Supplementary Material for Network
Varying Coefficient Model

The supplementary material consists of nine sections. Section S.1 introduces six lemmas.
Sections S.2-S.4 demonstrate Theorems 1-3, respectively. Section S.5 presents additional
discussion on Condition (C3) and discusses a related issue on collinearity. Section S.6
investigates the extension of the proposed model to accommodate the heterophilic network.
Section S.7 introduces two competing methods used in our simulations. Sections S.8 and S.9
present additional data description and results in simulation studies and real data analysis,
respectively.

S.1 Useful Lemmas

To prove the theorems in Sections 2 and 3, we introduce the following six useful lemmas.
Lemma 1 is borrowed from Theorem 1.1 of Rudelson and Vershynin (2013), and Lemmas 2
and 3 are borrowed from Lemmas 31 and 28 of Ma et al. (2020), respectively. Then, we
present the proofs of Lemmas 4 and 5. Since Lemma 6 can be demonstrated by employing
similar techniques to those used in proving Lemma 5, its proof is omitted.

Lemma 1. Let € = (€, - ,€n)T € R"™, where the €;s for i = 1,--- ,n are independent
and satisfy E (&) = 0, and sup, h=/? {E (]€i|h)}1/h < ¢ for a finite positive constant .
Let U be an arbitrary n x n matriz. Then, for anyt >0, Pr(|e'Us —E (€'Ue)| > 1) <
2exp {—cy min{t?o~ Y| U || 22, to 2|U||3'}}, where ¢; is a finite positive constant.

Lemma 2. Let A = (a;;) € R™™" be the symmetric adjacency matriz of a random graph
on n nodes, where a;j, for any i < j, is independent and a; = 0. Let E (a;;) = P,; for all
i # j, and Py € [0,1]. Then, for any r > 0, there exists a constant Cy = Cy (1) such that
|A — Plls < Cav/n with a probability of at least 1 —n™".

Lemma 3. For any arbitrary matrices Z, and Zy € R™*, we obtain ming.oro—ooT =1, | 21—
Zy0l% < Q(ﬂ_l);k<Z;Z2) 2.2 — Z,Z]||%.

Lemma 4. Under Conditions (C1)-(C5), we have

R 20//2
i 7 — 7,04 < ¢:=
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with a probability of 1—2 exp (—cyn)—n~", where ¢* = min {1/5,27 exp (M>) / (1 + exp (MQ))Z}
and ¢’ = max {\/(2]{3 +4)0 4,207/ (02 + 1) 02}. Here, § is a scale parameter defined in

equation (5), My is defined in Condition (C2), o? is the variance of the random error, and
c1, Ca and r were defined in Lemmas 1 and 2.

Proof: We prove this lemma in two steps. Step I obtains an upper bound of the estimation
error of Gy, and Step II shows the upper bound of ming.oro—oo7=1, [|Z — ZoO||%-



~

,E,ﬁ/) = argminZ’Oé’BﬁL(Z,a,B,y), we have that L(Z,d,B,&) -

Step I: Since (Z, Qa
< 0. Then, employing Taylor’s expansion, we obtain

L(ZO,OZO, Boﬁo)
L (27@737?) — L (Zy, 9, By, v0) = Z (yl — ﬁz) /6 — Z i — ;) Bos) /
-y {4564 —10g (1+exp (6)) } + S {400 — log (14 exp (©0,)))
, i
Z% Z { (Bz - ﬁ(m‘) Tix; (5 501) - ( Yi — sz‘Tﬁo,i) %T <Bz - /60,1')}
- Z { — Ry (ém - @O,ij> - %]523 (1 - 15”) <©'Lg - @O,ij>2} <0,

where f’m = 1/{1 + exp ( — éij)}, and (i)ij lies between (:)ij and Og;;. Accordingly, we
obtain

<
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By Condition (C2), we have 1/{1+exp (M)} < P < exp(M,) /{1 +exp(M,)}. In
addition, denote ¢* = min {1/8,2 " exp (M>) / (1 + exp (Mz))Z} We then have

{116 - 02 + S (B~ o) @l (B fos) }
=1
Str{ (A — PO)T((:) — 0O } +26° Z — fETﬁoz T(Bz — 50,1‘)
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where €; = y; — xl—-rﬁovi fori =1,---,n. The above result can be used to obtain the bound
of the estimation error of ©y. We next consider Z; and Z, separately.

After algebraic calculations, the first term Z; satisfies tr{ (A — Po)T (@ — @0)} < JJA-
P0||2rank1/2(@ - @0)||é) — Ollp < V2k +4||A — By|)2||© — Og|r. By Lemma 2, with a
probability of 1 — n™", we have ||[A — Fy||a < Cay/n. This, together with the above result,
implies that Z; < \/(2k + 4) nC4|© — ||, with a probability of 1 —n".

We next consider the second part Z,. According to Lemma 1, with a probability of 1 —

Zexp( cln) we have /> ", 12<,/ go +1 n02 Denote O = \/ZZ 1 ,801) T, (B, 5%).

Accordingly, we have Z, < 20 1O0+/(¢? + 1 naQ, with a probability of 1 — Zexp ( — cln).



Combining the above results, we have that, with a probability of 1 —2exp (—cin) —n~"

9

C*{Hé—@oH%ﬂLi (Bz - 50,i>T iﬁﬂj (Bz — BO,i) } =c <||é—@0||§:+02> < C/l\/ﬁ<||é—@o||F+O>,
i=1

(S.1)
where ¢ = max{\/(2k +4)Cy,2/6+/ (9> + 1)02}. By the Cauchy-Schwarz inequality,
we have ||© — 6|2 + 02 > (|6 — Oyl|r + ©)2/2. This, together with (S.1), leads to
1© — 6p|lr 4+ O < 2¢" Je*/n. Accordingly, [|© — Ogl|r < ||© — Ogl|lr + O < 2¢" /¢*y/n with
probability 1 — 2exp(—ci;n) — n~", which completes the proof of Step I.

