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A Appendix

A.1 Proof of Theorem 1

Proof. We follow the proof idea of Theorem 7.13 (a) in Wainwright (2019). Recall

that yy⊤ =
∑K

k=0 β
(0)
k Wk + E . Define δ̂

def
= β̂lasso − β(0). We first show that, if

λ0 ≥ (2/p)max0≤k≤K |tr(WkE)| holds, then δ̂ ∈ C3(S)
def
= {δ ∈ RK+1 : ∥δSc∥1 ≤

3∥δS∥1}. Subsequently, we show that
{
λ0 ≥ (2/p)maxk∈S |tr(WkE)|

}
holds with high

probability.

Step 1. Since β̂lasso is the solution to the problem (2.4), we have

Q(β̂lasso) + λ0∥β̂lasso∥1 =
1

2p

∥∥∥∥∥E −
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

+ λ0∥β̂lasso∥1 ≤
1

2p
∥E∥2F + λ0∥β(0)∥1.

Rearranging the above inequality, we obtain that

0 ≤ 1

2p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ 1

p
tr

(
E

K∑
k=0

δ̂kWk

)
+ λ0

{
∥β(0)∥1 − ∥β̂lasso∥1

}
(A.1)

Note that

tr

(
E

K∑
k=0

δ̂kWk

)
≤

K∑
k=0

|δ̂k| · |tr (WkE) | ≤ ∥δ̂∥1 max
0≤k≤K

|tr(WkE)|. (A.2)

Since β(0) is supported on S, we can write ∥β(0)∥1−∥β̂lasso∥1 = ∥β(0)
S ∥1−∥β(0)

S + δ̂S∥1−
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∥δ̂Sc∥1. Substituting it into the inequality (A.1) and using the inequality (A.2) yields

0 ≤1

p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ 2

p
max
0≤k≤K

|tr(WkE)| · ∥δ̂∥1 + 2λ0

{
∥β(0)

S ∥1 − ∥β(0)
S + δ̂S∥1 − ∥δ̂Sc∥1

}
≤λ0∥δ̂∥1 + 2λ0

{
∥δ̂S∥1 − ∥δ̂Sc∥1

}
≤ λ0

{
3∥δ̂S∥1 − ∥δ̂Sc∥1

}
, (A.3)

where we have used the condition λ0 ≥ (2/p)max0≤k≤K |tr(WkE)| in the third inequal-

ity. Thus, we conclude that δ̂ ∈ C3(S). Then, by the RE Condition (C5) and the

inequality (A.3), we can obtain that

κ∥δ̂∥2 ≤ 1

p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ λ0

{
3∥δ̂S∥1 − ∥δ̂Sc∥1

}
≤ 3λ0

√
s+ 1∥δ̂∥,

where the last inequality follows from (A.17) in Lemma 1 with ∥δ̂S∥1 ≤
√
s+ 1∥δ̂S∥ ≤

√
s+ 1∥δ̂∥. This implies the conclusion ∥β̂lasso − β(0)∥ = ∥δ̂∥ ≤ (3/κ)

√
s+ 1λ0.

Step 2. It remains to show that the event
{
λ0 ≥ (2/p)max0≤k≤K |tr(WkE)|

}
holds

with high probability. Recall that tr(WkE) = y⊤Wky− tr(WkΣ0). Further note that

Condition (C4) and norm inequality (A.20) in Lemma 1 imply that supp,k ∥Wk∥ ≤

supp,k ∥Wk∥1 ≤ w and ∥Σ0∥ ≤ ∥Σ1/2
0 ∥2 ≤ ∥Σ1/2

0 ∥21 ≤ σmax. Then by union bound and

Lemma 2, we have

P

{
2

p
max
0≤k≤K

|tr(WkE)| ≥ λ0

}
≤

K∑
k=0

P

(∣∣y⊤Wky − tr(WkΣ0)
∣∣ ≥ pλ0

2

)
≤2(K + 1) exp

{
−min

(
C1pλ

2
0

w2σ2
max

,
C2pλ0

wσmax

)}
.

Thus, we should have the event
{
λ0 ≥ (2/p)max0≤k≤K |tr(WkE)|

}
holds with the

probability at least 1 − 2(K + 1) exp
{
−min

(
C1pλ2

0

w2σ2
max

, C2pλ0

wσmax

)}
. This completes the

proof of the theorem.

Remark. In Theorem 1, we establish the ℓ2-bound for the lasso estimator β̂lasso. In
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the subsequent analysis for the LLA algorithm, this ℓ2-bound is used to obtain the

ℓ∞-bound ∥β̂lasso − β(0)∥∞ by applying the norm inequality (A.18) in Lemma 1. This

will lead to an extra factor
√
s between the two tuning parameters λ0 and λ. In fact,

we may get rid of the factor
√
s by directly establishing the ℓ∞-bound of the Lasso

estimator. Then we can relax the the requirement of λ in Theorem 2 to be λ ≥ cλ0

for some constant c > 0. This can be done by replacing the restricted eigenvalue (RE)

Condition (C5) with a restricted invertibility factor (RIF) type condition (Zhang and

Zhang, 2012):

(C5’) (Restricted Invertibility Factor) Define the set C3(S)
def
= {δ ∈ RK+1 :

∥δSc∥1 ≤ 3∥δS∥1}. Assume {Wk}0≤k≤K satisfies the restricted invertibility fac-

tor (RIF) condition, that is,

1

p
∥ΣWδ∥∞ ≥ κ′∥δ∥∞, for all δ ∈ C3(S)

for some constant κ′ > 0, where ΣW = {tr(WkWl) : 0 ≤ k, l ≤ K} ∈

R(K+1)×(K+1).

We next use Condition (C5’) to establish the ℓ∞-bound. By (A.3) in the proof of

Theorem 1, we know that δ̂ = β̂lasso −β(0) ∈ C3(S). Thus, RIF condition implies that

∥δ̂∥∞ ≤ ∥ΣW δ̂∥∞/(pκ′). Note that

ΣW δ̂ = ΣW (β̂lasso − β(0)) = tr

{
Wk

(
K∑
l=0

β̂lasso
l Wl − yy⊤

)}
0≤k≤K

+ tr(WkE)0≤k≤K .

Since p−1max0≤k≤K |tr(WkE)| ≤ λ0/2 by the assumption, we are left with bounding

the first term. The optimality of β̂lasso implies that

1

2p

∥∥∥∥∥yy⊤ −
K∑
l=0

β̂lasso
l Wl

∥∥∥∥∥
2

F

+λ0∥β̂lasso∥1 ≤
1

2p

∥∥∥∥∥yy⊤ −
K∑
l=0

β̂lasso
l Wl − tWk

∥∥∥∥∥
2

F

+λ0∥β̂lasso∥1+λ0|t|,
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for any t ∈ R and 0 ≤ k ≤ K. Then we have

t

p
tr

{
Wk

(
yy⊤ −

K∑
l=0

β̂lasso
l Wl

)}
≤ t2

2p
∥Wk∥2F + λ0|t| ≤

w2t2

2
+ λ0|t|,

where we have used Condition (C4) and ∥Wk∥2F ≤ p∥Wk∥21 ≤ pw2 in the last inequality.

Since t is arbitrary, we conclude that
∣∣∣tr{Wk

(
yy⊤ −

∑K
l=0 β̂

lasso
l Wl

)}∣∣∣ ≤ λ0 for each

0 ≤ k ≤ K. Arranging these results, we conclude that

∥β̂lasso − β(0)∥∞ = ∥δ̂∥∞ ≤ 1

pκ′∥ΣW δ̂∥∞ ≤ 1

κ′ (
λ0

2
+ λ0) =

3

2κ′λ0.

This gives the desired ℓ∞-bound for the Lasso estimator. We can see that the error

bound ∥β̂lasso − β(0)∥∞ = O(λ0) is free of the factor
√
s.

A.2 Proof of Theorem 2

Following the idea of Fan et al. (2014), we prove the results in two steps. In the first

step, we prove that the LLA algorithm converges under the given event. In the second

step, we give the upper bounds for the three probabilities. In the last step, we show

that the LLA algorithm converges to the oracle estimator with probability tending to

one under the assumed conditions.

