
Supplementary Material for Network
Varying Coefficient Model

The supplementary material consists of nine sections. Section S.1 introduces six lemmas.
Sections S.2–S.4 demonstrate Theorems 1–3, respectively. Section S.5 presents additional
discussion on Condition (C3) and discusses a related issue on collinearity. Section S.6
investigates the extension of the proposed model to accommodate the heterophilic network.
Section S.7 introduces two competing methods used in our simulations. Sections S.8 and S.9
present additional data description and results in simulation studies and real data analysis,
respectively.

S.1 Useful Lemmas

To prove the theorems in Sections 2 and 3, we introduce the following six useful lemmas.
Lemma 1 is borrowed from Theorem 1.1 of Rudelson and Vershynin (2013), and Lemmas 2
and 3 are borrowed from Lemmas 31 and 28 of Ma et al. (2020), respectively. Then, we
present the proofs of Lemmas 4 and 5. Since Lemma 6 can be demonstrated by employing
similar techniques to those used in proving Lemma 5, its proof is omitted.

Lemma 1. Let ε̃ = (ε̃1, · · · , ε̃n)> ∈ Rn, where the ε̃is for i = 1, · · · , n are independent

and satisfy E (ε̃i) = 0, and suph h
−1/2

{
E
(
|ε̃i|h

)}1/h
< ϕ for a finite positive constant ϕ.

Let U be an arbitrary n × n matrix. Then, for any t > 0, Pr
(
|ε̃>Uε̃− E

(
ε̃>Uε̃

)
| > t

)
≤

2 exp
{
−c1 min{t2ϕ−4‖U‖−2

F , tϕ−2‖U‖−1
2 }
}

, where c1 is a finite positive constant.

Lemma 2. Let A = (aij) ∈ Rn×n be the symmetric adjacency matrix of a random graph
on n nodes, where aij, for any i < j, is independent and aii = 0. Let E (aij) = Pij for all
i 6= j, and Pii ∈ [0, 1]. Then, for any r > 0, there exists a constant CA = CA (r) such that
‖A− P‖2 ≤ CA

√
n with a probability of at least 1− n−r.

Lemma 3. For any arbitrary matrices Z1 and Z2 ∈ Rn×k, we obtain minO:O>O=OO>=Ik ‖Z1−
Z2O‖2

F ≤ 1

2(
√

2−1)λk(Z>
2 Z2)
‖Z1Z

>
1 − Z2Z

>
2 ‖2

F .

Lemma 4. Under Conditions (C1)–(C5), we have

min
O:O>O=OO>=Ik

‖Ẑ − Z0O‖2
F ≤ c̃ :=

2c
′′2(√

2− 1
)
c∗2τ3

,

with a probability of 1−2 exp (−c1n)−n−r, where c∗ = min
{

1/δ, 2−1 exp (M2) / (1 + exp (M2))2}
and c

′′
= max

{√
(2k + 4)CA, 2δ

−1
√

(ϕ2 + 1)σ2
}

. Here, δ is a scale parameter defined in

equation (5), M2 is defined in Condition (C2), σ2 is the variance of the random error, and
c1, CA and r were defined in Lemmas 1 and 2.

Proof: We prove this lemma in two steps. Step I obtains an upper bound of the estimation
error of Θ0, and Step II shows the upper bound of minO:O>O=OO>=Ik ‖Ẑ − Z0O‖2

F .
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Step I: Since
(
Ẑ, α̂, B̂, γ̂

)
= argminZ,α,B,γL

(
Z, α,B, γ

)
, we have that L

(
Ẑ, α̂, B̂, γ̂

)
−

L
(
Z0, α0, B0, γ0

)
≤ 0. Then, employing Taylor’s expansion, we obtain

L
(
Ẑ, α̂, B̂, γ̂

)
− L (Z0, α0, B0, γ0) =

n∑
i=1

(
yi − x>i β̂i

)2

/δ −
n∑
i=1

(
yi − x>i β0,i

)2
/δ

−
n∑
i,j

{
AijΘ̂ij − log

(
1 + exp

(
Θ̂ij

))}
+

n∑
i,j

{AijΘ0,ij − log (1 + exp (Θ0,ij))}

=
1

δ

n∑
i=1

{(
β̂i − β0,i

)>
xix
>
i

(
β̂i − β0,i

)
− 2

(
yi − x>i β0,i

)
x>i

(
β̂i − β0,i

)}
−

n∑
i,j

{
(Aij − P0,ij)

(
Θ̂ij −Θ0,ij

)
− 1

2
P̆ij

(
1− P̆ij

)(
Θ̂ij −Θ0,ij

)2
}
≤ 0,

where P̆ij = 1/
{

1 + exp
(
− Θ̆ij

)}
, and Θ̆ij lies between Θ̂ij and Θ0,ij. Accordingly, we

obtain

1

δ

n∑
i=1

(
β̂i − β0,i

)>
xix
>
i

(
β̂i − β0,i

)
+

n∑
i,j

1

2
P̆ij
(
1− P̆ij

)(
Θ̂ij −Θ0,ij

)2

≤
n∑
i,j

(
Aij − P0,ij

)(
Θ̂ij −Θ0,ij

)
+ 2δ−1

n∑
i=1

(
yi − x>i β0,i

)
x>i
(
β̂i − β0,i

)
.

By Condition (C2), we have 1/ {1 + exp (M2)} ≤ P̆ij ≤ exp (M2) / {1 + exp (M2)}. In
addition, denote c∗ = min

{
1/δ, 2−1 exp (M2) / (1 + exp (M2))2}. We then have

c∗
{
‖Θ̂−Θ0‖2

F +
n∑
i=1

(
β̂i − β0,i

)>
xix
>
i

(
β̂i − β0,i

)}
≤tr
{(
A− P0

)>(
Θ̂−Θ0

)}
+ 2δ−1

n∑
i=1

(
yi − x>i β0,i

)
x>i
(
β̂i − β0,i

)
≤tr
{(
A− P0

)>(
Θ̂−Θ0

)}
+ 2δ−1

( n∑
i=1

ε2i
)1/2
{ n∑

i=1

(
β̂i − β0,i

)>
xix
>
i

(
β̂i − β0,i

)}1/2

.
=I1 + I2,

where εi = yi − x>i β0,i for i = 1, · · · , n. The above result can be used to obtain the bound
of the estimation error of Θ0. We next consider I1 and I2 separately.

After algebraic calculations, the first term I1 satisfies tr
{(
A− P0

)>(
Θ̂−Θ0

)}
≤ ‖A−

P0‖2rank1/2
(
Θ̂ − Θ0

)
‖Θ̂ − Θ0‖F ≤

√
2k + 4‖A − P0‖2‖Θ̂ − Θ0‖F . By Lemma 2, with a

probability of 1− n−r, we have ‖A− P0‖2 ≤ CA
√
n. This, together with the above result,

implies that I1 ≤
√

(2k + 4)nCA‖Θ̂−Θ0‖F , with a probability of 1− n−r.
We next consider the second part I2. According to Lemma 1, with a probability of 1−

2 exp
(
−c1n

)
, we have

√∑n
i=1 ε

2
i ≤

√(
ϕ2 + 1

)
nσ2. DenoteO =

√∑n
i=1

(
β̂i − β0,i

)>
xix>i

(
β̂i − β0,i

)
.

Accordingly, we have I2 ≤ 2δ−1O
√

(ϕ2 + 1)nσ2, with a probability of 1− 2 exp
(
− c1n

)
.
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Combining the above results, we have that, with a probability of 1−2 exp (−c1n)−n−r,

c∗
{
‖Θ̂−Θ0‖2

F+
n∑
i=1

(
β̂i − β0,i

)>
xix
>
i

(
β̂i − β0,i

)}
= c∗

(
‖Θ̂−Θ0‖2

F+O2
)
≤ c

′′√
n
(
‖Θ̂−Θ0‖F+O

)
,

(S.1)
where c

′′
= max

{√
(2k + 4)CA, 2/δ

√
(ϕ2 + 1)σ2

}
. By the Cauchy-Schwarz inequality,

we have ‖Θ̂ − Θ0‖2
F + O2 ≥ (‖Θ̂ − Θ0‖F + O)2/2. This, together with (S.1), leads to

‖Θ̂−Θ0‖F +O ≤ 2c
′′
/c∗
√
n. Accordingly, ‖Θ̂−Θ0‖F ≤ ‖Θ̂−Θ0‖F +O ≤ 2c

′′
/c∗
√
n with

probability 1− 2 exp(−c1n)− n−r, which completes the proof of Step I.
Step II: Define Θ = A + Z, A = α1>n + 1nα

> and Z = ZZ>. After simple calculations,
we obtain that

‖Θ̂−Θ0‖2
F = ‖Â − A0 + Ẑ − Z0|2F = ‖Â − A0‖2

F + ‖Ẑ − Z0‖2
F + 2tr

{(
Â − A0

)(
Ẑ − Z0

)}
.

By the identification condition that JnZ0 = Z0 and JnẐ = Ẑ, we have 1>nZ0 = 1>n Ẑ = 0.
This implies that

tr
{(
Â − A0

)(
Ẑ − Z0

)}
= tr

{(
α̂− α0

)
1>n
(
ẐẐ> − Z0Z

>
0

)
+
(
α̂− α0

)(
ẐẐ> − Z0Z

>
0

)
1n

}
= 0.

Accordingly, ‖Θ̂−Θ0‖2
F = ‖Â−A0‖2

F +‖Ẑ−Z0‖2
F , which indicates that ‖ẐẐ>−Z0Z

>
0 ‖2

F =
‖Ẑ − Z0‖2

F ≤ 4c
′′2/c∗2n with a probability of 1 − 2 exp (−c1n) − n−r. This, together with

Lemma 3, leads to

min
O:O>O=OO>=Ik

‖Ẑ − Z0O‖2
F ≤

1

2
(√

2− 1
)
λk
(
Z>0 Z0

)‖ẐẐ> − Z0Z
>
0 ‖2

F ≤
2c

′′2(√
2− 1

)
c∗2τ3

,

with a probability of 1− 2 exp (−c1n)− n−r, which completes the entire proof.
Before introducing Lemma 5, let Ô = argminO:O>O=OO>=Ik

‖Ẑ − Z0O‖2
F and Z̃ :=

(z̃1, · · · , z̃n)> = ẐÔ>, where z̃i = (z̃i1, · · · , z̃ik)> ∈ Rk and B̃ = B̂Ô>. To ease notation,

we denote W̃ =
(
vec
(
x1z̃

>
1

)
, · · · , vec

(
xnz̃

>
n

))>
and H̃ =

(
W̃ ,X

)
n×p(k+1)

. In addition, let

z0i ∈ Rk be the true latent vector of i and z0,il be the l-th element of z0i.

