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S1 Additional non-linearity simulation

To ensure a comprehensive comparison of effects and cover diverse genetic architectures, we

incorporated various nonlinear models in fg(Xg) for model (1), each designed to capture

different SNP interactions both within and across SNP-sets. Specifically, we introduced

the following five settings:

1. Linear SNP Effects (Setting 1): Maintains the original linear framework for basic

comparison.

2. Interactive SNP Effects (Setting 2): Introduces interactions within SNP-sets to

explore non-linear dependencies.

3. Exponential SNP Transformations (Setting 3): Applies exponential transformations

to assess the impact of more complex nonlinear transformations.

4. Block-Diagonal Interaction Model (Setting 4): Uses a block-diagonal framework to

simulate localized SNP interactions.

5. Promiscuous Interaction Model (Setting 5): Models extensive interactions across two

SNP-sets, capturing both inter- and intra-set dynamics.

� Setting 1: Linear SNP effects within a SNP-set

Yi =
G∑

g=1

fg(Xg) + Ei

=B
500∑
j=1

Xj
i βjγj + Ei,

where Xj
i represents the j-th SNP for the i-th individual, βj ∼ U(0.4, 0.8) and γj ∼

Bernoulli(0.05), Ei ∼ N(0, σ2I) with σ = 1 and B has a smile face pattern (Fig.2c).

This setting focuses on linear effects among SNPs within a SNP-set.

� Setting 2: Interactive effects among some SNPs within a SNP-set where 25 SNPs have

true signals and divided into 5 groups. Each group contains 5 SNPs that influence
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the phenotype through both individual and interactive effects.

Yi =
G∑

g=1

fg(Xg) + Ei

=B

(
5∑

k=1

βk

(
5∑

j=1

Xjk
i +X1k

i X
2k
i +X1k

i X
3k
i +X3k

i X
4k
i X

5k
i

))
+ Ei,

where Xjk
i represents the j-th SNP for the i-th individual in the k-th group. Besides,

βk ∼ U(0.4, 0.8). The error term is denoted by Ei ∼ N(0, σ2I) with σ = 1. Addi-

tionally, B follows a smile face pattern (Fig.2c). This setting accounts for interactive

effects among some SNPs within a SNP-set.

� Setting 3: Exponential transformation of some SNPs within a SNP-set where 25

SNPs have true signals and divided into 5 groups. Each group contains 5 SNPs that

influence the phenotype through exponentially transformed effects. Hunter et al.

(2023)

Yi =
G∑

g=1

fg(Xg) + Ei

=
5∑

k=1

(
3∑

j=1

exp

(
−ψ1j

p

)
+

5∑
j=4

exp

(
−ψ2j

p

)

+
2∑

j=1

exp

(
− ψ3j

p(X1k
i −X2k

i )2

)
+
∑

j∈{1,3}

exp

(
− ψ3j

p(X1k
i −X3k

i )2

)

+
4∑

j=3

exp

(
−ψ4

j

p(X1k
i +X2k

i −X3k
i −X4k

i )2
− ψ3(X

3k
i ·X4k

i ·X5k
i )

))
+ Ei,

where Xjk
i represents the j-th SNP for the i-th individual in the k-th group. Besides,

ψ1 = 50, ψ2 = 25, ψ3 = 60, ψ4 = 45, p = 500, Ei ∼ N(0, σ2I) with σ = 1, and B has

a smile face pattern (Fig.2c). This setting involves exponential transformations of

some SNPs within a SNP-set, capturing complex interactions and transformations.

� Setting 4: Block-diagonal (BD) interaction model within a SNP-set where 25 SNPs

have true signals that influence the phenotype through localized interactive effects.
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Ho & Hsu (2015)

Yi =
G∑

g=1

fg(Xg) + Ei

=B

(
s∑

j=1

αjX
j
i +

s∑
j=1

βj(X
j
i )

2 +
s−1∑
j=1

γjX
j
iX

(j+1)
i

)
+ Ei,

where Xj
i represents the j-th SNP for the i-th individual. Besides, s=25, αj ∼

N(1.5, 0.5), βj ∼ N(1, 0.2), γj ∼ N(0.5, 0.1), p=500, Ei ∼ N(0, σ2I) with σ = 1 and

B has a smile face pattern (Fig.2c). Here, s causal loci interact within the same block,

with linear, quadratic, and mixed terms representing their effects on the phenotype.

� Setting 5: Promiscuous (PS) interaction model within two SNP-sets where 25 SNPs

in each SNP-set have true signals that influence the phenotype.