Step 1. Recall that a0 = min{1, a2}. We first define three events as

E0 =
{
∥β̂initial − β(0)∥∞ ≤ a0λ

}
,

E1 =
{
∥∇ScQ(β̂oracle

S )∥∞ < a1λ
}
,

E2 =
{
∥β̂oracle

S ∥min ≥ γλ
}
.

In the following, we prove that the LLA algorithm converges under the event E1 ∩

E2 ∩ E3 in two further steps. We first show that the LLA algorithm initialized by
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β̂initial finds β̂oracle after one iteration, under the event E0 ∩ E1. We next show that if

β̂oracle is obtained, then the LLA algorithm will find β̂oracle again in the next iteration,

under the event E1 ∩ E2. Then, we can immediately obtain that the LLA algorithm

initialized by β̂initial should converge to β̂oracle after two iterations with probability at

least P (E0 ∩ E1 ∩ E2) ≥ 1− P (Ec
0)− P (Ec

1)− P (Ec
2) = 1− δ0 − δ1 − δ2.

Step 1.1. Recall that β̂(0) = β̂initial. Under the event E0, due to Assumption 1, we have

β̂
(0)
k ≤ ∥β̂(0) −β(0)∥∞ ≤ a0λ ≤ a2λ for k ∈ Sc, and β̂

(0)
k ≥ ∥β(0)

S ∥min −∥β̂(0) −β(0)∥∞ >

γλ for k ∈ S. By property (iv) of pλ(·), we have p′λ(|β̂
(0)
k |) = 0 for k ∈ S. Thus,

according to step (2.a) of the Algorithm 1, β̂(1) should be the solution to the problem

β̂(1) = argminβQ(β) +
∑
k∈Sc

p′λ(|β̂
(0)
k |)|βk|. (A.4)

By properties (ii) and (iii), p′λ(|β̂
(0)
k |) ≥ a1λ holds for k ∈ Sc. We next show that β̂oracle

is the unique global solution to (A.4) under the event E1. By Condition (C2), we can

verify that β̂oracle is the unique solution to argminβ:βSc=0
Q(β) and

∇SQ(β̂oracle)
def
=
(
∇kQ(β̂oracle), k ∈ S

)
= 0. (A.5)

Thus, for any β we have

Q(β) ≥Q(β̂oracle) +
K∑
k=0

∇kQ(β̂oracle)(βk − β̂oracle
k )

=Q(β̂oracle) +
∑
k∈Sc

∇kQ(β̂oracle)(βk − β̂oracle
k ).

(A.6)
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By (A.6), β̂oracle
Sc = 0 and under the event E1, for any β we have

{
Q(β) +

∑
k∈Sc

p′λ(|β̂
(0)
k |)|βk|

}
−

{
Q(β̂oracle) +

∑
k∈Sc

p′λ(|β̂
(0)
k |)|β̂oracle

k |

}

≥
∑
k∈Sc

{
p′λ(|β̂

(0)
k |) +∇kQ(β̂oracle)sign(βk)

}
|βk|

≥
∑
k∈Sc

{
a1λ+∇kQ(β̂oracle)sign(βk)

}
|βk| ≥ 0.

The strict inequality holds unless βk = 0 for all k ∈ Sc. By uniqueness of the oracle

estimator, we should have β̂oracle is the unique solution to (A.4). This proves β̂(1) =

β̂oracle.

Step 1.2. Given the LLA algorithm finds the oracle estimator, we denote β̂ as the so-

lution to the optimization problem in the next iteration of the LLA algorithm. By using

β̂oracle
Sc = 0 and ∇kQ(β̂oracle) = 0,∀k ∈ S, then under the event E2 =

{
∥β̂oracle

S ∥min ≥

γλ
}
, we have

β̂ = argminβQ(β) +
∑
k∈Sc

p′λ(0)|βk|. (A.7)

Recall that p′λ(0) ≥ a1λ. Then by similar procedures in Step 1, we can show that β̂oracle

is the unique solution to (A.7), under the event E1 =
{
∥∇ScQ(β̂oracle

S )∥∞ < a1λ
}
.

Hence, the LLA algorithm converges, under the event E1 ∩ E2. This completes the

proof of Step 1.

Step 2. We next give the upper bounds for δ0 = P (Ec
0), δ1 = P (Ec

1) and δ2 = P (Ec
2)

under the additional conditions. The three bounds are derived in the three further

steps.

Step 2.1. Note that we use β̂lasso as the initial estimator. Then by Theorem 1 and

the condition λ ≥ (3
√
s+ 1λ0)/(a0κ), we have

∥β̂initial − β(0)∥∞ ≤ ∥β̂lasso − β(0)∥ ≤ 3

κ

√
s+ 1λ0 ≤ a0λ
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holds with probability at least 1− δ′0 with

δ′0 = 2(K + 1) exp

{
−min

(
C1pλ

2
0

w2σ2
max

,
C2pλ0

wσmax

)}
.

Consequently, we should have δ0 = P (Ec
0) = P (∥β̂initial − β(0)∥∞ > a0λ) ≤ δ′0. This

completes the proof of Step 2.1.

Step 2.2. We next bound the probability δ1 = P (Ec
1) = P

(
∥∇ScQ(β̂oracle

S )∥∞ ≥ a1λ
)
.

Let Y = vec(yy⊤) ∈ Rp2 , E = vec(E) ∈ Rp2 , and Vk = vec(Wk) ∈ Rp2 . Further

define V = (Vk : 1 ≤ k ≤ K) ∈ Rp2×K , VS = (Vk : k ∈ S) ∈ Rp2×(s+1), and

VSc = (Vk : k ∈ Sc) ∈ Rp2×(K−s). Then we should have Y = VSβ
(0)
S + E, and

Q(β) = (2p)−1∥Y−Vβ∥2. Let HS
def
= VS(V⊤

SVS)
−1V⊤

S ∈ Rp2×p2 . Then we can compute

that ∇ScQ(β̂oracle) =
{
∇kQ(β̂oracle), k ∈ Sc

}
= −p−1V⊤

Sc(Ip2 −HS)E. By union bound,

we have

δ1 =P
(
∥∇ScQ(β̂oracle

S )∥∞ ≥ a1λ
)
≤
∑
k∈Sc

P
(
|V⊤

k (Ip2 −HS)E| ≥ pa1λ
)

≤
∑
k∈Sc

{
P
(
|V⊤

k E| ≥ pa1λ/2
)
+ P

(
|V⊤

k HSE| ≥ pa1λ/2
)}

. (A.8)

Note that V⊤
k E = tr(WkE) = tr{Wk(yy

⊤ − Σ0)} = y⊤Wky − tr(WkΣ0). Then by

Lemma 2 and Conditions (C3) and (C4), we have P
(
|V⊤

k E| ≥ pa1λ/2
)
=

P
(∣∣y⊤Wky − tr(WkΣ0)

∣∣ > pa1λ/2
)
≤ 2 exp

{
−min

(
C3a

2
1pλ

2

w2σ2
max

,
C4a1pλ

wσmax

)}
.

By Condition (C4) and inequality (A.20) in Lemma 1, we have ∥Wk∥ ≤ ∥Wk∥1 ≤ w
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for each 1 ≤ k ≤ K. Then we can derive that

|V⊤
k HSE| ≤∥(V⊤

SVS)
−1V⊤

SVk∥∥V⊤
SE∥ ≤ ∥(V⊤

SVS)
−1∥∥V⊤

SVk∥∥V⊤
SE∥

≤∥Σ−1
W,S∥

{√
s+ 1max

l∈S
|tr(WlWk)|

}{√
s+ 1max

l∈S
|tr(WlE)|

}
≤
{
(pτmin)

−1
}{√

s+ 1(pw2)
}{√

s+ 1max
l∈S

|tr(WlE)|
}

=τ−1
minw

2(s+ 1)max
l∈S

∣∣y⊤Wly − tr(WlΣ0)
∣∣,

where the third inequality is due to inequality (A.18) in Lemma 1, and the last in-

equality is due to the following two facts: (i) by Condition (C4) and inequality (A.20)

in Lemma 1, we have |tr(WlWk)| ≤ p∥Wl∥∥Wk∥ ≤ pw2; (ii) by Condition (C2), we

have
∥∥Σ−1

W,S
∥∥ = λ−1

min(ΣW,S) ≤ (pτmin)
−1. Then by Lemma 2 and Conditions (C3) and

(C4), we have P
(
|V⊤

k HSE| ≥ p2a1λ/2
)
≤

∑
l∈S

P

{∣∣y⊤Wly − tr(WlΣ0)
∣∣ > a1τminpλ

2(s+ 1)w2

}
≤2(s+ 1) exp

[
−min

{
C5a

2
1τ

2
minpλ

2

w6σ2
max(s+ 1)2

,
C6a1τminpλ

w3σmax(s+ 1)

}]

Together with (A.8), we have

δ1 ≤2(K − s) exp

{
−min

(
C3a

2
1pλ

2

w2σ2
max

,
C4a1pλ

wσmax

)}
+ 2(K − s)(s+ 1) exp

[
−min

{
C5a

2
1τ

2
minpλ

2

w6σ2
max(s+ 1)2

,
C6a1τminpλ

w3σmax(s+ 1)

}]
.

