by the way these measures have changed across
the training epochs. In particular, the training loss shows a con-
sistent downward trend throughout the course of the epochs,
indicating that the model is able to learn and reduce errors on
the training set. Simultaneously, the validation loss displays a
comparable pattern, confirming that the model performs well
outside of the training dataset due to its strong generalisation to
new data. Furthermore, the accuracy curves show a steady rise,
indicating that the model’s capacity to accurately categorise ex-
amples increases with time. The training process was effective,
as evidenced by the convergence of loss and accuracy gain, con-
firming the trained EfficientNet model’s resilience and depend-
ability in identifying pertinent patterns and features in the data.
This convergence indicates that the model is ready to be used
in practical applications and gives rise to trust in its forecasting
powers.

Fig. 10: EfficientNet training and loss accuracy validation

5.2.2. ResNet
To train ResNet50, MobileNet is utilized as weights with

max pooling. Batch normalization was then added. Follow-
ing this, a dense layer with 2048 units employing a ReLU ac-
tivation function was added, followed by batch normalization.
Subsequently, another dense layer with 1024 units employing
a ReLU activation function was added, followed by batch nor-
malization. Finally, the output layer consisted of a dense layer
with 4 units (corresponding to the 4 classes) and employed a
softmax activation function for categorical multiclass classifi-
cation.

Similar to the EfficientNet model, the Adam optimizer and
categorical cross-entropy as the loss function are employed.
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The model was trained using both the training and validation
datasets with a batch size of 16 and 15 epochs. Only the best
epochs, determined by optimal loss on the validation dataset,
were selected.

Fig. 11, which shows both accuracy and loss measures, gives
a clear picture of the ResNet model’s training and validation
dynamics. This visualization provides strong proof of the con-
vergence of the trained ResNet model. Plotted curves indicate
how loss values change over time, with a training loss that con-
sistently decreases over the course of epochs. Concurrently, the
validation loss curve displays a comparable declining trend, sig-
nifying the model’s capacity to expand its generalization much
beyond the training set, thus reducing the likelihood of overfit-
ting. Additionally, the accuracy curves exhibit a continuous up-
ward trend, indicating that the model’s ability to correctly cat-
egorize examples has improved during the training phase. The
training regimen’s effectiveness is demonstrated by the conver-
gence of loss and accuracy improvement, which validates the
trained ResNet model’s resilience and ability to identify rele-
vant patterns and features within the dataset. This convergence
provides assurance in the model’s prediction ability and sup-
ports its suitability for practical application.

Fig. 11: ResNet training and loss accuracy validation

5.3. Results

The obtained results indicate that both EfficientNet and
ResNet architectures exhibit superior performance in AD di-
agnosis compared to existing methodologies. These high accu-
racies are explained in the subsequent subsections below.

5.3.1. Results on Dataset1 (OASIS)

As demonstrated in Fig. 12, the applied method surpasses
state-of-the-art techniques. Specifically, when utilizing Effi-
cientNet, this method achieved improvements of 7.99%, 2.59%,
and 11.67% in prediction accuracy compared to competing
methods of [39], [48], and [25], respectively. Notably, the ap-
plied method exhibits greater stability across different datasets.
Additionally, Fig. 12 illustrates the EfficientNet confusion ma-
trix for the Dataset1 test subset, detailing both correct and in-
correct predictions, scoring a 98.59% accuracy.

Fig. 12: EfficientNet confusion matrix for the Dataset1

Furthermore, the performance of EfficientNet for each de-
mentia classification in Dataset 1 (OASIS) is shown in Fig.12,
and the computed accuracy, precision, recall, and F1-score per-
centages are as follows:

Metrics for each individual class:

• MildDemented: With a high accuracy of 99.46%, the
model proved to be highly capable of identifying cases of
mild dementia. Impressive precision (99.16%) showed a
low rate of misclassifying other classes as milddemented.
Still, there were 37 cases (2.08%) that were incorrectly
classified overall, and there were missed cases of mild de-
mentia (98.77% recall).

• ModerateDemented: The model achieved perfect scores
(100%) in all metrics (accuracy, precision, recall, and
F1-score), demonstrating exceptional performance for this
category. This shows perfect, error-free identification of
cases with moderate dementia.

• NonDemented: The model demonstrated low false posi-
tive rates (98.12% precision) and good accuracy (98.84%)
for nondemented cases. Nevertheless, 79 misclassified
cases (4.21%) resulted from some missed NonDemented
cases (97.76% recall).

• VeryMildDemented: VeryMildDemented performed sim-
ilarly to MildDemented in terms of accuracy (98.88%),
recall (98.27%), and precision (97.51%). This points to
a possible mix-up between cases classified as MildDe-
mented and VeryMildDemented, resulting in 31 cases of
VeryMildDemented being overlooked and 76 cases over-
all (4.32%) being incorrectly classified.

Metrics for Comparing Classes:

• MildDemented vs ModerateDemented and ModerateDe-
mented vs NonDemented and ModerateDemented vs
VeryMildDemented: cored a perfect 100% on all metrics
(accuracy, precision, recall, F1-score)

• MildDemented vs NonDemented: Attained 99.45% accu-
racy, 99.44% precision, and 99.44% recall, indicating a
low error rate in differentiating between cases of mild de-
mentia and those without it. There were only 20 cases
(0.56%) of misclassification.

• MildDemented vs VeryMildDemented: displayed a
slightly lower accuracy (99.52%) in contrast to the other
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comparisons. High precision (99.33%) and nearly perfect
recall (99.72%) were demonstrated by mild dementia pa-
tients; however, there may have been some misunderstand-
ing between these classes, as evidenced by the 17 misclas-
sified cases (0.48%).