Yi =
2∑

g=1

fg(Xg) + Ei

=B

 s∑
j=1

αjX
j1
i +

s′∑
j=1

βj(X
j2
i )2 +

s′/2∑
j=1

γjX
j1
i X

(j2)
i

+ Ei,

where Xj1
i represents the j-th SNP for the i-th individual in the 1st SNP-set and Xj2

i

represents the j-th SNP for the i-th individual in the 2nd SNP-set. Besides, s = s′ =

25, Ei ∼ N(0, σ2I) with σ = 1 and B has a smile face pattern (Fig.2c). Furthermore,

αj ∈ {−1, 0, 1} , βj and γj are randomly chosen from normal distributions and are

typically of order unity. The model has s loci which have linear but no quadratic effect

on the phenotype, and s′ loci have quadratic but no linear effect on the phenotype.

s′/2 of the latter type interact with counterparts of the former type. In biological

terms, this model has subsets of loci which are entirely linear in effect, some which

are entirely nonlinear, and interactions between these subsets.

Our results show that BCRA outperforms other methods in detecting nonlinear pat-

terns within a SNP-set as displayed in Table S1, but its efficacy diminishes when assessing
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interactions between SNP-sets. Conversely, subsample-BCRA shows modest power across

all models, with around 70% power, except for the PS model setting, which is within ex-

pectation as the developed model is designed to capture interactions within a SNP-set The

single SNP approach, GWAS, shows a decrease in effectiveness when applied to nonlinear

scenarios. Overall, BCRA and subsample-BCRA have proven to be highly effective in both

straightforward linear configurations and more complex situations involving nonlinearity

within single SNP-set.

S2 Additional simulation with different distance mea-

sures

Recognizing the value of testing our results’ stability against varied norms, we broadened

our analysis to incorporate additional distance measures, including non-Euclidean ones

such as geodesic distance. We modeled our data as follows:

Yi =
G∑

g=1

fg(Xg) + Ei, fg(Xg) = I(

pg∑
j=1

Xjg
i β

jgγjg > 0) ·B, (1)

where Ei ∼ N(0, σ2I), σ = 1, γjg ∈ Bernoulli(0.05), βjg ∼ U(0.4, 0.8), pg = 500, G = 1

and B has a smile face pattern (Fig 2c).

We choose three different distance metrics: Euclidean distance, geodesic distance and

Pearson’s correlation.

For Pearson’s correlation, it unrolls the matrix into a vector and compute the Pearson

correlation between the matrices themselves. Although it neglects matrix structure, it has

yielded impressive results in identifying a participant out of a large group of participants

based on FC matrix similarity, a process dubbed fingerprinting Finn et al. (2015, 2017),

Amico & Goñi (2018). Another widely adopted approach is to compute the Euclidean dis-
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tance between the vectorized matrices Ponsoda et al. (2017). However, since the geometry

of functional connectivity is non-Euclidean, some papers proposed to use the geodesic dis-

tance Venkatesh et al. (2020), a non-Euclidean distance metric that considers the manifold

on which the data lies and, demonstrates the higher participant identification compared to

a similarity measure based on Pearson correlation and Euclidean distance.

Despite Pearson’s correlation omitting the matrix structure and geodesic distance ac-

knowledging the data’s manifold nature, our simulations reveal BCRA’s high detection

consistency across all three metrics as shown in Fig. S1. However, for subsample-BCRA,

we noted a dip in the average detection rate, most pronounced with geodesic distance,

possibly due to subsampling distorting the data’s inherent structure, thereby reducing sen-

sitivity to this metric. Given the computational intensity of the geodesic distance, we

advocate for BCRA in small samples, and for larger samples, subsample-BCRA augmented

with Euclidean or Pearson’s correlation.