Step 2.3. We next bound δ2 = P (Ec
2) = P (∥β̂oracle

S ∥min < γλ). Note that β̂oracle
S =

β
(0)
S + (V⊤

SVS)
−1V⊤

SE, and thus ∥β̂oracle
S ∥min ≥ ∥β(0)

S ∥min − ∥(V⊤
SVS)

−1V⊤
SE∥∞. Then

we have

δ2 ≤ P
(
∥(V⊤

SVS)
−1V⊤

SE∥∞ ≥ ∥β(0)
S ∥min − γλ

)
. (A.9)
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Note that

∥(V⊤
SVS)

−1V⊤
SE∥∞ ≤ ∥(V⊤

SVS)
−1V⊤

SE∥ ≤ ∥(V⊤
SVS)

−1∥∥V⊤
SE∥

≤(pτmin)
−1
√
s+ 1∥V⊤

SE∥∞ =
√
s+ 1(pτmin)

−1max
k∈S

|y⊤Wky − tr(WkΣ0)|,

where the first inequality is due to inequality (A.18) in Lemma 1, and the third in-

equality is due to Condition (C2) and (A.18) in Lemma 1. Together with (A.9) and

using Lemma 2, we have

δ2 ≤
∑
k∈S

P

{∣∣y⊤Wky − tr(WkΣ0)
∣∣ ≥ τminp

(s+ 1)1/2
(∥β(0)

S ∥min − γλ)

}

≤2(s+ 1) exp

[
−min

{
C5τ

2
minp(∥β

(0)
S ∥min − γλ)2

w2σ2
max(s+ 1)

,
C6τminp(∥β(0)

S ∥min − γλ)

wσmax(s+ 1)1/2

}]
.

This competes the proof of Step 2.

Step 3. To obtain the desired result, it suffices to prove that δ1, δ2, and δ′0 tend

to 0 as p → ∞ under the assumed conditions. By Condition (C1), we know that

∥β(0)
S ∥min − γλ > λ. Then, by inspecting the forms of upper bounds of δ0, δ1, δ2, it

remains to prove that

min

{
pλ2

s2
,
pλ

s
,
pλ2

s
,
pλ√
s
, pλ2

0, pλ0,

}/
log(K) → 0 (A.10)

as p → ∞. Further note λ ≥ (3
√
s+ 1λ0)/(a0κ). Then we can easily verify that,

(A.10) holds as long as pλ2
0/{s log(K)} → ∞ as p → ∞. This completes the proof of

Step 3 and completes the proof of the theorem.

9



A.3 Proof of Theorem 3

Recall that the oracle estimator is computed with the knowledge of the true support

set of β(0). That is, β̂oracle = argminβ:βSc=0
Q(β), where Q(β) is defined in (2.2).

Equivalently, we should have

β̂oracle
S − β

(0)
S = Σ−1

W,SΣWY,S − β
(0)
S = Σ−1

W,SSp,

where ΣW,S = {tr(WkWl) : k, l ∈ S} ∈ R(s+1)×(s+1), ΣWY,S = {y⊤Wky : k ∈ S}⊤ ∈

Rs+1, and

Sp =


vec⊤(W0)

...

vec⊤(Ws)


vec(yy⊤ −Σ0) =


vec⊤(Σ

1/2
0 W0Σ

1/2
0 )

...

vec⊤(Σ
1/2
0 WsΣ

1/2
0 )


vec(ZZ⊤ − Ip).

Here we have used the facts that y = Σ1/2Z, and vec(M1M2M3) = (M⊤
3 ⊗M1)vec(M2)

for three arbitrary matrices M1, M2, M3 of shapes p1 × p2, p2 × p3, and p3 × p4 (see,

e.g., (1.3.6) in Golub and Van Loan, 2013, p. 28). Re-express A = (a1, . . . , aL)
⊤, where

al = (al0, . . . , als)
⊤ ∈ Rs+1. Let S̃p = (s+1)−1/2AΣW,S(β̂

oracle
S −β

(0)
S ) = (s+1)−1/2ASp.

Then we should have

S̃p =


vec⊤(∆1)

...

vec⊤(∆L)


vec(ZZ⊤ − Ip) ∈ RL,
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where ∆l = (s+ 1)−1/2
∑s

k=0 alk(Σ
1/2
0 WkΣ

1/2
0 ) for 1 ≤ l ≤ L. Further note that

1√
s+ 1

max
1≤l≤L

s∑
k=0

|alk| =
1√
s+ 1

∥A∥∞ ≤ ∥A∥ < ∞,

where the first inequality follows from (A.20) in Lemma 1. By Condition (C4), we have

supp,k ∥Σ
1/2
0 WkΣ

1/2
0 ∥1 < ∞. Then it follows that

sup
p

∥∆l∥1 ≤ sup
p

1√
s+ 1

s∑
k=0

|alk| · ∥Σ1/2
0 WkΣ

1/2
0 ∥1

≤
{

1√
s+ 1

max
1≤l≤L

s∑
k=0

|alk|
}{

sup
p,k

∥Σ1/2
0 WkΣ

1/2
0 ∥1

}
< ∞,

for each 1 ≤ l ≤ L. By using Lemma 3, we know that

cov(S̃p) = 2{tr(∆k∆l) : 1 ≤ l ≤ L}+ (µ4 − 3){tr(∆k ◦∆l) : 1 ≤ k, l ≤ L}.

By assumed conditions in the theorem, we can verify that p−1cov(S̃p) → C. Then by

Lemma 3, we should have

√
p/(s+ 1)A(p−1ΣW,S)(β̂

oracle
S − β

(0)
S ) = p−1/2S̃p →d N (0,C).

By Condition (C6), we know that p−1ΣW,S → G0 in the Frobenius norm. With the

help of Slutsky’s theorem, we obtain that
√

p/(s+ 1)AG0

(
β̂oracle
S −β

(0)
S

)
→d N (0,C)

as p → ∞. This completes the proof of the theorem.

A.4 Proofs of Theorems 4 and 5

Proof of Theorem 4. The proof is very similar to the proof of Theorem 1 in Appendix

A.1. Note that yiy
⊤
i =

∑K
k=0 β

(0)
k Wk + Ei for 1 ≤ i ≤ n. Define δ̂

def
= β̂lasso

n −

β(0). We first show that, if λ0 ≥ (2/p)max0≤k≤K |n−1
∑n

i=1 tr(WkEi)| holds, then

11



δ̂ ∈ C3(S)
def
= {δ ∈ RK+1 : ∥δSc∥1 ≤ 3∥δS∥1}. Subsequently, we show that

{
λ0 ≥

(2/p)max0≤k≤K |n−1
∑n

i=1 tr(WkEi)|
}
holds with high probability.

Step 1. Since β̂lasso
n is the solution to argminβQn(β) + λ0∥β∥1, we have

Qn(β̂
lasso
n ) + λ0∥β̂lasso

n ∥1 =
1

2np

n∑
i=1

∥∥∥∥∥Ei −
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

+ λ0∥β̂lasso
n ∥1

≤ 1

2np

n∑
i=1

∥Ei∥2F + λ0∥β(0)∥1.