Lemma 5. Assume that Conditions (C1)–(C5) hold and p < (M2
1 c̃)
−1(
√
τ1 + τ2−

√
τ2)2n,

where c̃ was defined in Lemma 4, M1 was defined in Condition (C1), and τ1 and τ2 were
defined in Condition (C3). We then have that (i) ‖H̃ −H0‖2

F ≤ c̃M2
1p, and (ii) there exist

two finite positive constants τ ∗1 ≤ τ1 and τ ∗2 ≤ τ1 + τ2 such that τ ∗1 < λp(k+1)

(
n−1H̃>H̃

)
≤

λ1

(
n−1H̃>H̃

)
< τ ∗2 with a probability of 1− 2 exp (−c1n)− n−r.

Proof: By Lemma 4, we have

‖H̃ −H0‖2
F =

n∑
i=1

‖
(
vec>(xiz̃

>
i ), x>i

)> − (vec>(xiz
>
0i), x

>
i

)>‖2
2

=
n∑
i=1

p∑
j=1

k∑
l=1

x2
ij (z̃il − z0,il)

2 ≤M2
1p‖Z̃ − Z0‖2

F ≤M2
1pc̃, (S.2)
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which completes Lemma 5 (i).
We next prove Lemma 5 (ii). By the Weyl inequality, we have

λp(k+1)(n
−1H>0 H0)−

∣∣λ1

(
n−1H>0 H0 − n−1H̃>H̃

)∣∣ ≤ λp(k+1)(n
−1H̃>H̃)

≤λ1(n−1H̃>H̃) ≤ λ1(n−1H0H
>
0 ) +

∣∣λ1

(
n−1H>0 H0 − n−1H̃>H̃

)∣∣.
By Condition (C3), it suffices to evaluate the bound of λ1(n−1H>0 H0−n−1H̃>H̃) to complete
the proof. After simple calculations, we have∣∣λ1(n−1H>0 H0 − n−1H̃>H̃)

∣∣ =n−1‖H>0 H0 − H̃>H̃‖2

=n−1‖(H0 − H̃)>H0 + (H0 − H̃)>(H0 − H̃) +H>0 (H0 − H̃)‖2

≤n−1
(
2‖H0‖2‖H0 − H̃‖2 + ‖H0 − H̃‖2

2

)
≤n−1

(
2
√
M2

1pc̃τ2n+M2
1pc̃
)
< τ1,

where the fist inequality is due to the Cauchy-Schwarz inequality, and the last inequality
is by the result of Lemma 5 (i). Thus, there exist 0 < τ ∗1 < τ1 and τ ∗2 < τ1 + τ2 such that
τ ∗1 < λp(k+1)(n

−1H̃>H̃) ≤ λ1(n−1H̃>H̃) < τ ∗2 , with a probability of 1− 2 exp(−c1n)− n−r,
which completes the entire proof.

Before presenting Lemma 6, denote S1 and S2 as the sets of nonzero rows in B0 and
nonzero elements in γ0, respectively, and let s1 and s2 be their corresponding numbers of
elements in S1 and S2. Let xiS1 = (xij : j ∈ S1) be the subvector of xi associated with S1.

Define W o =
(
vec
(
x1S1 ẑ

o>
1

)
, · · · , vec

(
xnS1 ẑ

o>
n

))>
and Ho = (W o, X.S2)n×(s1k+s2), where

Ẑo = (ẑo1, · · · , ẑon)> was defined in (S.9) and X.S2 = (X.j : j ∈ S2) is the submatrix of X
corresponding to S2, where X.j is the j-th column X. In addition, let BS1. = (Bi. : i ∈ S1)
be the submatrix of B, and γS2 = (γj : j ∈ S2) be the vector of γ associated with S2. Denote
θS = (vec>(BS1.), γ

>
S2

)> and HS be the submatrix of H corresponding to θS. Analogously,
θ0,S, H0,S, and H0,(j) can be defined under Z0 and H0.

Lemma 6. Assume that Conditions (C1)–(C5) hold and s1 < (M2
1 c̃)
−1(
√
τ1 + τ2−

√
τ2)2n,

where c̃ was defined in Lemma 4, M1 was defined in Condition (C1), and τ1 and τ2 were
defined in Condition (C3). We then have that (i) ‖Ho − H0,S‖2

F ≤ c̃M2
1 s1, and (ii) there

exist finite positive constants τ
′
1 ≤ τ1 and τ

′
2 ≤ τ1 + τ2 such that τ

′
1 < λp(k+1)(n

−1Ho>Ho) ≤
λ1(n−1Ho>Ho) < τ

′
2 with a probability of 1− 2 exp(−c1n)− n−r.

S.2 Proof of Theorem 1

Let θ̃ = (vec>(B̃), γ̂)>, and denote its corresponding true parameter θ0. To prove this theo-
rem, we first obtain an upper bound of ‖θ̃−θ0‖2

2. Then, using the fact that minO:O>O=O>O=Ik ‖B̂−
B0O‖F ≤ ‖θ̃ − θ0‖2 and ‖γ̂ − γ0‖2 ≤ ‖θ̃ − θ0‖2, we can complete the proof of Theorem
1. Note that θ̃ minimizes the mean squared loss in equation (5) for given Z̃ defined above
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Lemma 5. Then, by the first-order condition, we have θ̃ = (H̃>H̃)−1H̃>Y . Subsequently,

‖θ̃ − θ0‖2 = ‖(H̃>H̃)−1H̃>(H0θ0 + ε)− θ0‖2

= ‖(H̃>H̃)−1H̃>(H0 − H̃)θ0 + (H̃>H̃)−1H̃>ε‖2

≤ ‖(H̃>H̃)−1H̃>(H0 − H̃)θ0‖2 + ‖(H̃>H̃)−1H̃>ε‖2
.
= I1 + I2.

We next evaluate I1 and I2 separately. By Lemma 5 (ii), we have that

I1 ≤ ‖n−1(n−1H̃>H̃)−1H̃>(H0 − H̃)‖2‖θ0‖2

≤ 1

τ ∗1n
‖H̃‖2‖H̃ −H0‖2‖θ0‖2 ≤

√
τ ∗2

τ ∗1
√
n
‖H̃ −H0‖2‖θ0‖2. (S.3)

In addition, by Lemma 5 (i), we obtain that ‖H̃ − H0‖2
F ≤ c̃M2

1p, with a probability of
1 − 2 exp (−c1n) − n−r. This result, together with (S.3) and ‖H̃ − H0‖2 ≤ ‖H̃ − H0‖F ,
leads to

I1 ≤ τ ∗−1
1 n−1/2M1

√
τ ∗2 c̃p‖θ0‖2. (S.4)

As for I2, we have

I2 = ‖n−1(n−1H̃>H̃)−1H̃>ε‖2 ≤
1

τ ∗1n
‖H̃>ε‖2 ≤

1

τ ∗1n

(
‖H̃ −H0‖2‖ε‖2 + ‖H>0 ε‖2

)
, (S.5)

where the first inequality is due to Lemma 5 (ii) and the second inequality follows from the
triangle inequality. As given above, ‖H̃−H0‖2 ≤ ‖H̃−H0‖F ≤

√
c̃M2

1p, with a probability
of 1− 2 exp (−c1n)− n−r. In addition, by Lemma 1, we obtain that

Pr
(
‖ε‖2 ≥

√
(ϕ2 + 1)nσ2

)
≤ 2 exp(−c1n) and (S.6)

Pr
(
‖H>0 ε‖2 ≥

√
(tr(H0H>0 ) + t)σ2

)
≤ 2 exp

[
−c1 min

{
t2ϕ−4‖H0H

>
0 ‖−2

F , tϕ−2‖H0H
>
0 ‖−1

2

} ]
.

Moreover, by Condition (C3), tr
(
H0H

>
0

)
≤ np (k + 1) τ2, ‖H0H

>
0 ‖2

F = n2tr
{(
n−1H>0 H0

)2} ≤
n2p (k + 1) τ 2

2 , and ‖H0H
>
0 ‖2 = nλ1

(
n−1H>0 H0

)
≤ nτ2. Let t = ctnp (k + 1) τ2ϕ

2 for ct > 1.
Then, we obtain

min
{
t2ϕ−4‖H0H

>
0 ‖−2

F , tϕ−2‖H0H
>
0 ‖−1

2

}
≥ ctp (k + 1) ,

which immediately leads to

Pr
(
‖H>0 ε‖2 ≥

√
(ctϕ2 + 1) τ2np (k + 1)σ2

)
≤ 2 exp {−c1ctp (k + 1)} . (S.7)

This, together with (S.5) and (S.6), leads to

I2 ≤ τ ∗−1
1 n−1/2

{
M1

√
pc̃ (ϕ2 + 1)σ2 +

√
(ctϕ2 + 1) τ2p (k + 1)σ2

}
. (S.8)
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Combining the results in (S.4) and (S.8), we obtain that

‖θ̃ − θ0‖2 ≤
1

τ ∗1
√
n

{(√
τ ∗2 ‖θ0‖2 +

√
(ϕ2 + 1)σ2

)
M1

√
pc̃+

√
(ctϕ2 + 1) τ2p (k + 1)σ2

}
with a probability of 1−2 exp {−c1ctp (k + 1)}−2 exp (−c1n)−n−r. Since minO:O>O=O>O=Ik ‖B̂−
B0O‖F ≤ ‖θ̃− θ0‖2 and ‖γ̂− γ0‖2 ≤ ‖θ̃− θ0‖2, we have completed the proof of Theorem 1.

S.3 Proof of Theorem 2

By the definition of T̂ , we have

‖T̂ − T0‖F ≤ ‖Z̃B̃> − Z0B
>
0 ‖F + ‖1nγ̂> − 1nγ

>
0 ‖F

≤ ‖Z̃B̃> − Z0B
>
0 ‖F +

√
n‖γ̂ − γ0‖2

≤ ‖Z̃B̃> − Z0B̃
> + Z0B̃

> − Z0B
>
0 ‖F +

√
n‖γ̂ − γ0‖2

≤ ‖B̃‖F‖Z̃ − Z0‖F + ‖Z0‖F‖B̃ −B0‖F +
√
n‖γ̂ − γ0‖2

.
= Ĭ1 + Ĭ2 + Ĭ3.

