Supplemental Material to “Penalized Sparse Covariance

Regression with High Dimensional Covariates”

A Appendix

A.1 Proof of Theorem 1

Proof. We follow the proof idea of Theorem 7.13 (a) in Wainwright (2019). Recall

that yy' = Zi{:o B,EO)W;C 1+ & Define § Blasso — B0, We first show that, if

Ao > (2/p) maxocper [tr(W3E)| holds, then & € C3(S) & {§ € REH : ||6s.

1 <
3||ds]l1}. Subsequently, we show that {Ao > (2/p) maxyes [tr(WE)|} holds with high

probability.
Step 1. Since Blasso is the solution to the problem (2.4), we have
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Rearranging the above inequality, we obtain that
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Note that
K R K R R
tr (5; ka) < ; |0k] - [tr (WLE) | < [|]]1 A [tr(WE)|. (A.2)

Since B is supported on S, we can write ||3®||; — H,é\lassoHl = H@@Hl — H,@gn +Z5\3H1 —



HZS\SCHI' Substituting it into the inequality (A.1) and using the inequality (A.2) yields

K 2
—~ 2 ~ ~ ~
SIS AW < S max [t (W) - 3]+ 22 { 181 — 18 + 3sh = 181 §
k=0 F p Osks
<oll8lls + 220{ 185l — 18l } < Ao{ 3185l = 13l }. (A.3)

where we have used the condition A\g > (2/p) maxo<k<r [tr(W;E)| in the third inequal-
ity. Thus, we conclude that & € C3(S). Then, by the RE Condition (C5) and the
inequality (A.3), we can obtain that
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where the last inequality follows from (A.17) in Lemma 1 with ||8s|[1 < v/s + 1||8s|| <
Vs + 1||5H This implies the conclusion H@E“SSO — B = ||S|| < (3/K)Vs + 1.

Step 2. It remains to show that the event {\o > (2/p) maxo<p<i [tr(W,E)|} holds
with high probability. Recall that tr(W,E) =y "W,y — tr(W,Xg). Further note that
Condition (C4) and norm inequality (A.20) in Lemma 1 imply that sup,; [|[Wy| <
sup, . [[Wel[1 < w and || 3] < ||Zé/2||2 < ||E(1)/2||% < Omax- Then by union bound and

Lemma 2, we have
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2(K +1)exp {—min (

Thus, we should have the event {Ag > (2/p) maxo<p<x |tr(W;E)|} holds with the

w202 5 ) WOmax

probability at least 1 — 2(K + 1)exp {— min ( Cipg %> } This completes the

proof of the theorem. O

Remark. In Theorem 1, we establish the /5-bound for the lasso estimator 3'*%°. In



the subsequent analysis for the LLA algorithm, this ¢>-bound is used to obtain the
(-bound [|@=° — BO)|| by applying the norm inequality (A.18) in Lemma 1. This
will lead to an extra factor /s between the two tuning parameters Ay and A. In fact,
we may get rid of the factor /s by directly establishing the f,-bound of the Lasso
estimator. Then we can relax the the requirement of A in Theorem 2 to be A > c)g
for some constant ¢ > 0. This can be done by replacing the restricted eigenvalue (RE)
Condition (C5) with a restricted invertibility factor (RIF) type condition (Zhang and
Zhang, 2012):

(C5’) (RESTRICTED INVERTIBILITY FACTOR) Define the set C;(S) & {6 € REFL .
|0se]l1 < 3||ds|[1}. Assume {W }o<r<k satisfies the restricted invertibility fac-

tor (RIF) condition, that is,
1 /
—|Zwdll, > K||6]|s, forall o € Cs(S)
p

for some constant x' > 0, where ¥y = {tr(W,;W,;) : 0 < k,l < K} €

RE+Dx(K+1).

We next use Condition (C5’) to establish the ¢, -bound. By (A.3) in the proof of
Theorem 1, we know that 5= Blasso — B € C4(S). Thus, RIF condition implies that

18]/ < || Zwd]oo/(pr'). Note that

K
Zwé = Eﬂ/(@asso — ﬂ(o)) =tr {Wk (Z @\llassowl — ny> } + tr(WkE)OSkSK.
0<k<K

=0

Since p~! maxp<j<x [tr(WiE)| < Ag/2 by the assumption, we are left with bounding

the first term. The optimality of 3'*° implies that
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forany t € R and 0 < k < K. Then we have
K
t t2 wt?
Ztrd W TN Blassow, | S < IWLIIE 4 Aoltl < —— 4 Aolt
pf{ k(yy ;_051 l)}—sz ke + Aolt] < 5t olt],

where we have used Condition (C4) and ||[Wy||% < p||[Wi||? < pw? in the last inequality.

Since t is arbitrary, we conclude that

tr {Wk (ny - fio /\llaSSOWl> }‘ < )\ for each

0 <k < K. Arranging these results, we conclude that

-~ 1 ~ 1 A 3
Alasso _ 3(0) _ 6 < |Ix 5 < — _0 An) = — )\
18 Bl = [16]loc < pK,H wolloe < (574 Ao) = 55 0.

This gives the desired {.-bound for the Lasso estimator. We can see that the error

bound ||,[/5'\18LSSO — B = O(N) is free of the factor 1/s.

A.2 Proof of Theorem 2

Following the idea of Fan et al. (2014), we prove the results in two steps. In the first
step, we prove that the LLA algorithm converges under the given event. In the second
step, we give the upper bounds for the three probabilities. In the last step, we show
that the LLA algorithm converges to the oracle estimator with probability tending to

one under the assumed conditions.