Rearranging the above inequality, we obtain that

0 ≤ 1

2p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ 1

np

n∑
i=1

tr

(
Ei

K∑
k=0

δ̂kWk

)
+ λ0

{
∥β(0)∥1 − ∥β̂lasso∥1

}
(A.11)

Note that

1

n

n∑
i=1

tr

(
Ei

K∑
k=0

δ̂kWk

)
≤

K∑
k=0

|δ̂k|·
∣∣∣n−1

n∑
i=1

tr (WkEi)
∣∣∣ ≤ ∥δ̂∥1 max

0≤k≤K

∣∣∣n−1

n∑
i=1

tr (WkEi)
∣∣∣.

(A.12)

Since β(0) is supported on S, we can write ∥β(0)∥1−∥β̂lasso∥1 = ∥β(0)
S ∥1−∥β(0)

S + δ̂S∥1−

∥δ̂Sc∥1. Substituting it into the inequality (A.11) and using the inequality (A.12) yields

0 ≤1

p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ 2

p
max
0≤k≤K

∣∣∣n−1

n∑
i=1

tr(WkEi)
∣∣∣ · ∥δ̂∥1 + 2λ0

{
∥β(0)

S ∥1 − ∥β(0)
S + δ̂S∥1 − ∥δ̂Sc∥1

}
≤λ0∥δ̂∥1 + 2λ0

{
∥δ̂S∥1 − ∥δ̂Sc∥1

}
≤ λ0

{
3∥δ̂S∥1 − ∥δ̂Sc∥1

}
, (A.13)

where we have used the condition λ0 ≥ (2/p)max0≤k≤K |n−1
∑n

i=1 tr(WkEi)| in the

third inequality. Thus, we conclude that δ̂ ∈ C3(S). Then, by the RE Condition (C5)

and the inequality (A.13), we can obtain that

κ∥δ̂∥2 ≤ 1

p

∥∥∥∥∥
K∑
k=0

δ̂kWk

∥∥∥∥∥
2

F

≤ λ0

{
3∥δ̂S∥1 − ∥δ̂Sc∥1

}
≤ 3λ0

√
s+ 1∥δ̂∥,

12



where the last inequality follows from (A.17) in Lemma 1 with ∥δ̂S∥1 ≤
√
s+ 1∥δ̂S∥ ≤

√
s+ 1∥δ̂∥. This implies the conclusion ∥β̂lasso

n − β(0)∥ = ∥δ̂∥ ≤ (3/κ)
√
s+ 1λ0.

Step 2. It remains to show that the event
{
λ0 ≥ (2/p)max0≤k≤K |n−1

∑n
i=1 tr(WkEi)|

}
holds with high probability. Recall that n−1

∑n
i=1 tr(WkEi) = n−1

∑n
i=1 y

⊤
i Wkyi −

tr(WkΣ0). Further note that Condition (C4) and norm inequality (A.20) in Lemma 1

imply that supp,k ∥Wk∥ ≤ supp,k ∥Wk∥1 ≤ w and ∥Σ0∥ ≤ ∥Σ1/2
0 ∥2 ≤ ∥Σ1/2

0 ∥21 ≤ σmax.

Then by union bound and Lemma 2, we have

P

{
2

p
max
0≤k≤K

|n−1

n∑
i=1

tr(WkEi)| ≥ λ0

}
≤

K∑
k=0

P

(∣∣∣n−1

n∑
i=1

y⊤
i Wkyi − tr(WkΣ0)

∣∣∣ ≥ pλ0

2

)

≤2(K + 1) exp

{
−min

(
C1npλ

2
0

w2σ2
max

,
C2npλ0

wσmax

)}
.

Thus, we should have the event
{
λ0 ≥ (2/p)max0≤k≤K |n−1

∑n
i=1 tr(WkEi)|

}
holds

with the probability at least 1−2(K+1) exp
{
−min

(
C1npλ2

0

w2σ2
max

, C2npλ0

wσmax

)}
. This completes

the proof of the theorem.

Proof of Theorem 5. The proof is very similar to the proof of Theorem 2 in Appendix

A.2. There are three steps. In the first step, we need to prove that the LLA algorithm

converges under the event E1 ∩ E2 ∩ E3, where

E0 =
{
∥β̂lasso

n − β(0)∥∞ ≤ a0λ
}
,

E1 =
{
∥∇ScQ(β̂oracle

S )∥∞ < a1λ
}
,

E2 =
{
∥β̂oracle

S ∥min ≥ γλ
}
.

In the second step, we derive the upper bounds for P (Ec
0), P (Ec

1) and P (Ec
2). In

the last step, we show that the LLA algorithm converges to the oracle estimator with

probability tending to one under the assumed conditions. Since the first step is almost

the same as that in Appendix A.2, we omit the details.

13



Step 2. In this step, we give the upper bounds for δ0 = P (Ec
0), δ1 = P (Ec

1) and

δ2 = P (Ec
2) under the assumed conditions. The three bounds are derived in the three

further steps.

Step 2.1. Note that we use β̂lasso
n as the initial estimator. Then by Theorem 4 and

the condition λ ≥ (3
√
s+ 1λ0)/(a0κ), we have

∥β̂lasso
n − β(0)∥∞ ≤ ∥β̂lasso

n − β(0)∥ ≤ 3

κ

√
s+ 1λ0 ≤ a0λ

holds with probability at least 1− δ′0 with

δ′0 = 2(K + 1) exp

{
−min

(
C1npλ

2
0

w2σ2
max

,
C2npλ0

wσmax

)}
.

Consequently, we should have δ0 = P (Ec
0) = P (∥β̂lasso

n − β(0)∥∞ > a0λ) ≤ δ′0. This

completes the proof of Step 2.1.

Step 2.2. We next bound the probability δ1 = P (Ec
1) = P

(
∥∇n,ScQ(β̂oracle

S )∥∞ ≥

a1λ
)
. Let Yi = vec(yiy

⊤
i ) ∈ Rp2 , Ei = vec(Ei) ∈ Rp2 , and Vk = vec(Wk) ∈ Rp2 .

Further define V = (Vk : 1 ≤ k ≤ K) ∈ Rp2×K , VS = (Vk : k ∈ S) ∈ Rp2×(s+1),

and VSc = (Vk : k ∈ Sc) ∈ Rp2×(K−s). Then we should have Yi = VSβ
(0)
S + Ei,

and Qn(β) = (2np)−1
∑n

i=1 ∥Yi − Vβ∥2. Let HS
def
= VS(V⊤

SVS)
−1V⊤

S ∈ Rp2×p2 , and

E = n−1
∑n

i=1Ei. Then we can compute that ∇ScQ(β̂oracle
n ) =

{
∇kQ(β̂oracle

n ), k ∈

Sc
}
= −p−1V⊤

Sc(Ip2 −HS)E. By union bound, we have

δ1 =P
(
∥∇ScQ(β̂oracle

S )∥∞ ≥ a1λ
)
≤
∑
k∈Sc

P
(
|V⊤

k (Ip2 −HS)E| ≥ pa1λ
)

≤
∑
k∈Sc

{
P
(
|V⊤

k E| ≥ pa1λ/2
)
+ P

(
|V⊤

k HSE| ≥ pa1λ/2
)}

. (A.14)

Note thatV⊤
k E = tr(n−1

∑n
i=1 WkEi) = tr{n−1

∑n
i=1 Wk(yiy

⊤
i −Σ0)} = n−1

∑n
i=1 y

⊤
i Wkyi−

tr(WkΣ0). Then by Lemma 2 and Conditions (C3) and (C4), we have P
(
|V⊤

k E| ≥

14



pa1λ/2
)
=

P
(
n−1

n∑
i=1

∣∣y⊤
i Wkyi − tr(WkΣ0)

∣∣ > pa1λ/2
)
≤ 2 exp

{
−min

(
C3a

2
1npλ

2

w2σ2
max

,
C4a1npλ

wσmax

)}
.