• NonDemented vs VeryMildDemented: 98.40% accuracy
was attained. The precision was high (99.75%) but the
recall was slightly lower (98.63%) in the NonDemented
group. This implies that VeryMildDemented may occa-
sionally be mistakenly assigned to NonDemented individ-
uals.

Similarly, when utilizing ResNet, it is observed that again
the proposed method outperforms the state-of-the-art methods.
Specifically, this method achieved improvements of 3.99% and
7.67% in prediction accuracy compared to competing methods
of [39] and [25], respectively. However, in [48], their approach
appears to outperform ours by a 1.41% difference in accuracy
score. Additionally, Fig. 13 illustrates the ResNet confusion
matrix for the Dataset1 test subset, detailing both correct and
incorrect predictions, scoring a 94.59% accuracy.

Fig. 13: ResNet confusion matrix for the Dataset1

Example quantitative results are depicted in Fig. 14, show-
casing the accuracy score of the utilized approach, which is
98.59% for EfficientNet and 94.59% for ResNet.

The performance of ResNet50 for each dementia classifica-
tion in Dataset 1 (OASIS) is shown in Fig.13, and the com-
puted accuracy, Precision, Recall, and F1-score percentages are
as follows:

Metrics for each individual class:

• MildDemented: The model’s accuracy for MildDemented
cases dropped to 96.85%, indicating a moderate increase
in misclassifications (214 instances, 12.08%). While recall
remained high (98.99%), meaning it missed few MildDe-
mented cases, the low precision (90.05%) suggests many
other classes were misclassified as MildDemented. The
F1-score (94.31%) reflects this trade-off between precision
and recall.

• ModerateDemented: The model performed exception-
ally well for ModerateDemented, achieving near-perfect
scores across all metrics: accuracy (99.84%), precision
(99.16%), recall (100%), and F1-score (99.58%). This
indicates excellent identification of ModerateDemented

Fig. 14: EfficientNet (with 98.59% accuracy) and ResNet (with 94.59% accu-
racy) results based on the evaluation parameters

cases with minimal errors (11 misclassified instances,
0.66%).

• NonDemented: NonDemented cases exhibited a decline
in accuracy (96.72%), much like MildDemented cases did.
With a moderate false positive rate (95.11% precision) and
a large number of NonDemented cases missed (93.18%
recall), the model misclassified 223 cases (12.47%). This
harmony between recall and precision can be seen in the
F1-score (94.13%).

• VeryMildDemented: Additionally, there was a moderate
decline in accuracy (95.76%) for VeryMildDemented. The
model’s recall performance was poor (87.78%), mean-
ing that many cases of VeryMildDemented were missed.
There were 288 misclassified cases (18.38%) as a result of
the moderate false positive rate (95.80% precision). The
F1-score of 91.61% is indicative of this overall subpar per-
formance.

Metrics for Comparing Classes:

• ModerateDemented vs. MildDemented: The model
achieved nearly perfect accuracy (99.97%), precision
(99.94%), recall (100%), and F1-score (99.97%) in dis-
tinguishing between MildDemented and ModerateDe-
mented.

• MildDemented vs. NonDemented and MildDemented vs.
VeryMildDemented: In contrast to other comparisons, the
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accuracy of the comparisons between MildDemented and
VeryMildlDemented (97.88% and 96.10%, respectively)
decreased, indicating a potential for misunderstanding be-
tween these classes. There were more misclassifications
for MildDemented vs. VeryMildDemented (confusion not
quantified) and MildDemented vs. NonDemented (77 in-
stances). This trade-off between accuracy and possible
misclassifications is reflected in the F1-score.

• ModerateDemented vs. NonDemented and ModerateDe-
mented vs. VeryMildDemented: These comparisons pro-
duced very high accuracy (99.93% and 99.72%, respec-
tively), precision, recall, and F1-scores, as well as excel-
lent differentiation. This suggests that these classes are
clearly distinct from one another.

• NonDemented vs. VeryMildDemented: This comparison
had a slightly lower recall rate (95.41%) for NonDemented
cases, but good accuracy (95.89%) overall. The balance is
reflected in the F1-score (96.13%).

In addition, we trained both EfficientNet and ResNet for
15 epochs in order to evaluate their generalizability. For ev-
ery model, we present the validation accuracy and loss mean
and variance. While EfficientNet performed better (mean accu-
racy: 94.52%, variance: 8.07%) than ResNet (mean accuracy:
92.34%, variance: 4.38%), it was more variable. This implies
that more optimisation could improve EfficientNet’s capacity
to function consistently across a variety of data distributions.
In the Discussion section, we will investigate methods like data
augmentation to potentially close the gap and improve Efficient-
Net’s generalizability as well as go deeper into possible expla-
nations for this observed variance. These findings indicate ar-
eas that require more investigation and offer useful standards
for choosing models.

We will examine these findings in more detail and go over
possible explanations for any observed variations in perfor-
mance throughout the dataset:

• Mean Validation Accuracy: 94.52% and 92.34%, respec-
tively, were determined to be the mean validation accuracy
for EfficientNet and ResNet.

• Variance of Validation Accuracy: ResNet has a variance
of 4.38%, while EfficientNet has an 8.07% variance. This
suggests that, in comparison to ResNet, EfficientNet’s ac-
curacy varies more between folds.

• Mean Validation Loss: ResNet has a mean validation loss
of 0.1578, while EfficientNet’s is 0.2188. Better perfor-
mance is indicated by a reduced validation loss.

• Variance of Validation Loss: ResNet has a variance of
0.0224 while EfficientNet has a variance of 0.0882. Ef-
ficientNet’s validation loss varies considerably over folds,
just like accuracy does.

5.3.2. Results on Dataset2 (ADNI)
Dataset 2 was selected as the witness dataset because it is

still uncertain whether the results obtained from Dataset 1 are
applicable solely to that dataset or can be generalized to multi-
ple Alzheimer’s datasets. It is important to note that Dataset 2
closely resembles Dataset 1.