Step 1. Recall that ap = min{1,as}. We first define three events as

Ey = {Hainitial _/8(0)||oo < CLO)\},
By = {[1V5:Q(BE™"*) | < mA },
By = {|IBF lin > 1A}

In the following, we prove that the LLA algorithm converges under the event E; N

E>; N E5 in two further steps. We first show that the LLA algorithm initialized by
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@initial finds @oracle after one iteration, under the event Ey N Ey. We next show that if
B3°ra<le i5 obtained, then the LLA algorithm will find 8% again in the next iteration,
under the event £ N Ey. Then, we can immediately obtain that the LLA algorithm
initialized by B™itial should converge to B after two iterations with probability at

Step 1.1. Recall that 8© = Binitial Under the event Ey, due to Assumption 1, we have
B < 1B =Bl < aoh < azh for k € 5, and 5 > (|85 i — 18 — B >
yA for k € §. By property (iv) of pa(-), we have p&(\g,(go)]) = 0 for £k € §. Thus,

according to step (2.a) of the Algorithm 1, B(l) should be the solution to the problem

B = argmingQ(B) + 3 (18, I (A4)

keSe
By properties (ii) and (iii), p&(|ﬁ,€0)|) > a; )\ holds for k € S¢. We next show that B°racle
is the unique global solution to (A.4) under the event E;. By Condition (C2), we can

verify that B\‘”ade is the unique solution to argming ., Q(B) and

def

ng(B\oracle) 1€l (VkQ(Boracle)7 k c 8) —0. (A5)

Thus, for any 8 we have

K
Q(ﬁ) EQ(Boracle) + Z VkQ(Borade)(ﬁk o I/B\zracle)
k=0 (A.6)

:Q(B\oracle) + Z VkQ<B\oracle) (Bk o B\zracle) )

keSe



By (A.6), Orade = 0 and under the event E;, for any B we have

{ )+ ZPA |5k )| Bk } {Q(Borade) + Zp//\(|gl(§o)|)’g]gracle|}

keSe keSc

>y { (1871 + Vk@(ﬁorade)Sign(ﬁk)} | Bk |

keSe

>3 {ad+ ViQ(B™)sign(81) } 18] = 0.

keSe

The strict inequality holds unless 8, = 0 for all k£ € S§°. By uniqueness of the oracle

estimator, we should have Borade is the unique solution to (A.4). This proves ,@(1) =

~
/Boracle

Step 1.2. Given the LLA algorithm finds the oracle estimator, we denote B as the so-
lution to the optimization problem in the next iteration of the LLA algorithm. By using
Bgﬂade = 0 and V,Q(3°*) = 0,vk € S, then under the event E = {I BgradeHmm >

vA}, we have
B = argmingQ(B) + > p\(0)[Bs/- (A7)

keSe
Recall that p) (0) > a;A. Then by similar procedures in Step 1, we can show that Borade
is the unique solution to (A.7), under the event By = {||VseQ( Orade)Hoo < aA}.
Hence, the LLA algorithm converges, under the event E; N E5. This completes the

proof of Step 1.

Step 2. We next give the upper bounds for dg = P(Ef), 0, = P(EY) and d; = P(FEY)
under the additional conditions. The three bounds are derived in the three further

steps.

Step 2.1. Note that we use ,@aSSO as the initial estimator. Then by Theorem 1 and

the condition A > (3v/s + 1\g)/(apk), we have

Qinitia asso 3
(8™ = Bl < 1B = BY| < =5+ Ao < ap



holds with probability at least 1 — ¢;, with

2
5 = 2(K + 1)exp {—min ( C1pAg 02]9)\0> } .

)
w202 WOmax

max

Consequently, we should have 6, = P(ES) = P(||@™% — 3O, > ag\) < 4. This

completes the proof of Step 2.1.

Step 2.2. We next bound the probability §; = P(E) = P([|VsQ(BZ%)|w > a1)).
Let Y = vec(yy') € R”, E = vec(€) € R”, and V}, = vec(Wy) € R”. Further
define V.= (Vi : 1 < k < K) € R*K Vg = (V, - k € S) € RXGHDand
Vee = (Vi : k € &) € RFXE=9) Then we should have Y = V58 + E, and
Q(B) = (2p) Y'Y -V Let Hs o Vs(VEVs) 'VE € RP*P’. Then we can compute
that VSCQ(BOMCIQ) = {VkQ(Borade), ke 8} =—p Vi (1,2 —Hs)E. By union bound,

we have

51 :P<||VSCQ(AgraC1e)||OO Z CLl)\) S Z P<|V;€r(1p2 — HS)E| Z pal)\)
keSe

< ;; {P(|V,IE| > pm/z) + P(|V,IHSE| > pal)\/2> } (A.8)

Note that V] E = tr(W;€) = tr{Wi(yy ' — 2¢)} = y' Wiy — tr(W;X;). Then by
Lemma 2 and Conditions (C3) and (C4), we have P(!V,IE[ > pal)\/2> =

2,2
w202, WOmax

2 /\2 A
P(’yTka - tr(sz(])‘ > P@1/\/2) < 2€Xp {—mm <03a1p C4CL1p )} .

By Condition (C4) and inequality (A.20) in Lemma 1, we have [|[Wg|| < |[[W|1 < w



for each 1 < k < K. Then we can derive that

Vi HSE| <[|(VgVs) 'V V[ IVSE[ < [(VsVe) VS VilI[VSE]
<SR { V5 Tmax [or (W, W) {5+ Tmass (W)}
<{ ) H{ Vo F Tow?) H{ V5 + Tmax [r(Wie) |}

=Tintt”(s + 1) max [y " Wiy — tr(W;3)].
=

where the third inequality is due to inequality (A.18) in Lemma 1, and the last in-

equality is due to the following two facts: (i) by Condition (C4) and inequality (A.20)

in Lemma 1, we have |tr(W;Wy)| < p||W,||[|[Wy| < pw?; (ii) by Condition (C2), we

have HE;[}SH = A (Zws) < (pPTmin) ! Then by Lemma 2 and Conditions (C3) and

(C4), we have P(|V,IH5E\ > p2a1)\/2> <

yp { ly Wiy — tr(W, )| >
lesS

<2(s+1)exp {— min {

@1 TiminPA
2(s + 1)w?
C5a%7-r%11np)\2 C601 TminPA }}

wha2, (s+1)2" wiopax(s + 1)