S3 Additional simulation for distributions in the SPD

space

We want to enrich our simulation studies with settings that generate the connectivity

matrix from the semi-positive definite (SPD) space, using the Wishart distribution for

error terms. Specifically, for single SNP-set simulations, we utilized the following model

for our simulation:

Yi =
G∑

g=1

fg(Xg) + Ei, fg(Xg) = I(

pg∑
j=1

Xjg
i β

jgγjg > 0) ·B, (2)

where E = (E1, . . . , En) ∼ Wishartq(V, n), γ
jg ∈ Bernoulli(0.05), βjg ∼ U(0.4, 0.8), pg =

500, G = 1 and B has a smile face pattern (Fig 2c). We chose q as the dimension of B plus
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Figure S1: Sensitivity results to three choices of the distance metric, Pearson’s correlation,

Euclidean distance and Geodesic distance. Detection rate, defined as the frequency of

detecting this SNP-set over iterations. The BCRA performs virtually well under all three

distance measurements, indicating that results of subsample-BCRA are reliable to the

choice of distance metrics. While for subsample-BCRA, the average detection rate across

choices of the distance metric are well for Pearson’s correlation and Euclidean distance but

decreased for Geodesic distance. Different colors represented different approaches (orange:

BCRA; green: subsample-BCRA). Different shapes represented different weight choices

(circle: constant weight; diamond: probability weight; triangle: chisquared weight).
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Figure S2: Four correlation structures of error terms for Wishart distribution in the simu-

lation studies.

10 and V was structured to reflect four distinct correlation patterns: band, hub, cluster,

and random shown in Fig. S2.

Our results revealed that BCRA and subsample-BCRA both maintained robust perfor-

mances in Table S2, whether under independent or SPD-derived correlated error structures.

However, when the connectivity matrix was generated within the SPD space exhibiting cer-

tain correlated error structures, the GWAS approach showed a slight decline in power for

detecting true signals.

S4 Additional simulation for choosing best subsample

size

We perform simulation studies, utilizing various reduced sample sizes, designated as nsubset

to select the optimal subsample size. We modeled our data as follows:

Yi =
G∑

g=1

fg(Xg) + Ei, fg(Xg) = I(

pg∑
j=1

Xjg
i β

jgγjg > 0) ·B, (3)

where Ei ∼ N(0, σ2I), σ = 1, γjg ∈ Bernoulli(0.05), βjg ∼ U(0.4, 0.8), G = 1 and B has a

smile face pattern (Fig 2c). We vary different number of SNPs within a set pg, total sample
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size n and proportion of samples to form into subset psubset. This nsubset = n × psubset

selection was informed by a two-step process: firstly, ranking individuals by SNP call rate

to prioritize data completeness, and secondly, choosing the top percentile samples with the

highest rates, with this selection being further adjusted by the allele frequency of each SNP

to ensure a representative subsample.

The results showed that maintaining nsubset at over 10% of the subjects preserves detec-

tion power above 50% as in Fig. S3. In practical terms, considering our dataset of around

30,000 subjects and SNP-sets ranging from 2 to 15,330 SNPs (mean = 3,330; median =

3,335), only a small number of SNP-sets exceeded 10,000 subjects. Given this distribution,

the ratio of SNPs to subjects was generally less than 1:3, aligning with our simulation

findings that a nsubset comprising 10% of total subjects ensures a power greater than 50%.

This decision strikes a balance between computational efficiency and the statistical power

required for subsample-BCRA.

S5 Supplementary Tables and Figures
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Figure S3: Simulation results to 12 choices of proportion of samples to form into sub-

set psubset ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} . Detection rate, defined

as the frequency of detecting this SNP-set over iterations is shown in y-axis. We vary

the total sample size n ∈ {500, 600, 700, 800, 900, 1000} and number of SNPs per set

pg ∈ {50, 300, 500, 650, 800, 1000}. The x-axis is the SNPs-to-sample ratio, defined as num-

ber of SNPs over number of total samples i.e., pg/n. The detection rate achieved over 75%

regardless of the SNPs-to-sample ratio when the proportion of subset samples was larger

than 30%. While subsample-BCRA failed to detect true signals when the proportion of

subset samples was smaller than 10%. The subsample-BCRA keeps desirable power under

the scenario where number of SNPs is smaller than one third of the number of subjects

when the proportion of subset samples is 10% or 20%. Different colors and shapes repre-

sented different weight (red square: constant weight; blue circle: probability weight; green

triangle: chisquared weight).
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Metric (One Iteration) GWAS l2rm BCRA/Subsample-BCRA

Type-I Error 0 100% 0

Detection Rate

100% for SNPs 2, 8, and 10;

0 for SNPs 3 and 9;

Average = 60%

100% for SNPs 2, 3, 8, and 10;

0 for SNP 9;

Average = 80%

100% for SNP-sets 1 and 2;