We study the above three parts Ĭ1, Ĭ2 and Ĭ3 separately.
By Lemma 4 and the proof of Theorem 1, we obtain

Ĭ1 ≤
(
‖B0‖F + ‖B̃ −B0‖F

)
‖Z̃ − Z0‖F ≤

(
‖B0‖F + Cθ/

√
n
)
c̃1/2

with a probability of 1−2 exp {−c1ctp (k + 1)}−2 exp (−c1n)−n−r, where Cθ was defined in
Theorem 1. In addition, by Condition (C4) and the proof of Theorem 1, we have Ĭ2 ≤

√
τ4Cθ

and Ĭ3 ≤ Cθ, with a probability of 1 − 2 exp {−c1ctp (k + 1)} − 2 exp (−c1n) − n−r. The
above results imply that

‖T̂ − T0‖F ≤
(
‖B0‖F + Cθ/

√
n
)
c̃1/2 + (

√
τ4 + 1)Cθ,

with a probability of 1− 2 exp {−c1ctp (k + 1)} − 2 exp (−c1n)− n−r, which completes the
proof.

S.4 Proof of Theorem 3

To prove this theorem, we first introduce some notation. Let Q (Z, α, θ) represent the
objective function to be minimized in equation (8), and it is

Q (Z, α, θ) = L(Z, α,B, γ) + 2nδ−1

p∑
j=1

{
ρ(‖Bj,·‖2, µ) + ρ(|γj|, µ)

}
,

where θ =
(
vec>(B), γ>

)>
. Define θ(j) = Bj,· and θ(j+p) = γj for j = 1, · · · , p. Let H(j) be

the submatix of H corresponding to θ(j). In addition, define θ̆(j)s such that θ̆(j) = θ(j) if
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j ∈ S and θ̆(j) = 0 otherwise, and θ̆ is the corresponding version of θ. Denote α̂o, θ̂o and

Ẑo as the associated oracle estimators, that is

(Ẑo, α̂o, θ̂o) = argmin(Z,α,θ)∈FQ(Z, α, θ) subject to θ(j) = 0 if j /∈ S. (S.9)

The oracle estimates of θ(j), B, and γ are denoted by θ̂o(j), B̂
o, and γ̂o, respectively, where

j = 1, · · · , 2p. Let Ôo = argminO:O>O=OO>=Ik
‖Ẑo − Z0O‖2

F . For the sake of simplicity,

we assume Ôo = Ik and the orthogonal transformations corresponding to all estimates are
the identity matrix. We next prove Theorem 3 in two steps. In step I, we show that
T̂ o = ẐoB̂o> + 1nγ̂

o> satisfies ‖T̂ o−T0‖F = Op(s). In step II, we prove that (Ẑo, α̂o, θ̂o) is
a local solution of equation (8).

Step I: Employing the similar techniques as those used in the proof of Lemma 4 and
Theorem 1, with a probability not less than 1−2 exp (−c1n)−n−r−2 exp {−c1ct(s1k + s2)},
we have that ‖Ẑo−Z0‖2

F ≤ c̃ and ‖θ̂o−θ0‖2 ≤ C
′

θn
−1/2, where C

′

θ = τ
′
1

−1
[(√

τ
′
2 (‖B0‖2

F + ‖γ0‖2
2)

1/2
+√

(ϕ2 + 1)σ2
)
M1

√
s1c̃+

√
τ2 (ctϕ2 + 1) (s1k + s2)σ2

]
, τ

′
1 and τ

′
2 were defined in Lemma 6,

c̃ was defined in Lemma 4, and ct can be any constant greater than 1. In addition, applying
the similar techniques to those used in proving Theorem 2, together with the above results,
we obtain that

‖T̂ o − T0‖F ≤ ‖ẐoB̂o> − Z0B
>
0 ‖F + ‖1nγ̂o> − 1nγ

>
0 ‖F

≤ ‖ẐoB̂o> − Z0B
>
0 ‖F +

√
n‖γ̂o − γ0‖2

≤ ‖ẐoB̂o> − Z0B̂
o> + Z0B̂

o> − Z0B
>
0 ‖F +

√
n‖γ̂o − γ0‖2

≤ ‖B̂o‖F‖Ẑo − Z0‖F + ‖Z0‖F‖B̂o −B0‖F +
√
n‖γ̂o − γ0‖2

≤
(
‖B0‖F + C

′

θ/
√
n
)
c̃1/2 + (

√
τ4 + 1)C

′

θ,

with probability tending to 1 as {n, s1, s2} → ∞. Since k <∞ by definition, we then have
‖B0‖F = O(

√
s1) and C

′

θ = Op(
√

(s1 + s2)s1), which immediately leads to ‖T̂ o − T0‖F =
Op(s1 + s2) = Op(s). This completes the proof of Step I.

Step II: Define a neighborhood of the true parameters θ0, α0 and Z0 as

Fo = F ∩
{
Z, α, θ : ‖Z − Z0‖2

F ≤ c̃, ‖θ − θ0‖2 ≤ C
′

θn
−1/2

}
.

Let event Ev1 be (Ẑo, α̂o, θ̂o) ∈ Fo. According to the result of Step I, the probability of Ev1

is not less than 1− 2 exp (−c1n)−n−r− 2 exp {−c1ct(s1k + s2)}. To prove that (Ẑo, α̂o, θ̂o)
is a local solution of equation (8), it suffices to show the following two parts:
Part (i). For any (Z, α, θ) ∈ Fo,

Q(Z, α, θ̆) ≥ Q(Ẑo, α̂o, θ̂o) over the event Ev1;

Part (ii). For any (Z, α, θ) ∈ Fo, there exists an event Ev2 with high probability, such
that

Q(Z, α, θ) ≥ Q(Z, α, θ̆) over the event Ev1 ∩ Ev2.
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To prove Part (i), we have that

Q(Z, α, θ̆)−Q(Ẑo, α̂o, θ̂o)

=L(Z, α, θ̆)− L(Ẑo, α̂o, θ̂o) + 2nδ−1

2p∑
j=1

ρ(‖θ̆(j)‖2, µ)− 2nδ−1

p∑
j=1

ρ(‖θ̂o(j)‖2, µ)

.
=M1 + M2, (S.10)

where M1 = L(Z, α, θ̆)−L(Ẑo, α̂o, θ̂o) and M2 = 2nδ−1
∑2p

j=1 ρ(‖θ̆(j)‖2, µ)−2nδ−1
∑p

j=1 ρ(‖θ̂o(j)‖2, µ).
We next study M1 and M2 separately.

By the definition of oracle estimators, we have that M1 ≥ 0. As for M2, for any
j /∈ S, θ̆(j) = θ̂o(j) = 0, which leads to ρ(‖θ̆(j)‖2, µ) = ρ(‖θ̂o(j)‖2, µ) = 0. In addition, for

any j ∈ S, by Condition (C6), ‖θ̆(j)‖2 ≥ ‖θ0,(j)‖2 − ‖θ0,(j) − θ̆(j)‖2 > κµ. As a result,

ρ(‖θ̆(j)‖2, µ) = µ
∫ ‖θ̆(j)‖2

0
(1 − x/(µκ))+dx = µ2κ/2. Analogously, we can show that, over

Ev1, ‖θ̂o(j)‖2 ≥ ‖θ0,(j)‖2 − ‖θ0,(j) − θ̂o(j)‖2 > κµ. Then, we obtain that ρ(‖θ̂o(j)‖2, µ) = µ2κ/2,

which immediately leads to M2 = 0. This, together with M1 ≥ 0 and (S.10), completes the
proof of Part (i).

We next demonstrate Part (ii). Define Sθ =
{
j : θ(j) 6= 0

}
∩Sc. By Taylor’s expansion,

we have that

Q(Z, α, θ)−Q(Z, α, θ̆)

=L(Z, α, θ)− L(Z, α, θ̆) + 2nδ−1
∑
j∈Sθ

ρ
(
‖θ(j)‖2, µ

)
=2
∑
j∈Sθ

(Y −Hθ∗)>H(j)(θ(j) − θ̆(j)) + 2nδ−1ρ̇
(
‖θ∗(j)‖2, µ

) θ∗(j)
‖θ∗(j)‖2

(θ(j) − θ̆(j))

=2
∑
j∈Sθ

(Y −Hθ∗)>H(j)(θ(j) − θ̆(j)) + 2nδ−1
∑
j∈Sθ

ρ̇
(
‖θ∗(j)‖2, µ,

)
‖θ(j) − θ̆(j)‖2

.
=2M̄1 + 2M̄2,

where θ∗ = ιθ + (1− ι)θ̆ for some ι ∈ (0, 1), and ρ̇(·) is the derivative function of ρ(·).
We evaluate M̄1 and M̄2 separately. By the definition of MCP, ρ̇(x, µ) ≥ 0 for any

x > 0. This implies that M̄2 ≥ 0. Furthermore, we obtain

M̄2 = nδ−1
∑
j∈Sθ

ρ̇
(
‖θ∗(j)‖2, µ

)
‖θ(j) − θ̆(j)‖2 = nδ−1

∑
j∈Sθ

µ
(
1− ‖θ∗(j)‖2 (µκ)−1)

+
‖θ(j) − θ̆(j)‖2.

Note that θ∗ = ιθ + (1 − ι)θ̆ for some ι ∈ (0, 1), which leads to ‖θ∗(j)‖2 ≤ ι‖θ(j)‖2 + (1 −
ι)‖θ̆(j)‖2. By the definition of θ̆, we have ‖θ̆(j)‖2 ≤ ‖θ(j)‖2. Thus, ‖θ∗(j)‖2 ≤ ‖θ(j)‖2. For

j ∈ Sθ, we have θ0,(j) = 0. For any (Z, α, θ) ∈ Fo, we have maxj∈Sθ ‖θ(j)‖2 = maxj∈Sθ ‖θ(j)−
θ0(j)‖2 ≤ ‖θ − θ0‖2 ≤ C

′

θn
−1/2. Thus, maxj∈Sθ ‖θ∗(j)‖2 ≤ C

′

θn
−1/2. By Condition (C6), we

can obtain C
′

θn
−1/2 ≤ Cµµκ and Cµ < 1. Accordingly, we have

M̄2 ≥ (n/δ) (1− Cµ)µ
∑
j∈Sθ

‖θ(j) − θ̆(j)‖2 > 0.
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As for M̄1, we employ the Hölding inequality and obtain that

|M̄1| ≤
∑
j∈Sθ

‖H>(j) (Y −Hθ∗) ‖2‖θ(j) − θ̆(j)‖2

≤
∑
j∈Sθ

‖H>(j) (ε+H0θ0 −Hθ0 +Hθ0 −Hθ∗) ‖2‖θ(j) − θ̆(j)‖2

≤
∑
j∈Sθ

(
‖H>(j)ε‖2 + ‖H(j)‖2‖H0,S −HS‖2‖θ0,S‖2 + ‖H(j)‖2‖H‖2‖θ0 − θ∗‖2

)
‖θ(j) − θ̆(j)‖2.

