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S1 Additional non-linearity simulation

To ensure a comprehensive comparison of effects and cover diverse genetic architectures, we
incorporated various nonlinear models in f;(X,) for model (1), each designed to capture
different SNP interactions both within and across SNP-sets. Specifically, we introduced
the following five settings:

1. Linear SNP Effects (Setting 1): Maintains the original linear framework for basic
comparison.

2. Interactive SNP Effects (Setting 2): Introduces interactions within SNP-sets to
explore non-linear dependencies.

3. Exponential SNP Transformations (Setting 3): Applies exponential transformations
to assess the impact of more complex nonlinear transformations.

4. Block-Diagonal Interaction Model (Setting 4): Uses a block-diagonal framework to
simulate localized SNP interactions.

5. Promiscuous Interaction Model (Setting 5): Models extensive interactions across two

SNP-sets, capturing both inter- and intra-set dynamics.

e Setting 1: Linear SNP effects within a SNP-set

G
Yi :ng(Xg) + E;
g=1

500
=B) X6+ E;,
j=1
where X7 represents the j-th SNP for the i-th individual, B; ~ U(0.4,0.8) and ; ~
Bernoulli(0.05), E; ~ N(0,0°I) with o = 1 and B has a smile face pattern (Fig.2c).

This setting focuses on linear effects among SNPs within a SNP-set.

e Setting 2: Interactive effects among some SNPs within a SNP-set where 25 SNPs have

true signals and divided into 5 groups. Each group contains 5 SNPs that influence
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the phenotype through both individual and interactive effects.

G
Y = Z fo(Xg) + Ei
g=1

k=1

5 5
-8 (Z 5 (Z X XX+ XX 4 XE”“X;““X?’“)) L,

Jj=1

where Xij * represents the j-th SNP for the i-th individual in the k-th group. Besides,
Bk ~ U(0.4,0.8). The error term is denoted by E; ~ N(0,0%I) with o = 1. Addi-
tionally, B follows a smile face pattern (Fig.2c¢). This setting accounts for interactive

effects among some SNPs within a SNP-set.

Setting 3: Exponential transformation of some SNPs within a SNP-set where 25
SNPs have true signals and divided into 5 groups. Each group contains 5 SNPs that

influence the phenotype through exponentially transformed effects. Hunter et al.

(2023)
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where Xij F represents the j-th SNP for the i-th individual in the k-th group. Besides,
1 = 50, 1y = 25, b3 = 60, 1y = 45, p = 500, E; ~ N(0,0%I) with o = 1, and B has
a smile face pattern (Fig.2c). This setting involves exponential transformations of

some SNPs within a SNP-set, capturing complex interactions and transformations.

Setting 4: Block-diagonal (BD) interaction model within a SNP-set where 25 SNPs

have true signals that influence the phenotype through localized interactive effects.
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Ho & Hsu (2015)

G

Yi :ng(Xg) + E;

g=1
s s s—1
-B (Z X7+ (X + Zijng*l)) + B,
j=1 j=1 j=1
where Xij represents the j-th SNP for the ¢-th individual. Besides, s=25, a; ~
N(1.5,0.5), 8; ~ N(1,0.2), v; ~ N(0.5,0.1), p=500, E; ~ N(0,0*I) with 0 = 1 and
B has a smile face pattern (Fig.2c). Here, s causal loci interact within the same block,

with linear, quadratic, and mixed terms representing their effects on the phenotype.

e Setting 5: Promiscuous (PS) interaction model within two SNP-sets where 25 SNPs

in each SNP-set have true signals that influence the phenotype.

2
Yi= Z fo(Xg) + E;
g=1
s s’ s'/2
=B Z Oéinjl + Z ﬁj(Xiﬂ)Q + Z ’)/inﬂXi(JQ) + Ez
j=1 j=1 j=1
where ij ! represents the j-th SNP for the i-th individual in the 1st SNP-set and Xf 2
represents the j-th SNP for the i-th individual in the 2nd SNP-set. Besides, s = s’ =
25, E; ~ N(0,0%I) with 0 = 1 and B has a smile face pattern (Fig.2c). Furthermore,
aj; € {—1,0,1} , p; and ~; are randomly chosen from normal distributions and are
typically of order unity. The model has s loci which have linear but no quadratic effect
on the phenotype, and s’ loci have quadratic but no linear effect on the phenotype.
s'/2 of the latter type interact with counterparts of the former type. In biological
terms, this model has subsets of loci which are entirely linear in effect, some which

are entirely nonlinear, and interactions between these subsets.