Together with (A.8), we have

2,12
61 <2(K — s)exp {— min (C3a1p)\ C'4a1p)\> }

2,2 7
W202 . WOmax

2.2 . \2 _
+2(K —s)(s+1)exp {— min{ G501 TaninPA Cba1 TminPA H '

wha2, (s+1)2 wiopmax(s + 1)
Step 2.3. We next bound d; = P(ES) = P(Hégradeumm < vA). Note that ngade =
BS) + (VEVs)'VEE, and thus |83 ||uin > 185" min — [|(VEVs) ' VEE|. Then

we have

b2 < P([(V3V8) V3Bl > 188" ain — 72). (4.9)



Note that

I(VsVs)T'VsE[le < [[(V5Vs)T'VSE| < [[(VsVs) T [ VSE]

S(mein)_l VS + ]-HV:lS‘—EHoo =VSs + ]-(mein)_l Iileagi |yTka - tr(wk20)|7

where the first inequality is due to inequality (A.18) in Lemma 1, and the third in-
equality is due to Condition (C2) and (A.18) in Lemma 1. Together with (A.9) and

using Lemma 2, we have

mlnp
b0 = Y Py Wy = (Wia)| > 0 (16 10
keS

] G512 U8 fin = 3 CoTminp(1BE” lwin = 7A)
<2 1 _ min ’
<2(s+1)exp [ - { w2od, (s +1) ’ WOmax(s +1)1/2

max

This competes the proof of Step 2.

Step 3. To obtain the desired result, it suffices to prove that d;, o, and & tend
to 0 as p — oo under the assumed conditions. By Condition (C1), we know that
||Bé0)||min —~X > A. Then, by inspecting the forms of upper bounds of dy, &1, s, it

remains to prove that

PN’ pA pA opA o,
mln{ 2, \/E DAG, PAo, /log —0 (A.10)

as p — oo. Further note A > (3v/s+ 1X\g)/(apr). Then we can easily verify that,
(A.10) holds as long as pA3/{slog(K)} — oo as p — oo. This completes the proof of

Step 3 and completes the proof of the theorem.



A.3 Proof of Theorem 3

Recall that the oracle estimator is computed with the knowledge of the true support
set of BO). That is, Bo2le = argmings_. Q(8), where Q(B) is defined in (2.2).

Equivalently, we should have
gole — BY) = Bl Bwys — BY = TlsS),

where Ty s = {tr(WyW)) : k,l € 8} € REFDXEH) S o = {yTWyy : k€ S}T €

R+ and

vec' (W) vecT (S Wost/?)

Sy = : vec(yy ' — ) = : vec(ZZ" —1,).

vec' (W) vec! (2(1)/2WSE(1)/2)

Here we have used the facts that y = $'/2Z, and vec(M;MyM3) = (MJ @ M )vec(Ms)
for three arbitrary matrices My, My, M3 of shapes p; X pa, pa X p3, and p3 X py (see,
e.g., (1.3.6) in Golub and Van Loan, 2013, p. 28). Re-express A = (ay,...,ar)', where
a = (@, ..., ais)T € R Let S, = (s+1) 2Ay5(82%%° — BY)) = (s+1)"/2AS,.

Then we should have

vec' (A1)

S, = : vec(ZZ™ —1,) € RY,

vec' (A7)

10



where A; = (s +1)7V2370_ an(Z, 12 Wk21/2) for 1 <[ < L. Further note that

1 s 1
X k| = Allo < ||A|l < 0,
\/s+11§1ngZ;| tel /—S+1H oo < [|A]]

where the first inequality follows from (A.20) in Lemma 1. By Condition (C4), we have

sup,, 1 HE(l)/QWkEé/QHl < 00. Then it follows that

Sup AL < sup

1/2 1/2
¢—Zram| =6/ Wiy,
k=0

1/2 1/2
<{ S+11rgla<§21am|}{s;fr|zo Wiy < o

for each 1 <[ < L. By using Lemma 3, we know that
cov(S,) = 2{tr(AyA}) : 1 <1< L} + (g — 3){tr(Ap 0 A}) : 1 < k,1 < L}.

By assumed conditions in the theorem, we can verify that p~ COV(S ) — C. Then by

Lemma 3, we should have
/(s + DA(p ' Sws) (B2 — BY) = p~1/25, —, N(0, C).

By Condition (C6), we know that p~'¥y.s — Gy in the Frobenius norm. With the
help of Slutsky’s theorem, we obtain that \/p/(s + 1)AGyg (Bgrade — ﬁgo)) —4 N(0,C)

as p — oo. This completes the proof of the theorem.

A.4 Proofs of Theorems 4 and 5

Proof of Theorem 4. The proof is very similar to the proof of Theorem 1 in Appendix

ﬁlasso o
BO. We first show that, if Ay > (2/p) maxo<r<rx [n71 Y 1, tr(Wi&;)| holds, then

A.l. Note that y;y; = S0 OBkO)Wk + & for 1 < i < n. Define d &

11



5 € Cy(S) & {5 € REF! : ||8se

1 < 3||6s|l1}. Subsequently, we show that {A >

(2/p) maxo<p<r [nt D1 tr(Wi&)|} holds with high probability.
Step 1. Since 8% is the solution to argming@,(B3) + Xo||B||1, we have

2

+ )\OH/\lassoH1
F

< - ElI% + Mol B9
_2np;\| 17+ MllB™ ]2

Q (B\lasso) +)\ H/\lassoH1 _Z

& — Z 0 W,

k=0

Rearranging the above inequality, we obtain that

2

n K
1 -
< n_p g tr (E,’l g (5ka> + )\0{”/6(0)"1 _ H//B\lassoul} (All)
i=1 k=0

F

Note that

n K K
DI EH I B A SRS
) k=

0<k<K ‘ Ztr Wkg
(A.12)

Since B is supported on S, we can write |3, — ||,é\lasso||1 = ||5é0)||1 - ||/3§0) +3\s||1 —

HESC |l1. Substituting it into the inequality (A.11) and using the inequality (A.12) yields

2

K
1 ~ ~ ~ ~
01> Wi < 502%! 181+ 220 18811 — 188" + Bslly — 118s:11 }
k=0 F
<oll8lls +220{ 185111 - H&cul} < Ao{su&rh ~ 18511 }. (A.13)

where we have used the condition \g > (2/p) maxo<p<x |[n 'Y i, tr(Wi&;)| in the
third inequality. Thus, we conclude that & € C3(S). Then, by the RE Condition (C5)

and the inequality (A.13), we can obtain that

2

< o818l — 18s-ll1 } < 320V + (18]l

F

K o~
Z 5L W,

k=0

~ 1
k6] < =
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where the last inequality follows from (A.17) in Lemma 1 with HSSHI <+Vs+ 1Hgg|] <
V/s + 1||8]|. This implies the conclusion [|32° — B8O || = ||8]| < (3/k)v/s + 1 Xo.