Since (Z, α, θ) ∈ Fo, we have

max
j∈Sθ
‖H(j) −H0,(j)‖2 ≤ max

j∈Sθ

{ n∑
i=1

k∑
l=1

x2
ij(zil − z0,il)

2
}1/2

≤M1‖Z − Z0‖F ≤M1c̃
1/2.

In addition, Condition (C3) implies that maxj ‖H0,(j)‖2 ≤
√
τ2n. Accordingly, maxj ‖H(j)‖2 ≤

maxj ‖H0,(j) −H(j)‖2 + maxj ‖H0,(j)‖2 ≤M1c̃
1/2 +

√
τ2n. Analogously, we obtain that

‖H0,S −HS‖2 ≤M1

√
s1c̃, and ‖H‖2 ≤M1

√
pc̃+

√
τ2n.

Combining the above results, we then have

|M̄1| ≤
∑
j∈Sθ

[
‖H>(j)ε‖2 +

(√
τ2n+M1c̃

1/2
){

M1

√
s1c̃‖θ0‖2 + n−1/2C

′

θ(M1

√
pc̃+

√
τ2n)

}]
‖θ(j) − θ̆(j)‖2

=
∑
j∈Sθ

Ξj‖θ(j) − θ̆(j)‖2.

Subsequently, we define the event Ev2 = {maxj∈Sθ Jj ≤ µ̃σ}, where Jj = ‖H>(j)ε‖2 and

µ̃ = (n/δ)(1−Cµ)µ/σ − (
√
τ2n+M1c̃

1/2)
{
M1
√
s1c̃

1/2‖θ0‖2 + n−1/2C
′

θ(M1

√
pc̃+

√
τ2n)

}
/σ

was defined in Condition (C7). Over Ev2,

M̄1 + M̄2 ≥ M̄2 − |M̄1| ≥
∑
j∈Sθ

((n/δ) (1− Cµ)µ− Ξj) ‖θ(j) − θ̆(j)‖2 ≥ 0.

Accordingly, over Ev2 ∩ Ev1, we have that Q(Z, α, θ) ≥ Q(Z, α, θ̆), which completes the
proof of Part (ii).

We finally show the bound of the probability of Ev2. For Jj, we have

Pr(max
j∈Sθ

Jj > µ̃σ) ≤Pr
[
max
j∈Sθ

{
‖H(j) −H0,(j)‖2‖ε‖2 + ‖H>0,(j)ε‖2

}
≥ µ̃σ

]
≤Pr

[
max
j∈Sθ
‖H(j) −H0,(j)‖2‖ε‖2 ≥ 2−1µ̃σ

]
+ Pr

[
max
j∈Sθ
‖H>0,(j)ε‖2 ≥ 2−1µ̃σ

]
. (S.11)
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For the first part of (S.11), we have

Pr
[

max
j∈Sθ
‖H(j) −H0,(j)‖2‖ε‖2 ≥ 2−1µ̃σ

]
≤Pr

{
‖ε‖2 > (2M1c̃

1/2)−1µ̃σ
}

=Pr
{
‖ε/σ‖2

2 − n > (2M1c̃
1/2)−2µ̃2 − n

}
.

Let t = (2M1c̃
1/2)−2µ̃2 − n in Lemma 1. Then, by Lemma 1, we have

Pr
{
‖ε‖2 > (2M1c̃

1/2)−1µ̃σ
}
≤ 2 exp

{
− c1 min(t2ϕ−4n−1, tϕ−2)

}
.

Note that µ̃2 > 4M2
1 c̃ (ϕ2 + 1)n, we then have Pr

{
‖ε‖2 > (2M1c̃

1/2)−1µ̃σ
}
≤ 2 exp{−c1n},

which immediately leads to

Pr
[

max
j∈Sθ
‖H(j) −H0,(j)‖2‖ε‖2 ≥ 2−1µ̃σ

]
≤ 2 exp{−c1n}. (S.12)

For the second part of (S.11), we have

Pr
[

max
j∈Sθ
‖H>0,(j)ε‖2 ≥ 1/2µ̃σ

]
≤

p∑
j=1

Pr
(
ε>H0,(j)H

>
0,(j)ε ≥ 1/4µ̃2σ2

)
.

By Condition (C3), we have that ‖H0,(j)H
>
0,(j)‖2

F ≤ n2kτ 2
2 , ‖H0,(j)H

>
0,(j)‖2 ≤ nτ2, and

tr
(
H0,(j)H

>
0,(j)

)
≤ knτ2. Then, we obtain

Pr
[(
ε>/σ

)
H0,(j)H

>
0,(j) (ε/σ)− tr

(
H0,(j)H

>
0,(j)

)
≥ 1/4µ̃2 − tr

(
H0,(j)H

>
0,(j)

)]
≤Pr

[(
ε>/σ

)
H0,(j)H

>
0,(j) (ε/σ)− tr

(
H0,(j)H

>
0,(j)

)
≥ 1/4µ̃2 − kτ2n

]
.

Set t = µ̃2/4− kτ2n in Lemma 1. Then, by Lemma 1, we have

Pr
[(
ε>/σ

)
H0,(j)H

>
0,(j) (ε/σ)− tr

(
H0,(j)H

>
0,(j)

)
≥ 1/4µ̃2 − kτ2n

]
≤2 exp

{
− c1 min

(
t2ϕ−4‖H0,(j)H

>
0,(j)‖−2

F , tϕ−2‖H0,(j)H
>
0,(j)‖−1

2

)}
.

Since µ̃2 > 4 (2ϕ2 log p/(c1k) + 1) kτ2n, we then have that

Pr
[

max
j∈Sθ
‖H>0,(j)ε‖2 ≥ µ̃σ/2

]
≤ 2p exp

{
− c1(

1

4
µ̃2 − kτ2n)ϕ−2(nτ2)−1

}
≤ 2p−1. (S.13)

By (S.11), (S.12) and (S.13), we have that the probability of Ev2 is not less than 1 −
2 exp(−c1n) − 2p−1, and the probability of Ev1 ∩ Ev2 is not less than 1 − 4 exp(−c1n) −
n−r − 2 exp{−c1ct(s1k+ s2)}− 2p−1. Combining the above results, we have completed the
entire proof.
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S.5 Additional discussion on Condition (C3)

To ensure the identifiability of the regression model, we introduce λp(k+1)

(
n−1H>0 H0

)
> τ1

in the first part of Condition (C3), where τ1 is a finite positive constant. This section
establishes the relationship between Condition (C3) and the collinearity between X and
Z0.

Define z̆i = (1, z>0i)
>. After straightforward calculations, we have λp(k+1)

(
n−1H>0 H0

)
>

τ1, which is equivalent to λp(k+1)

{
1
n

∑n
i=1

(
(xix

>
i )⊗ (z̆iz̆

>
i )
)}

> τ1. For the sake of simplic-
ity and to illustrate collinearity, we assume that (xi, z0i) are independent and identically
distributed random vectors. To characterize the dependence between xi and z0i, we assume
that

xi = fz (z0i) + ξi, for i = 1, · · · , n, (S.14)

where fz : Rk → Rp is an unknown function, ξi = (ξi1, · · · , ξip)> has mean zero and
covariance Σξ, and the ξis are independent of the z0is. Model (S.14) includes the following
two special cases.

Case (a): If fz (z0i) = Czz0i for some matrix Cz ∈ Rp×k, then model (S.14) is the same
as that in Binkiewicz et al. (2017) except that z0i is the location of node i rather than the
membership vector.

Case (b): Consider the case that there are repeated measures in the nodal covariates
and latent positions. Let vi ∈ Rl be the repeated measure with l ≤ k. Assume that z0i =
Czvi + ξzi and xi = Cxvi + ξxi, where Cz ∈ Rk×l and Cx ∈ Rp×l are two matrices. Without
loss of generality, we assume that the first l rows of Cz, Cz,1:l,., are invertible. Denote
Cv = (C−1

z,1:l,., 0) ∈ Rl×k. We then have xi = CxCvz0i−CxCvξzi + ξxi . Let fz(z0i) = CxCvz0i

and ξi = −CxCvξzi + ξxi . As a result, Case (b) is a special case of (S.14).
By the law of large numbers, 1

n

∑n
i=1

{(
xix
>
i

)
⊗
(
z̆iz̆
>
i

)}
converges to E

{(
xix
>
i ⊗

(
z̆iz̆
>
i

)})
.

After algebraic simplification, we obtain that

E
{

(xix
>
i )⊗ (z̆iz̆

>
i )
}

=E
{

(fz(z0i)fz(z0i)
>)⊗ (z̆iz̆

>
i )
}

+ E
{

(f(z0i)ξ
>
i )⊗ (z̆iz̆

>
i )
}

+ E
{

(ξif(z0i)
>)⊗ (z̆iz̆

>
i )
}

+ E
{

(ξiξ
>
i )⊗ (z̆iz̆

>
i )
}

=E
{

(f(z0i)f(z0i)
>)⊗ (z̆iz̆

>
i )
}

+ E
{

(ξiξ
>
i )⊗ (z̆iz̆

>
i )
}

=E
{

(f(z0i)f(z0i)
>)⊗ (z̆iz̆

>
i )
}

+ Σξ ⊗ Σ̃,

where

Σ̃ =

(
1 E(z>0i)

E(z0i) E(z0iz
>
0i)

)
.

Since E({(f(z0i)f(z0i)
>)⊗ (z̆iz̆

>
i )}) is positive semidefinite, the assumption that Σξ and Σ̃

are positive definite is sufficient to ensure the positive definiteness of E({(xix>i )⊗ (z̆iz̆
>
i )}).

As a result, this assumption is sufficient to ensure the first part of Condition (C3), which
indicates that X cannot be fully explained by the latent vector Z0.

S.6 Heterophilic Networks

As suggested by an anonymous referee, the proposed model can be extended to accommo-
date heterophilic networks. Suppose that the network is generated via the following model
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with indefinite inner products:

logit (Pij) := Θij = αi + αj + z>i Ik1,k2zj, (S.15)

where αi, αj, zi, and zj are defined as those in equation (1) of the manuscript, and Ik1,k2 =
diag (Ik1 ,−Ik2) for some constants k1 and k2 with k1 + k2 = k. Equation (S.15) is similar
to the model of Rubin-Delanchy et al. (2022), although they considered Pij rather than
logit(Pij) in (S.15). This model indicates that the probability of nodes i and j being
connected increases along with the similarity of the first k1 elements of zi and zj (i.e., the
inner product of zi and zj), and decreases along with the similarity of their last k2 elements.