Our results show that BCRA outperforms other methods in detecting nonlinear pat-

terns within a SNP-set as displayed in Table S1, but its efficacy diminishes when assessing
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interactions between SNP-sets. Conversely, subsample-BCRA shows modest power across
all models, with around 70% power, except for the PS model setting, which is within ex-
pectation as the developed model is designed to capture interactions within a SNP-set The
single SNP approach, GWAS, shows a decrease in effectiveness when applied to nonlinear
scenarios. Overall, BCRA and subsample-BCRA have proven to be highly effective in both
straightforward linear configurations and more complex situations involving nonlinearity

within single SNP-set.

S2 Additional simulation with different distance mea-

sures

Recognizing the value of testing our results’ stability against varied norms, we broadened
our analysis to incorporate additional distance measures, including non-Euclidean ones
such as geodesic distance. We modeled our data as follows:

G Py
Yi= ng(Xg) + B, f4(Xy) = I(Z ngﬁjg’ng >0)-B, (1)
g=1

j=1
where E; ~ N(0,0%I),0 = 1, 479 € Bernoulli(0.05), 79 ~ U(0.4,0.8), p, = 500, G = 1
and B has a smile face pattern (Fig 2c).

We choose three different distance metrics: Euclidean distance, geodesic distance and
Pearson’s correlation.

For Pearson’s correlation, it unrolls the matrix into a vector and compute the Pearson
correlation between the matrices themselves. Although it neglects matrix structure, it has
yielded impressive results in identifying a participant out of a large group of participants
based on FC matrix similarity, a process dubbed fingerprinting Finn et al. (2015, 2017),

Amico & Goni (2018). Another widely adopted approach is to compute the Euclidean dis-

5



tance between the vectorized matrices Ponsoda et al. (2017). However, since the geometry
of functional connectivity is non-Euclidean, some papers proposed to use the geodesic dis-
tance Venkatesh et al. (2020), a non-Euclidean distance metric that considers the manifold
on which the data lies and, demonstrates the higher participant identification compared to
a similarity measure based on Pearson correlation and Euclidean distance.

Despite Pearson’s correlation omitting the matrix structure and geodesic distance ac-
knowledging the data’s manifold nature, our simulations reveal BCRA’s high detection
consistency across all three metrics as shown in Fig. S1. However, for subsample-BCRA,
we noted a dip in the average detection rate, most pronounced with geodesic distance,
possibly due to subsampling distorting the data’s inherent structure, thereby reducing sen-
sitivity to this metric. Given the computational intensity of the geodesic distance, we
advocate for BCRA in small samples, and for larger samples, subsample-BCRA augmented

with Euclidean or Pearson’s correlation.

S3 Additional simulation for distributions in the SPD
space

We want to enrich our simulation studies with settings that generate the connectivity
matrix from the semi-positive definite (SPD) space, using the Wishart distribution for
error terms. Specifically, for single SNP-set simulations, we utilized the following model

for our simulation:

G Py
Y=Y fol(Xy) + B, fy(X) =1 XI9379439 > 0) - B, @)
g=1 j=1

where E = (FEy,..., E,) ~ Wishart,(V,n), 779 € Bernoulli(0.05), 579 ~ U(0.4,0.8), p, =
500, G = 1 and B has a smile face pattern (Fig 2c). We chose ¢ as the dimension of B plus
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Figure S1: Sensitivity results to three choices of the distance metric, Pearson’s correlation,
Euclidean distance and Geodesic distance.
detecting this SNP-set over iterations. The BCRA performs virtually well under all three
distance measurements, indicating that results of subsample-BCRA are reliable to the
choice of distance metrics. While for subsample-BCRA, the average detection rate across
choices of the distance metric are well for Pearson’s correlation and Euclidean distance but
decreased for Geodesic distance. Different colors represented different approaches (orange:

BCRA; green: subsample-BCRA). Different shapes represented different weight choices

euclidean

geodesic

3 Distance Measurements

pearson

Method (Weight)
. BCRA:constant

. BCRA:probability
- BCRA:chisquared
subsample-BCRA:constant

subsample-BCRA:probability

subsample-BCRA:chisquared
GWAS:GWAS

Detection rate, defined as the frequency of

(circle: constant weight; diamond: probability weight; triangle: chisquared weight).