Step 2. It remains to show that the event { Ao > (2/p) maxo<p<r [ >, tr(Wi&)|}
holds with high probability. Recall that n=* Y "  tr(Wi&) = n7 ' >0y Wy, —

tr(Wy3). Further note that Condition (C4) and norm inequality (A.20) in Lemma 1
imply that sup, [|Wil| < sup, ; [Wili < w and [|Zo]l < [55”)2 < 1251} < o

Then by union bound and Lemma 2, we have

K n
2 -1 T PAo
P {]—jog}fg( In~t E tr(Wi&)| > /\0} < kg_ (‘n g y;, Wiy — tr(WkEo)‘ > 53

i1
CinpA2 Conplg ) }

252 '
W05 WOmax

<2(K +1)exp {— min (

Thus, we should have the event {\g > (2/p) maxo<p<x [n~' > 1 tr(W&;)|} holds

w2027 Womax

with the probability at least 1—2(K +1) exp { min <Cmp Ad CQ"”’\O) } This completes

the proof of the theorem.

Proof of Theorem 5. The proof is very similar to the proof of Theorem 2 in Appendix
A.2. There are three steps. In the first step, we need to prove that the LLA algorithm

converges under the event £; N Ey N E3, where

Ey

{HAlasso ~ B9, < ao)\}
{HVSC ( oracle)||oo<a1)\}

{||/80radeHmin Z 7)\}

In the second step, we derive the upper bounds for P(E§), P(Ef) and P(ES). In
the last step, we show that the LLA algorithm converges to the oracle estimator with
probability tending to one under the assumed conditions. Since the first step is almost

the same as that in Appendix A.2, we omit the details.

13



Step 2. In this step, we give the upper bounds for 60 = P(E§), 6 = P(E{) and
dy = P(ES) under the assumed conditions. The three bounds are derived in the three

further steps.

Step 2.1. Note that we use [/3\1;"850 as the initial estimator. Then by Theorem 4 and

the condition A > (3v/s + 1\g)/(agk), we have
3
||16nasso _,3(0)”00 < Halnasso _ﬁ(O)H < - /s + Ao < agh

holds with probability at least 1 — ¢ with

2
0y =2(K + 1)exp {— min (CmpAO Can)\O) } )

2+2 ’
W0 hax WOmax

Consequently, we should have dy = P(ES) = P(||B% — 80|, > ag\) < &, This

completes the proof of Step 2.1.

Step 2.2. We next bound the probability 6, = P(Ef) = P(HV,L’SCQ(ﬁgmle)HOO >

a1N). Let Y; = vec(yiy;) € R, E; = vec(&) € R”, and V), = vec(W},) € R”.
Further define V.= (V, : 1 < k < K) € RP"*K Vg = (Vi : k € S) € RFXG6HD,
and Vs = (Vi : k € 89) € RP*E=9 Then we should have Y; = Vs8Y + E;,

and Q,(B8) = (2np) ' S, ||[Y: — VB|%. Let Hs © ys(VIVs) VT € R and

E =n'Y " E; Then we can compute that VSCQ(B\graCIe) = {VkQ(Bgracle),k €

SC} = —p_IV—ls—c<Ip2 — ]HIS)E. By union bound, we have

5 =P(|Vs:Q(BZ™ )l 2 1)) < 3 P(|V,j(1p2 _Hs)E| > pal)\>
keSe

<y {P(|V,IE| > pal)\/2> + P(|V,IH$E| > pal)\/2> } (A.14)
keSe

Note that V,IE =tr(n 'Y " Wi&) =tr{n 1>, Wi(yiy! —20)} =n"! Yo v W,y —

%

tr(Wy3p). Then by Lemma 2 and Conditions (C3) and (C4), we have P<|V,:E| >

14



pal/\/2> =

P(n—l Z \y;kai — tl”(szo)| > pal)\/2> < 2exp {_

i=1

Csa2np)? Cyainp)
min : :

w2o? WO max
By Condition (C4) and inequality (A.20) in Lemma 1, we have [|[Wy| < [|[Wg|1 < w

for each 1 < k < K. Then we can derive that

Vi HSE| <[[(VsVs) Vs Vil VSE[ < [[(VsVs) T [IIVs Vil VSE]

guz:;V}SH{m%x\mwlwk)\}{\/ﬁ—maxytr ZWZ 1}
S{(mein)_l}{\/H—l(pwz)}{\/H—lmaxItr 1ZW1 }

:7-;1111 (s + 1 max !n Z y;rle’L - tr(leo)}
i=1

where the third inequality is due to inequality (A.18) in Lemma 1, and the last in-
equality is due to the following two facts: (i) by Condition (C4) and inequality (A.20)
in Lemma 1, we have |tr(W;Wy)| < p||W,||[|[Wy| < pw?; (ii) by Condition (C2), we
have HE;I}SH = M\ (Zws) < (PTmin) ™t Then by Lemma 2 and Conditions (C3) and
(C4), we have P(|V,IHSE\ > pzal)\/2> <

min >\
ZP{‘TL Zy lez—trWlEOH %}

les
Csa372, npA\?  Coa1 TminnpA
wha2, (s+1)2 wiopax(s + 1)

max

<2(s+1)exp {— min {

Together with (A.14), we have

2,2
01 <2(K — s)exp {— min (Cwlp)‘ 0401]9)\) }

)
w202 WO max

max

2 .
#2(1 = 9o+ Dexp |- min § Csabr2pN CotiTuinp) 1.