We next adopt model (2) in the manuscript to construct the relationship between yi
and xi as follows:

yi = x>i βi + εi = x>i (Bzi + γ) + εi (S.16)

for i = 1, · · · , n, where zi was defined in Model (S.15), B is a factor-loading matrix
related to zi, γ is a coefficient vector that does not change with the “locations”, and
T = (β1, · · · , βn)> ∈ Rn×p is the regression coefficient matrix. To ensure identifiability
of models (S.15) and (S.16), we assume that (In − Jn)Z = 0. Accordingly, Z is identifi-
able up to an indefinite orthogonal transformation. This means the probability matrix of
the network remains the same if Z is replaced with ZM , where MIk1,k2M

> = Ik1,k2 and
M ∈ Rk×k. Since the column space of (1n, Z) and (1n, ZM) are the same, the indefinite
orthogonal transformation does not affect the regression coefficient matrix. As a result,
the pairs (Z,B) and (ZM,BM−1>) yield identical probability and regression coefficient
matrices. Consequently, the estimation procedure proposed in Section 2.3 is applicable
for models (S.15) and (S.16). Please note that the i-th row of B and that of BM−1> are
different under the l2 norm. Thus, the variable selection procedure proposed in the paper is
not suitable for this model. Additional conditions are required to ensure the applicability
of of variable selections. That needs further investigation.

As for the interpretation of coefficients, we note that the coefficient matrix T depends
on three components, i.e., zis, B and γ. The latent variables zis can be viewed as the
unobservable “location” of the nodes, and they affect the network connectivity in different
ways. For example, the similarity of the first k1 variables promotes connections between the
nodes, while the others deter them. In addition, the factor-loading matrix B characterizes
the relationship between regression coefficients βi and latent “locations” zis. If B 6= 0,
the regression coefficients depend on latent “locations”. Note that the difference between
βi1j and βi2j is |Bj,· (zi1 − zi2) |, where B>j,· is the j-th row of B. If Bj,· = 0, there is no
interaction between the network locations and the j-th covariate. Lastly, γ is a coefficient
vector that does not change with latent “locations”, and it is a classical homogeneous
regression coefficient vector when B = 0.

S.7 Introduction of Two Competing Methods

The finite mixture model and network lasso method have been used for comparison in
our simulation studies. This section presents a brief introduction of these two competing
methods.

The finite mixture model (Leisch, 2004) assumes that the data consists of K groups
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with homogeneous regression coefficients within each group. The density function of yi
given xi is expressed as:

f (yi|xi) =
K∑
k=1

πkN(x>i βk, σ
2
k), (S.17)

where πk is the probability that yi comes from the k-th group for k = 1, · · · , K, and βk
and σ2

k are the regression coefficient vector and the error variance, respectively, for the
k-th group. The parameters including πk, βk and σ2

k for k = 1, · · · , K in model (S.17)
are estimated using the R package “flexmix”. The number of groups K is selected via the
BIC-type criterion.

The network lasso method (Hallac et al., 2015) assumes that

yi = x>i βi + εi, for i = 1, · · · , n, (S.18)

where βi is the coefficient vector, and εi is the random noise with mean 0 and variance σ2.
The coefficient matrix β = (β1, · · · , βn)> is estimated by

β̂ = argminβi,i=1,··· ,n

n∑
i=1

(yi − x>i βi)2 + µl
∑
i<j

aij‖βi − βj‖2,

where β̂ = (β̂1, · · · , β̂n)>, µl is a tuning parameter and it can be chosen by the BIC criterion,
‖·‖2 is the `2 norm function, and aij is the (i, j)-th element in the adjacency matrix A. The

alternating direction method of multipliers (ADMM) algorithm is employed to calculate β̂.

S.8 Additional Simulation Results

S.8.1 Additional results based on the settings in Section 4

This subsection presents additional simulation results based on those settings described in
Section 4. Tables S.1-S.2 present the results of Numk and CT when the random errors
are normally distributed, where Numk is the value of k̂ selected by BIC in (6), and CT
is the proportion of the true value of k being selected. These two tables indicate that all
Numks are equal to 2 and all CTs are 1. As a result, the BIC in (6) can consistently select
the dimension of the latent space. Tables S.3-S.8 report the simulation results when the
random errors are generated from a mixture normal distribution, while Tables S.9–S.14
report the simulation results when the random errors are simulated from the standardized
exponential distribution. The results in Tables S.3-S.14 are qualitatively similar to those
in Tables 1-4 and Tables S.1-S.2. This suggests that our method is robust against different
types of error distributions.
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Table S.1: The selection of latent space dimension under the low-dimensional setting with
k = 2 and standard normal random errors. The upper panel displays the means of the
Numks along with the standard deviations in parentheses, while the lower panel displays
CT.

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
Numk

5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.2: The selection of latent space dimension under the high-dimensional setting with
k = 2 and standard normal random errors. The upper panel displays the means of the
Numks along with the standard deviations in parentheses, while the lower panel displays
CT.

p = 50 p = 100
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

n SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Numk

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table S.3: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the low-dimensional setting with k = 2 and mixture normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)

z0,ij ∼ N (0, 4)
5 300 0.040 0.052 0.867 0.575 0.879 0.025 0.050 1.022 0.525 1.004

(0.010) (0.010) (0.040) (0.377) (0.039) (0.005) (0.007) (0.035) (0.192) (0.036)
500 0.033 0.044 0.849 0.478 0.870 0.022 0.044 0.995 0.475 0.990

(0.005) (0.005) (0.023) (0.113) (0.022) (0.004) (0.004) (0.020) (0.180) (0.026)
800 0.023 0.027 0.824 0.380 0.844 0.018 0.028 0.955 0.344 0.973

(0.003) (0.003) (0.013) (0.044) (0.013) (0.002) (0.002) (0.016) (0.049) (0.015)
10 300 0.042 0.065 0.908 1.011 0.924 0.028 0.063 1.098 1.045 1.085

(0.009) (0.011) (0.060) (0.620) (0.065) (0.005) (0.011) (0.063) (0.773) (0.068)
500 0.032 0.050 0.859 0.658 0.885 0.020 0.053 1.032 0.729 1.031

(0.006) (0.007) (0.040) (0.376) (0.040) (0.004) (0.005) (0.038) (0.356) (0.047)
800 0.022 0.030 0.845 0.435 0.867 0.015 0.032 0.978 0.459 1.002

(0.003) (0.003) (0.022) (0.084) (0.022) (0.002) (0.003) (0.025) (0.090) (0.025)
z0,ij ∼ U (−3, 3)

5 300 0.027 0.030 0.823 0.483 0.840 0.018 0.024 1.017 0.449 0.997
(0.009) (0.009) (0.043) (0.153) (0.030) (0.004) (0.004) (0.043) (0.086) (0.048)

500 0.017 0.020 0.788 0.413 0.826 0.011 0.016 0.953 0.353 0.974
(0.005) (0.005) (0.019) (0.071) (0.018) (0.002) (0.002) (0.031) (0.048) (0.026)

800 0.012 0.013 0.786 0.366 0.812 0.008 0.011 0.931 0.307 0.961
(0.003) (0.003) (0.016) (0.048) (0.017) (0.001) (0.001) (0.017) (0.042) (0.017)

10 300 0.032 0.036 0.869 0.712 0.885 0.019 0.028 1.098 0.900 1.080
(0.007) (0.008) (0.057) (0.301) (0.056) (0.004) (0.005) (0.075) (0.810) (0.084)

500 0.018 0.023 0.811 0.457 0.854 0.011 0.018 0.980 0.485 1.018
(0.004) (0.003) (0.035) (0.095) (0.035) (0.002) (0.002) (0.038) (0.182) (0.044)

800 0.012 0.015 0.796 0.376 0.825 0.008 0.013 0.946 0.375 0.981
(0.002) (0.002) (0.022) (0.064) (0.022) (0.001) (0.001) (0.023) (0.052) (0.023)
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Table S.4: The means of the MEγs and the MEBs along with the standard deviations in
parentheses, which are obtained under the low-dimensional setting with k = 2 and mixture
normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
MEγ MEB MEγ MEB

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4)

5 300 0.026 0.030 0.037 0.038 0.032 0.065 0.023 0.029
(0.021) (0.022) (0.013) (0.016) (0.028) (0.049) (0.006) (0.010)

500 0.018 0.021 0.032 0.037 0.022 0.042 0.021 0.032
(0.012) (0.014) (0.008) (0.012) (0.019) (0.031) (0.004) (0.009)

800 0.010 0.011 0.023 0.025 0.013 0.019 0.017 0.021
(0.007) (0.007) (0.006) (0.007) (0.011) (0.016) (0.003) (0.005)

10 300 0.036 0.053 0.040 0.052 0.051 0.110 0.038 0.044
(0.022) (0.030) (0.010) (0.016) (0.027) (0.054) (0.013) (0.017)

500 0.019 0.026 0.034 0.046 0.031 0.083 0.019 0.039
(0.012) (0.014) (0.009) (0.014) (0.020) (0.045) (0.004) (0.011)

800 0.010 0.013 0.022 0.027 0.016 0.036 0.015 0.026
(0.006) (0.007) (0.004) (0.006) (0.009) (0.022) (0.002) (0.005)

z0,ij ∼ U (−3, 3)
5 300 0.024 0.025 0.017 0.016 0.030 0.036 0.010 0.008

(0.021) (0.021) (0.010) (0.010) (0.023) (0.027) (0.005) (0.004)
500 0.013 0.013 0.014 0.014 0.016 0.019 0.007 0.008

(0.010) (0.010) (0.007) (0.007) (0.013) (0.015) (0.002) (0.003)
800 0.008 0.008 0.009 0.009 0.010 0.012 0.005 0.006

(0.007) (0.007) (0.003) (0.003) (0.008) (0.009) (0.001) (0.002)
10 300 0.031 0.035 0.023 0.022 0.041 0.059 0.020 0.011

(0.017) (0.018) (0.008) (0.008) (0.023) (0.030) (0.007) (0.004)
500 0.015 0.017 0.016 0.018 0.019 0.030 0.010 0.010

(0.008) (0.009) (0.005) (0.005) (0.011) (0.016) (0.004) (0.003)
800 0.009 0.010 0.010 0.011 0.012 0.016 0.005 0.007

(0.004) (0.005) (0.003) (0.003) (0.006) (0.009) (0.001) (0.002)