Band _ Hub _ _ Random

Figure S2: Four correlation structures of error terms for Wishart distribution in the simu-

lation studies.

10 and V' was structured to reflect four distinct correlation patterns: band, hub, cluster,
and random shown in Fig. S2.

Our results revealed that BCRA and subsample-BCRA both maintained robust perfor-
mances in Table S2, whether under independent or SPD-derived correlated error structures.
However, when the connectivity matrix was generated within the SPD space exhibiting cer-
tain correlated error structures, the GWAS approach showed a slight decline in power for

detecting true signals.

S4 Additional simulation for choosing best subsample
size

We perform simulation studies, utilizing various reduced sample sizes, designated as ngupset

to select the optimal subsample size. We modeled our data as follows:
Yi= 3 folXg) + iy £o(X) = (Y X875 > 0) - B, 3
g=1 j=1

where E; ~ N(0,0%1),0 = 1, 499 € Bernoulli(0.05), %9 ~ U(0.4,0.8), G = 1 and B has a

smile face pattern (Fig 2c). We vary different number of SNPs within a set p,, total sample

8



size n and proportion of samples to form into subset psupset- ThiS Ngubset = T X Psubset
selection was informed by a two-step process: firstly, ranking individuals by SNP call rate
to prioritize data completeness, and secondly, choosing the top percentile samples with the
highest rates, with this selection being further adjusted by the allele frequency of each SNP
to ensure a representative subsample.

The results showed that maintaining ng,e; at over 10% of the subjects preserves detec-
tion power above 50% as in Fig. S3. In practical terms, considering our dataset of around
30,000 subjects and SNP-sets ranging from 2 to 15,330 SNPs (mean = 3,330; median =
3,335), only a small number of SNP-sets exceeded 10,000 subjects. Given this distribution,
the ratio of SNPs to subjects was generally less than 1:3, aligning with our simulation
findings that a nsubset comprising 10% of total subjects ensures a power greater than 50%.
This decision strikes a balance between computational efficiency and the statistical power

required for subsample-BCRA.

S5 Supplementary Tables and Figures
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Figure S3: Simulation results to 12 choices of proportion of samples to form into sub-
set Psubset € {0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} . Detection rate, defined
as the frequency of detecting this SNP-set over iterations is shown in y-axis. We vary
the total sample size n € {500,600, 700,800,900,1000} and number of SNPs per set
pg € {50,300, 500, 650, 800, 1000}. The x-axis is the SNPs-to-sample ratio, defined as num-
ber of SNPs over number of total samples i.e., p,/n. The detection rate achieved over 75%
regardless of the SNPs-to-sample ratio when the proportion of subset samples was larger
than 30%. While subsample-BCRA failed to detect true signals when the proportion of
subset samples was smaller than 10%. The subsample-BCRA keeps desirable power under
the scenario where number of SNPs is smaller than one third of the number of subjects
when the proportion of subset samples is 10% or 20%. Different colors and shapes repre-
sented different weight (red square: constant weight; blue circle: probability weight; green

triangle: chisquared weight).
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(a) Type-l Error Example (b) Power Example

SNP-Set 1 SNP-Set2 SNP-Set 3 SNP-Set 1 SNP-Set2 SNP-Set 3

I I [ T T 1]
| | | TT 1]
M1 T VIV vV
| | [ [T 1]

SNPisnotrelatedto Y, ie.y=0 [l SNPisrelatedtoY, ie.,y=1 [/] SNP or SNP-set is detected

VdO4d wig| SYMD yini L

] BCRA I2rm GWAS Truth

Metric (One Iteration) GWAS 12rm BCRA /Subsample-BCRA

Type-I Error 0 100% 0

100% for SNPs 2, 8, and 10; 100% for SNPs 2, 3, 8, and 10;
100% for SNP-sets 1 and 2;

Detection Rate 0 for SNPs 3 and 9; 0 for SNP 9;
Average = 100%
Average = 60% Average = 80%