wha2, (s+1)2 wiopmax(s + 1)

max

15



Step 2.3. We next bound 0, = P(ES) = (Hﬁoradeumin < v)). Note that ﬁ;’;gcle =
BY + (VIVs)'VIE, and thus || 8% lumin > 18 lmin — [(VEVs) ' VIE| . Then
we have

62 < P([|(VEV) " VEE |0 = 1B llmin — 7A). (A.15)

Note that

I(VsVs)'VSE[w < [[(VsVs) 'VSE| < |!(VTV5)_1||||V§E||
where the first inequality is due to inequality (A.18) in Lemma 1, and the third in-

equality is due to Condition (C2) and (A.18) in Lemma 1. Together with (A.15) and

using Lemma 2, we have

— - TminP
5 <Y P { ™y Wiy — te(W,. )| > m(“ﬂg))nmin - 7)\)}

keS =1

w?o2, (s+1) ’ WOmax(s + 1)1/2

max

O A2 , O —
<254+ 1) exp [_mm {osfmmnmnﬂs Jwin = 7N CTainnp(18E i w}]_

This competes the proof of Step 2.

Step 3. To obtain the desired result, it suffices to prove that d;, d2, and ¢ tend
to 0 as p — oo under the assumed conditions. By Condition (C1), we know that
HBéO)Hmm — ~XA > A. Then, by inspecting the forms of upper bounds of &g, d1, o, it

remains to prove that

[ npA? npX npA? npA
mln{ 1892 , ]s) , ]; ,\]/D_ npAs, np)\o,}/log(K)%O (A.16)

as p — o0o. Further note A > (3v/s+ 1X\g)/(apr). Then we can easily verify that,

(A.16) holds as long as npA2/{slog(K)} — oo as np — oo. This completes the proof
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of Step 3 and completes the proof of the theorem.

A.5 Useful Lemmas

Lemma 1. (NORM INEQUALITIES) Let v € RP be an arbitrary vector, and A € RP*P

be an arbitrary symmetric matriz. Then we should have

VIl < vl < VRIv, (A.17)
[Vlloo < MIVIF < VPIVIce, (A.18)
A < [[Allr < VPIALL (A.19)
A< Al = [[Alle < vPIA]: (A.20)

Proof. The inequalities (A.17), (A.18), and (A.19) are directly from (2.2.5), (2.2.6), and
(2.3.7) in (Golub and Van Loan, 2013, p. 69, 72), respectively. Since A is symmetric,
we immediately obtain that ||All; = ||Al|ew by definitions of the two norms; see for
example (2.3.9) and (2.3.10) in (Golub and Van Loan, 2013, p. 72). Then by Corollary
2.3.2 in (Golub and Van Loan, 2013, p. 73), we have

A< VIA[LAlle = 1Al = Alls.

The rightmost inequality || Al < /p||A|| follows from (2.3.11) in (Golub and Van Loan,

2013, p. 72). This completes the proof. ]

Lemma 2. (HANSON-WRIGHT INEQUALITY) Lety = BV2Z, where Z = (Zy,...,Z,)" €
R? is a random vector with independent and identically distributed sub-Gaussian coor-
dinates. Assume that E(Z;) =0, var(Z;) =1 for each 1 < j <p, and ¥ € RP*? is q

positive definite matriz. Let A € RP*P be a symmetric matrixz. Then, for everyt > 0,
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we have

) Cyt? Oyt
PllyTAy — trAZ)| >t} < 2exp {— min ( , ) } ,
{ 21} TAPTE TATE

where Cy and Cy are two positive constants. Furthermore, suppose that'y; (1 <i <mn)

are n independent copies of y, then we have

_ = . ClntQ ant
P{‘n ! E yiTAyi—tr(AE)’ zt} §2exp{—m1n( , .
plA[PIZ[ A

=1

Proof. By using ordinary Hanson-Wright inequality (e.g., Theorem 6.2.1 in Vershynin,
2018), we have P{|y"Ay — tr(AX)| > ¢} =

Cht? Cyt
T 1/2 1/2 1 1 2
P{|Z7 (A7 — w(AS)| > t] < Zexp{—mln (||21/2A21/2||%’ |21/2A21/2|\)}'

By norm inequality (A.19) in Lemma 1, we have ||Z1/2AXY?|2 < p|Z/2AXY2)2.
Further note that || SY2AXY2| < [|Z=Y2|?|All = |A]||Z]|. Then we can immediately

obtain the first inequality of the lemma.

We next prove the second inequality of the lemma. Note that y; = XV/2Z;, where
Z; (1 < i < n) are n independent and identically distributed random vectors, and
Z = (Z],...,Z))7 € R™ independent and identically distributed sub-Gaussian co-
ordinates. Denote A = I, ® (ZY2AXY?) ¢ RM)*() Then, by using ordinary

Hanson-Wright inequality, we have

P{n™"> y/ Ay; — tr(AZ)] > t} = P{‘ >z (=A%) Z, - ntr(AE)‘ > nt}
i=1 i=1

[ Cn?t? Cont
_P{’ZTAZ—U(A)‘ >nt} §2exp{—m1n (—,— .
1A I1A]

By using the relationship between matrix norm and Kronecker product (e.g., results

on Page 709 of Golub and Van Loan, 2013), we have ||A]|%2 = ||L,||%]|ZY2AXY2|)2 <
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np||A|?|Z|?, and ||A|| = ||IL.||[|ZY2AZY?| < |A][|Z]. Then we can immediately

obtain the second inequality of the lemma. This completes the proof of the lemma.
m
Lemma 3. Let Z = (Zy,...,7Z,)" € RP, where Zi, ..., Z, are independent and identi-

cally distributed with mean 0 and variance 1. Define

vec' (A)

Sy = : vec(ZZT -1,

vec' (Ar)

where A; € RP*P 4s a symmetric matrix for 1 < [ < L with L < oco. Suppose that
sup, | All; < oo for 1 <1 < L, and E|Z;|"™" < oo for some n > 0. Then we have

E(S,) =0, and
cov(S,) = 2{tr(AkA;) : 1 <I < L} + (pa — 3){tr(Ar o Ay) : 1 <k, < L},

where py = E(Z}). Moreover, p Y272, =2 0 for ant e > 0. In addition, assume
that there is a positive definite matriz V€ RY*E such that p~'cov(S,) — V, then we

have p~'/2S, —4 N'(0, V) as p — .