Table S.5: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the high-dimensional setting with k = 2 and mixture normal
random errors.

p n SNVC TSNVC NVCM TNVC SNVC TSNVC NVCM TNVC
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

50 500 0.052 0.100 0.113 0.176 0.028 0.033 0.116 0.122
(0.014) (0.021) (0.015) (0.033) (0.011) (0.012) (0.025) (0.025)

800 0.036 0.049 0.084 0.107 0.016 0.018 0.059 0.062
(0.006) (0.010) (0.011) (0.016) (0.004) (0.004) (0.010) (0.010)

100 500 0.060 0.111 0.389 0.507 0.029 0.036 0.431 0.389
(0.018) (0.029) (0.058) (0.083) (0.015) (0.016) (0.074) (0.066)

800 0.037 0.051 0.183 0.225 0.014 0.017 0.126 0.133
(0.007) (0.012) (0.021) (0.028) (0.003) (0.004) (0.016) (0.016)
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Table S.6: The means of the four model selection measures (TPRB, TPRγ, FDRB and
FDRγ) along with the standard deviations in parentheses, which are obtained under the
high-dimensional setting with mixture normal random errors.

p n TPRB TPRγ FDRB FDRγ

SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
z0,ij ∼ N (0, 4)

50 500 1.000 1.000 0.936 0.769 0.102 0.094 0.022 0.029
(0.000) (0.000) (0.094) (0.145) (0.099) (0.111) (0.046) (0.056)

800 1.000 1.000 0.997 0.985 0.043 0.075 0.006 0.010
(0.000) (0.000) (0.017) (0.044) (0.060) (0.081) (0.024) (0.029)

100 500 1.000 0.999 0.919 0.767 0.114 0.130 0.023 0.033
(0.000) (0.010) (0.106) (0.142) (0.113) (0.130) (0.049) (0.063)

800 1.000 1.000 0.995 0.986 0.065 0.114 0.007 0.017
(0.000) (0.000) (0.022) (0.045) (0.079) (0.110) (0.027) (0.041)

z0,ij ∼ U (−3, 3)
50 500 1.000 1.000 0.988 0.984 0.035 0.060 0.013 0.021

(0.000) (0.000) (0.038) (0.042) (0.055) (0.072) (0.034) (0.043)
800 1.000 1.000 0.999 1.000 0.005 0.020 0.003 0.006

(0.000) (0.000) (0.010) (0.000) (0.022) (0.042) (0.021) (0.023)
100 500 1.000 1.000 0.980 0.970 0.045 0.075 0.022 0.035

(0.000) (0.000) (0.055) (0.064) (0.071) (0.086) (0.046) (0.057)
800 1.000 1.000 1.000 0.999 0.012 0.025 0.003 0.008

(0.000) (0.000) (0.000) (0.010) (0.031) (0.049) (0.021) (0.026)
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Table S.7: The selection of latent space dimension under the low-dimensional setting with
k = 2 and mixture normal random errors. The upper panel displays the means of the
Numks along with the standard deviations in parentheses, while the lower panel displays
CT.

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
Numk

5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.8: The selection of latent space dimension under the high-dimensional setting with
k = 2 and mixture normal random errors. The upper panel displays the means of the
Numks along with the standard deviations in parentheses, while the lower panel displays
CT.

p = 50 p = 100
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

n SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Numk

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table S.9: The means of the MET s along with the standard deviations in parentheses, which
are obtained under the low-dimensional setting with k = 2 and standardized exponential
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)

z0,ij ∼ N (0, 4)
5 300 0.040 0.052 0.864 0.538 0.877 0.025 0.051 1.022 0.529 1.005

(0.008) (0.009) (0.042) (0.150) (0.037) (0.004) (0.006) (0.037) (0.183) (0.038)
500 0.032 0.043 0.847 0.493 0.869 0.022 0.044 0.994 0.482 0.990

(0.004) (0.005) (0.021) (0.139) (0.021) (0.002) (0.004) (0.019) (0.153) (0.025)
800 0.023 0.027 0.824 0.388 0.843 0.018 0.028 0.955 0.345 0.972

(0.002) (0.003) (0.012) (0.043) (0.013) (0.001) (0.002) (0.016) (0.041) (0.015)
10 300 0.045 0.067 0.912 0.975 0.926 0.028 0.064 1.098 1.334 1.083

(0.009) (0.012) (0.062) (0.556) (0.067) (0.006) (0.010) (0.063) (1.023) (0.067)
500 0.033 0.051 0.859 0.647 0.885 0.020 0.052 1.033 0.683 1.030

(0.005) (0.007) (0.039) (0.270) (0.039) (0.003) (0.005) (0.037) (0.248) (0.046)
800 0.023 0.030 0.844 0.447 0.866 0.015 0.032 0.978 0.454 1.002

(0.003) (0.003) (0.022) (0.093) (0.022) (0.001) (0.003) (0.025) (0.083) (0.025)
z0,ij ∼ U (−3, 3)

5 300 0.028 0.030 0.827 0.475 0.845 0.017 0.023 1.016 0.455 0.996
(0.007) (0.007) (0.044) (0.096) (0.036) (0.003) (0.004) (0.044) (0.142) (0.047)

500 0.018 0.020 0.788 0.412 0.826 0.011 0.016 0.951 0.347 0.974
(0.004) (0.004) (0.018) (0.064) (0.017) (0.001) (0.002) (0.032) (0.042) (0.026)

800 0.012 0.013 0.786 0.365 0.812 0.008 0.011 0.931 0.306 0.961
(0.002) (0.002) (0.017) (0.030) (0.017) (0.001) (0.001) (0.019) (0.034) (0.018)

10 300 0.032 0.036 0.867 0.748 0.883 0.020 0.029 1.099 0.882 1.082
(0.007) (0.008) (0.056) (0.571) (0.053) (0.003) (0.005) (0.078) (1.030) (0.088)

500 0.019 0.022 0.810 0.477 0.854 0.011 0.019 0.980 0.506 1.017
(0.004) (0.004) (0.032) (0.143) (0.032) (0.002) (0.002) (0.036) (0.208) (0.043)

800 0.013 0.015 0.796 0.384 0.825 0.008 0.013 0.946 0.379 0.981
(0.002) (0.002) (0.023) (0.088) (0.022) (0.001) (0.001) (0.023) (0.051) (0.023)
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Table S.10: The means of the MEγs and the MEBs along with the standard deviations
in parentheses, which are obtained under the low-dimensional setting with k = 2 and
standardized exponential random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
MEγ MEB MEγ MEB

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4)

5 300 0.029 0.033 0.037 0.038 0.035 0.067 0.023 0.029
(0.021) (0.023) (0.013) (0.014) (0.024) (0.047) (0.006) (0.011)

500 0.016 0.020 0.032 0.037 0.020 0.041 0.021 0.032
(0.012) (0.014) (0.007) (0.012) (0.013) (0.027) (0.004) (0.009)

800 0.008 0.009 0.023 0.025 0.012 0.017 0.016 0.021
(0.006) (0.007) (0.006) (0.007) (0.008) (0.013) (0.003) (0.005)

10 300 0.038 0.053 0.045 0.056 0.055 0.120 0.036 0.044
(0.021) (0.030) (0.013) (0.018) (0.033) (0.055) (0.013) (0.016)

500 0.019 0.026 0.034 0.047 0.028 0.075 0.019 0.039
(0.009) (0.013) (0.007) (0.015) (0.017) (0.042) (0.003) (0.011)

800 0.012 0.015 0.023 0.027 0.017 0.034 0.015 0.025
(0.007) (0.009) (0.004) (0.006) (0.008) (0.020) (0.002) (0.006)

z0,ij ∼ U (−3, 3)
5 300 0.024 0.026 0.018 0.017 0.030 0.036 0.010 0.007

(0.016) (0.017) (0.008) (0.008) (0.022) (0.028) (0.005) (0.004)
500 0.013 0.013 0.014 0.014 0.015 0.017 0.007 0.009

(0.010) (0.011) (0.005) (0.005) (0.009) (0.011) (0.002) (0.003)
800 0.009 0.009 0.009 0.009 0.010 0.011 0.005 0.006

(0.006) (0.006) (0.003) (0.003) (0.007) (0.009) (0.001) (0.002)
10 300 0.029 0.034 0.024 0.023 0.045 0.068 0.020 0.012

(0.016) (0.019) (0.008) (0.009) (0.023) (0.034) (0.008) (0.005)
500 0.015 0.016 0.016 0.018 0.020 0.030 0.009 0.010

(0.010) (0.011) (0.005) (0.005) (0.010) (0.015) (0.003) (0.003)
800 0.010 0.011 0.010 0.011 0.011 0.015 0.005 0.007

(0.007) (0.007) (0.002) (0.003) (0.006) (0.008) (0.001) (0.002)

Table S.11: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the high-dimensional setting with k = 2 and standardized expo-
nential random errors.

p n SNVC TSNVC NVCM TNVC SNVC TSNVC NVCM TNVC
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

50 500 0.044 0.076 0.120 0.162 0.025 0.033 0.104 0.113
(0.015) (0.022) (0.017) (0.022) (0.007) (0.011) (0.020) (0.019)

800 0.029 0.039 0.074 0.093 0.014 0.016 0.052 0.056
(0.004) (0.008) (0.010) (0.013) (0.002) (0.002) (0.007) (0.007)

100 500 0.049 0.091 0.398 0.479 0.031 0.040 0.444 0.406
(0.016) (0.026) (0.066) (0.067) (0.016) (0.017) (0.077) (0.070)

800 0.030 0.041 0.168 0.201 0.015 0.017 0.137 0.141
(0.006) (0.010) (0.022) (0.028) (0.003) (0.004) (0.016) (0.016)
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Table S.12: The means of the four model selection measures (TPRB, TPRγ, FDRB and
FDRγ) along with the standard deviations in parentheses, which are obtained under the
high-dimensional setting with standardized exponential random errors.

p n TPRB TPRγ FDRB FDRγ

SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
z0,ij ∼ N (0, 4)

50 500 1.000 1.000 0.964 0.882 0.073 0.090 0.020 0.021
(0.000) (0.000) (0.075) (0.115) (0.085) (0.094) (0.044) (0.050)

800 1.000 1.000 1.000 0.994 0.029 0.054 0.009 0.013
(0.000) (0.000) (0.000) (0.024) (0.059) (0.075) (0.029) (0.034)

100 500 1.000 1.000 0.924 0.788 0.094 0.104 0.026 0.028
(0.000) (0.000) (0.092) (0.146) (0.101) (0.122) (0.051) (0.067)

800 1.000 1.000 0.996 0.989 0.040 0.099 0.008 0.024
(0.000) (0.000) (0.020) (0.037) (0.067) (0.100) (0.026) (0.047)

z0,ij ∼ U (−3, 3)
50 500 1.000 1.000 0.994 0.983 0.038 0.053 0.019 0.019

(0.000) (0.000) (0.024) (0.043) (0.065) (0.073) (0.043) (0.043)
800 1.000 1.000 1.000 1.000 0.005 0.016 0.004 0.005

(0.000) (0.000) (0.000) (0.000) (0.024) (0.040) (0.018) (0.020)
100 500 1.000 1.000 0.982 0.965 0.053 0.086 0.029 0.035

(0.000) (0.000) (0.056) (0.066) (0.070) (0.077) (0.059) (0.063)
800 1.000 1.000 1.000 0.999 0.005 0.012 0.006 0.010

(0.000) (0.000) (0.000) (0.010) (0.022) (0.033) (0.023) (0.031)
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Table S.13: The selection of latent space dimension under the low-dimensional setting with
k = 2 and standardized exponential random errors. The upper panel displays the means
of the Numks along with the standard deviations in parentheses, while the lower panel
displays CT.