True Positive (TP) 3 SNPs 4 SNPs 2 SNP-sets
False Positive (FP) 0 SNP 2 SNPs 0 SNP-set
True Negative (TN) 5 SNPs 3 SNPs 1 SNP-set
False Negative (FN) 2 SNPs 1 SNP 0 SNP-set
SEN = TP / (TP+FN)  3/5 = 60% 4/5 = 80% 2/2 = 100%
SPE = TN / (TN + FP)  5/5 = 100% 3/5 = 60% 1/1 = 100%
PREC = TP / (TP + FP) 3/3 = 100% 4/6 = 67% 2/2 = 100%
NPV = TN / (IN + FN) 5/7 = 71% 3/4 = 5% 1/1=100%

Figure S4: An illustration of calculating five metrics for different approaches with 10 SNPs
divided into 3 SNP-sets. The white color indicates no effects, red color means this SNP
influences the response and the green frame highlights the detected SNPs or SNP-sets under
different methods. (a) The situation to evaluate Type-I error, where there are no signals.
(b) The situation to evaluate power, where individual SNPs 2, 3, 8 9, 10 and SNP-set
1 and 2 have signals. The bottom table shows how different metrics are derived at one

1teration. 11



Table S1: The detection rate of true signals for the single SNP set with non-linear effects

under the smile coefficient structure. The value of Setting 5 is the average rate that both

SNPs are detected across iterations. The detection rate for BCRA or subsample- BCRA

is defined at the SNP-set level as the number of iterations detecting a SNP-set divided by

the total number of iterations. For GWAS approach, the detection rate is defined at the

SNP level as the frequency of detecting an individual SNP over iterations. The average

detection rate at the SNP-level of GWAS is the average values across all true SNPs. The

weight column represents various choices of weights in calculating the statistic BCov in

equation (1).

Setting 1: Setting 2:  Seting3: Setting 4: Setting 5:
Method Weight
Linear Interaction Exponential BD PS
constant 1.0000 1.0000 1.0000 1.0000 0.5950
BCRA probability  1.0000 1.0000 1.0000 1.0000 0.5880
chisquared  1.0000 1.0000 1.0000 1.0000 0.5930
constant 0.7460 0.8280 0.7555 0.6466 0.3470
subsample-BCRA probability 0.7200 0.8040 0.7054 0.5964 0.2900
chisquared  0.7580 0.8380 0.7615 0.6627 0.3690
GWAS GWAS 0.5874 0.5343 0.5226 0.5044 0.2473

12



Table S2: The detection rate of true signals for the single SNP set under different error

correlation structure from SPD space. The detection rate for BCRA or subsample- BCRA

is defined at the SNP-set level as the number of iterations detecting a SNP-set divided by

the total number of iterations. For GWAS approach, the detection rate is defined at the

SNP level as the frequency of detecting an individual SNP over iterations. The average

detection rate at the SNP-level of GWAS is the average values across all true SNPs. The

weight column represents various choices of weights in calculating the statistic BCov in

equation (1).

Method Weight Correlation Structure in Wishart Distribution
Independent Random Band Hub Cluster
constant 1.0000 1.0000 1.0000 1.0000 1.0000
BCRA probability  1.0000 1.0000 1.0000 1.0000 1.0000
chisquared  1.0000 1.0000 1.0000 1.0000 1.0000
constant 0.7823 0.8000 0.7691 0.7500 0.7992
subsample-BCRA probability 0.7480 0.7480 0.7229 0.7120 0.7570
chisquared  0.7702 0.8000 0.7651 0.7580 0.7992
GWAS GWAS 0.5945 0.5902 0.5769 0.5794 0.5805
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Table S4: The detection rate of true signals for the first three SNP sets containing true
signals under the butterfly coefficient structure. The detection rate for BCRA or subsample-
BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided
by total number of iterations. For GWAS approach, the detection rate is defined as SNP
level as the frequency of detecting an individual SNP over iterations. The average detection
rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared
Setl 1 1 1
BCRA Set2 1 1 1
Set3 1 1 1
Setl 0.942 0. 942 0. 942
subsample-BCRA Set2 0.994 0.994 0.994
Set3  0.842 0.842 0.842
Setl 0.523 NA NA
GWAS Set2 0.607 NA NA
Set3 0 NA NA
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Table S5: The detection rate of true signals for the first three SNP sets containing true

signals under the smile coefficient structure. The detection rate for BCRA or subsample-

BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided

by total number of iterations. For GWAS approach, the detection rate is defined as SNP

level as the frequency of detecting an individual SNP over iterations. The average detection

rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared
Setl 1 0.996 1
BCRA Set2 1 1 1
Set3  0.986 0.97 0.99
Setl 0.938 0.938 0.938
subsample-BCRA  Set2 0.99 0.99 0.99
Set3  0.808 0.808 0.808
Setl (0.489 NA NA
GWAS Set2 0.549 NA NA
Set3 0 NA NA
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Table S6: The detection rate of true signals for the first three SNP sets containing true

signals under the wink coefficient structure. The detection rate for BCRA or subsample-

BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided

by total number of iterations. For GWAS approach, the detection rate is defined as SNP

level as the frequency of detecting an individual SNP over iterations. The average detection

rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared
Setl 0.998 0.998 0.996
BCRA Set2 1 1 1
Set3  (0.982 0.962 0.99
Setl 0.96 0.954 0.844
subsample-BCRA  Set2 0.99 0.99 0.99
Set3  0.792 0.792 0.788
Setl (0.484 NA NA
GWAS Set2 0.543 NA NA
Set3 0 NA NA
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Table S7: SNP-set (top) and SNP (bottom) level power results: average sensitivities, speci-
ficities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the butterfly
scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are

within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV
SNP-set
constant 1(0) 0.9983(0.0078) 0.9885(0.0524) 1(0)
BCRA probability  1(0) 0.9984(0.0076) 0.989(0.0513)  1(0)
chis-quared  1(0) 0.9987(0.0067) 0.9915(0.0453) 1(0)
constant 0.9887(0.0604)  0.9994(0.0046) 0.996(0.0314)  0.9988(0.0065)
subsample-BCRA probability 0.9867(0.0653) 0.9994(0.0046) 0.9958(0.0329) 0.9986(0.007)

chi-squared

0.998(0.0257)

0.9995(0.0044)

0.9965(0.0294)

0.9998(0.0028)

GWAS

NA

0.5467(0.0367)

0.9859(5e-04)

0.0515(0.0032)

0.9994(1e-04)

SNP

BCRA

constant

0.2698(0.0665)

0.9979(0.0035)

0.9081(0.0842)

0.9518(0.0042)

probability

0.2279(0.0493)

0.9981(0.0032)

0.9043(0.0885)

0.9491(0.0031)

chi-squared

0.3296(0.052)

0.998(0.0021)

0.9236(0.0513)

0.9555(0.0033)

subsample-BCR A

constant

0.6762(0.1713)

0.9789(0.01)

0.6988(0.0818)

0.9778(0.0114)

probability

0.6788(0.1708)

0.9789(0.0099)

0.6989(0.0807)

0.978(0.0114)

chi-squared

0.6824(0.1725)

0.9786(0.0101)

0.6976(0.0806)

0.9782(0.0115)

GWAS

NA

0.5467(0.0367)

0.9859(5e-04)

0.0515(0.0032)

0.9994(1e-04)
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Table S8: SNP-set (top) and SNP (bottom) level power results: average sensitivities,
specificities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the smile
scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are

within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV
SNP-set
constant 0.9953(0.0392)  0.9984(0.0076) 0.989(0.0513)  0.9995(0.0042)
BCRA probability  0.9887(0.0604) 0.9984(0.0074) 0.9895(0.0502) 0.9988(0.0065)
chis-quared  0.9967(0.0332) 0.9981(0.0081) 0.9873(0.0554) 0.9996(0.0036)

subsample-BCRA

constant

0.9043(0.1609)

0.9993(0.0049)

0.9948(0.0397)

0.9898(0.0171)

probability

0.8735(0.185)

0.9993(0.0049)

0.9948(0.0386)

0.9865(0.0196)

chi-squared

0.9029(0.1628)

0.9992(0.0054)

0.9936(0.0437)

0.9896(0.0173)

GWAS NA 0.5064(0.0359) 0.987(4e-04)  0.052(0.0034)  0.9993(1e-04)
SNP

constant  0.3061(0.0699) 0.9979(0.0027) 0.9174(0.0748) 0.9541(0.0044)

BCRA probability  0.2244(0.0581) 0.9983(0.0026) 0.9085(0.0899) 0.9489(0.0036)

chi-squared

0.346(0.0617)

0.9975(0.0034)

0.9154(0.0729)

0.9566(0.0039)

subsample-BCRA

constant

0.6856(0.1784)

0.9787(0.0091)