Step II: Define © = A+ Z, A=al] +1,a" and Z = ZZ". After simple calculations,
we obtain that

16 — Olf3 = A — Ag + 2 — Zol% = || A — Ao} + 1|2 — Zolf3 + 2tr{ (A — Ao) (£ — Z) }.

By the identification condition that J,Zy = Zy and J,Z = Z, we have 1] Zy = 1] Z = 0.
This implies that

tr{ (A~ A0) (2 - 20)} = tr{ (& = a0) L] (227 = 202]) + (6 — a0) (227 = ZoZ] )1} = 0.

Accordingly, 1©—6% = || A—Ao||%+]|Z — Zo|%, which indicates that | ZZT — ZyZJ ||% =
|Z — Zo||% < 4¢"?/c**n with a probability of 1 — 2exp (—c;n) —n~". This, together with
Lemma 3, leads to
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with a probability of 1 — 2exp (—cin) —n~", which completes the entire proof. .
Before introducing Lemma 5, let O = argming.oro_pot—y, [|Z — ZoO||} and Z :=
(21, - ,fén)T = ZOT, where Z; = (Z;1,- - ,2ik)T € R¥ and B = BOT. To ease notation,

we denote W = (vec (z:7]) -+, vec (xnig))T and H = (W,X) ity In addition, let
nXp(k+

z0; € R¥ be the true latent vector of i and z; be the I-th element of z;.

Lemma 5. Assume that Conditions (C1)-(C5) hold and p < (M{é) ' (/11 + 72 — /T2)*n,
where ¢ was defined in Lemma 4, M, was defined in Condition (C1), and 1y and T were
defined in Condition (C3). We then have that (i) ||H — Hy||% < ¢M?p, and (ii) there exist

two finite positive constants 7 < 7 and 15 < 71 + 75 such that 7 < A1) (n_lf[TfI> <

R 1
min |7 = Z,0|% <

ZZT — ZyZ) ||% <
0:0T0=00T =1 9 (\/§ _ 1) e (ZOTZO) | 0Zy |Ir <

A1 (nilﬁﬁﬁo < 15 with a probability of 1 — 2exp (—cin) —n~".

Proof: By Lemma 4, we have

n
~ - T T
I — Holl =) ll(vee (wiz), 2[) " — (vee" (izgy), 2) |13
=1
P k

= 3> al (Ga—20a)* < Mip|lZ — Zoll7 < M7pe, (5.2)

i=1 j=1 I=1



which completes Lemma 5 (i).
We next prove Lemma 5 (ii). By the Weyl inequality, we have

Aptierny(n™ Hy Ho) — [N (n ™ Hy Hy —n ™" HTH)| < Apgrny(n™"HH)
<M HTH) < M(n ' HoHy )+ |\ (n ' Hy Hy—n "HTH)|.

By Condition (C3), it suffices to evaluate the bound of Ay (n"'H, Hy—n""H T H) to complete
the proof. After simple calculations, we have

|>\1<77/71H(—)FHO - nilﬁT[:I)! :nilHHJHO - F[T}N[HQ
=n"Y(Hy — H)"Hy+ (Ho — H)"(Hy — H) + Hy (Hy — H)||»
<n " (2||Hol2||Ho — Hl|2 + ||Ho — H|]3)

<n~'(2y/ Mipern + Mipc) < 7,

where the fist inequality is due to the Cauchy-Schwarz inequality, and the last inequality
is by the result of Lemma 5 (i). Thus, there exist 0 < 71 < 7y and 75 < 71 + 72 such that
7 < Mpgany(RHHTH) < \(n ' HTH) < 73, with a probability of 1 — 2exp(—cn) —n™",
which completes the entire proof.

Before presenting Lemma 6, denote S; and Sy as the sets of nonzero rows in By and
nonzero elements in 7y, respectively, and let s; and sy be their corresponding numbers of
elements in Sy and Sy. Let x;5, = (x;; : j € S1) be the subvector of z; associated with 5.

Define W° = (Vec (xlsléfT) e, vec (xngl T‘;T))T and H° = (WO,X,SQ)nX(SlkJFSZ),
70 = (29,---,2%)" was defined in (S.9) and X, = (X : j € Sp) is the submatrix of X

corresponding to Sy, where X ; is the j-th column X. In addition, let Bg, = (B, : i € S1)
be the submatrix of B, and g, = (7; : 7 € S2) be the vector of v associated with S;. Denote
0s = (vec (Bs,.),74,)" and Hg be the submatrix of H corresponding to #g. Analogously,

to,s, Ho s, and Hy ;) can be defined under Z; and H,.

where

Lemma 6. Assume that Conditions (C1)-(C5) hold and s, < (M{e) ™' (\/71 + 12— /T2)*n
where ¢ was defined in Lemma 4, My was defined in Condition (C1), and 7 and o were
defined in Condition (C3). We then have that (i) ||H° — Hy SHF < ¢M?sy, and (ii) there
exist finite positive constcmts 7'1 <7 and 72 < 7 + 71 such that 7'1 < /\p(k+1)( _1HOTH°) <
M(n~ HCTH®) < 1, with a probability of 1 — 2exp(—cin) —n~".