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (−3, 3)
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
Numk

5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.14: The selection of latent space dimension under the high-dimensional setting
with k = 2 and standardized exponential random errors. The upper panel displays the
means of the Numks along with the standard deviations in parentheses, while the lower
panel displays CT.

p = 50 p = 100
z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3) z0,ij ∼ N (0, 4) z0,ij ∼ U (−3, 3)

n SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Numk

500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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S.8.2 Additional simulation studies for collinearity

In this subsection, we explore the effect of collinearity on the performance of our proposed
method. To assess the effect of collinearity, we compared NVCM with the other four
methods, TNVC, NLM, FMM, and CLR, used in simulation studies. The parameters and
random errors are the same as those generated from the low dimensional setting in Section
4. As for generating the covariates, we consider the model X = Z0Cx + E , where the
elements of Cx ∈ Rk×p are independently generated from a standard normal distribution,
and the elements of E ∈ Rn×p are independently generated from N (0, %) with % = 0.25,
0.5, and 1. As a result, the degree of collinearity increases as % decreases.

Tables S.15–S.20 present simulation results and show the following findings. As % de-
creases, the NVCM’s performance deteriorates as expected. For example, Table S.15 in-
dicates that MET s of NVCM are 0.037, 0.064, and 0.177 when % = 1, 0.5, and 0.25,
respectively, under the setting p = 10, n = 300, z0,ij ∼ N(0, 4), and B0,ij ∼ U (0.25, 0.5).
Furthermore, the robustness of NVCM against collinearity is either comparable or superior
to TNVC and outperforms NLM, FMM, and CLR.

Table S.15: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the setting that X = Z0Cx + E with % = 1 and standard normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)

z0,ij ∼ N (0, 4)
5 300 0.035 0.040 0.771 0.766 0.794 0.028 0.043 0.955 0.847 0.949

(0.004) (0.004) (0.012) (0.079) (0.009) (0.003) (0.003) (0.009) (0.108) (0.009)
500 0.031 0.039 0.834 0.727 0.841 0.024 0.041 0.970 0.805 0.966

(0.002) (0.002) (0.015) (0.073) (0.012) (0.002) (0.002) (0.011) (0.108) (0.011)
800 0.020 0.025 0.835 0.559 0.844 0.016 0.027 0.969 0.573 0.963

(0.001) (0.001) (0.016) (0.063) (0.009) (0.001) (0.001) (0.008) (0.077) (0.008)
10 300 0.037 0.077 0.939 1.032 0.974 0.032 0.082 1.068 1.287 1.134

(0.007) (0.015) (0.081) (0.319) (0.086) (0.005) (0.013) (0.086) (0.799) (0.092)
500 0.025 0.054 0.905 0.866 0.908 0.015 0.058 1.033 0.954 1.046

(0.003) (0.007) (0.046) (0.309) (0.047) (0.002) (0.007) (0.052) (0.227) (0.055)
800 0.017 0.032 0.885 0.557 0.882 0.011 0.034 1.020 0.609 1.019

(0.002) (0.003) (0.033) (0.182) (0.034) (0.001) (0.003) (0.041) (0.062) (0.042)
z0,ij ∼ U (−3, 3)

5 300 0.020 0.021 0.751 0.726 0.774 0.016 0.019 0.945 0.768 0.940
(0.004) (0.004) (0.013) (0.091) (0.012) (0.002) (0.002) (0.009) (0.122) (0.010)

500 0.014 0.015 0.743 0.658 0.763 0.011 0.014 0.922 0.719 0.934
(0.002) (0.002) (0.007) (0.084) (0.007) (0.001) (0.001) (0.016) (0.093) (0.008)

800 0.009 0.010 0.775 0.666 0.794 0.008 0.010 0.935 0.675 0.944
(0.001) (0.001) (0.006) (0.045) (0.006) (0.001) (0.001) (0.013) (0.058) (0.006)

10 300 0.026 0.028 0.809 0.617 0.824 0.018 0.027 1.000 0.735 1.020
(0.006) (0.005) (0.041) (0.141) (0.043) (0.003) (0.004) (0.046) (0.139) (0.047)

500 0.014 0.018 0.800 0.623 0.826 0.010 0.017 0.982 0.703 0.990
(0.002) (0.002) (0.033) (0.057) (0.029) (0.001) (0.002) (0.031) (0.074) (0.029)

800 0.010 0.012 0.768 0.639 0.806 0.007 0.012 0.963 0.741 0.975
(0.001) (0.001) (0.015) (0.061) (0.015) (0.001) (0.001) (0.025) (0.075) (0.022)
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Table S.16: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the setting that X = Z0Cx+E with % = 0.5 and standard normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)

z0,ij ∼ N (0, 4)
5 300 0.043 0.047 0.783 0.844 0.797 0.035 0.046 0.951 0.912 0.952

(0.007) (0.007) (0.012) (0.079) (0.012) (0.004) (0.004) (0.011) (0.098) (0.011)
500 0.036 0.043 0.837 0.772 0.849 0.028 0.043 0.975 0.807 0.975

(0.004) (0.004) (0.021) (0.074) (0.018) (0.003) (0.003) (0.018) (0.103) (0.017)
800 0.022 0.027 0.838 0.567 0.850 0.017 0.028 0.971 0.573 0.969

(0.002) (0.002) (0.017) (0.056) (0.014) (0.001) (0.002) (0.012) (0.063) (0.014)
10 300 0.064 0.114 1.067 1.455 1.114 0.048 0.117 1.223 1.669 1.290

(0.019) (0.028) (0.151) (0.835) (0.157) (0.013) (0.024) (0.162) (1.025) (0.168)
500 0.034 0.070 0.976 0.963 0.981 0.019 0.073 1.110 1.061 1.127

(0.006) (0.012) (0.084) (0.212) (0.087) (0.003) (0.012) (0.093) (0.156) (0.099)
800 0.022 0.040 0.936 0.593 0.938 0.014 0.041 1.076 0.678 1.080

(0.004) (0.006) (0.058) (0.073) (0.063) (0.002) (0.006) (0.070) (0.070) (0.077)
z0,ij ∼ U (−3, 3)

5 300 0.028 0.028 0.764 0.801 0.777 0.019 0.022 0.936 0.842 0.942
(0.007) (0.007) (0.014) (0.084) (0.014) (0.002) (0.003) (0.012) (0.091) (0.011)

500 0.019 0.019 0.754 0.758 0.765 0.014 0.016 0.923 0.778 0.936
(0.004) (0.004) (0.009) (0.058) (0.009) (0.001) (0.001) (0.011) (0.083) (0.010)

800 0.012 0.012 0.784 0.692 0.796 0.009 0.011 0.934 0.713 0.946
(0.002) (0.002) (0.008) (0.040) (0.008) (0.001) (0.001) (0.009) (0.047) (0.008)

10 300 0.045 0.043 0.858 0.661 0.891 0.028 0.036 1.066 0.736 1.099
(0.014) (0.009) (0.075) (0.141) (0.079) (0.007) (0.007) (0.082) (0.103) (0.085)

500 0.021 0.025 0.823 0.637 0.863 0.013 0.021 0.991 0.726 1.033
(0.005) (0.004) (0.049) (0.048) (0.049) (0.002) (0.003) (0.047) (0.060) (0.049)

800 0.014 0.016 0.798 0.715 0.832 0.008 0.014 0.971 0.821 1.008
(0.002) (0.002) (0.027) (0.051) (0.027) (0.001) (0.001) (0.037) (0.056) (0.039)
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Table S.17: The means of the MET s along with the standard deviations in parentheses,
which are obtained under the setting that X = Z0Cx + E with % = 0.25 and standard
normal random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)

z0,ij ∼ N (0, 4)
5 300 0.059 0.059 0.795 0.873 0.804 0.044 0.052 0.953 0.948 0.958

(0.015) (0.012) (0.017) (0.094) (0.017) (0.007) (0.006) (0.016) (0.076) (0.016)
500 0.045 0.050 0.852 0.804 0.866 0.033 0.047 0.985 0.811 0.992

(0.008) (0.008) (0.031) (0.074) (0.031) (0.004) (0.004) (0.030) (0.107) (0.031)
800 0.027 0.032 0.851 0.569 0.863 0.019 0.030 0.978 0.582 0.981

(0.004) (0.004) (0.026) (0.052) (0.025) (0.002) (0.003) (0.022) (0.063) (0.024)
10 300 0.177 0.189 1.339 2.273 1.394 0.103 0.188 1.530 2.427 1.600

(0.112) (0.052) (0.292) (1.762) (0.297) (0.040) (0.047) (0.314) (1.513) (0.318)
500 0.054 0.104 1.116 1.317 1.128 0.031 0.103 1.265 1.446 1.290

(0.014) (0.023) (0.160) (0.396) (0.167) (0.013) (0.023) (0.178) (0.583) (0.186)
800 0.034 0.057 1.035 0.718 1.051 0.022 0.056 1.185 0.787 1.203

(0.008) (0.011) (0.115) (0.123) (0.122) (0.005) (0.012) (0.135) (0.119) (0.146)
z0,ij ∼ U (−3, 3)

5 300 0.042 0.041 0.776 0.884 0.783 0.025 0.026 0.938 0.940 0.945
(0.014) (0.014) (0.018) (0.120) (0.018) (0.004) (0.005) (0.014) (0.090) (0.014)