Average = 100%

True Positive (TP) 3 SNPs 4 SNPs 2 SNP-sets

False Positive (FP) 0 SNP 2 SNPs 0 SNP-set

True Negative (TN) 5 SNPs 3 SNPs 1 SNP-set

False Negative (FN) 2 SNPs 1 SNP 0 SNP-set

SEN = TP / (TP+FN) 3/5 = 60% 4/5 = 80% 2/2 = 100%

SPE = TN / (TN + FP) 5/5 = 100% 3/5 = 60% 1/1 = 100%

PREC = TP / (TP + FP) 3/3 = 100% 4/6 = 67% 2/2 = 100%

NPV = TN / (TN + FN) 5/7 = 71% 3/4 = 75% 1/1=100%

Figure S4: An illustration of calculating five metrics for different approaches with 10 SNPs

divided into 3 SNP-sets. The white color indicates no effects, red color means this SNP

influences the response and the green frame highlights the detected SNPs or SNP-sets under

different methods. (a) The situation to evaluate Type-I error, where there are no signals.

(b) The situation to evaluate power, where individual SNPs 2, 3, 8, 9, 10 and SNP-set

1 and 2 have signals. The bottom table shows how different metrics are derived at one

iteration.
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Table S1: The detection rate of true signals for the single SNP set with non-linear effects

under the smile coefficient structure. The value of Setting 5 is the average rate that both

SNPs are detected across iterations. The detection rate for BCRA or subsample- BCRA

is defined at the SNP-set level as the number of iterations detecting a SNP-set divided by

the total number of iterations. For GWAS approach, the detection rate is defined at the

SNP level as the frequency of detecting an individual SNP over iterations. The average

detection rate at the SNP-level of GWAS is the average values across all true SNPs. The

weight column represents various choices of weights in calculating the statistic BCov in

equation (1).

Method Weight

Setting 1:

Linear

Setting 2:

Interaction

Seting3:

Exponential

Setting 4:

BD

Setting 5:

PS

BCRA

constant 1.0000 1.0000 1.0000 1.0000 0.5950

probability 1.0000 1.0000 1.0000 1.0000 0.5880

chisquared 1.0000 1.0000 1.0000 1.0000 0.5930

subsample-BCRA

constant 0.7460 0.8280 0.7555 0.6466 0.3470

probability 0.7200 0.8040 0.7054 0.5964 0.2900

chisquared 0.7580 0.8380 0.7615 0.6627 0.3690

GWAS GWAS 0.5874 0.5343 0.5226 0.5044 0.2473
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Table S2: The detection rate of true signals for the single SNP set under different error

correlation structure from SPD space. The detection rate for BCRA or subsample- BCRA

is defined at the SNP-set level as the number of iterations detecting a SNP-set divided by

the total number of iterations. For GWAS approach, the detection rate is defined at the

SNP level as the frequency of detecting an individual SNP over iterations. The average

detection rate at the SNP-level of GWAS is the average values across all true SNPs. The

weight column represents various choices of weights in calculating the statistic BCov in

equation (1).

Method Weight Correlation Structure in Wishart Distribution

Independent Random Band Hub Cluster

BCRA

constant 1.0000 1.0000 1.0000 1.0000 1.0000

probability 1.0000 1.0000 1.0000 1.0000 1.0000

chisquared 1.0000 1.0000 1.0000 1.0000 1.0000

subsample-BCRA

constant 0.7823 0.8000 0.7691 0.7500 0.7992

probability 0.7480 0.7480 0.7229 0.7120 0.7570

chisquared 0.7702 0.8000 0.7651 0.7580 0.7992

GWAS GWAS 0.5945 0.5902 0.5769 0.5794 0.5805
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Table S4: The detection rate of true signals for the first three SNP sets containing true

signals under the butterfly coefficient structure. The detection rate for BCRA or subsample-

BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided

by total number of iterations. For GWAS approach, the detection rate is defined as SNP

level as the frequency of detecting an individual SNP over iterations. The average detection

rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared

BCRA

Set1 1 1 1

Set2 1 1 1

Set3 1 1 1

subsample-BCRA

Set1 0.942 0. 942 0. 942

Set2 0.994 0.994 0.994

Set3 0.842 0.842 0.842

GWAS

Set1 0.523 NA NA

Set2 0.607 NA NA

Set3 0 NA NA
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Table S5: The detection rate of true signals for the first three SNP sets containing true

signals under the smile coefficient structure. The detection rate for BCRA or subsample-

BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided

by total number of iterations. For GWAS approach, the detection rate is defined as SNP

level as the frequency of detecting an individual SNP over iterations. The average detection

rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared

BCRA

Set1 1 0.996 1

Set2 1 1 1

Set3 0.986 0.97 0.99

subsample-BCRA

Set1 0.938 0.938 0.938

Set2 0.99 0.99 0.99

Set3 0.808 0.808 0.808

GWAS

Set1 0.489 NA NA

Set2 0.549 NA NA

Set3 0 NA NA
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Table S6: The detection rate of true signals for the first three SNP sets containing true

signals under the wink coefficient structure. The detection rate for BCRA or subsample-

BCRA is defined at SNP-set level as the number of iterations detecting a SNP-set divided

by total number of iterations. For GWAS approach, the detection rate is defined as SNP

level as the frequency of detecting an individual SNP over iterations. The average detection

rate at SNP-level of GWAS is the average values across all true SNPs. Different columns

represent various choices of weights in calculating the statistic BCov in equation (1).

Method Set constant probability chis-squared

BCRA

Set1 0.998 0.998 0.996

Set2 1 1 1

Set3 0.982 0.962 0.99

subsample-BCRA

Set1 0.96 0.954 0.844

Set2 0.99 0.99 0.99

Set3 0.792 0.792 0.788

GWAS

Set1 0.484 NA NA

Set2 0.543 NA NA

Set3 0 NA NA
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Table S7: SNP-set (top) and SNP (bottom) level power results: average sensitivities, speci-

ficities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the butterfly

scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are

within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV

SNP-set

BCRA

constant 1(0) 0.9983(0.0078) 0.9885(0.0524) 1(0)

probability 1(0) 0.9984(0.0076) 0.989(0.0513) 1(0)

chis-quared 1(0) 0.9987(0.0067) 0.9915(0.0453) 1(0)

subsample-BCRA

constant 0.9887(0.0604) 0.9994(0.0046) 0.996(0.0314) 0.9988(0.0065)

probability 0.9867(0.0653) 0.9994(0.0046) 0.9958(0.0329) 0.9986(0.007)

chi-squared 0.998(0.0257) 0.9995(0.0044) 0.9965(0.0294) 0.9998(0.0028)

GWAS NA 0.5467(0.0367) 0.9859(5e-04) 0.0515(0.0032) 0.9994(1e-04)

SNP

BCRA

constant 0.2698(0.0665) 0.9979(0.0035) 0.9081(0.0842) 0.9518(0.0042)

probability 0.2279(0.0493) 0.9981(0.0032) 0.9043(0.0885) 0.9491(0.0031)

chi-squared 0.3296(0.052) 0.998(0.0021) 0.9236(0.0513) 0.9555(0.0033)

subsample-BCRA

constant 0.6762(0.1713) 0.9789(0.01) 0.6988(0.0818) 0.9778(0.0114)

probability 0.6788(0.1708) 0.9789(0.0099) 0.6989(0.0807) 0.978(0.0114)

chi-squared 0.6824(0.1725) 0.9786(0.0101) 0.6976(0.0806) 0.9782(0.0115)

GWAS NA 0.5467(0.0367) 0.9859(5e-04) 0.0515(0.0032) 0.9994(1e-04)
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Table S8: SNP-set (top) and SNP (bottom) level power results: average sensitivities,

specificities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the smile

scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are

within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV

SNP-set

BCRA

constant 0.9953(0.0392) 0.9984(0.0076) 0.989(0.0513) 0.9995(0.0042)

probability 0.9887(0.0604) 0.9984(0.0074) 0.9895(0.0502) 0.9988(0.0065)

chis-quared 0.9967(0.0332) 0.9981(0.0081) 0.9873(0.0554) 0.9996(0.0036)

subsample-BCRA

constant 0.9043(0.1609) 0.9993(0.0049) 0.9948(0.0397) 0.9898(0.0171)

probability 0.8735(0.185) 0.9993(0.0049) 0.9948(0.0386) 0.9865(0.0196)

chi-squared 0.9029(0.1628) 0.9992(0.0054) 0.9936(0.0437) 0.9896(0.0173)

GWAS NA 0.5064(0.0359) 0.987(4e-04) 0.052(0.0034) 0.9993(1e-04)

SNP

BCRA

constant 0.3061(0.0699) 0.9979(0.0027) 0.9174(0.0748) 0.9541(0.0044)

probability 0.2244(0.0581) 0.9983(0.0026) 0.9085(0.0899) 0.9489(0.0036)

chi-squared 0.346(0.0617) 0.9975(0.0034) 0.9154(0.0729) 0.9566(0.0039)

subsample-BCRA

constant 0.6856(0.1784) 0.9787(0.0091) 0.6997(0.0757) 0.9784(0.0118)

probability 0.6891(0.1796) 0.9785(0.0091) 0.698(0.0765) 0.9787(0.0119)

chi-squared 0.6901(0.1769) 0.9784(0.0088) 0.6966(0.0748) 0.9787(0.0118)