S.2 Proof of Theorem 1

Let 0 = (vec' (B),4)T, and denote its corresponding true parameter 6. To prove this theo-
rem, we first obtain an upper bound of ||§—6;|2. Then, using the fact that mine.oTo—oTo=1, ||B—
BoOllr < |0 — 62 and |7 — ~oll2 < ||0 — 6o)|2, we can complete the proof of Theorem
1. Note that § minimizes the mean squared loss in equation (5) for given Z defined above



Lemma 5. Then, by the first-order condition, we have 6 = (I:[ TH )*1]? TY. Subsequently,

10— Ooll2 = |(HTH) ™ HT (Hofo + <) — 6o
= H(ﬁTﬁ)*l]Z[T(HO — ﬁ)@o + (ﬁTﬁ)*lf[TEHQ
< ||(]:ITI:I)_1]:[T(HO — ]:.7)«90”2 + ||(]:[T]:I)_1]:IT6H2 =1+ L.

We next evaluate [; and I, separately. By Lemma 5 (ii), we have that

L < |\n Mo 'HTH) ' HT (Hy — H)|[2]|60]|2

[ VTR
< H||5||H — H, Bollo < 2_||H — H, Ool|2- S.3
< el = Hollllolls < Y7\ = ol ol (53)

In addition, by Lemma 5 (i), we obtain that | — Hy||% < éM?p, with a probability of
1 —2exp(—cin) —n~". This result, together with (S.3) and |H — Hyll2 < ||H — Ho||F,
leads to

Il S 7'1*_177,_1/2M1\/T;&p”eoug. (84)
As for Iy, we have
. . 1 - 1 .
L=|n" (n " H H) " H el < ——||H ells < ——(I1H — Holl2lle]l2 + | Hy e]l2).  (S:5)
Tn Tn

where the first inequality is due to Lemma 5 (ii) and the second inequality follows from the
triangle inequality. As given above, |H — Hy||2 < ||H — Ho||r < \/¢M#Ep, with a probability
of 1 —2exp (—cyn) —n~". In addition, by Lemma 1, we obtain that

Pr(|lella > v/(¢?* 4+ 1)no?) < 2exp(—cin) and (S.6)

Pr(I1Hg ella > \/(tx(HoHJ) + 1)0?) < 2exp [—evmin {20~ | HoH |72t 2| Hoy 13} ]
Moreover, by Condition (C3), tr (HoHy ) < np (k + 1) 7, ||HoH, |3 = n’tr{ (n_lHOTHO)2} <
n’p (k+1) 73, and ||HoHy ||l2 = nAi (n"'Hy Ho) < nro. Let t = ¢ynp (k + 1) 7092 for ¢, > 1.
Then, we obtain

min {t*0~ | HoHy [|7°, 1072 HoHy |5 } > e (k + 1),

which immediately leads to

Pr (||HJgH2 > /(o + D) ranp (k + 1) 02) <2expl{—ciep(k+1)}.  (S7)

This, together with (S.5) and (S.6), leads to

I, < Tf_ln_l/Q{Ml\/pé (p?2+1)0%2+ \/(ctgpz + 1) mp(k+1) 02}. (S.8)



Combining the results in (S.4) and (S.8), we obtain that

16— 6oll: < } {(V0ollo + Ve +1)07) Mi/pe+ Ve + Dmp (k+ 1) 07 |

TTVvn

with a probability of 1—2exp {—cicip (k + 1)} —2exp (—cin)—n~". Since ming.oro—o7o-1, ||B—
BoO||r < |60 — 6ol|2 and |5 — Yoll2 < ||0 — bo]|2, we have completed the proof of Theorem 1.

S.3 Proof of Theorem 2

By the definition of 7, we have

1T = Tollr <1 ZB" — ZyBy |r + 114" — 17 |17
<|ZB" = ZBy |l + V1l — 10l
<|ZB" = ZyB" + ZB" — ZyB{ ||lr + V0|4 — 0l
< |\ BllrllZ = Zllr + 1 Zoll |l B = Bollr + vnll5 = 70ll2
=L+ L+ I

We study the above three parts I 1, I, and I separately.
By Lemma 4 and the proof of Theorem 1, we obtain

Iy < (1Boll + 1B = Bollr) 1Z = Zollr < (IBollr + Co/v/m) &2

with a probability of 1—2exp {—ci¢p (k+ 1)} —2exp (—cin)—n~", where Cp was defined in
Theorem 1. In addition, by Condition (C4) and the proof of Theorem 1, we have I < VT1C
and Iy < Cp, with a probability of 1 — 2exp {—cicp (k+ 1)} — 2exp (—ein) — n~". The
above results imply that

17— Tollr < (1Bollr + Co/v/n) &7 + (V7a +1) Gy,

r

with a probability of 1 —2exp {—cip (k+ 1)} —2exp (—cyn) — n~", which completes the

proof.

S.4 Proof of Theorem 3

To prove this theorem, we first introduce some notation. Let @ (Z,a,0) represent the
objective function to be minimized in equation (8), and it is

Q (Z,oz,@) = L(Z,Oz, B7’7) + 2715_1 Z {p(HBj,-HQHM) + p(|7j|7#)}:
j=1

where 0 = (VecT(B),’yT)T. Define 0y = B;. and 0, =; for j =1,--- ,p. Let H; be
the submatix of H corresponding to ;. In addition, define é(j)s such that é(j) = 0 if



j €S and 5(]-) = ( otherwise, and 6 is the corresponding version of 6. Denote ¢°,6° and
Z° as the associated oracle estimators, that is

(Z2°,4°,0°) = argminy , g #Q(Z, @, 0) subject to ;) = 0if j ¢ S. (S.9)

The oracle estimates of (), B, and 7 are denoted by é?j), B", and 4°, respectively, where
j=1,---,2p. Let O° = argminoonozooT:[}cHZAO — ZyO||%. For the sake of simplicity,
we assume O° = I, and the orthogonal transformations corresponding to all estimates are
the identity matrix. We next prove Theorem 3 in two steps. In step I, we show that
To = Z°B°T +1,5°T satisfies | T° — To|l» = Op(s). In step II, we prove that (Z°, a°,0°) is
a local solution of equation (8).