0.6997(0.0757)

0.9784(0.0118)

probability

0.6891(0.1796)

0.9785(0.0091)

0.698(0.0765)

0.9787(0.0119)

chi-squared

0.6901(0.1769)

0.9784(0.0088)

0.6966(0.0748)

0.9787(0.0118)

GWAS

NA

0.5064(0.0359)

0.987(4e-04)

0.052(0.0034)

0.9993(1e-04)
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Table S9: SNP-set (top) and SNP (bottom) level power results: average sensitivities,
specificities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the wink
scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are
within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV
SNP-set
constant 0.9933(0.0467)  0.9979(0.0085) 0.986(0.0575)  0.9993(0.005)
BCRA probability  0.9867(0.0653) 0.9979(0.0087) 0.9852(0.06) 0.9986(0.007)

chis-quared

0.9953(0.0392)

0.998(0.0084)

0.9865(0.0565)

0.9995(0.0042)

subsample-BCRA

constant

0.9279(0.1452)

0.9993(0.0049)

0.9951(0.0362)

0.9923(0.0155)

probability

0.8509(0.2015)

0.999(0.0059)

0.9915(0.0541)

0.9842(0.0213)

chi-squared

0.897(0.1694)

0.9996(0.0041)

0.9968(0.0291)

0.989(0.018)

GWAS NA 0.5012(0.0365) 0.9872(4e-04)  0.0519(0.0035) 0.9993(1e-04)
SNP

constant  0.3086(0.072)  0.9976(0.0038) 0.9105(0.0869) 0.9542(0.0045)

BCRA probability  0.2266(0.0604) 0.998(0.0033)  0.8991(0.1032) 0.9491(0.0038)

chi-squared

0.3486(0.064)

0.9974(0.0034)

0.9115(0.0727)

0.9567(0.0041)

subsample-BCR A

constant

0.6873(0.1668)

0.9782(0.0104)

0.6978(0.0808)

0.9785(0.0111)

probability

0.6874(0.1674)

0.9783(0.0103)

0.6982(0.0798)

0.9785(0.0111)

chi-squared

0.6885(0.1661)

0.9781(0.0104)

0.6964(0.0807)

0.9786(0.011)

GWAS

NA

0.5012(0.0365)

0.9872(4e-04)

0.0519(0.0035)

0.9993(1e-04)
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Table S10: Selected SNPs for each super-variant. Each SNP is annotated with its cytogeneic

region and nearest gene.

Super-variant CHR POS SNP Al A2 MAF REGION GENE TYPE

1 143670851  1rs11582530 T C 0.0360 1q21.1 RP6-206117.1 non-coding intronic
chrl_ 144

1 143767646 1rs148974023 A G 0.0240 1qg21.1 PPIAL4G coding nonsyn

1 148544983 rs10158015 G A 0.0131 1qg21.1 LOC105371211 intronic

1 148547345 1rsh8312111 A G 00125 1g21.2 RP11-666A1.4  Nearest Upstream
chrl_ 149

1 148549271 1:148549271.CT.C C CT 0.0122 1q21.2 RP11-666A1.4  Nearest Upstream

1 148565416 159286338 G A 0.0109 1q21.2 NBPF15 intronic
chrl_160 1 159357634  1rs75276010 C T 00101 1¢23.2 RP11-550P17.5  intronic
chrl 223 1 222398640 1s75141700 C T 0.0182 1q41 RP11-400N13.1 intronic

4 47476361  1rs10002676 T C 0.0329 4pl2 COMMDS8 Nearest Upstream
chr4 48 4 47581697  rs76814271 T C 00196 4pl2 ATP10D Hupstream, intronic

4 47715392 1rs115442203 G A 0.0102 4pl2 CORIN intronic
chr5_22 5 21476729  1rs189661811 G A 0.0130 5pl4.3 GUSBP1 intronic

5 22430827  rs66485180 C T 0.1242 5pl4.3 CDHI12 intronic

5 22447483 rs12660009 C G 01250 5pl4.3 CDH12 intronic

5 22485972 1s13169464 Cc T 0.1260 5pl4.3 CDHI12 intronic

5 22486235  1rs34441400 C A 0.1260 5pl4.3 CDHI12 intronic

5 22486469  rs72744877 G T 0.1261 5pl4.3 CDHI12 intronic
chr5_23 5 22489161  rs7719756 T C 01261 5pl4.3 CDH12 intronic