During this phase, this paper directly utilized the models al-
ready trained on Dataset 2, and the ensuing results are discussed
below.

Dataset 2 is neither balanced nor augmented with additional
data. However, since this dataset was solely employed for
testing purposes, there was not any engagement in any pre-
processing steps beyond resizing the images to dimensions of
200 × 190 pixels before classification.

As demonstrated in Fig. 14, when employing EfficientNet
improvements of 0.25%, 1.25%, 0.24% and 6.65% are achieved
in prediction accuracy compared to competing methods of [20],
[8], [16], [39], respectively. The EfficientNet confusion matrix
for the Dataset2 test subset, detailing both correct and incorrect
predictions, scoring a 97.25% accuracy is illustrated in Fig. 15.

Fig. 15: EfficientNet confusion matrix

Furthermore, the performance of EfficientNet for each de-
mentia classification in Dataset 2 (ADNI) is shown in Fig.15,
and the computed accuracy, precision, recall, and F1-score per-
centages are as follows:

Metrics for each individual class:

• MildDemented: The model had a high accuracy rate of
99.00% and only 64 misclassifications. Though it had
perfect precision (100%, meaning no false positives from
other classes were classified as MildDemented), it missed
a moderate number of cases (92.86% recall). This har-
mony between recall and precision can be seen in the F1-
score (96.30%).

• ModerateDemented: All metrics (accuracy, precision, re-
call, and F1-score) were perfectly scored by the model, in-
dicating perfect performance for this category. This shows
that every case of moderate dementia was perfectly identi-
fied with no errors.

• NonDemented: In comparison to the other classes, the ac-
curacy of the NonDemented cases was slightly lower but
still very good at 98.13%. 120 cases were incorrectly clas-
sified by the model despite having a low false positive rate
(97.29% precision) and missing a small number of Non-
Demented cases (99.04% recall). This trade-off is reflected
in the F1-score (98.16%).
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• VeryMildDemented: In comparison to other classes,
VeryMildDemented showed a somewhat lower accuracy
rate of 97.39%. The model’s recall performance was
poor (96.38%), and it missed a fair amount of cases with
VeryMildDemented. 168 cases were incorrectly classified
as a result of the moderate false positive rate (96.13% pre-
cision). This lower overall performance is reflected in the
F1-score of 96.26%.

Metrics for Comparing Classes:

• MildDemented vs. ModerateDemented and ModerateDe-
mented vs. NonDemented and ModerateDemented vs.
VeryMildDemented: Attained perfect differentiation, scor-
ing 100% on all metrics (F1-score, accuracy, precision,
and recall). With zero missed cases and zero false posi-
tives for any other class, the model correctly classified all
cases of moderate dementia.

• MildDemented vs. NonDemented: demonstrated a
99.80% accuracy rate. There were only eight incorrectly
classified cases (precision of 99.05%) out of all the Mild-
Demented cases, even though the model correctly recalled
every case (no missed cases). The balance is reflected in
the F1-score of 99.52%.

• MildDemented vs. VeryMildDemented: The model had
some difficulty differentiating, despite maintaining a high
accuracy of 98.16% (lower precision of 93.69%). Com-
pared to other comparisons, there were more incorrectly
classified cases (56), but it accurately recalled every case
of mild dementia (not a single one was missed). This
trade-off between perfect recall and a higher false positive
rate is reflected in the F1-score (96.74%).

• NonDemented vs. VeryMildDemented: shown a high de-
gree of accuracy (97.95%). With a high precision of 99.04
percent and a low false positive rate for NonDemented
cases, the model’s recall (97.53%) was somewhat lowered
due to the 81 instances of missed NonDemented cases.
This harmony between recall and precision can be seen
in the F1-score (98.27%).

Similarly, when utilizing ResNet, improvements of 2.36%,
3.36%, 2.35% and 8.76% are achieved in prediction accuracy
compared to competing methods of [20], [8], [16], [39], re-
spectively. Fig. 16, depicts the ResNet confusion matrix for the
Dataset2 test subset, detailing both correct and incorrect predic-
tions, scoring a 99.36% accuracy.

Fig. 16: ResNet confusion matrix

The performance of ResNet50 for each dementia classifica-
tion in Dataset 2 (ADNI) is shown in Fig.16, and the computed
accuracy, precision, recall, and F1-score percentages are as fol-
lows:

Metrics for each individual class:

• MildDemented: Accomplished 99.72% of the time with
perfect recall (100.00%), but accuracy was only slightly
higher (98.03%) because of a few cases that were incor-
rectly classified (18).

• ModerateDemented: Performed flawlessly (100.00%)
across all metrics (recall, accuracy, precision, and F1-
score), demonstrating faultless classification.

• NonDemented: 99.48% accuracy, 99.59% precision, and
99.38% recall were all demonstrated with good accuracy.
Some NonDemented cases (20) were missed, and some
instances (33), were incorrectly classified.

• VeryMildDemented: demonstrated a high accuracy
(99.52%), with good precision (99.55%) and recall
(99.06%), was demonstrated by someone . That being
said, there were 31 incorrect classifications.

Metrics for Comparing Classes:

• MildDemented vs. ModerateDemented and ModerateDe-
mented vs. NonDemented and ModerateDemented vs.
VeryMildDemented: Scored a perfect score of 100.00%
for all metrics (accuracy, preceision, recall, F1-score), sig-
nifying flawless classification between these classes.

• MildDemented vs. NonDemented: demonstrated flaw-
less precision (100.00%) and extremely high accuracy
(99.76%) with only a few NonDemented cases (10). Al-
though the model identified all predicted MildDemented
cases with 100% accuracy, 10 NonDemented cases were
incorrectly classified.