Step I: Employing the similar techniques as those used in the proof of Lemma 4 and
Theorem 1, with a probability not less than 1—2exp (—cin)—n""—2exp {—cici(s1k + s2)},

we have that || 2°—Z||% < ¢and [|0°—6||» < Cyn~Y/2, where C) = | [(\/_(HBOHF + oll2)*+

V(g2 +1) 0'2)M1\/816 + \/72 (cip® + 1) (s1k + 32)02} , 7'1 and ’/'é were defined in Lemma 6,
¢ was defined in Lemma 4, and ¢; can be any constant greater than 1. In addition, applying

the similar techniques to those used in proving Theorem 2, together with the above results,
we obtain that

172 = Tolle < 12°B°7 = ZoB] llp + 11637 = 123d |1
<112°B°T = 2Bl + VAllA* = ol
<||2°B°T — ZB°" + ZoB°" — ZoBy ||r + vV/nll3° — o2
<NBIPIZ° = Zollr + 1 ZollF 1 B” = Boll + Vall3* = oz
< (I1Bolle + C/v/m) &2 + (/7 + 1)C.

with probability tending to 1 as {n, s1, s2} — 00. Since k < oo by definition, we then have
| Bollr = O(y/31) and Cy = O,(+/(s1 + 52)81), which immediately leads to [|[7° — Ty r =
O,(s1 + s2) = Op(s). This completes the proof of Step I.

Step II: Define a neighborhood of the true parameters 6y, ap and Zj as

F=F{Za6:0Z- 2|} <06 - bollo < Con2}.

Let event E,; be (ZO, a‘, éo) € F°. According to the result of Step I, the probability of E,;
is not less than 1 —2exp (—cin) —n ™" — 2exp {—c1¢,(s1k + s2)}. To prove that (Z°, a2, 6°)
is a local solution of equation (8), it suffices to show the following two parts:

Part (i). For any (Z,«,6) € F°,

Q(Z, «a, 5) > Q(ZO, a°, éo) over the event E,;;

Part (ii). For any (Z,«,0) € F°, there exists an event E,» with high probability, such
that 5
Q(Z,a,0) > Q(Z,«, ) over the event E,; N E,p.



To prove Part (i), we have that

Q(Z,a,0) — Q(2°,4°,6°)

2p p
=L(Z,0,0) = L(Z°,6°,6°) + 206> p(10ll2, 1) — 206> p([16¢;)ll2. 12)
Jj=1 j=1

where My = L(Z, a,0)—L(Z°,4°,0°) and My = 26" 3257, p([16) |2 12) =216~ 30—, p(1162, |2, 12)-
We next study M; and M, separately.
By the definition of oracle estimators, we have that M; > 0. As for My, for any
Jj ¢S, 9 G) = 9 (5 = 0, which leads to p(H@(J 2, 1) = p([10(;)ll2, 1) = 0. In addition, for
any j € S, by Condition (C6), ||0])H2 > |0o,yll2 — 1100,y — é(j)||2 > kp. As a result,

P10 125 1) = ,uf”e(”HQ —x/(pk))d, = p’k/2. Analogously, we can show that, over
E.1, ||9€j)||2 > (160, ll2 = [160,5) — 0(;)ll2 > #p. Then, we obtain that p(||67; 2, 1) = 12k /2,
which immediately leads to My = 0. This, together with M; > 0 and (S.10), completes the
proof of Part (i).

We next demonstrate Part (ii). Define Sy = {j : 6; # 0} NS°. By Taylor’s expansion,
we have that

QZ,a,0) — Q(Z,a,0)
=L(Z,0,0) = L(Z,a,0) + 206" > p (0|2, 1)

JESy
i
%\ | A 1. % v

=23 (Y = H6")" H;)(0) — 0i5)) + 25" (11675 ||2, 12) |I9*(])|| (O — 05)

JESy )12
=2 (Y = HO")" H;)(05) — 0iy) +2n6" > p (10512 2. ) 166y — O 2

JESh JESe
=2M, + 2Ms,

where 0* = 10 + (1 — 1)0 for some ¢ € (0,1), and p(-) is the derivative function of p(-).
We evaluate M; and M, separately. By the definition of MCP, p(x, ) > 0 for any
x > 0. This implies that M, > 0. Furthermore, we obtain

My =n6" " p (105 ll2, 12) 16y = O lla = nd ™ D e (1= 116331l (1) ™), 1) = O llo-
JESy J€Se
Note that 0* = 10 + (1 — ¢)f for some ¢ € (0,1), which leads to 167112 < b2 + (1 —

)10 ll2. By the definition of 8, we have [|6;]la < [|0¢;|l2- Thus, He 2 < 116G |l2. For
J € Sp, we have 0 (jy = 0. For any (Z, a,0) € F°, we have maxeg, ||¢ ])||2 = maXjes, ||0;) —
Bopll2 < 110 — Ooll2 < Cyn=Y/2. Thus, maxjes, 165 ll2 < Cyn~2. By Condition (C6), we
can obtain Cyn~'/2 < C,ux and C), < 1. Accordingly, we have

> (n/8) (1= G S [10) — byl > 0.