Proof. This is directly modified from Lemma 4 in the supplementary material of Zou

et al. (2021). O

A.6 Verification of Conditions (C2), (C5), and (C6)

We consider a specific example to verify Conditions (C2), (C5), and (C6). Specifically,

we assume that Wy, (1 < k < K) are K similarity matrices independently generated
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as follows. More specifically, assume that Wj, = (wyj,j,) € RP*P is a symmetric
matrix, whose diagonal elements are set to be zeros, and off-diagonal elements are
independently and identically generated from Bernoulli distributions with probability
0/(p—1) € (0,1) for some constant § > 1. We then have the following lemma, which

is useful for the subsequent verification of the conditions.

Lemma 4. Let Oy, = p tr(Wy, Wy,) for each 1 < ky, ky < K. Then for any t > 0,

we have

~ pt?
P ) >1) <2 N A2l
('“”“’“ o)l 2 t) = eXp{ 10 +4t/3} ’ (A-21)

for any 1 <k < K. In addition, for any t > 20°/p, we have

N p(t —26/p)”
P<|wk1k2| > t) < 2exp {—m ; (A.22)

for any ky # ks.

Proof. We first prove (A.21). In fact, we can compute that @y, = p 'tr(W3) =
207 Y iy Wi jiis = 207 D0 o, Whijia, SINCE Wy 5y 5,8 are Bernoulli random variables.

Note that E(wsj,5,) = 0/(p—1) and var(wy ,5,) = {0/(p—1):{1-0/(p—1)} < 0/(p—1).
Then by Bernstein’s inequality for sum of independent bounded random variables (e.g.,

Theorem 2.8.4 in Vershynin, 2018), we have

(B st il )

J1>j2
for any ¢ > 0. By Replacing ¢ with pt/2, we can directly obtain (A.21).

We next prove (A.22). Note that g, = p~'tr(Wi, Wy, ) = 2071 7. 0 Wk, j1jy Whs 1 -

Then it is easy to compute that E(wp, j, j,Wky.j1js) = 0?/(p—1)? and Var (W, jy jo Wy j1ja) <
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6?/(p — 1)2. Similarly, by using Bernstein’s inequality we have

‘|

for any ¢ > 0. By Replacing ¢ with pt/2, we can obtain that

62 t2/2
> (wkl’jlewkZ)’jm_(p—1)2) S I ey

Jj1>7J2

P(’@ —92/(p—1)‘>t> < 2exp —L
ks =)= 802/p+4t/3 "

Then by using (p — 1)7! < 2/p for p > 2, we can derive that for any ¢ > 26*/p,

462 4 4t/3

p(t—?@z/p)Q}.

P(aksl 2 ) < P (18 = 02/(p = 1] = = 6%/(p— 1)) < 2exp {—
This proves (A.22) and completes the proof of the lemma. n

Verification of Condition (C2). Define Qs = p'Sys = (Opk,) € REFDXEHD
with Qg g, = p tr(Wy, Wy,) for ki, ks € S. Recall that Wy = I,. Then one can
easily verify that Wy = Wor, = 1 if £ = 1 and @y = Wor = 0 otherwise. Further define

Qs = diag{1,0,...,0} € RETU*E+F) | Then by Lemma 4, we know that

402 + 4t/3

p(t — 202/p)2}

P {||§3 — Qslmax > t} < 25 exp {—

for any t > 20%/p. Here, ||M||max = max; j |m;;| denotes the element-wise max-norm for
an arbitrary matrix M = (m;;). This implies that €25 should be the probabilistic limit
of Q. By matrix norm inequality, we know that || Qs — Qs|| < (s + 1)[|€s — Qs ]|max-

Since 2s > s 4+ 1, we can deduce that

p{t/(2s) — 20*/p}” }

P{ﬁ o) >t}<P{ﬁ Qs > ¢ 1}<22
H S SH_ > ” S SH = /<S+ ) > 25 €Xp 492—|—4t/3

for any t > 46%s/p. This implies that Apim(Qs) > Amin(Q2s) — Qs — Qs|| —, 1 as
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p — o0, provided p/{s?log(s)} — oo as p — oo. Consequently, we should expect that

Condition (C2) holds with high probability.

Verification of Condition (C5). Similarly, define @ = p~ 'Sy = (Dp,p,) € REFDXEFD
with @y, = p tr(Wy, Wy,) for 0 < ki, ks < K. Recall that § € C3(S) & {0 €
REFL : ||8sc|ly < 3||ds|l1}. Let T C 8¢ collect the indexes of the s + 1 largest |d;| in

S¢. Further define S = SUT. Then we should have

2 2
K 2
1 1 N 1
5 Z (Ska —]—) deWk + 2 Z Z (5k15k2wk1k2 + }—? Z (Ska
k=0 F keS Jo k1 €S kp€S° keS© o
2
1 ~
>— Z5kwk +2 Z Z Oy Oy Wiy ey = Q1 + Q2.
p keS F k1€S koeS©

We next investigate ()1 and (), respectively.

Let ﬁg = (@kle t ki, ko € 3) € R(@s+2)x(2542) he the sub-matrix of €. Similarly, let
Qg = diag{1,0,...,0} € R@+2x(2+2) Then by similar procedures in the verification
of Condition (C2), we can derive that Hﬁg — Q3| =, 0 as long as p/{s*log(s)} — oo

as p — oo. Then it follows that

2

1 . _
=7 D W[ =558 = Auin(Qs)l18511* + 05 (s — 25)85 = (18511 {1 + 0,(1)},

keS P
as long as p/{s*log(s)} — oo as p — oo.
For the term ()2, we can derive that

Q2] = 2> 0k, 0y | < Als + 1) max |G, | - max Braral - D 100l
K2 €

< L ki1€S k1€ k ~
k1E€S kaeS° ! ! kneS°

<A(s+ D05l - max |Gl - 1050l < 12(s + DP2[S)7 - max |yl
k1€S,k2€S k1€S,k2€S

where we have used the facts that ||dg| < ||| and [[dgc|l; < [|dse

1 < 3ds|1 <

22



3(s + 1)2||8s|| < 3(s +1)Y2||8]|. By (A.22) in Lemma 4, we know that

P( max Wk k| > t) <4(s+1)(K —2s—1)exp {—
k1€$,k‘QESC

p(t — 202/p)2}

462 + 4t /3

for any ¢t > 20?/p. Hence, we should have max;, .51, c5° |Gk, | = Op(\/10g(K's)/p).