• MildDemented vs. VeryMildDemented: showed excel-
lent precision (100.00%) and high accuracy (99.74%), but
there were also a few VeryMildDemented cases that were
missed (8).

• NonDemented vs. VeryMildDemented: Good differ-
entiation with some misclassifications is indicated by
high accuracy (99.58%) with good precision (99.69%)
and recall (99.59%) (23). In this instance, the model
yielded balanced precision and recall (about 99.7%) and
high accuracy (99.58%). Nevertheless, NonDemented
and VeryMildDemented were incorrectly classified in 23
cases.

Example quantitative results are depicted in Fig. 17, show-
casing the accuracy score of the applied approach, which is
97.25% for EfficientNet and 99.36% for ResNet.
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Fig. 17: EfficientNet (with 97.25% accuracy) and ResNet (with 99.36% accu-
racy) results based on the evaluation parameters

5.4. Post-processing

Leveraging the strengths of multiple models to achieve su-
perior performance is a common practice in deep learning ap-
plications. In this work, we propose Algorithm 1 (ADERR),
a post-processing method for better classification accuracy in
a medical image analysis task, by integrating predictions from
two deep learning models: EfficientNet and ResNet50. ADERR
takes a data-driven approach influenced by empirical observa-
tions from the validation data, in contrast to traditional ensem-
ble methods that frequently rely on intricate mathematical tech-
niques for model fusion.

ADERR’s primary strength is its capacity to take advantage
of each model’s unique advantages while minimising its dis-
advantages. The algorithm gives priority to the model that
demonstrates superior overall results by examining the valida-
tion set metrics (accuracy, precision, recall, and F1-score) for
every model across various classes. The foundational idea for
combining the predictions of the models is this prioritisation.

However, ADERR does more than just use a ”majority vote”
method. It includes a collection of post-processing rules that, in
accordance with predetermined parameters, further hone the se-
lection. These rules take advantage of insights found in the vali-
dation data. For example, they give EfficientNet priority for the
”ModerateDemented” class because of its clearly better perfor-
mance in that category. Furthermore, probability thresholds are
incorporated into the rules to guarantee that higher confidence
level model predictions are given more weight in the ultimate

decision.
The mathematical proof of the model, along with the

ADERR that relies on data-driven heuristics and the high results
on the validation data on both Dataset 1 (OASIS) and Dataset
2 (ADNI), which will be showed later in this section, are com-
pelling evidence of its efficacy and hold promise for general-
izability. This methodology showcases the efficacy of amalga-
mating model proficiencies via a focused post-processing tac-
tic, culminating in enhanced classification precision within the
particular framework of our dataset.

Based on Fig. 14, it is concluded that EfficientNet is a supe-
rior classifier compared to ResNet for this dataset, as it achieved
better accuracy, precision, recall, and F1-score across almost all
classes. Additionally, EfficientNet achieved a perfect score for
the ModerateDemented class.

Given these findings, it was decided to develop a post-
processing ensemble learning algorithm based on the rules out-
lined in Algorithm 1 (ADERR). Specifically, a weighted aver-
aging technique has been used by assigning different weights
to the predictions of each base model (in this case, Efficient-
Net and ResNet) based on certain criteria or conditions. In the
algorithm stated below, specific conditions were defined for de-
termining when to prioritize the prediction of one model over
the other. These conditions include the classification proba-
bilities of each model, the performance of each model in cer-
tain classes, and thresholds for probability values. By applying
these rules, the algorithm assigns different weights to the pre-
dictions of EfficientNet and ResNet, ultimately leading to a final
prediction that reflects a combination of both models’ outputs,
with certain conditions favoring one model’s prediction over
the other. This approach allows the ensemble model to capital-
ize on the strengths of each individual model while mitigating
overfitting and their weaknesses, leading to improved overall
performance.

The rules of such an algorithm are outlined below:

1. By default, the classification by EfficientNet is considered
correct.

2. If either EfficientNet or ResNet classifies an image as
”ModerateDemented,” prioritize the EfficientNet predic-
tion due to its superior performance in this class.

3. If the classification probability by EfficientNet is higher
than ResNet’s probability, consider the EfficientNet pre-
diction correct.

4. If ResNet’s probability is higher than or equal to Efficient-
Net’s probability, AND:

• ResNet’s probability is greater than or equal to 83%
and EfficientNet’s probability is less than or equal to
80%, OR

• ResNet’s probability is equal to 100% and Efficient-
Net’s probability is less than or equal to 99%, OR

• ResNet’s probability is greater than or equal to 90%,
EfficientNet’s probability is less than or equal to
95%, and ResNet50 classification is ”VeryMildDe-
mented,” OR
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• ResNet’s probability is greater than or equal to
90%, EfficientNet’s probability is less than or equal
to 90%, and ResNet50 classification is ”NonDe-
mented,” THEN adopt the ResNet classification as
correct.

5. ELSE, retain the EfficientNet classification as correct.

The structured approach outlined in the rules considers the
strengths and weaknesses of each model alongside specific con-
ditions related to certain classes and probability thresholds.
This approach forms the basis for ADERR, which integrates
the probability threshold and empirical results from the train-
ing/validation set, subsequently tested on the testing set.

To further support the above argument, we formalized the
decision-making process mathematically. This involves show-
ing how the algorithm decides which model’s prediction to use
based on their probabilities and predefined conditions. The goal
is to demonstrate that the rule adopted by ADERR maximizes
accuracy by leveraging the strengths of both models.