JESe

8



As for M;, we employ the Holding inequality and obtain that

M <Y HG (Y = HE) 216Gy — )l

JESp

<Y |H) (e + Hobo — Hby + Hbo — H") [12]16) — 65|12
JESy

< (1 el + 1 Hop ol Hos = Hs sl + 1 Hos ll 10 — 0112 16 = B o
JESe

Since (Z,«,0) € F°, we have
Hy — H f:fﬂ A M2 2o < M
- N 2 (20 — 2 < — < M,é'2,
max || Hg) — Ho,([l2 < rjrgstX{ 22 wij(2i = z0.) } < Mi||Z = Zol|r < Mic

In addition, Condition (C3) implies that max; || Ho (j)||2 < \/T2n. Accordingly, max; [|[H ;|| <
max; ||H07(j) — H(])HQ + max; HHQ(]‘)”Q S Mlél/z “+ \/Tan. Analogously, we obtain that

||H()75 — Hs||2 S Ml\/ 815, and ||H||2 S Mlx/p6+ A/ ToT.

Combining the above results, we then have

] <3 [I1HG el + (v7an + Mid ) {Mu /51266 12 + n 2 Ch(Mr /b + v/7am) }| 166) = Gl

JESe

= " Ell0) — 0l

JESe

Subsequently, we define the event E,, = {maxjcg, J; < fic}, where J; = HH&&HQ and

fi=(n/0)(1 = Cpu/o — (ran + Mie ) { Miy/576"2||0o |2 +n~ 2 Cy(Miv/p + /) } [0
was defined in Condition (C7). Over E,q,

My + Ny > My — |30] 2 37 (n/8) (1= = =) 16 — gl > 0.

JESy

Accordingly, over E,» N E,;, we have that Q(Z,«,0) > Q(Z,oz,@u), which completes the
proof of Part (ii).
We finally show the bound of the probability of E,,. For J;, we have

~ T ~
PT(E%%? Jj > fio) <Pr {%%f{HH(j) — Hollallellz + 1 Hy ell2} > MU]

<Pr max[Hoy ~ Hoglellels > 270
JESe

s el > 27 io | . :
+ Pr [1;%%2{ | Hy jell2 > 2 ,ua] (S.11)



For the first part of (S.11), we have
Pr| max | Hy) — Hoglellell2 = 27'fio]
<Pr{|ells > (2M,é/?)~ "o}
:PT{HE/JHZ > (2MEY) 2R - n}
Let t = (2M,¢/?)72ji2 — n in Lemma 1. Then, by Lemma 1, we have
Pr{|ells > (2M&/*) o} < 2exp{ - m1n(t2¢_4n_1,t90_2)}.

Note that g2 > 4M7¢ (¢? + 1) n, we then have Pr{|le|l> > (2M:¢"/?) " fic} < 2exp{—cin},
which immediately leads to

Pr[r]%%x 1H ) — Hoglallell2 > 2—1pw] < 2exp{—cin}. (S.12)
0

For the second part of (S.11), we have
P
T ~
Pr[%%§\|Hoy(j)€]\2 > 1/2/10} Z e HojH HE > 1/4i%0?).

By Condition (C3), we have that HHO(])HT )HF < n?kt3, ||[HoH, )H2 < nry, and
tr(HO,(J)HO( )) < knty. Then, we obtain

r[(e" /o) HogyHy ;) (e/0) — tr (HoyHy (;y) = 1/4i* — tr (Ho)H. ;)]
<Pr [(€T/O') HO,(j)H(I(j) (/o) —tr (H07(j)H0’(j)) > 1/4j% — k‘Tgn} .
Set t = i*/4 — k7yn in Lemma 1. Then, by Lemma 1, we have
Pr[(e" /o) H,, ])H y(e/o) —tr (Ho,;)Hy, ) ) > 1/4j° — kron|
<2exp { — ey min (127 Ho,) Hl )72 1™ | Ho o) Hi 12" |-

Since fi* > 4 (2p?logp/(c1k) + 1) kTen, we then have that

1/22 — kTgn)ng(nTg)’l} <2p~ ' (S.13)

T ~
Pr[r]%%};( [ Ho jyell2 > /w/2} < 2peXp{ — 01(4

By (S.11), (S.12) and (S.13), we have that the probability of E,s is not less than 1 —
2exp(—cin) — 2p~ !, and the probability of E,; N E,s is not less than 1 — 4exp(—cyn) —
n~" —2exp{—cic;(s1k + s2)} — 2p~!. Combining the above results, we have completed the
entire proof.
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S.5 Additional discussion on Condition (C3)

To ensure the identifiability of the regression model, we introduce Ap41) (rflﬂoT HO) > T
in the first part of Condition (C3), where 7 is a finite positive constant. This section
establishes the relationship between Condition (C3) and the collinearity between X and
Z.
Define % = (1,z2;)". After straightforward calculations, we have Ayi1) (n™"H Ho) >
71, which is equivalent to A1) {2 >0, ((zz]) @ (%))} > 7. For the sake of simplic-
ity and to illustrate collinearity, we assume that (z;, zo;) are independent and identically
distributed random vectors. To characterize the dependence between z; and z;, we assume
that
z; = f.(200) + &, fori=1,--- n, (S.14)

where f, : R¥ — R” is an unknown function, & = (&1, -+ ,&,)" has mean zero and
covariance X¢, and the ;s are independent of the zys. Model (S.14) includes the following
two special cases.

Case (a): If f. (20;) = C.2¢; for some matrix C, € RP** then model (S.14) is the same
as that in Binkiewicz et al. (2017) except that zy; is the location of node i rather than the
membership vector.