By Condition (C4) and inequality (A.20) in Lemma 1, we have ∥Wk∥ ≤ ∥Wk∥1 ≤ w

for each 1 ≤ k ≤ K. Then we can derive that

|V⊤
k HSE| ≤∥(V⊤

SVS)
−1V⊤

SVk∥∥V⊤
SE∥ ≤ ∥(V⊤

SVS)
−1∥∥V⊤

SVk∥∥V⊤
SE∥

≤∥Σ−1
W,S∥

{√
s+ 1max

l∈S
|tr(WlWk)|

}{√
s+ 1max

l∈S
|tr(n−1

n∑
i=1

WlEi)|
}

≤
{
(pτmin)

−1
}{√

s+ 1(pw2)
}{√

s+ 1max
l∈S

|tr(n−1

n∑
i=1

WlEi)|
}

=τ−1
minw

2(s+ 1)max
l∈S

∣∣n−1

n∑
i=1

y⊤
i Wlyi − tr(WlΣ0)

∣∣,
where the third inequality is due to inequality (A.18) in Lemma 1, and the last in-

equality is due to the following two facts: (i) by Condition (C4) and inequality (A.20)

in Lemma 1, we have |tr(WlWk)| ≤ p∥Wl∥∥Wk∥ ≤ pw2; (ii) by Condition (C2), we

have
∥∥Σ−1

W,S
∥∥ = λ−1

min(ΣW,S) ≤ (pτmin)
−1. Then by Lemma 2 and Conditions (C3) and

(C4), we have P
(
|V⊤

k HSE| ≥ p2a1λ/2
)
≤

∑
l∈S

P

{∣∣n−1

n∑
i=1

y⊤
i Wlyi − tr(WlΣ0)

∣∣ > a1τminpλ

2(s+ 1)w2

}

≤2(s+ 1) exp

[
−min

{
C5a

2
1τ

2
minnpλ

2

w6σ2
max(s+ 1)2

,
C6a1τminnpλ

w3σmax(s+ 1)

}]

Together with (A.14), we have

δ1 ≤2(K − s) exp

{
−min

(
C3a

2
1pλ

2

w2σ2
max

,
C4a1pλ

wσmax

)}
+ 2(K − s)(s+ 1) exp

[
−min

{
C5a

2
1τ

2
minpλ

2

w6σ2
max(s+ 1)2

,
C6a1τminpλ

w3σmax(s+ 1)

}]
.
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Step 2.3. We next bound δ2 = P (Ec
2) = P (∥β̂oracle

n,S ∥min < γλ). Note that β̂oracle
n,S =

β
(0)
S + (V⊤

SVS)
−1V⊤

SE, and thus ∥β̂oracle
n,S ∥min ≥ ∥β(0)

S ∥min − ∥(V⊤
SVS)

−1V⊤
SE∥∞. Then

we have

δ2 ≤ P
(
∥(V⊤

SVS)
−1V⊤

SE∥∞ ≥ ∥β(0)
S ∥min − γλ

)
. (A.15)

Note that

∥(V⊤
SVS)

−1V⊤
SE∥∞ ≤ ∥(V⊤

SVS)
−1V⊤

SE∥ ≤ ∥(V⊤
SVS)

−1∥∥V⊤
SE∥

≤(pτmin)
−1
√
s+ 1∥V⊤

SE∥∞ =
√
s+ 1(pτmin)

−1max
k∈S

|n−1

n∑
i=1

y⊤
i Wkyi − tr(WkΣ0)|,

where the first inequality is due to inequality (A.18) in Lemma 1, and the third in-

equality is due to Condition (C2) and (A.18) in Lemma 1. Together with (A.15) and

using Lemma 2, we have

δ2 ≤
∑
k∈S

P

{∣∣n−1

n∑
i=1

y⊤
i Wkyi − tr(WkΣ0)

∣∣ ≥ τminp

(s+ 1)1/2
(∥β(0)

S ∥min − γλ)

}

≤2(s+ 1) exp

[
−min

{
C5τ

2
minnp(∥β

(0)
S ∥min − γλ)2

w2σ2
max(s+ 1)

,
C6τminnp(∥β(0)

S ∥min − γλ)

wσmax(s+ 1)1/2

}]
.

This competes the proof of Step 2.

Step 3. To obtain the desired result, it suffices to prove that δ1, δ2, and δ′0 tend

to 0 as p → ∞ under the assumed conditions. By Condition (C1), we know that

∥β(0)
S ∥min − γλ > λ. Then, by inspecting the forms of upper bounds of δ0, δ1, δ2, it

remains to prove that

min

{
npλ2

s2
,
npλ

s
,
npλ2

s
,
npλ√

s
, npλ2

0, npλ0,

}/
log(K) → 0 (A.16)

as p → ∞. Further note λ ≥ (3
√
s+ 1λ0)/(a0κ). Then we can easily verify that,

(A.16) holds as long as npλ2
0/{s log(K)} → ∞ as np → ∞. This completes the proof
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of Step 3 and completes the proof of the theorem.

A.5 Useful Lemmas

Lemma 1. (Norm Inequalities) Let v ∈ Rp be an arbitrary vector, and ∆ ∈ Rp×p

be an arbitrary symmetric matrix. Then we should have

∥v∥ ≤ ∥v∥1 ≤
√
p∥v∥, (A.17)

∥v∥∞ ≤ ∥v∥ ≤ √
p∥v∥∞, (A.18)

∥∆∥ ≤ ∥∆∥F ≤ √
p∥∆∥, (A.19)

∥∆∥ ≤ ∥∆∥1 = ∥∆∥∞ ≤ √
p∥∆∥. (A.20)

Proof. The inequalities (A.17), (A.18), and (A.19) are directly from (2.2.5), (2.2.6), and

(2.3.7) in (Golub and Van Loan, 2013, p. 69, 72), respectively. Since ∆ is symmetric,

we immediately obtain that ∥∆∥1 = ∥∆∥∞ by definitions of the two norms; see for

example (2.3.9) and (2.3.10) in (Golub and Van Loan, 2013, p. 72). Then by Corollary

2.3.2 in (Golub and Van Loan, 2013, p. 73), we have

∥∆∥ ≤
√

∥∆∥1∥∆∥∞ = ∥∆∥1 = ∆∥∞.

The rightmost inequality ∥∆∥∞ ≤ √
p∥∆∥ follows from (2.3.11) in (Golub and Van Loan,

2013, p. 72). This completes the proof.

Lemma 2. (Hanson-Wright Inequality) Let y = Σ1/2Z, where Z = (Z1, . . . , Zp)
⊤ ∈

Rp is a random vector with independent and identically distributed sub-Gaussian coor-

dinates. Assume that E(Zj) = 0, var(Zj) = 1 for each 1 ≤ j ≤ p, and Σ ∈ Rp×p is a

positive definite matrix. Let ∆ ∈ Rp×p be a symmetric matrix. Then, for every t ≥ 0,
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we have

P
{∣∣y⊤∆y − tr(∆Σ)

∣∣ ≥ t
}
≤ 2 exp

{
−min

(
C1t

2

p∥∆∥2∥Σ∥2
,

C2t

∥∆∥∥Σ∥

)}
,

where C1 and C2 are two positive constants. Furthermore, suppose that yi (1 ≤ i ≤ n)

are n independent copies of y, then we have

P
{∣∣∣n−1

n∑
i=1

y⊤
i ∆yi − tr(∆Σ)

∣∣∣ ≥ t
}
≤ 2 exp

{
−min

(
C1nt

2

p∥∆∥2∥Σ∥2
,

C2nt

∥∆∥∥Σ∥

)}
.

Proof. By using ordinary Hanson-Wright inequality (e.g., Theorem 6.2.1 in Vershynin,

2018), we have P
{∣∣y⊤∆y − tr(∆Σ)

∣∣ ≥ t
}
=

P
{∣∣Z⊤(Σ1/2∆Σ1/2)Z− tr(∆Σ)

∣∣ ≥ t
}
≤ 2 exp

{
−min

(
C1t

2

∥Σ1/2∆Σ1/2∥2F
,

C2t

∥Σ1/2∆Σ1/2∥

)}
.

By norm inequality (A.19) in Lemma 1, we have ∥Σ1/2∆Σ1/2∥2F ≤ p∥Σ1/2∆Σ1/2∥2.

Further note that ∥Σ1/2∆Σ1/2∥ ≤ ∥Σ1/2∥2∥∆∥ = ∥∆∥∥Σ∥. Then we can immediately

obtain the first inequality of the lemma.