Formalization of the Decision Rule
Notations:

• PE(x): Probability assigned by EfficientNet for the input x

• PR(x): Probability assigned by ResNet50 for the input x

• CE(x): Class prediction by EfficientNet for the input x

• CR(x): Class prediction by ResNet50 for the input x

• cMOD = ”Moderate Demented”

• cVMID = ”Very Mild Demented”

• cNOD = ”Non Demented”

Rules:
1. Default Rule: EfficientNet’s classification is considered

correct by default:
I f none o f the speci f ic conditions are met, C(x) = CE(x)

2. ModerateDemented Class Priority:

I f either model classi f ies x as ”cMOD”,
adopt E f f icientNet′s prediction :

I fCE(x) = ”cMOD” or CR(x) = ”cMOD”
then C(x) = CE(x)

3. Probability Comparison:

I f PE(x) > PR(x) then C(x) = CE(x)

4. ResNet’s Probability Conditions:

I f PR(x) ≥ PE(x) and


PR(x) ≥ 0.83 and PE(x) ≤ 0.80
or PR(x) = 1.00 and PE(x) ≤ 0.99
or PR(x) ≥ 0.90 and PE(x) ≤ 0.95 and CR(x) = ”cV MID”
or PR(x) ≥ 0.90 and PE(x) ≤ 0.90 and CR(x) = ”cNOD”


then C(x) = CR(x)

5. Fallback Rule: If none of the above conditions are met:

Adopt E f f icientNet′s prediction : C(x) = CE(x)

Proof of the Numerical Basis:
The objective is to show that these rules result in a higher accu-
racy by combining the strengths of both models. We can frame
this problem as a decision-making process where we aim to
minimize classification errors.

Step 1: Expected Accuracy Improvement
Given the validation data, assume that EfficientNet has higher
accuracy AE compared to ResNet50 with accuracy AR for the
overall dataset. Let AM be the accuracy of the model on the
”ModerateDemented” class.

The algorithm prioritizes EfficientNet’s prediction for the
”ModerateDemented” class due to its high performance, thus:

Acombined = AE · wE + AR · wR + AM · wM

where wE , wR and wM are the weights for predictions based on
conditions set by the algorithm.

Step 2: Conditional Probabilities
The rules set conditions based on probability thresholds, essen-
tially increasing the weight of more confident predictions:

• EfficientNet is trusted more when its probability is higher
than ResNet50.

• For specific classes and high probabilities, ResNet50 is
given priority.

Mathematically, the rules can be expressed as a weighted deci-
sion function:

C(x) = arg max
c

(wE · PE(x) + wR · PR(x))

where wE and wR are determined by the conditions outlined.
Step 3: Majority Vote and Weighted Averaging

The algorithm effectively combines majority voting and
weighted averaging:

• Majority Vote: When both models agree on a class, the
ensemble adopts this class.

• Weighted Averaging: The probability thresholds ensure
that predictions with higher confidence are given more
weight, which is critical in cases of disagreement.

Thus, the accuracy improvement can be derived from:

Aensemble =
1
N

N∑
i=1

I(C(xi) = yi)

where yi is the true label, and I is the indicator function. The
ensemble accuracy Aensemble is expected to be higher due to the
weighted contribution of each model based on their strengths.

The generalized mathematical model above, accurately rep-
resents the ensemble learning algorithm’s rules and provides a
systematic approach to combining predictions from Efficient-
Net and ResNet, leading to improved overall performance. The
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algorithm for such mathematical model is shown in Algorithm
1, ADERR.

Algorithm 1 ADERR
Constants:
cMOD = ”Moderate Demented”
cVMID = ”Very Mild Demented”
cNOD = ”Non Demented”

Input:
EfficientNet Classification (EC)
EfficientNet Classification Probabbility (ECP)
ResNet Classification (RC)
ReNet Classification Probabbility (RCP)

Output:
Post Processing Classification (PPC)

PPC ← EC
if EC = cMOD or RC = cMOD then

PPC ← EC
else

if ECP > RCP then
PPC ← EC

else
if (RCP >= ECP)
and (RCP >= 0.83 and ECP <= 0.8)
or (RCP = 1 and ECP <= 0.99)
or (RCP >= 0.9 and ECP <= 0.95 and RC =

cV MID)
or (RCP >= 0.9 and ECP <= 0.9 and RC = cNOD)

then
PPC ← RC

else
PPC ← EC

end if
end if

end if
return PPC

ADERR leverages the higher accuracy of EfficientNet while
considering specific conditions where ResNet50 performs bet-
ter. The weighted decision-making approach ensures that the
final classification benefits from the strengths of both mod-
els, leading to improved overall accuracy. This data-driven ap-
proach, while heuristic, is validated by empirical results, show-
ing superior performance in practice.

5.5. Post-processing Results

It is observed that, upon applying the post-processing tech-
niques to the utilized models, the accuracy scores were maxi-
mized for both Dataset1 and Dataset2. Particularly, when the
post-processing algorithm is applied to Dataset1, a prediction
accuracy of 98.97% is achieved, whereas in Dataset2 a remark-
able prediction accuracy of 99.41% is achieved.

Hence, Fig. 18 represents the post-processing confusion ma-
trix for the Dataset1 test subset, detailing both correct and in-
correct predictions, scoring a 98.97% accuracy.

Fig. 18: Post-processing (with 98.97% accuracy) confusion matrix

The performance of post-processing for each dementia clas-
sification in Dataset 1 (OASIS) is shown in Fig.18, and the com-
puted accuracy, precision, recall, and F1-score percentages are
as follows:

Metrics for each individual class:

• MildDemented: Due to a few cases that were incor-
rectly classified, the accuracy was high (99.62%) with a
good recall (99.61%), but the precision was slightly lower
(98.95%) (26).

• ModerateDemented: 100% performance on all metrics
(recall, accuracy, precision, and F1-score) demonstrated
perfect classification.