This indicates that |Qa| = 0,(]|d]|?) as long as p/{s*log(Ks)} — oo as p — oo.

2

By far, we have shown that p~! HZfLo 5kaHF > (185]12{1 + 0,(1)} + o, (||8]]?) =
105]|? + 0,(]|8]|?). Thus, if we can show that ||d5||* > k||d]|? for some £ > 0 and
d € C3(S), then Condition (C5) should hold with high probability. In fact, by Lemma

2.2 of van de Geer and Biihlmann (2009), we have ||6z¢|| < (s + 1)7'/2||dsc||;. Since

d € C3(8), it follows that ||z¢|| < 3(s+1)7Y2|ds|l1 < 3||0s]| < 3||85]|, where we have

used [|ds||1 < (s + 1)Y2||ds]| in the second inequality. Then we should have ||d]|?> =
10512+ |dz<||* < 10]|d5]|%, or equivalently, ||d5]|* > 0.1]|d]|?. Combine above results, we

2
can obtain that p~ ||S28 5kaH > 0.1]]8]| +0,(]|6]]?), as long as p/{s®log(Ks)} —
F

oo as p — oo. Thus, we should expect that RE Condition (C5) holds with high

probability.

Verification of Condition (C6). We consider a special case that 3y = 2(8%)) =
ﬂéO)Ip + BEO)Wl with 550),59)) > 0. By our above results, we can show that Gy, =

P ' Ews = Go def diag{1, 0}, which is positive definite. In addition, we have

tr(X2) tr(X2W,)
Gl,p =D

tr(X2W,)  tr{(ZoW;)?}

We next examine each entry of Gy ,. First, we can compute that p~'tr(32) = (8)2+
pfltr(W%)(ﬁgo))Z —p ( (()0))2 + 4( %0))2. For the off-diagonal entries, we shoud have
pltr(ZEW,) = 2p_1tr(W%)5(()D) © +p~Hr(W3)( ;0))2_ By Corollary 2.1.2 of Aguilar

(2021), we can show that p~'tr(W?%) —, 0. Then we should have p~'tr(XZW;) —,
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2(960 '8 Last, note that p~'tr{(ZoW;)2} = piltr(WQ)(ﬁ( )2 —|—2p’1tr(W3)5O O 4
p~Ltr(WH) (822, By Corollary 2.1.2 of Aguilar (2021), we can show that p~tr(W4) —,,
262 + 6. Then we should have p~'tr{(ZoW1)2} —, (82 + (262 + 6)(8”)2. Thus,

we obtain that Gy, —, G; with

C (B)? + 6(B1)? 2055”5
1 p—

268,61 0(8")* + (26 + 0)(51")?
It can be verified that the determinant |Gy| > 0, which implies G; is also positive
definite. This indicates that Condition (C6) (i) can hold with high probability.

We next verify Condition (C6) (ii). Suppose the eigen-decomposition of W is
W, = VDV, where V is an orthogonal matrix, and D is a diagonal matrix collecting

the eigenvalues of W;. Then we can derive that,

2 Wi sy = (80T, + BOW )WL (57T, + BT W )2
—aOv {1, + (5" /B(O))D}l VT (vDVT)v{L, + (B%O)/Béo))D}mVT
60V {1,+ (80 /80p} {1, + (50 /87D ) VT

=05 VD + (8" /4" )D? VT = W+ 5 W
Consequently, it follows that

tr (g 0 o) tr{(Zp o (S *W, %)}
H, =p'
p =P
r{(Zo 0 (B "WiZy")} tr{(Sy* W1 5y%) o (W12}

0 _ 0 0
(B2 ptr(W2) 550 5

ptr(W2)50 80 plte(W2 o W2) (817)2
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Recall that p~'tr(W?%) —, 6. We can also derive that p~'tr(W% o W2) — 6% + 6.

Then we should have H,, —, H with

R

088" (0> +0)(8")?

One can easily verify that the determinant |H| > 0, which implies H is also positive

definite. This indicates that Condition (C6) (ii) can also hold with high probability.

A.7 Additional Simulation Results

In this subsection, we conduct three additional experiments to better evaluate our
method. For the first two experiments, we try two different data generation processes of
the components of Z, while holding other simulation settings in Section 5.1 unchanged.
Specifically, the components of Z are assumed to be independently and identically
generated from a mixture normal distribution & - N'(0,5/9) + (1 — &) - N(0,5) with
P(¢ = 1) = 09 and P(( = 0) = 0.1, or a standardized exponential distribution
Exp(1) — 1. The simulation results are presented in Tables A.1-A.2, respectively. For
the third experiment, we construct Wys with moderate correlation , while generating Z
from the standard normal distribution and holding other simulation settings in Section
5.1 unchanged. Specifically, we independently generate each x; = (Xj1,..., X ) €
RE (1 < j < p) from the multivariate normal distribution Nk (0,X,), where X, =
(0.5"“1”“2')1@1,;{;25;( € RE*K_ Then we should have X ;s with the same j but different
k are linearly correlated with corr(X;,, Xjx,) = 0.5F1=k2l  We then construct W), =
(W jyjs )11 ja<p € RP*P with wy j, 5, = Xj xXjok X exp{—p(Xj, x — Xj,x)*} for each
1 < k < K. The simulation results are presented in Table A.3. By the three tables,
we can see that all the results are qualitatively similar to those in Table 1 of the main

text. This further demonstrates the robustness and broad applicability of our proposed
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method.

Table A.1: Simulation results for Z generated from the mixture normal distribution.