Case (b): Consider the case that there are repeated measures in the nodal covariates
and latent positions. Let v; € R! be the repeated measure with [ < k. Assume that zy; =
C.v; + &, and z; = Cuu; + &4, where C, € R¥*! and C, € RP*! are two matrices. Without
loss of generality, we assume that the first [ rows of C,, C,, , are invertible. Denote
C, = (C;}:L_, 0) € R We then have z; = C,C,zp; — C,C,&.i + &, Let f.(20:) = C.Cy20;
and & = —C,C,&.; + &,,. As a result, Case (b) is a special case of (S.14).

By the law of large numbers, % Yoy { (mZxZT) (zl )} converges to K/ {(x ] ® (zl T) })
After algebraic simplification, we obtain that

E{(ziz])® (2} =E{(f-(z00) f-(20) ) @ (ZZD)} + E{(f(20)&") ® (£:2])}
+E{( gi (zo) ) ® (550} + E{(&8T (zé?)}
—E{ ZOZ (ZOz) ) ( T)} +E{ 52 (élzg—>}
(%5)

—E { 207, (ZOZ) ) } —I— 25 ® 2,

where
s () 2o
- E(Zgi) E(Z(MZ(—);) '
Since E({(f(20:)f(20:)7) ® (%:%1)}) is positive semidefinite, the assumption that Z¢ and ¥
are positive definite is sufficient to ensure the positive definiteness of E({(x;x] ) ® (%2)}).
As a result, this assumption is sufficient to ensure the first part of Condition (C3), which

indicates that X cannot be fully explained by the latent vector Z.

S.6 Heterophilic Networks

As suggested by an anonymous referee, the proposed model can be extended to accommo-
date heterophilic networks. Suppose that the network is generated via the following model
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with indefinite inner products:
logit (Pyj) := O = a; + aj + 2 Ty k25 (S.15)

where o, ¢, z;, and z; are defined as those in equation (1) of the manuscript, and Iy, 5, =
diag (Iy,, —Ix,) for some constants ki and ke with k; + ko = k. Equation (S.15) is similar
to the model of Rubin-Delanchy et al. (2022), although they considered P,; rather than
logit(P;;) in (S.15). This model indicates that the probability of nodes i and j being
connected increases along with the similarity of the first ky elements of z; and z; (i.e., the
inner product of z; and z;), and decreases along with the similarity of their last k5 elements.

We next adopt model (2) in the manuscript to construct the relationship between y;
and z; as follows:

yi = x; Bi + € =, (Bzi +7) + ¢ (S.16)
for i = 1,---,n, where z; was defined in Model (S.15), B is a factor-loading matrix
related to z;, v is a coefficient vector that does not change with the “locations”, and
T = (B1,-,B,)" € R™P is the regression coefficient matrix. To ensure identifiability

of models (S.15) and (S.16), we assume that (I, — J,)Z = 0. Accordingly, Z is identifi-
able up to an indefinite orthogonal transformation. This means the probability matrix of
the network remains the same if Z is replaced with ZM, where M I}, j, M " = I}, 1, and
M € R¥**_ Since the column space of (1,,7) and (1,,ZM) are the same, the indefinite
orthogonal transformation does not affect the regression coefficient matrix. As a result,
the pairs (Z, B) and (ZM,BM~'T) yield identical probability and regression coefficient
matrices. Consequently, the estimation procedure proposed in Section 2.3 is applicable
for models (S.15) and (S.16). Please note that the i-th row of B and that of BM T are
different under the l5 norm. Thus, the variable selection procedure proposed in the paper is
not suitable for this model. Additional conditions are required to ensure the applicability
of of variable selections. That needs further investigation.

As for the interpretation of coefficients, we note that the coefficient matrix 7 depends
on three components, i.e., z;s, B and ~. The latent variables z;s can be viewed as the
unobservable “location” of the nodes, and they affect the network connectivity in different
ways. For example, the similarity of the first k; variables promotes connections between the
nodes, while the others deter them. In addition, the factor-loading matrix B characterizes
the relationship between regression coefficients §; and latent “locations” z;s. If B # 0,
the regression coefficients depend on latent “locations”. Note that the difference between
Birj and Biy; is |Bj. (2, — z,) |, where B/ is the j-th row of B. If B;. = 0, there is no
interaction between the network locations and the j-th covariate. Lastly, v is a coefficient
vector that does not change with latent “locations”, and it is a classical homogeneous
regression coefficient vector when B = 0.

S.7 Introduction of Two Competing Methods

The finite mixture model and network lasso method have been used for comparison in
our simulation studies. This section presents a brief introduction of these two competing
methods.

The finite mixture model (Leisch, 2004) assumes that the data consists of K groups
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with homogeneous regression coefficients within each group. The density function of y;
given x; is expressed as:

K
f@ilw) =Y mN (@] Br, 07), (S.17)
k=1

where 7, is the probability that y; comes from the k-th group for £k = 1,--- | K, and [y
and o7 are the regression coefficient vector and the error variance, respectively, for the
k-th group. The parameters including 7, 8y and o7 for k = 1,--- K in model (S.17)
are estimated using the R package “flexmix”. The number of groups K is selected via the
BIC-type criterion.

The network lasso method (Hallac et al., 2015) assumes that

yi=x; Bi +e, fori=1,--- n, (S.18)

where ; is the coefficient vector, and ¢; is the random noise with mean 0 and variance o2.
The coefficient matrix 8 = (f1,---,3,)" is estimated by

n
A~

p= argming ;_ ., Z(yz - %Tﬁi)z + 1 Z aijl| Bi — Bjllz,

i=1 i<j

where B = (Bl, cee BH)T, 1 is a tuning parameter and it can be chosen by the BIC criterion,
|| 1|2 is the ¢5 norm function, and a;; is the (4, j)-th element in the adjacency matrix A. The

~

alternating direction method of multipliers (ADMM) algorithm is employed to calculate £.