5 22499504  1rs7727099 G A 0.1241 5pl4.3 CDHI12 intronic

5 22506398  rs1417188445 T TC 0.1260 5pl4.3 CDHI12 intronic

5 22507308  rs10040210 C T 0.1261 5pld.3 CDHI12 intronic

5 22516890  1s4320220 T C 0.1257 5pl4.3 CDHI12 intronic

5 22556156  rs35857048 G T 0.1122 5pl4.3 CDHI12 intronic
chr8.145 8 144094058 1rsb57243129 C A 0.0106 8q24.3 RP11-273G15.2  Supstream, non-coding intronic

21 10862846  rs3916645 A T 00108 21pll.2 IGHV1OR21-1  coding nonsyn
chr21.11

21 10863087  rs28521368 T G 00109 21pll.2 IGHV10OR21-1 Nearest Upstream

22 38006356  rsbH65047646 CT C 0.0232 22ql13.1 GGAl intronic
chr22_39 22 38805399  rs575324928 T A 0.0116 22q13.1 RP3-449017.1  Nearest Upstream

22 38954208  rs145125237 T C 0.0112  22q13.1 DMC1 intronic
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Table S11: Association lookups related to psychiatric measurements for selected SNPs

within verified super-variants in the NHGRI-EBI GWAS catalog.

Super-variant SNP CHR POS REGION GENE Phenotype PubMed
1s10040210 5 22507308
1512660009 5 22447483
1s13169464 5 22485972
1534441400 5 22486235
chr5_23 187719756 5 22489161 5pl4.3 CDHI12 Bipolar Disorder 19567891
187727099 5 22499504
154320220 5 22516890
1566485180 5 22430827
1872744877 5 22486469
15145125237 22 38954208 DMC1
chr22_39 1565047646 22 38006356 22q13.1 GGA1l Attention Deficit Disorder with Hyperactivity 18821565
18575324928 22 38805399 RP3-449017.1
Table S12: Enriched gene pathways results.
Pathway ID Description Parent(s) p-value Genes Involved SNPs
R-HSA-5578768 Physiological factors Muscle contraction 0.005643 CORIN 15115442203
1510040210,r12660009,r513169464,rs34441400,1s35857048,
R-HSA-418990  Adherens junctions interactions Cell-Cell communication 0.015456 CDHI12
154320220,rs66485180,rs72744877 xs7719756,1s7727099
R-HSA-8854214 TBC/RABGAPs Vesicle-mediated transport 0.019638 GGA1 1rs565047646
R-HSA-936837  Ion transport by P-type ATPases Transport of small molecules 0.025654 ATP10D 1876814271
R-HSA-912446  Meiotic recombination Reproduction;Cell Cycle 0.026116 DMC1 15145125237
R-HSA-421270  Cell-cell junction organization Cell-Cell communication 0.030261 CDH12 10010210, 1512660009 51510941 xsFHATI00,1535857045,
1s4320220,rs66485180,rs72744877,1s7719756,rs 7727099
R-HSA-977225  Amyloid fiber formation Metabolism of proteins 0.036225 GGA1 r$565047646
R-HSA-1500620 Meiosis Cell Cycle;Reproduction 0.040792 DMC1 rs145125237
1r$10040210,rs12660009,rs13169464,rs34441400,rs35857048,
R-HSA-446728  Cell junction organization Cell-Cell communication 0.042614 CDHI12

154320220,rs66485180,rs72744877 157719756,rs 7727099
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Figure S5: Discovery Phase P-Value Distributions Across 10 Iterations. This figure il-
lustrates the reproducibility of the discovery of super-variants in our UKB White British
ancestry data analysis. Each plot represents a different super-variant, indicated by chromo-
some number and SNP-set identifier (e.g., chrl_144+ is for SNPs on chromosome 1 with BP
ranging from 143MB to 144MB). The y-axis shows the negative logl10-transformed p-values,
emphasizing the significance levels across 10 iterative validation processes. Super-variants
that consistently show significant values (above the horizontal threshold line representing