(p, K) Penalty | TPR FPR CS |RMSE Bias SD | |-l | -llr
SCAD 0.787 0.061 0.290 | 0.602 0.052 0.596 | 8.063 2.883
MCP 0.790 0.060 0.290 | 0.602 0.052 0.596 | 8.037  2.875

(200,10)
OLS - - ~ | 0616 0.049 0612 8.090 3.057
ORACLE | 1.000 0.000 1.000 | 0.535 0.026 0.531 | 5.403  2.058
SCAD |0.927 0.060 0.580 | 0.125 0.004 0.124 | 6.093 1.883
MCP | 0.927 0.060 0.580 | 0.125 0.004 0.125 | 6.130 1.885
(500,100)

OLS - - - 0.250 0.018 0.249 | 19.142  5.305
ORACLE | 1.000 0.000 1.000 | 0.105 0.001 0.105| 3.973  1.356
SCAD | 0.993 0.047 0.800 | 0.025 0.000 0.025| 3.466 1.113
MCP 0.993 0.047 0.800 | 0.025 0.000 0.025 | 3.460 1.112
OLS - - - 0.161 0.013 0.160 | 31.005 11.299
ORACLE | 1.000 0.000 1.000 | 0.022 0.000 0.022 | 2.482 0.878

(1000,1000)

A.8 Selection of Tuning Parameters

To implement the LLA algorithm, we need first compute the Lasso estimator (2.4)
as an initial estimator. This requires selecting two tuning parameters: Ay for the
Lasso estimator, and A in the folded concave penalized loss function (2.5). We can
separately select the two tuning parameters Ay and A. However, this approach can
be very time-consuming because we need to consider all possible pairs (A, A). In
addition, we can expect that A\ < )y as remarked at the end of Appendix A.1 Therefore,
another approach is to select a single value for both Ay and A by setting A\ = A\. We
conducted a preliminary experiment to assess the performance of the two approaches.
Specifically, we adopt the same simulation setting as in Section 5.1 with (p, K) =

(200, 10) and Z generated from a normal distribution. For both approaches, we use the
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Table A.2: Simulation results for Z generated from the standardized exponential dis-
tribution.

(p, K) Penalty | TPR FPR CS |RMSE Bias SD | |-l |- llr
SCAD |0.823 0.074 0.260 | 0.635 0.058 0.630 | 7.938 2.886
MCP | 0.820 0.070 0.280 | 0.635 0.059 0.630 | 7.922  2.870

(200,10)
OLS - - ~ | 0644 0.045 00642 | 8.958 3.038
ORACLE | 1.000 0.000 1.000 | 0.573 0.023 0.571 | 5.564  2.098
SCAD |0.940 0.076 0.510| 0.124 0.005 0.123 | 5.146 1.782
MCP |0.938 0.074 0.510| 0.124 0.005 0.123 | 5183  1.788
(500,100)

OLS - - - 0.247 0.019 0.246 | 15.220 5.166
ORACLE | 1.000 0.000 1.000 | 0.104 0.001 0.104 | 3.240 1.198
SCAD ]0.995 0.034 0.830 | 0.027 0.000 0.027 | 3.339 1.132
MCP 0.995 0.034 0.830 | 0.027 0.000 0.027 | 3.339 1.132
OLS - - - 0.162 0.013 0.161 | 29.949 11.331
ORACLE | 1.000 0.000 1.000 | 0.025 0.000 0.025 | 2.757  0.973

(1000,1000)

Table A.3: Simulation results for Z generated from the standard normal distribution
and Wys constructed with moderate correlation.

(p, K) Penalty | TPR FPR CS |RMSE Bias SD | |-l | -]lr
SCAD 0.588 0.103 0.060 | 0.793 0.164 0.748 | 18.883 4.172
MCP 0.575 0.115 0.050 | 0.830 0.182 0.776 | 18.925 4.222

(200,10)
OLS - - ~ | 0833 0.062 0.826|18.902 4.398
ORACLE | 1.000 0.000 1.000 | 0.619 0.043 0.610 | 15.865 3.277
SCAD |0.745 0.054 0.160 | 0.210 0.021 0.155 | 18.136 3.615
MCP |0.733 0.051 0.150 | 0.218 0.023 0.150 | 18.234 3.679
(500,100)

OLS - - - 0.453 0.022 0.451 | 26.706  7.355
ORACLE | 1.000 0.000 1.000 | 0.118 0.004 0.115 | 12.488 2.322
SCAD | 0.845 0.093 0.280 | 0.066 0.002 0.039 | 17.189 3.281
MCP 0.848 0.087 0.320 | 0.068 0.003 0.038 | 17.068 3.311
OLS - - - 0.264 0.013 0.263 | 56.135 15.673
ORACLE | 1.000 0.000 1.000 | 0.024 0.000 0.024 | 10.051 1.751

(1000,1000)
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Table A.4: Simulation results for two different tuning parameter selection approaches.
Approach (I) is to separately select Ay and A, and Approach (II) is to select a single
value for both A\g and .

Approach Penalty | TPR FPR CS | RMSE Bias SD || -]2 | -lF
(1) SCAD | 0.796 0.069 0.235| 0.464 0.051 0.458 | 7.667 2.642
(II) SCAD | 0.792 0.070 0.230 | 0.465 0.0563 0.459 | 7.732 2.656
(1) MCP | 0.796 0.070 0.230 | 0.464 0.051 0.458 | 7.690 2.645
(1I1) MCP | 0.794 0.071 0.220 | 0.465 0.053 0.459 | 7.730 2.656

BIC-type criterion (5.1). We replicate the experiment 200 times and compute the same
measurements as those in Table 1. The results are given in Table A.4. From Table A.4,
we observe that the results of Approach (I) are slightly better than Approach (IT). This
is expected because Approach (I) explores all possible pairs (Ag, A), while Approach
(IT) only considers pairs with \g = A. Nevertheless, the two approaches perform very
similarly for both the SCAD and MCP estimators. In addition, Approach (II) requires
less computational time. Consequently, we adopt Approach (II) in the subsequent

simulation experiments and real data analysis.
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