• NonDemented showed good accuracy (99.15%) with a
moderate decline in precision compared to MildDemented
(98.64%) and recall (98.33%). A small number of Non-
Demented cases (32) and misclassified instances (58) were
overlooked.

• VeryMildDemented: Showed excellent accuracy (99.18%)
and comparable trends to NonDemented in terms of recall
(98.27%) and precision (98.60%). Still, there were a few
incorrect classifications (56).

Metrics for Comparing Classes:

• MildDemented vs. ModerateDemented and ModerateDe-
mented vs. NonDemented and ModerateDemented vs.
VeryMildDemented: Achieved perfect score of 100% for
all metrics (accuracy, precision, recall, F1-score).

• MildDemented vs. NonDemented: demonstrated near-
perfect precision (99.78%) and very good accuracy
(99.62%), recall: 99.44%, and F1-score: 99.61%, with a
small number of NonDemented cases (10).

• MildDemented vs. VeryMildDemented: Demon-
strated high accuracy (99.66%) with excellent precision
(99.83%), recall (99.50%), and F1-score (99.66%) but also
a small number of missed VeryMildDemented cases (9).

• NonDemented vs. VeryMildDemented: Good scoring is
indicated by high accuracy (98.81%) with comparable pre-
cision (98.85%), recall (98.85%), and F1-score: 98.85%.
Although with some misclassifications (44).
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Furthermore, we can say that our model, which scored an
accuracy of 98.97% on dataset1 (OASIS) outperformed another
ensemble learning used by [15] which scored a test accuracy
of 91.96% for The ANN, 85.7% for the gradient boosting and
83.04% for the ensemble learning voting classifier methods.

In conclusion, post-processing appears to have a beneficial
effect, potentially improving the model’s performance by cor-
recting some misclassifications across all categories.

Example quantitative results are depicted in Fig. 19, show-
casing the accuracy score of the applied approach after the post-
processing, which is 98.97% based on the evaluation parame-
ters.

Fig. 19: Post-processing (with 98.97% accuracy) results based on the evaluation
parameters

Similarly the confusion matrix for the Dataset2 test sub-
set, detailing both correct and incorrect predictions, scoring a
99.41% accuracy is illustrated in Fig. 20.

Fig. 20: Post-processing (with 99.41% accuracy) confusion matrix

The performance of post-processing for each dementia clas-
sification in Dataset 2 (ADNI) is shown in Fig.20, and the com-
puted accuracy, precision, recall, and F1-score percentages are
as follows:

Metrics for each individual class:

• MildDemented: Achieved high precision (99.89%), re-
call (98.44%), and F1-score (99.16%) with an accuracy
of 99.77%. Nevertheless, 14 cases (0.23%) had incorrect
classifications.

• ModerateDemented: Exceptionally well-performed, with
no misclassified examples and 100% accuracy across all
parameters (precision, recall, and F1-score).

• NonDemented: Accuracy was 99.63%, recall, precision,
and F1-score were all approximately 99.53%. In 24 cases
(0.75%) the classification was incorrect.

• VeryMildDemented: Maintained high precision (99.02%),
recall (99.33%), and F1-score (99.18%) while demonstrat-
ing an accuracy of 99.42%. However, 37 cases (1.67%)
were misclassified.

Metrics for Comparing Classes:

• MildDemented vs ModerateDemented and ModerateDe-
mented vs NonDemented and ModerateDemented vs
VeryMildDemented: scored a perfect 100% on all metrics
(accuracy, precision, recall, F1-score).

• MildDemented vs NonDemented: Showed accuracy of
99.98% and only misclassified 1 NonDemented instance
scoring 100% precision, 99.89% recall, and 99.94% F1-
score.

• MildDemented vs VeryMildDemented: demonstrated a
marginal decline in precision to 98.44% while keeping a
high F1-score of 99.21% and a high recall of 100%, indi-
cating that some cases of mild dementia may be mistaken
for veryMildDemented.

• NonDemented vs VeryMildDemented: Scored an accu-
racy of 99.58% with high precision of 99.75%, a recall
of 99.53%, and F1-score of 99.64%.

[22] previously investigated the accuracy of an Adaptive
DBN model based on Teacher-Student interaction on the ADNI
dataset for comparable classification tasks. Notably, our ap-
proach achieved superior performance across all categories on
Dataset 2 (ADNI), which was used as a blind test set for our
post-processing method (class labels were hidden). With re-
spect to AD vs. CN, [22]’s model obtained an accuracy of
98.4%, but our post-processing method obtained 100% for
ModerateDemented vs. NonDemented. Similarly, their model
achieved 98.8% for MCI vs. CN, while ours achieved re-
markable accuracy of 99.98% and 99.58%, respectively in dif-
ferentiating between NonDemented vs. VeryMildDemented
and MildDemented vs. NonDemented. Ultimately, our post-
processing method achieved a flawless 100% accuracy for
both MildDemented vs. ModerateDemented and Moderat-
eDemented vs. VeryMildDemented, while their model scored
97.8% for the difficult MCI vs. AD classification.

Furthemore, [18] previously investigated the accuracy of an
ensemble approach on the ADNI dataset for comparable classi-
fication tasks. Notably, our approach achieved superior per-
formance across all categories on Dataset 2 (ADNI), which
was used as a blind test set for our post-processing method
(class labels were hidden). With respect to AD vs. NC, [18]’s
model obtained an accuracy of 98.57%, but our post-processing
method obtained 100% for ModerateDemented vs. NonDe-
mented. Similarly, their model achieved 96.37% for NC vs.
EMCI, while ours achieved remarkable accuracy of 99.98%
and 99.58%, respectively in differentiating between NonDe-
mented vs. VeryMildDemented and MildDemented vs. Non-
Demented. Ultimately, our postprocessing method achieved a
flawless 100% accuracy for both MildDemented vs. Moder-
ateDemented and ModerateDemented vs. VeryMildDemented,
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while their model scored 94.22% and 99.83% for both EMCI
vs LMCI and LMCI vs AD classification.