500 0.028 0.027 0.763 0.850 0.770 0.017 0.018 0.930 0.855 0.939
(0.008) (0.008) (0.013) (0.071) (0.013) (0.002) (0.002) (0.014) (0.082) (0.014)

800 0.016 0.016 0.792 0.667 0.801 0.011 0.013 0.940 0.715 0.951
(0.004) (0.004) (0.012) (0.042) (0.012) (0.001) (0.002) (0.012) (0.046) (0.012)

10 300 0.177 0.071 0.984 0.737 1.024 0.058 0.055 1.211 0.829 1.257
(0.196) (0.017) (0.147) (0.196) (0.150) (0.021) (0.012) (0.157) (0.177) (0.161)

500 0.036 0.039 0.897 0.673 0.938 0.022 0.029 1.068 0.781 1.118
(0.010) (0.008) (0.088) (0.062) (0.088) (0.005) (0.005) (0.088) (0.069) (0.089)

800 0.021 0.024 0.853 0.784 0.885 0.012 0.018 1.034 0.923 1.073
(0.005) (0.004) (0.051) (0.069) (0.050) (0.002) (0.003) (0.070) (0.094) (0.072)
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Table S.18: The means of the MEγs and the MEBs along with the standard deviations
in parentheses, which are obtained under the setting that X = Z0Cx + E with % = 1 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
MEγ MEB MEγ MEB

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4)

5 300 0.011 0.012 0.029 0.027 0.014 0.017 0.022 0.024
(0.008) (0.008) (0.011) (0.011) (0.013) (0.013) (0.007) (0.011)

500 0.007 0.009 0.027 0.032 0.009 0.015 0.017 0.029
(0.005) (0.006) (0.008) (0.011) (0.007) (0.012) (0.005) (0.009)

800 0.004 0.005 0.020 0.023 0.005 0.010 0.014 0.022
(0.003) (0.004) (0.006) (0.007) (0.004) (0.009) (0.002) (0.005)

10 300 0.022 0.049 0.041 0.071 0.039 0.142 0.053 0.064
(0.011) (0.024) (0.015) (0.027) (0.019) (0.072) (0.015) (0.022)

500 0.012 0.026 0.027 0.054 0.015 0.072 0.017 0.048
(0.006) (0.013) (0.007) (0.018) (0.007) (0.034) (0.005) (0.018)

800 0.007 0.013 0.019 0.032 0.008 0.031 0.013 0.029
(0.003) (0.006) (0.005) (0.010) (0.004) (0.016) (0.002) (0.008)

z0,ij ∼ U (−3, 3)
5 300 0.009 0.009 0.010 0.008 0.010 0.011 0.005 0.004

(0.006) (0.006) (0.006) (0.005) (0.008) (0.008) (0.003) (0.002)
500 0.006 0.006 0.011 0.010 0.006 0.006 0.006 0.006

(0.004) (0.005) (0.005) (0.005) (0.004) (0.004) (0.002) (0.002)
800 0.003 0.003 0.007 0.007 0.004 0.005 0.005 0.005

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.001) (0.002)
10 300 0.018 0.019 0.019 0.016 0.024 0.031 0.019 0.011

(0.010) (0.010) (0.007) (0.006) (0.010) (0.016) (0.008) (0.004)
500 0.009 0.010 0.011 0.012 0.012 0.017 0.007 0.009

(0.005) (0.005) (0.004) (0.004) (0.005) (0.009) (0.003) (0.003)
800 0.005 0.006 0.008 0.008 0.007 0.009 0.004 0.006

(0.003) (0.003) (0.002) (0.002) (0.003) (0.004) (0.001) (0.002)
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Table S.19: The means of the MEγs and the MEBs along with the standard deviations in
parentheses, which are obtained under the setting that X = Z0Cx + E with % = 0.5 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
MEγ MEB MEγ MEB

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4)

5 300 0.020 0.021 0.037 0.033 0.024 0.027 0.026 0.027
(0.015) (0.015) (0.015) (0.014) (0.022) (0.021) (0.010) (0.013)

500 0.014 0.015 0.032 0.037 0.016 0.025 0.019 0.031
(0.010) (0.011) (0.011) (0.014) (0.013) (0.020) (0.006) (0.010)

800 0.008 0.009 0.022 0.025 0.010 0.016 0.015 0.023
(0.006) (0.006) (0.008) (0.009) (0.009) (0.015) (0.003) (0.007)

10 300 0.044 0.091 0.079 0.115 0.071 0.257 0.076 0.100
(0.023) (0.045) (0.037) (0.043) (0.035) (0.126) (0.029) (0.035)

500 0.023 0.048 0.038 0.074 0.029 0.129 0.022 0.065
(0.012) (0.025) (0.011) (0.026) (0.014) (0.060) (0.007) (0.026)

800 0.014 0.024 0.026 0.042 0.016 0.058 0.017 0.036
(0.007) (0.012) (0.008) (0.014) (0.008) (0.030) (0.003) (0.011)

z0,ij ∼ U (−3, 3)
5 300 0.017 0.017 0.017 0.014 0.018 0.019 0.007 0.005

(0.013) (0.012) (0.009) (0.008) (0.014) (0.015) (0.004) (0.003)
500 0.011 0.011 0.015 0.014 0.011 0.011 0.008 0.007

(0.008) (0.008) (0.008) (0.007) (0.007) (0.007) (0.003) (0.003)
800 0.006 0.006 0.009 0.009 0.008 0.009 0.006 0.006

(0.005) (0.005) (0.005) (0.005) (0.007) (0.007) (0.002) (0.002)
10 300 0.036 0.036 0.038 0.029 0.048 0.055 0.027 0.018

(0.020) (0.019) (0.018) (0.010) (0.020) (0.028) (0.013) (0.007)
500 0.018 0.019 0.018 0.019 0.023 0.030 0.010 0.012

(0.009) (0.009) (0.007) (0.006) (0.011) (0.016) (0.004) (0.004)
800 0.010 0.011 0.011 0.012 0.014 0.017 0.006 0.008

(0.005) (0.005) (0.003) (0.003) (0.007) (0.007) (0.002) (0.003)
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Table S.20: The means of the MEγs and the MEBs along with the standard deviations in
parentheses, which are obtained under the setting that X = Z0Cx + E with % = 0.25 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
MEγ MEB MEγ MEB

B0,jl ∼ U (0.25, 0.5) B0,jl ∼ U (0.5, 1)
z0,ij ∼ N (0, 4)

5 300 0.039 0.039 0.054 0.046 0.045 0.047 0.033 0.033
(0.028) (0.028) (0.025) (0.021) (0.041) (0.039) (0.017) (0.016)

500 0.026 0.028 0.041 0.045 0.030 0.043 0.023 0.035
(0.018) (0.020) (0.017) (0.019) (0.024) (0.037) (0.008) (0.013)

800 0.015 0.017 0.027 0.030 0.019 0.029 0.017 0.026
(0.011) (0.012) (0.011) (0.013) (0.017) (0.027) (0.004) (0.008)

10 300 0.101 0.173 0.259 0.202 0.154 0.486 0.162 0.173
(0.057) (0.086) (0.206) (0.076) (0.074) (0.234) (0.069) (0.062)

500 0.047 0.092 0.063 0.114 0.059 0.244 0.036 0.098
(0.024) (0.048) (0.022) (0.042) (0.028) (0.113) (0.023) (0.042)

800 0.028 0.046 0.042 0.060 0.031 0.114 0.029 0.051
(0.013) (0.023) (0.015) (0.021) (0.016) (0.059) (0.007) (0.018)

z0,ij ∼ U (−3, 3)
5 300 0.032 0.032 0.030 0.026 0.035 0.035 0.010 0.008

(0.026) (0.025) (0.018) (0.016) (0.027) (0.027) (0.006) (0.005)
500 0.020 0.020 0.024 0.021 0.020 0.020 0.010 0.009

(0.016) (0.016) (0.013) (0.011) (0.012) (0.013) (0.004) (0.004)
800 0.012 0.012 0.014 0.013 0.016 0.016 0.007 0.007

(0.010) (0.010) (0.007) (0.007) (0.013) (0.013) (0.003) (0.003)
10 300 0.090 0.069 0.200 0.055 0.109 0.102 0.060 0.034

(0.066) (0.036) (0.253) (0.019) (0.051) (0.051) (0.029) (0.013)
500 0.035 0.037 0.033 0.033 0.047 0.057 0.018 0.019

(0.018) (0.018) (0.014) (0.011) (0.022) (0.030) (0.007) (0.007)
800 0.020 0.021 0.020 0.020 0.027 0.032 0.009 0.011

(0.010) (0.010) (0.006) (0.006) (0.013) (0.014) (0.003) (0.004)
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S.9 Additional Data Description and Results of Data

Analysis

S.9.1 Ten financial ratios

The detailed description of the 10 financial ratios is provided in Table S.21.

Table S.21: Definitions of the 10 financial ratios.

Covariates Description
X1 book to market ratio
X2 earnings per share/stock price
X3 firm equity/interest-bearing debt
X4 fixed assets ratio
X5 total operating revenue
X6 net debt
X7 interest-free liabilities
X8 operating cash flow/net debt
X9 price-to-book ratio
X10 working capital

S.9.2 Stock groups

To better understand the varying relationships between stock returns and ten financial
ratios, the stocks are grouped based on their correspondingly estimated coefficients β̂i
classified by K-means. The number of groups is determined by the elbow method, which
yields three groups. In sum, the number of stocks in each group is 283, 134, and 383,
respectively. For each individual group, Figure S.1 depicts the boxplots of the coefficients
for the intercept and ten financial ratios. Moreover, Figure S.1 supports the findings of
Figure 2. That is identifying the distributional difference in regression coefficients among
the three groups, especially for the intercept and X8.

S.9.3 Estimation stability

We employ the approach of Li et al. (2020) to evaluate the stability of the estimates of
B. We generate adjacency matrices Ã with 90% edges being randomly selected from those
of the true adjacency matrix A. Given Ã, we fit models (1) and (2) to estimate B. This
procedure was repeated 50 times, and Figure S.2 depicts the estimates of B. The results
indicate that the estimation of B is robust to small changes in the network structure.
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Figure S.1: Boxplots of the estimated regression coefficients for the intercept and 10 finan-
cial ratios in three groups separately, which are obtained by fitting all the stocks via NVCM
and SNVC. The upper and lower panels depict plots for NVCM and SNVC, respectively.
For each covariate, the three boxplots from left to right correspond to the first to the third
groups.
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Figure S.2: Boxplots of the estimators of B for the intercept and 10 financial ratios. The left
and right panels correspond to the estimates obtained using NVCM and SNVC, respectively.
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