We next prove the second inequality of the lemma. Note that yi = Σ1/2Zi, where

Zi (1 ≤ i ≤ n) are n independent and identically distributed random vectors, and

Z = (Z⊤
1 , . . . ,Z

⊤
n )

⊤ ∈ Rnp independent and identically distributed sub-Gaussian co-

ordinates. Denote A = In ⊗ (Σ1/2∆Σ1/2) ∈ R(np)×(np). Then, by using ordinary

Hanson-Wright inequality, we have

P
{∣∣n−1

n∑
i=1

y⊤
i ∆yi − tr(∆Σ)

∣∣ ≥ t
}
= P

{∣∣∣ n∑
i=1

Z⊤
i (Σ

1/2∆Σ1/2)Zi − ntr(∆Σ)
∣∣∣ > nt

}
=P

{∣∣∣Z⊤AZ− tr(A)
∣∣∣ > nt

}
≤ 2 exp

{
−min

(
C1n

2t2

∥A∥2F
,
C2nt

∥A∥

)}
.

By using the relationship between matrix norm and Kronecker product (e.g., results

on Page 709 of Golub and Van Loan, 2013), we have ∥A∥2F = ∥In∥2F∥Σ1/2∆Σ1/2∥2F ≤
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np∥∆∥2∥Σ∥2, and ∥A∥ = ∥In∥∥Σ1/2∆Σ1/2∥ ≤ ∥∆∥∥Σ∥. Then we can immediately

obtain the second inequality of the lemma. This completes the proof of the lemma.

Lemma 3. Let Z = (Z1, . . . , Zp)
⊤ ∈ Rp, where Z1, . . . , Zp are independent and identi-

cally distributed with mean 0 and variance 1. Define

Sp =


vec⊤(∆1)

...

vec⊤(∆L)


vec(ZZ⊤ − Ip),

where ∆l ∈ Rp×p is a symmetric matrix for 1 ≤ l ≤ L with L < ∞. Suppose that

supp ∥∆l∥1 < ∞ for 1 ≤ l ≤ L, and E|Zj|4+η < ∞ for some η > 0. Then we have

E(Sp) = 0, and

cov(Sp) = 2{tr(∆k∆l) : 1 ≤ l ≤ L}+ (µ4 − 3){tr(∆k ◦∆l) : 1 ≤ k, l ≤ L},

where µ4 = E(Z4
j ). Moreover, p−1/2−εSp →L2 0 for ant ε > 0. In addition, assume

that there is a positive definite matrix V ∈ RL×L such that p−1cov(Sp) → V, then we

have p−1/2Sp →d N (0,V) as p → ∞.

Proof. This is directly modified from Lemma 4 in the supplementary material of Zou

et al. (2021).

A.6 Verification of Conditions (C2), (C5), and (C6)

We consider a specific example to verify Conditions (C2), (C5), and (C6). Specifically,

we assume that Wk (1 ≤ k ≤ K) are K similarity matrices independently generated
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as follows. More specifically, assume that Wk = (wk,j1j2) ∈ Rp×p is a symmetric

matrix, whose diagonal elements are set to be zeros, and off-diagonal elements are

independently and identically generated from Bernoulli distributions with probability

θ/(p− 1) ∈ (0, 1) for some constant θ ≥ 1. We then have the following lemma, which

is useful for the subsequent verification of the conditions.

Lemma 4. Let ω̂k1k2 = p−1tr(Wk1Wk2) for each 1 ≤ k1, k2 ≤ K. Then for any t ≥ 0,

we have

P
(
|ω̂kk − θ)| ≥ t

)
≤ 2 exp

{
− pt2

4θ + 4t/3

}
, (A.21)

for any 1 ≤ k ≤ K. In addition, for any t ≥ 2θ2/p, we have

P
(
|ω̂k1k2| ≥ t

)
≤ 2 exp

{
−
p
(
t− 2θ2/p

)2
4θ2 + 4t/3

}
, (A.22)

for any k1 ̸= k2.

Proof. We first prove (A.21). In fact, we can compute that ω̂kk = p−1tr(W2
k) =

2p−1
∑

j1>j2
w2

k,j1j2
= 2p−1

∑
j1>j2

wk,j1j2 , since wk,j1j2s are Bernoulli random variables.

Note that E(wk,j1j2) = θ/(p−1) and var(wk,j1j2) = {θ/(p−1)}{1−θ/(p−1)} ≤ θ/(p−1).

Then by Bernstein’s inequality for sum of independent bounded random variables (e.g.,

Theorem 2.8.4 in Vershynin, 2018), we have

P

(∣∣∣∣ ∑
j1>j2

(
wk,j1j2 −

θ

p− 1

)∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2/2

pθ/2 + t/3

}
,

for any t ≥ 0. By Replacing t with pt/2, we can directly obtain (A.21).

We next prove (A.22). Note that ω̂k1k2 = p−1tr(Wk1Wk2) = 2p−1
∑

j1>j2
wk1,j1j2wk2,j1j2 .

Then it is easy to compute that E(wk1,j1j2wk2,j1j2) = θ2/(p−1)2 and var(wk1,j1j2wk2,j1j2) ≤
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θ2/(p− 1)2. Similarly, by using Bernstein’s inequality we have

P

(∣∣∣∣ ∑
j1>j2

(
wk1,j1j2wk2,j1j2 −

θ2

(p− 1)2

)∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2/2

θ2 + t/3

}
,

for any t ≥ 0. By Replacing t with pt/2, we can obtain that

P
(∣∣∣ω̂k1k2 − θ2/(p− 1)

∣∣∣ ≥ t
)
≤ 2 exp

{
− pt2

8θ2/p+ 4t/3

}
.

Then by using (p− 1)−1 ≤ 2/p for p ≥ 2, we can derive that for any t ≥ 2θ2/p,

P
(
|ω̂k1k2| ≥ t

)
≤ P

(
|ω̂k1k2 − θ2/(p− 1)| ≥ t− θ2/(p− 1)

)
≤ 2 exp

{
−
p
(
t− 2θ2/p

)2
4θ2 + 4t/3

}
.

This proves (A.22) and completes the proof of the lemma.

Verification of Condition (C2). Define Ω̂S = p−1ΣW,S = (ω̂k1k2) ∈ R(s+1)×(s+1)

with ω̂k1k2 = p−1tr(Wk1Wk2) for k1, k2 ∈ S. Recall that W0 = Ip. Then one can

easily verify that ω̂k0 = ω̂0k = 1 if k = 1 and ω̂k0 = ω̂0k = 0 otherwise. Further define

ΩS = diag{1, θ, . . . , θ} ∈ R(s+1)×(s+1). Then by Lemma 4, we know that

P
{
∥Ω̂S −ΩS∥max ≥ t

}
≤ 2s2 exp

{
−
p
(
t− 2θ2/p

)2
4θ2 + 4t/3

}
,

for any t ≥ 2θ2/p. Here, ∥M∥max = maxi,j |mij| denotes the element-wise max-norm for

an arbitrary matrix M = (mij). This implies that ΩS should be the probabilistic limit

of Ω̂S . By matrix norm inequality, we know that ∥Ω̂S −ΩS∥ ≤ (s+ 1)∥Ω̂S −ΩS∥max.

Since 2s ≥ s+ 1, we can deduce that

P
{
∥Ω̂S −ΩS∥ ≥ t

}
≤ P

{
∥Ω̂S −ΩS∥max ≥ t/(s+ 1)

}
≤ 2s2 exp

{
−
p
{
t/(2s)− 2θ2/p

}2
4θ2 + 4t/3

}
,

for any t ≥ 4θ2s/p. This implies that λmin(Ω̂S) ≥ λmin(ΩS) − ∥Ω̂S − ΩS∥ →p 1 as
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p → ∞, provided p/{s2 log(s)} → ∞ as p → ∞. Consequently, we should expect that

Condition (C2) holds with high probability.