S.8 Additional Simulation Results

S.8.1 Additional results based on the settings in Section 4

This subsection presents additional simulation results based on those settings described in
Section 4. Tables S.1-S.2 present the results of Num,; and CT when the random errors
are normally distributed, where Numy is the value of k selected by BIC in (6), and CT
is the proportion of the true value of k£ being selected. These two tables indicate that all
Numys are equal to 2 and all CTs are 1. As a result, the BIC in (6) can consistently select
the dimension of the latent space. Tables S.3-S.8 report the simulation results when the
random errors are generated from a mixture normal distribution, while Tables S.9-S.14
report the simulation results when the random errors are simulated from the standardized
exponential distribution. The results in Tables S.3-S.14 are qualitatively similar to those
in Tables 1-4 and Tables S.1-S.2. This suggests that our method is robust against different
types of error distributions.
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Table S.1: The selection of latent space dimension under the low-dimensional setting with
k = 2 and standard normal random errors. The upper panel displays the means of the

Numys along with the standard deviations in parentheses, while the lower panel displays
CT.

BO,jl ~ U (025, 05) BO,jl ~ U (05, 1)
ZO,@'j ~ N (0, 4) ZO,ij ~U (—3, 3) ZO,Z’j ~ N (O, 4) ZO,ij ~U (—3, 3)
P n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC

Numy,
5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0)  (0.0)  (0.0)  (0.0) (0.0)  (0.0)  (0.0)  (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.2: The selection of latent space dimension under the high-dimensional setting with
k = 2 and standard normal random errors. The upper panel displays the means of the
Numygs along with the standard deviations in parentheses, while the lower panel displays
CT.

p =50 p =100
ZO,ij ~ N (0,4) ZO,z’j ~ U (—3, 3) Z(),ij ~ N (0,4) Zo@' ~ U (-3, 3)
n  SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC

Numy,
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
cT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table S.3: The means of the ME+s along with the standard deviations in parentheses,
which are obtained under the low-dimensional setting with & = 2 and mixture normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Zoyl’jNN(074)

5 300 0.040 0.052 0867 0575  0.879 0.025  0.050 1.022  0.525 1.004
(0.010) (0.010) (0.040) (0.377) (0.039) (0.005) (0.007) (0.035) (0.192) (0.036)

500  0.033 0.044 0.849 0.478 0.870 0.022 0.044 0.995 0.475 0.990
(0.005) (0.005) (0.023) (0.113) (0.022) (0.004) (0.004) (0.020) (0.180) (0.026)

800  0.023 0.027  0.824 0.380 0.844 0.018 0.028 0.955 0.344 0.973
(0.003) (0.003) (0.013) (0.044) (0.013)  (0.002) (0.002) (0.016) (0.049) (0.015)

10 300 0.042  0.065  0.908 1.011  0.924 0.028  0.063 1.098  1.045 1.085
(0.009) (0.011) (0.060) (0.620) (0.065)  (0.005) (0.011) (0.063) (0.773) (0.068)

500  0.032 0.050 0.859 0.658 0.885 0.020 0.053 1.032 0.729 1.031
(0.006) (0.007) (0.040) (0.376) (0.040) (0.004) (0.005) (0.038) (0.356) (0.047)

800  0.022 0.030 0.845 0.435 0.867 0.015 0.032 0.978 0.459 1.002

(0.003) (0.003) (0.022) (0.084) (0.022) (0.002) (0.003) (0.025) (0.090) (0.025)
ZO,ij ~ U (—3, 3)

5 300 0.027 0030 0823 0483  0.840 0.018 0024 1017 0449  0.997
(0.009) (0.009) (0.043) (0.153) (0.030)  (0.004) (0.004) (0.043) (0.086) (0.048)

500 0.017 0.020 0.78% 0413  0.826 0011  0.016 0953 0353  0.974
(0.005) (0.005) (0.019) (0.071) (0.018)  (0.002) (0.002) (0.031) (0.048) (0.026)

800 0.012 0013 078 0366 0.812 0.008 0011 0931 0307 0.961
(0.003) (0.003) (0.016) (0.048) (0.017)  (0.001) (0.001) (0.017) (0.042) (0.017)

10 300 0032 003 0869 0712  0.885 0019 0028 1098 0900 1.080
(0.007) (0.008) (0.057) (0.301) (0.056)  (0.004) (0.005) (0.075) (0.810) (0.084)

500 0.018 0.023 0811 0457  0.854 0011 0018 0980 0485  1.018
(0.004) (0.003) (0.035) (0.095) (0.035)  (0.002) (0.002) (0.038) (0.182) (0.044)

800 0.012 0015 0796 0376  0.825 0.008 0013 0946 0375  0.981

(0.002) (0.002) (0.022) (0.064) (0.022)  (0.001) (0.001) (0.023) (0.052) (0.023)
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Table S.4: The means of the ME,s and the MEps along with the standard deviations in
parentheses, which are obtained under the low-dimensional setting with £ = 2 and mixture
normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
ME, MEp ME, MEp
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
20,35 ™ N(O,4)

5 300 0.026 0.030 0.037 0.038 0.032 0.065 0.023 0.029
(0.021) (0.022) (0.013) (0.016)  (0.028) (0.049) (0.006) (0.010)

500 0.018  0.021 0.032  0.037 0.022  0.042 0.021 0.032
(0.012) (0.014) (0.008) (0.012) (0.019) (0.031) (0.004) (0.009)