1.84x107°) demonstrate robustness in our validation strategy.
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Figure S6: The influence of the super-variant on Chromosome 1 set 144 on brain connectiv-
ity. We standardize the elements of the connectivity matrices to have mean 0 and variance
1. Individuals in the combined set are separated into two groups according to the minor
and major variants of the super-variant on Chromosome 1 set 149. The difference matrix
is calculated by subtracting the average connectivity matrix of the group with the major
variant from the average connectivity matrix of the group with the minor variant. For visu-
alization, only differences with absolute values in top 5% are plotted in the chord diagram.
Red (blue) bands indicate the positive (negative) differences, and the widths of the bands
indicate the magnitudes of the differences. The numbers in the outer circle indicate specific
regions in the brain. We provide the axial/sagittal/coronal view of the brain regions with
stronger differences in connectivity, including regions indexed as 3, 4, 10, 26, 31, 39 and 49
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Figure S7: The influence of the super-variant on Chromosome 1 set 169 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with stronger differences in connectivity, including regions indexed as 4, 24,

25 and 28.
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Figure S8: The influence of the super-variant on Chromosome 1 set 223 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.
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Figure S9: The influence of the super-variant on Chromosome 4 set 48 on brain connectivity.
We standardize the elements of the connectivity matrices to have mean 0 and variance 1.
Individuals in the combined set are separated into two groups according to the minor and
major variants of the super-variant on Chromosome 1 set 149. The difference matrix is
calculated by subtracting the average connectivity matrix of the group with the major
variant from the average connectivity matrix of the group with the minor variant. For
visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with stronger differences in connectivity, including regions indexed as 3, 4,

18, 24, 25 and 48.
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Figure S10: The influence of the super-variant on Chromosome 5 set 22 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with have stronger differences in connectivity, including regions indexed as 3,

4, 18, 24, 25 and 48.
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Figure S11: The influence of the super-variant on Chromosome 5 set 23 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.
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Figure S12: The influence of the super-variant on Chromosome 8 set 145 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths of
the bands indicate the magnitudes of the differences. The numbers in the outer circle in-
dicate specific regions in the brain.We provide the axial/sagittal/coronal view of the brain
regions with stronger differences in connectivity, including regions indexed as 18, 19, 24,

25, 42 and 48.
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Figure S13: The influence of the super-variant on Chromosome 21 set 11 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.
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Figure S14: The influence of the super-variant on Chromosome 22 set 39 on brain con-
nectivity. We standardize the elements of the connectivity matrices to have mean 0 and
variance 1. Individuals in the combined set are separated into two groups according to the
minor and major variants of the super-variant on Chromosome 1 set 149. The difference
matrix is calculated by subtracting the average connectivity matrix of the group with the
major variant from the average connectivity matrix of the group with the minor variant.
For visualization, only differences with absolute values in top 5% are plotted in the chord
diagram. Red (blue) bands indicate the positive (negative) differences, and the widths
of the bands indicate the magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the
brain regions with stronger differences in connectivity, including regions indexed as 18, 19,

20, 24, 25, 42 and 48.
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Figure S15: (Left) LD 72 values around the central SNP located between 21MB and 22MB
on chromosome 5. The LD block, indicated by blue dashed lines, includes SNPs with r?
values exceeding 0.2. (Right) The negative logl0-transformed p-values from 10 iterations
are shown for both LD-based (red) and physical distance-based partitions (blue). Although
none of the p-values achieved statistical significance, the smallest p-value (5.7x107°) was
close to the significance threshold (1.83x107°), indicating a consistent trend across both

partitioning methods.
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Method SNP Set Detection Rate (G = 15) Detection Rate (G = 30) Detection Rate (G = 150)

BCRA 1
BCRA 2
BCRA 3

subsample-BCRA 1
subsample-BCRA 2

subsample-BCRA 3

0.941

1.000

0.690

0.586

0.537

0.118

1.000

1.000

0.995

0.944

0.992

0.812

1

0.985

0.94

0.872

0.882

0.390

Table S13: Detection rates for SNP-sets across different numbers of SNP groups (G) in
multi-set simulations with chi-squared weight and B in Fig.2a. For example, when G=30,
SNP Sets 1, 2, and 3 are the true sets containing signals (6 true SNPs each in Sets 1 and
2, and 9 in Set 3). However, when G=15, the true SNPs in Sets 1 and 2 are combined
into a single set. In this case, the detection rate for the original Sets 1 and 2 is calculated
based on whether any of the true SNPs from the original sets were selected across iter-

ations, maintaining consistency in evaluating detection rates across different partitioning

strategies.
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