Verification of Condition (C5). Similarly, define Ω̂ = p−1ΣW = (ω̂k1k2) ∈ R(K+1)×(K+1)

with ω̂k1k2 = p−1tr(Wk1Wk2) for 0 ≤ k1, k2 ≤ K. Recall that δ ∈ C3(S)
def
= {δ ∈

RK+1 : ∥δSc∥1 ≤ 3∥δS∥1}. Let T ⊂ Sc collect the indexes of the s + 1 largest |δk| in

Sc. Further define S = S ∪ T . Then we should have

1

p

∥∥∥∥∥
K∑
k=0

δkWk

∥∥∥∥∥
2

F

=
1

p

∥∥∥∥∥∥
∑
k∈S

δkWk

∥∥∥∥∥∥
2

F

+ 2
∑
k1∈S

∑
k2∈S

c

δk1δk2ω̂k1k2 +
1

p

∥∥∥∥∥∥
∑
k∈Sc

δkWk

∥∥∥∥∥∥
2

F

≥1

p

∥∥∥∥∥∥
∑
k∈S

δkWk

∥∥∥∥∥∥
2

F

+ 2
∑
k1∈S

∑
k2∈S

c

δk1δk2ω̂k1k2 = Q1 +Q2.

We next investigate Q1 and Q2, respectively.

Let Ω̂S =
(
ω̂k1k2 : k1, k2 ∈ S

)
∈ R(2s+2)×(2s+2) be the sub-matrix of Ω̂. Similarly, let

ΩS = diag{1, θ, . . . , θ} ∈ R(2s+2)×(2s+2). Then by similar procedures in the verification

of Condition (C2), we can derive that ∥Ω̂S −ΩS∥ →p 0 as long as p/{s2 log(s)} → ∞

as p → ∞. Then it follows that

Q1 =
1

p

∥∥∥∥∥∥
∑
k∈S

δkWk

∥∥∥∥∥∥
2

F

= δ⊤
S Ω̂SδS ≥ λmin(ΩS)∥δS∥2 + δ⊤

S (Ω̂S −ΩS)δS = ∥δS∥2{1 + op(1)},

as long as p/{s2 log(s)} → ∞ as p → ∞.

For the term Q2, we can derive that

|Q2| =

∣∣∣∣∣∣2
∑
k1∈S

∑
k2∈S

c

δk1δk2ω̂k1k2

∣∣∣∣∣∣ ≤ 4(s+ 1)max
k1∈S

|δk1| · max
k1∈S,k2∈S

c
|ω̂k1k2| ·

∑
k2∈S

c

|δk2|

≤4(s+ 1)∥δS∥ · max
k1∈S,k2∈S

c
|ω̂k1k2| · ∥δSc∥1 ≤ 12(s+ 1)3/2∥δ∥2 · max

k1∈S,k2∈S
c
|ω̂k1k2|,

where we have used the facts that ∥δS∥ ≤ ∥δ∥ and ∥δSc∥1 ≤ ∥δSc∥1 ≤ 3∥δS∥1 ≤
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3(s+ 1)1/2∥δS∥ ≤ 3(s+ 1)1/2∥δ∥. By (A.22) in Lemma 4, we know that

P
(

max
k1∈S,k2∈S

c
|ω̂k1k2| ≥ t

)
≤ 4(s+ 1)(K − 2s− 1) exp

{
−
p
(
t− 2θ2/p

)2
4θ2 + 4t/3

}
,

for any t ≥ 2θ2/p. Hence, we should have maxk1∈S,k2∈Sc |ω̂k1k2| = Op(
√

log(Ks)/p).

This indicates that |Q2| = op(∥δ∥2) as long as p/{s3 log(Ks)} → ∞ as p → ∞.

By far, we have shown that p−1
∥∥∥∑K

k=0 δkWk

∥∥∥2
F
≥ ∥δS∥2{1 + op(1)} + op(∥δ∥2) =

∥δS∥2 + op(∥δ∥2). Thus, if we can show that ∥δS∥2 ≥ κ∥δ∥2 for some κ > 0 and

δ ∈ C3(S), then Condition (C5) should hold with high probability. In fact, by Lemma

2.2 of van de Geer and Bühlmann (2009), we have ∥δSc∥ ≤ (s + 1)−1/2∥δSc∥1. Since

δ ∈ C3(S), it follows that ∥δSc∥ ≤ 3(s+1)−1/2∥δS∥1 ≤ 3∥δS∥ ≤ 3∥δS∥, where we have

used ∥δS∥1 ≤ (s + 1)1/2∥δS∥ in the second inequality. Then we should have ∥δ∥2 =

∥δS∥2+∥δSc∥2 ≤ 10∥δS∥2, or equivalently, ∥δS∥2 ≥ 0.1∥δ∥2. Combine above results, we

can obtain that p−1
∥∥∥∑K

k=0 δkWk

∥∥∥2
F
≥ 0.1∥δ∥2+op(∥δ∥2), as long as p/{s3 log(Ks)} →

∞ as p → ∞. Thus, we should expect that RE Condition (C5) holds with high

probability.

Verification of Condition (C6). We consider a special case that Σ0 = Σ(β(0)) =

β
(0)
0 Ip + β

(0)
1 W1 with β

(0)
0 , β

(0)
1 > 0. By our above results, we can show that G0,p =

p−1ΣW,S →p G0
def
= diag{1, θ}, which is positive definite. In addition, we have

G1,p = p−1

 tr(Σ2
0) tr(Σ2

0W1)

tr(Σ2
0W1) tr{(Σ0W1)

2}

 .

We next examine each entry of G1,p. First, we can compute that p−1tr(Σ2
0) = (β

(0)
0 )2+

p−1tr(W2
1)(β

(0)
1 )2 →p (β

(0)
0 )2 + θ(β

(0)
1 )2. For the off-diagonal entries, we shoud have

p−1tr(Σ2
0W1) = 2p−1tr(W2

1)β
(0)
0 β

(0)
1 + p−1tr(W3

1)(β
(0)
1 )2. By Corollary 2.1.2 of Aguilar

(2021), we can show that p−1tr(W3
1) →p 0. Then we should have p−1tr(Σ2

0W1) →p
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2θβ
(0)
0 β

(0)
1 . Last, note that p−1tr{(Σ0W1)

2} = p−1tr(W2
1)(β

(0)
0 )2+2p−1tr(W3

1)β
(0)
0 β

(0)
1 +

p−1tr(W4
1)(β

(0)
1 )2. By Corollary 2.1.2 of Aguilar (2021), we can show that p−1tr(W4) →p

2θ2 + θ. Then we should have p−1tr{(Σ0W1)
2} →p θ(β

(0)
0 )2 + (2θ2 + θ)(β

(0)
1 )2. Thus,

we obtain that G1,p →p G1 with

G1 =

(β
(0)
0 )2 + θ(β

(1)
1 )2 2θβ

(0)
0 β

(0)
1

2θβ
(0)
0 β

(0)
1 θ(β

(0)
0 )2 + (2θ2 + θ)(β

(1)
1 )2

 .

It can be verified that the determinant |G1| > 0, which implies G1 is also positive

definite. This indicates that Condition (C6) (i) can hold with high probability.

We next verify Condition (C6) (ii). Suppose the eigen-decomposition of W1 is

W1 = VDV⊤, where V is an orthogonal matrix, and D is a diagonal matrix collecting

the eigenvalues of W1. Then we can derive that,

Σ
1/2
0 W1Σ

1/2
0 = (β

(0)
0 Ip + β

(0)
1 W1)

1/2W1(β
(0)
0 Ip + β

(0)
1 W1)

1/2

=β
(0)
0 V

{
Ip + (β

(0)
1 /β

(0)
0 )D

}1/2

V⊤
(
VDV⊤

)
V
{
Ip + (β

(0)
1 /β

(0)
0 )D

}1/2

V⊤

=β
(0)
0 V

{
Ip + (β

(0)
1 /β

(0)
0 )D

}1/2

D
{
Ip + (β

(0)
1 /β

(0)
0 )D

}1/2

V⊤

=β
(0)
0 V

{
D+ (β

(0)
1 /β

(0)
0 )D2

}
V⊤ = β

(0)
0 W1 + β

(0)
1 W2

1.