Finally, we can say that our model, which scored an accu-
racy of 99.41% on dataset2 (ADNI) outperformed [27] that also
used an ensemble learning approach and scored an accuracy of
89.77% before optimization of parameters and an accuracy to
95.75 % after the optimization of parameters.

This direct comparison using the held-out test set (ADNI)
highlights how successful our post-processing technique is.
Through the integration of data-driven improvements and the
utilization of the advantages of both models, our method pro-
vides better classification accuracy when discerning between
different phases of cognitive decline.

Example quantitative results are depicted in Fig. 21, show-
casing the accuracy score of the applied approach after the post-
processing, which is 99.41% based on the evaluation parame-
ters.

Fig. 21: Post-processing (with 99.41% accuracy) results based on the evaluation
parameters

The empirical results, summarized in our paper, demonstrate
that ADERR achieves higher accuracy, precision, recall, and
F1-score across almost all classes compared to using Efficient-
Net or ResNet individually. The decision criteria are designed
to select the prediction with higher confidence and reliability,
reducing the chance of misclassification. These results are ob-
tained through rigorous validation and testing, providing strong
evidence for the efficacy of our approach.

5.6. Model performance analysis

In this section the effectiveness and efficiency of the used
classification model is discussed.

5.6.1. Comparison of different CNN architectures
The applied models outperform competing models on both

datasets. Remarkably, post-processing performed better on
Dataset1 (OASIS) and Dataset2 (ADNI) than both EfficientNet
and ResNet. EfficientNet and ResNet both obtained 98.59%
and 94.59% accuracy in Dataset 1, respectively; however, post-
processing outperformed both with a 98.97% accuracy. In
Dataset2, EfficientNet and ResNet both obtained 97.25% and
99.36% accuracy, respectively; however, post-processing per-
formed exceptionally well, with 99.41% accuracy. These find-
ings demonstrate the effectiveness of the applied models and

the noteworthy improvement attained by post-processing meth-
ods, especially in Dataset1 where the improvement was most
pronounced. The increase in performance seen in both datasets
indicates the resilience and flexibility of the applied method,
suggesting it as a viable option for precise classification tasks
in many contexts. Through thorough assessment and compari-
son, the utilized models exhibit their capacity to attain elevated
accuracy rates, providing significant understanding into the po-
tential applications of sophisticated post-processing techniques
to improve model performance on a variety of datasets.

5.6.2. Run-time Performance
It is observed that EfficientNet took between 65ms and

150ms per image, while ResNet took between 75ms and 200ms.
Consequently, it is infered that the performance time of the
post-processing algorithm, which combines both EfficientNet
and ResNet, will be equal to the sum of the individual algo-
rithms’ performance times. It is noteworthy that the conditions
implemented in the post-processing step take negligible time,
and therefore were not included in the performance time calcu-
lation of the post-processing algorithm.

6. Discussion

This paper’s main contributions are to the discussion of the
difficulties associated with Alzheimer’s disease and the support
of ongoing research efforts to create practical solutions. The
proposed work advances the current understanding of ensem-
ble learning techniques in medical image classification by in-
troducing a specialized approach tailored to Alzheimer’s dis-
ease diagnosis. By integrating EfficientNet and ResNet models
and defining a set of decision rules, we provide a systematic
framework for combining their predictions effectively.

Importantly, this research extends beyond mere model inte-
gration by carefully considering the strengths and weaknesses
of each model and incorporating domain-specific knowledge
into the decision-making process. For instance, as depicted
in Figure 14, EfficientNet achieves a remarkable accuracy of
98.59%, outperforming ResNet, which achieves 94.59% accu-
racy. Moreover, EfficientNet attains a perfect accuracy score of
100% for the ”ModerateDemented” class, correctly identifying
all instances without misclassifying other classes. Additionally,
specific probability thresholds and class-based conditions are
employed, as indicated in Figures 18,19,20 and 21, guiding the
ensemble model’s decision-making process, resulting in more
accurate and reliable predictions.

This work proposes a novel deep learning model that com-
bines an advanced post-processing ensemble learning algorithm
using weighted averaging and majority vote techniques with
two state-of-the-art CNN algorithms: ResNet and EfficientNet.
The ensemble learning approach using existing models, com-
bined with our novel decision-making algorithm, provides a ro-
bust method for achieving high numerical accuracy. By diag-
nosing AD with high accuracy, this work could have a substan-
tial impact on clinical practice and enhance patient outcomes.

The method’s robustness and generalizability are guaranteed
by a thorough evaluation on two different datasets drawn from
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Model
Dataset1
(OASIS)