GWAS NA 0.5064(0.0359) 0.987(4e-04) 0.052(0.0034) 0.9993(1e-04)
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Table S9: SNP-set (top) and SNP (bottom) level power results: average sensitivities,

specificities, precisions and NPVs for BCRA, subsample-BCRA and GWAS under the wink

scenario. For SNP-level results, because some SNPs are in LD with others, if any SNP are

within the 50kb windows size with the true signal SNP is selected, this signal SNP is also

considered as being identified.

Method Weight SEN SPE PREC NPV

SNP-set

BCRA

constant 0.9933(0.0467) 0.9979(0.0085) 0.986(0.0575) 0.9993(0.005)

probability 0.9867(0.0653) 0.9979(0.0087) 0.9852(0.06) 0.9986(0.007)

chis-quared 0.9953(0.0392) 0.998(0.0084) 0.9865(0.0565) 0.9995(0.0042)

subsample-BCRA

constant 0.9279(0.1452) 0.9993(0.0049) 0.9951(0.0362) 0.9923(0.0155)

probability 0.8509(0.2015) 0.999(0.0059) 0.9915(0.0541) 0.9842(0.0213)

chi-squared 0.897(0.1694) 0.9996(0.0041) 0.9968(0.0291) 0.989(0.018)

GWAS NA 0.5012(0.0365) 0.9872(4e-04) 0.0519(0.0035) 0.9993(1e-04)

SNP

BCRA

constant 0.3086(0.072) 0.9976(0.0038) 0.9105(0.0869) 0.9542(0.0045)

probability 0.2266(0.0604) 0.998(0.0033) 0.8991(0.1032) 0.9491(0.0038)

chi-squared 0.3486(0.064) 0.9974(0.0034) 0.9115(0.0727) 0.9567(0.0041)

subsample-BCRA

constant 0.6873(0.1668) 0.9782(0.0104) 0.6978(0.0808) 0.9785(0.0111)

probability 0.6874(0.1674) 0.9783(0.0103) 0.6982(0.0798) 0.9785(0.0111)

chi-squared 0.6885(0.1661) 0.9781(0.0104) 0.6964(0.0807) 0.9786(0.011)

GWAS NA 0.5012(0.0365) 0.9872(4e-04) 0.0519(0.0035) 0.9993(1e-04)

19



Table S10: Selected SNPs for each super-variant. Each SNP is annotated with its cytogeneic

region and nearest gene.

Super-variant CHR POS SNP A1 A2 MAF REGION GENE TYPE

1 143670851 rs11582530 T C 0.0360 1q21.1 RP6-206I17.1 non-coding intronic
chr1 144

1 143767646 rs148974023 A G 0.0240 1q21.1 PPIAL4G coding nonsyn

1 148544983 rs10158015 G A 0.0131 1q21.1 LOC105371211 intronic

1 148547345 rs58312111 A G 0.0125 1q21.2 RP11-666A1.4 Nearest Upstream

1 148549271 1:148549271 CT C C CT 0.0122 1q21.2 RP11-666A1.4 Nearest Upstream
chr1 149