Consequently, it follows that

Hp =p−1

 tr(Σ0 ◦Σ0) tr{(Σ0 ◦ (Σ1/2
0 W1Σ

1/2
0 )}

tr{(Σ0 ◦ (Σ1/2
0 W1Σ

1/2
0 )} tr{(Σ1/2

0 W1Σ
1/2
0 ) ◦ (Σ1/2

0 W1Σ
1/2
0 )}



=

 (β
(0)
0 )2 p−1tr(W2

1)β
(0)
0 β

(0)
1

p−1tr(W2
1)β

(0)
0 β

(0)
1 p−1tr(W2

1 ◦W2
1)(β

(0)
1 )2

 .
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Recall that p−1tr(W2
1) →p θ. We can also derive that p−1tr(W2

1 ◦ W2
1) →p θ2 + θ.

Then we should have Hp →p H with

H =

 (β
(0)
0 )2 θβ

(0)
0 β

(0)
1

θβ
(0)
0 β

(0)
1 (θ2 + θ)(β

(0)
1 )2

 .

One can easily verify that the determinant |H| > 0, which implies H is also positive

definite. This indicates that Condition (C6) (ii) can also hold with high probability.

A.7 Additional Simulation Results

In this subsection, we conduct three additional experiments to better evaluate our

method. For the first two experiments, we try two different data generation processes of

the components of Z, while holding other simulation settings in Section 5.1 unchanged.

Specifically, the components of Z are assumed to be independently and identically

generated from a mixture normal distribution ξ · N (0, 5/9) + (1 − ξ) · N (0, 5) with

P (ξ = 1) = 0.9 and P (ξ = 0) = 0.1, or a standardized exponential distribution

Exp(1)− 1. The simulation results are presented in Tables A.1–A.2, respectively. For

the third experiment, we constructWks with moderate correlation , while generating Z

from the standard normal distribution and holding other simulation settings in Section

5.1 unchanged. Specifically, we independently generate each xj = (Xj1, . . . , XjK)
⊤ ∈

RK (1 ≤ j ≤ p) from the multivariate normal distribution NK(0,Σx), where Σx =

(0.5|k1−k2|)1≤k1,k2≤K ∈ RK×K . Then we should have Xjks with the same j but different

k are linearly correlated with corr(Xj,k1 , Xj,k2) = 0.5|k1−k2|. We then construct Wk =

(wk,j1j2)1≤j1,j2≤p ∈ Rp×p with wk,j1,j2 = Xj1,kXj2,k × exp{−p(Xj1,k − Xj2,k)
2} for each

1 ≤ k ≤ K. The simulation results are presented in Table A.3. By the three tables,

we can see that all the results are qualitatively similar to those in Table 1 of the main

text. This further demonstrates the robustness and broad applicability of our proposed
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method.

Table A.1: Simulation results for Z generated from the mixture normal distribution.

(p,K) Penalty TPR FPR CS RMSE Bias SD ∥ · ∥2 ∥ · ∥F

(200,10)

SCAD 0.787 0.061 0.290 0.602 0.052 0.596 8.053 2.883

MCP 0.790 0.060 0.290 0.602 0.052 0.596 8.037 2.875

OLS – – – 0.616 0.049 0.612 8.090 3.057

ORACLE 1.000 0.000 1.000 0.535 0.026 0.531 5.403 2.058

(500,100)

SCAD 0.927 0.060 0.580 0.125 0.004 0.124 6.093 1.883

MCP 0.927 0.060 0.580 0.125 0.004 0.125 6.130 1.885

OLS – – – 0.250 0.018 0.249 19.142 5.305

ORACLE 1.000 0.000 1.000 0.105 0.001 0.105 3.973 1.356

(1000,1000)

SCAD 0.993 0.047 0.800 0.025 0.000 0.025 3.466 1.113

MCP 0.993 0.047 0.800 0.025 0.000 0.025 3.460 1.112

OLS – – – 0.161 0.013 0.160 31.005 11.299

ORACLE 1.000 0.000 1.000 0.022 0.000 0.022 2.482 0.878

A.8 Selection of Tuning Parameters

To implement the LLA algorithm, we need first compute the Lasso estimator (2.4)

as an initial estimator. This requires selecting two tuning parameters: λ0 for the

Lasso estimator, and λ in the folded concave penalized loss function (2.5). We can

separately select the two tuning parameters λ0 and λ. However, this approach can

be very time-consuming because we need to consider all possible pairs (λ0, λ). In

addition, we can expect that λ ≍ λ0 as remarked at the end of Appendix A.1 Therefore,

another approach is to select a single value for both λ0 and λ by setting λ0 = λ. We

conducted a preliminary experiment to assess the performance of the two approaches.

Specifically, we adopt the same simulation setting as in Section 5.1 with (p,K) =

(200, 10) and Z generated from a normal distribution. For both approaches, we use the
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Table A.2: Simulation results for Z generated from the standardized exponential dis-
tribution.

(p,K) Penalty TPR FPR CS RMSE Bias SD ∥ · ∥2 ∥ · ∥F

(200,10)

SCAD 0.823 0.074 0.260 0.635 0.058 0.630 7.938 2.886

MCP 0.820 0.070 0.280 0.635 0.059 0.630 7.922 2.870

OLS – – – 0.644 0.045 0.642 8.958 3.038

ORACLE 1.000 0.000 1.000 0.573 0.023 0.571 5.564 2.098

(500,100)

SCAD 0.940 0.076 0.510 0.124 0.005 0.123 5.146 1.782

MCP 0.938 0.074 0.510 0.124 0.005 0.123 5.183 1.788

OLS – – – 0.247 0.019 0.246 15.220 5.166

ORACLE 1.000 0.000 1.000 0.104 0.001 0.104 3.240 1.198

(1000,1000)

SCAD 0.995 0.034 0.830 0.027 0.000 0.027 3.339 1.132

MCP 0.995 0.034 0.830 0.027 0.000 0.027 3.339 1.132

OLS – – – 0.162 0.013 0.161 29.949 11.331

ORACLE 1.000 0.000 1.000 0.025 0.000 0.025 2.757 0.973

Table A.3: Simulation results for Z generated from the standard normal distribution
and Wks constructed with moderate correlation.

(p,K) Penalty TPR FPR CS RMSE Bias SD ∥ · ∥2 ∥ · ∥F

(200,10)

SCAD 0.588 0.103 0.060 0.793 0.164 0.748 18.883 4.172

MCP 0.575 0.115 0.050 0.830 0.182 0.776 18.925 4.222

OLS – – – 0.833 0.062 0.826 18.902 4.398

ORACLE 1.000 0.000 1.000 0.619 0.043 0.610 15.865 3.277

(500,100)

SCAD 0.745 0.054 0.160 0.210 0.021 0.155 18.136 3.615

MCP 0.733 0.051 0.150 0.218 0.023 0.150 18.234 3.679

OLS – – – 0.453 0.022 0.451 26.706 7.355

ORACLE 1.000 0.000 1.000 0.118 0.004 0.115 12.488 2.322

(1000,1000)

SCAD 0.845 0.093 0.280 0.066 0.002 0.039 17.189 3.281

MCP 0.848 0.087 0.320 0.068 0.003 0.038 17.068 3.311

OLS – – – 0.264 0.013 0.263 56.135 15.673

ORACLE 1.000 0.000 1.000 0.024 0.000 0.024 10.051 1.751
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Table A.4: Simulation results for two different tuning parameter selection approaches.
Approach (I) is to separately select λ0 and λ, and Approach (II) is to select a single
value for both λ0 and λ.

Approach Penalty TPR FPR CS RMSE Bias SD ∥ · ∥2 ∥ · ∥F
(I) SCAD 0.796 0.069 0.235 0.464 0.051 0.458 7.667 2.642

(II) SCAD 0.792 0.070 0.230 0.465 0.053 0.459 7.732 2.656

(I) MCP 0.796 0.070 0.230 0.464 0.051 0.458 7.690 2.645

(II) MCP 0.794 0.071 0.220 0.465 0.053 0.459 7.730 2.656

BIC-type criterion (5.1). We replicate the experiment 200 times and compute the same

measurements as those in Table 1. The results are given in Table A.4. From Table A.4,

we observe that the results of Approach (I) are slightly better than Approach (II). This

is expected because Approach (I) explores all possible pairs (λ0, λ), while Approach

(II) only considers pairs with λ0 = λ. Nevertheless, the two approaches perform very

similarly for both the SCAD and MCP estimators. In addition, Approach (II) requires

less computational time. Consequently, we adopt Approach (II) in the subsequent

simulation experiments and real data analysis.
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