Dataset2
(ADNI) Improvement

ResNet50 EfficientNetB0 Post Processing
Hypergraph [14] - 92.11% +7.25% +5.14% +7.3%
PCANet+k-means [16] - 97.01% +2.35% +0.24% +2.4%
DTI,SVM [17] - 95.8% +3.56% +1.45% +3.61%
WPBEM [18] - 88.46% +10.9% +8.79% +10.95%
CAD CNN [8] - 96% +3.36% +1.25% +3.41%
2D CNN [20] - 93.61% +5.75% +3.64% +5.8%
3D CNN [20] - 95.17% +4.2% +2.08% +4.24%
VGG19 [20] - 97% +2.36% +0.25% +2.41%
DTI,SVM [21] - 97% +2.36% +0.25% +2.41%
Adaptive DBN model based on Teacher-Student interaction [22] - 96.7% +2.66% +0.55% +2.71%
Swin Trans.,DCPAN, ADF [45] - 79.8% +19.56% +17.45% +19.61%
EfficientNetB0 [46] - 77.2% +22.16% +20.05% +22.21%
AHANet [47] - 98.53% +0.83% -1.28% +0.88%
SVM, RF, DT, XGBoost [25] 86.92% - +7.67% +11.67% +12.05%
SVM, RF, DT, XGBoost [39] - 90.6% +8.76% +6.65% +8.81%
DenseNet-169 [43] - 82.2% +17.16% +15.05% +17.21%
GNB, RF, DT, XGBoost [48] 96% - -1.41% +2.59% +2.97%
SVM, RF, DT, XGBoost [50] 93% - +1.59% +5.59% +5.97%
3D CNN, ResNet [54] - 94.61% +4.75% +2.64% +4.8%
Ensemble Learning Before Optimization [27] - 89.77% +9.59% +7.48% +9.64%
Ensemble Learning After Optimization [27] - 95.75% +3.61% +1.5% +3.66%
Gradient Boosting [15] 85.70% - +8.89% +12.89% +13.27%
Ensemble Learning Voting Classifier [15] 83.04% - +11.55% +15.55% +15.93%
Artificial Neural Network model (ANN) [15] 91.96% - +2.63% +6.63% +7.01%
ResNet50 (ours) 94.59% 99.36% - - -
EfficientNetB0 (ours) 98.59% 97.25% - - -
Post Processing (ours) 98.97% 99.41% - - -

Table 2: Summary of accuracies across Dataset1 (OASIS), Dataset2 (ADNI) and various DL models

OASIS and ADNI. With an accuracy of 98.59% for Efficient-
Net, 94.59% for ResNet, and 98.97% for the post-processing
method on the first dataset, the analysis yields outstanding find-
ings. Similarly, on the second dataset, the post-processing ap-
proach achieves 99.41% accuracy, ResNet achieves 99.36% ac-
curacy, and EfficientNet achieves 97.25% accuracy.

Furthermore, as indicated by the results, post-processing ex-
hibited superior performance compared to both EfficientNet
and ResNet across most evaluation metrics for all classes. This
suggests that utilizing post-processing with both EfficientNet
and ResNet yields better results than using either model indi-
vidually. The mathematical proof and empirical validation sup-
port the claim that our method is both effective and reliable,
even in the presence of potential adversarial cases.

The significance of the applied method in the fields of
medicine and biology stems from its capacity to enhance clas-
sification accuracy and diminish the necessity for manual an-
notation. This capability enables more streamlined and pre-
cise analysis of extensive medical image datasets, thereby fa-
cilitating improved efficiency and accuracy in research and di-
agnosis. In conclusion, this work significantly advances the
science of Alzheimer’s disease detection by presenting a new
deep learning model with higher performance across several
datasets, combining state-of-the-art CNN algorithms and post-
processing methods.

Table 2 shows a comparison of the accuracy and perfor-
mance gains made by different deep learning (DL) models on
distinct datasets. For the two different datasets designated as
Dataset1 and Dataset2, each row represents a particular DL
model and displays the accuracy percentage and performance
improvement percentage that go along with it. The accuracy
attained by each DL model is shown in the ”Accuracy” col-
umn, represented as a percentage. The next columns, ”Im-
provement (ResNet50)” and ”Improvement (EfficientNetB0),”
respectively, show the percentage increase in model perfor-
mance with respect to Dataset1 and Dataset2, in comparison
to the baseline or earlier findings. Interestingly, both datasets
show notable improvements from the cited DL models, demon-
strating their effectiveness in improving classification or pre-
diction tasks. A commentary that provides context for the post-
processing results and highlights the overall high accuracy for
Datasets 1 (98.97%) and 2 (99.41%) complements the table.
This comparison highlights the potential of DL models to im-
prove data-driven decision-making processes by providing in-
sightful information on the developments and efficacy of DL
models across a range of application domains.
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7. Summary and conclusions

In conclusion, this research presents a significant advance-
ment in Alzheimer’s disease detection by introducing a novel
deep learning model that combines two state-of-the-art CNN
algorithms, ResNet and EfficientNet, with an advanced post-
processing ensemble learning method in a weighted manner.
This approach demonstrates efficacy in correctly detecting AD,
achieving remarkable accuracies on two different datasets from
OASIS and ADNI. EfficientNet achieved 98.59% accuracy,
ResNet achieved 94.59% accuracy, and the post-processing
method on the first dataset achieved an astounding 98.97% ac-
curacy. Similarly, EfficientNet produced accuracies of 97.25%
on the second dataset, ResNet achieved accuracies of 99.36%,
and the post-processing technique achieved an exceptional
99.41% accuracy.

These outcomes highlight the method’s stability and de-
pendability in correctly detecting cases of AD. Additionally,
the study demonstrates that EfficientNet performs better than
ResNet, and combining both models with the post-processing
technique greatly improves performance accuracy, as seen by
the remarkable 99.41% score. Combining cutting-edge CNN
algorithms with sophisticated post-processing methods repre-
sents a significant advancement in the identification of AD, with
the potential to enhance patient outcomes and diagnostic preci-
sion.

Looking ahead, this discovery paves the way for improve-
ments in the diagnosis of AD. Further validation of the solution
across a variety of datasets and optimization of post-processing
algorithms are planned to attain even greater levels of accuracy,
precision, recall, and F1-Score metrics. These efforts are ex-
pected to make meaningful contributions to the field of AD re-
search and clinical treatment, by pushing the frontiers of deep
learning and utilizing cutting-edge approaches.

In summary, this research constitutes a noteworthy advance-
ment in the pursuit of more precise and dependable techniques
for diagnosing AD. Through the utilization of advanced post-
processing techniques and deep learning, this research has the
potential to significantly improve the lives of those afflicted
with this disabling illness.
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