1 148565416 rs9286338 G A 0.0109 1q21.2 NBPF15 intronic

chr1 160 1 159357634 rs75276010 C T 0.0101 1q23.2 RP11-550P17.5 intronic

chr1 223 1 222398640 rs75141700 C T 0.0182 1q41 RP11-400N13.1 intronic

4 47476361 rs10002676 T C 0.0329 4p12 COMMD8 Nearest Upstream

4 47581697 rs76814271 T C 0.0196 4p12 ATP10D 5upstream, intronicchr4 48

4 47715392 rs115442203 G A 0.0102 4p12 CORIN intronic

chr5 22 5 21476729 rs189661811 G A 0.0130 5p14.3 GUSBP1 intronic

5 22430827 rs66485180 C T 0.1242 5p14.3 CDH12 intronic

5 22447483 rs12660009 C G 0.1250 5p14.3 CDH12 intronic

5 22485972 rs13169464 C T 0.1260 5p14.3 CDH12 intronic

5 22486235 rs34441400 C A 0.1260 5p14.3 CDH12 intronic

5 22486469 rs72744877 G T 0.1261 5p14.3 CDH12 intronic

5 22489161 rs7719756 T C 0.1261 5p14.3 CDH12 intronic

5 22499504 rs7727099 G A 0.1241 5p14.3 CDH12 intronic

5 22506398 rs1417188445 T TC 0.1260 5p14.3 CDH12 intronic

5 22507308 rs10040210 C T 0.1261 5p14.3 CDH12 intronic

5 22516890 rs4320220 T C 0.1257 5p14.3 CDH12 intronic

chr5 23

5 22556156 rs35857048 G T 0.1122 5p14.3 CDH12 intronic

chr8 145 8 144094058 rs557243129 C A 0.0106 8q24.3 RP11-273G15.2 5upstream, non-coding intronic

21 10862846 rs3916645 A T 0.0108 21p11.2 IGHV1OR21-1 coding nonsyn
chr21 11

21 10863087 rs28521368 T G 0.0109 21p11.2 IGHV1OR21-1 Nearest Upstream

22 38006356 rs565047646 CT C 0.0232 22q13.1 GGA1 intronic

22 38805399 rs575324928 T A 0.0116 22q13.1 RP3-449O17.1 Nearest Upstreamchr22 39

22 38954208 rs145125237 T C 0.0112 22q13.1 DMC1 intronic
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Table S11: Association lookups related to psychiatric measurements for selected SNPs

within verified super-variants in the NHGRI-EBI GWAS catalog.

Super-variant SNP CHR POS REGION GENE Phenotype PubMed

chr5 23

rs10040210 5 22507308

5p14.3 CDH12 Bipolar Disorder 19567891

rs12660009 5 22447483

rs13169464 5 22485972

rs34441400 5 22486235

rs7719756 5 22489161

rs7727099 5 22499504

rs4320220 5 22516890

rs66485180 5 22430827

rs72744877 5 22486469

chr22 39

rs145125237 22 38954208

22q13.1

DMC1

Attention Deficit Disorder with Hyperactivity 18821565rs565047646 22 38006356 GGA1

rs575324928 22 38805399 RP3-449O17.1

Table S12: Enriched gene pathways results.

Pathway ID Description Parent(s) p-value Genes Involved SNPs

R-HSA-5578768 Physiological factors Muscle contraction 0.005643 CORIN rs115442203

R-HSA-418990 Adherens junctions interactions Cell-Cell communication 0.015456 CDH12
rs10040210,rs12660009,rs13169464,rs34441400,rs35857048,

rs4320220,rs66485180,rs72744877,rs7719756,rs7727099

R-HSA-8854214 TBC/RABGAPs Vesicle-mediated transport 0.019638 GGA1 rs565047646

R-HSA-936837 Ion transport by P-type ATPases Transport of small molecules 0.025654 ATP10D rs76814271

R-HSA-912446 Meiotic recombination Reproduction;Cell Cycle 0.026116 DMC1 rs145125237

R-HSA-421270 Cell-cell junction organization Cell-Cell communication 0.030261 CDH12
rs10040210,rs12660009,rs13169464,rs34441400,rs35857048,

rs4320220,rs66485180,rs72744877,rs7719756,rs7727099

R-HSA-977225 Amyloid fiber formation Metabolism of proteins 0.036225 GGA1 rs565047646

R-HSA-1500620 Meiosis Cell Cycle;Reproduction 0.040792 DMC1 rs145125237

R-HSA-446728 Cell junction organization Cell-Cell communication 0.042614 CDH12
rs10040210,rs12660009,rs13169464,rs34441400,rs35857048,

rs4320220,rs66485180,rs72744877,rs7719756,rs7727099
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Figure S5: Discovery Phase P-Value Distributions Across 10 Iterations. This figure il-

lustrates the reproducibility of the discovery of super-variants in our UKB White British

ancestry data analysis. Each plot represents a different super-variant, indicated by chromo-

some number and SNP-set identifier (e.g., chr1 144+ is for SNPs on chromosome 1 with BP

ranging from 143MB to 144MB). The y-axis shows the negative log10-transformed p-values,

emphasizing the significance levels across 10 iterative validation processes. Super-variants

that consistently show significant values (above the horizontal threshold line representing

1.84×10−5) demonstrate robustness in our validation strategy.
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Figure S6: The influence of the super-variant on Chromosome 1 set 144 on brain connectiv-

ity. We standardize the elements of the connectivity matrices to have mean 0 and variance

1. Individuals in the combined set are separated into two groups according to the minor

and major variants of the super-variant on Chromosome 1 set 149. The difference matrix

is calculated by subtracting the average connectivity matrix of the group with the major

variant from the average connectivity matrix of the group with the minor variant. For visu-

alization, only differences with absolute values in top 5% are plotted in the chord diagram.

Red (blue) bands indicate the positive (negative) differences, and the widths of the bands

indicate the magnitudes of the differences. The numbers in the outer circle indicate specific

regions in the brain. We provide the axial/sagittal/coronal view of the brain regions with

stronger differences in connectivity, including regions indexed as 3, 4, 10, 26, 31, 39 and 49
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Figure S7: The influence of the super-variant on Chromosome 1 set 169 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 4, 24,

25 and 28.
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Figure S8: The influence of the super-variant on Chromosome 1 set 223 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.

25



3
4

18

24

25
48

Figure S9: The influence of the super-variant on Chromosome 4 set 48 on brain connectivity.

We standardize the elements of the connectivity matrices to have mean 0 and variance 1.

Individuals in the combined set are separated into two groups according to the minor and

major variants of the super-variant on Chromosome 1 set 149. The difference matrix is

calculated by subtracting the average connectivity matrix of the group with the major

variant from the average connectivity matrix of the group with the minor variant. For

visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 3, 4,

18, 24, 25 and 48.
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Figure S10: The influence of the super-variant on Chromosome 5 set 22 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with have stronger differences in connectivity, including regions indexed as 3,

4, 18, 24, 25 and 48.
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Figure S11: The influence of the super-variant on Chromosome 5 set 23 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.
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Figure S12: The influence of the super-variant on Chromosome 8 set 145 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths of

the bands indicate the magnitudes of the differences. The numbers in the outer circle in-

dicate specific regions in the brain.We provide the axial/sagittal/coronal view of the brain

regions with stronger differences in connectivity, including regions indexed as 18, 19, 24,

25, 42 and 48.
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Figure S13: The influence of the super-variant on Chromosome 21 set 11 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 18, 24,

25 and 48.
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Figure S14: The influence of the super-variant on Chromosome 22 set 39 on brain con-

nectivity. We standardize the elements of the connectivity matrices to have mean 0 and

variance 1. Individuals in the combined set are separated into two groups according to the

minor and major variants of the super-variant on Chromosome 1 set 149. The difference

matrix is calculated by subtracting the average connectivity matrix of the group with the

major variant from the average connectivity matrix of the group with the minor variant.

For visualization, only differences with absolute values in top 5% are plotted in the chord

diagram. Red (blue) bands indicate the positive (negative) differences, and the widths

of the bands indicate the magnitudes of the differences. The numbers in the outer circle

indicate specific regions in the brain. We provide the axial/sagittal/coronal view of the

brain regions with stronger differences in connectivity, including regions indexed as 18, 19,

20, 24, 25, 42 and 48.
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Figure S15: (Left) LD r2 values around the central SNP located between 21MB and 22MB

on chromosome 5. The LD block, indicated by blue dashed lines, includes SNPs with r2

values exceeding 0.2. (Right) The negative log10-transformed p-values from 10 iterations

are shown for both LD-based (red) and physical distance-based partitions (blue). Although

none of the p-values achieved statistical significance, the smallest p-value (5.7×10−5) was

close to the significance threshold (1.83×10−5), indicating a consistent trend across both

partitioning methods.
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Method SNP Set Detection Rate (G = 15) Detection Rate (G = 30) Detection Rate (G = 150)

BCRA 1 0.941 1.000 1

BCRA 2 1.000 1.000 0.985

BCRA 3 0.690 0.995 0.94

subsample-BCRA 1 0.586 0.944 0.872

subsample-BCRA 2 0.537 0.992 0.882

subsample-BCRA 3 0.118 0.812 0.390

Table S13: Detection rates for SNP-sets across different numbers of SNP groups (G) in

multi-set simulations with chi-squared weight and B in Fig.2a. For example, when G=30,

SNP Sets 1, 2, and 3 are the true sets containing signals (6 true SNPs each in Sets 1 and

2, and 9 in Set 3). However, when G=15, the true SNPs in Sets 1 and 2 are combined

into a single set. In this case, the detection rate for the original Sets 1 and 2 is calculated

based on whether any of the true SNPs from the original sets were selected across iter-

ations, maintaining consistency in evaluating detection rates across different partitioning

strategies.
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