800  0.010 0.011 0.023 0.025 0.013 0.019 0.017 0.021
(0.007) (0.007) (0.006) (0.007)  (0.011) (0.016) (0.003) (0.005)

10 300  0.036 0.053 0.040 0.052 0.051 0.110 0.038 0.044
(0.022) (0.030) (0.010) (0.016)  (0.027) (0.054) (0.013) (0.017)

500 0.019  0.026  0.034  0.046 0.031 0.083  0.019  0.039
(0.012) (0.014) (0.009) (0.014) (0.020) (0.045) (0.004) (0.011)

800  0.010 0.013 0.022 0.027 0.016 0.036 0.015 0.026
(0.006) (0.007) (0.004) (0.006)  (0.009) (0.022) (0.002) (0.005)

20,i5 ™ U (—3,3)

5 300 0.024 0.025 0.017 0.016 0.030 0.036 0.010 0.008
(0.021) (0.021) (0.010) (0.010)  (0.023) (0.027) (0.005) (0.004)

500  0.013 0.013 0.014 0.014 0.016 0.019 0.007 0.008
(0.010)  (0.010) (0.007) (0.007) (0.013) (0.015) (0.002) (0.003)

800  0.008 0.008 0.009 0.009 0.010 0.012 0.005 0.006
(0.007) (0.007) (0.003) (0.003)  (0.008) (0.009) (0.001) (0.002)

10 300 0.031 0.035 0.023 0.022 0.041 0.059 0.020 0.011
(0.017) (0.018) (0.008) (0.008)  (0.023) (0.030) (0.007) (0.004)

500  0.015 0.017 0.016 0.018 0.019 0.030 0.010 0.010
(0.008) (0.009) (0.005) (0.005) (0.011) (0.016) (0.004) (0.003)

800  0.009 0.010 0.010 0.011 0.012 0.016 0.005 0.007
(0.004) (0.005) (0.003) (0.003)  (0.006) (0.009) (0.001) (0.002)

Table S.5: The means of the MEss along with the standard deviations in parentheses,
which are obtained under the high-dimensional setting with & = 2 and mixture normal
random errors.

P n  SNVC TSNVC NVCM TNVC SNVC TSNVC NVCM TNVC
20,5 ™~ N(O,4) 20,5 ™~ U(-B,S)

20 500  0.052 0.100 0.113  0.176 0.028 0.033 0.116  0.122
(0.014)  (0.021) (0.015) (0.033) (0.011)  (0.012) (0.025) (0.025)

800  0.036 0.049 0.084  0.107 0.016 0.018 0.059  0.062
(0.006)  (0.010)  (0.011) (0.016) (0.004)  (0.004) (0.010) (0.010)

100 500  0.060 0.111 0.389  0.507 0.029 0.036 0.431  0.389
(0.018)  (0.029) (0.058) (0.083) (0.015)  (0.016) (0.074) (0.066)

800  0.037 0.051 0.183  0.225 0.014 0.017 0.126  0.133
(0.007)  (0.012) (0.021) (0.028) (0.003)  (0.004) (0.016) (0.016)
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Table S.6: The means of the four model selection measures (TPRp, TPR,, FDRp and
FDR,) along with the standard deviations in parentheses, which are obtained under the
high-dimensional setting with mixture normal random errors.

D n TPRp TPR, FDRp FDR,

SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Z(]’Z'jNN(O,Zl)
20 500  1.000 1.000 0.936 0.769 0.102 0.094 0.022 0.029
(0.000)  (0.000) (0.094) (0.145) (0.099) (0.111) (0.046) (0.056)
800  1.000 1.000 0.997 0.985 0.043 0.075 0.006 0.010
(0.000)  (0.000) (0.017) (0.044) (0.060) (0.081) (0.024) (0.029)
100 500  1.000 0.999 0.919 0.767 0.114 0.130 0.023 0.033
(0.000) (0.010) (0.106) (0.142) (0.113) (0.130) (0.049) (0.063)
800  1.000 1.000 0.995 0.986 0.065 0.114 0.007 0.017
(0.000)  (0.000) (0.022) (0.045) (0.079) (0.110) (0.027) (0.041)
20,5 ™~ U (—3,3)

50 500  1.000 1.000 0.988 0.984 0.035 0.060 0.013 0.021
(0.000)  (0.000) (0.038) (0.042) (0.055) (0.072) (0.034) (0.043)
800  1.000 1.000 0.999 1.000 0.005 0.020 0.003 0.006
(0.000)  (0.000) (0.010) (0.000) (0.022) (0.042) (0.021) (0.023)
100 500  1.000 1.000 0.980 0.970 0.045 0.075 0.022 0.035
(0.000) (0.000) (0.055) (0.064) (0.071) (0.086) (0.046) (0.057)
800  1.000 1.000 1.000 0.999 0.012 0.025 0.003 0.008
(0.000)  (0.000) (0.000) (0.010) (0.031) (0.049) (0.021) (0.026)
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Table S.7: The selection of latent space dimension under the low-dimensional setting with
k = 2 and mixture normal random errors. The upper panel displays the means of the

Numys along with the standard deviations in parentheses, while the lower panel displays
CT.

BO,jl ~ U (025, 05) BO,jl ~ U (05, 1)
ZO,@'j ~ N (0, 4) ZO,ij ~U (—3, 3) ZO,ij ~ N (O, 4) ZO,ij ~U (—3, 3)
P n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC

Numy,
5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0)  (0.0)  (0.0)  (0.0) (0.0)  (0.0)  (0.0)  (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.8: The selection of latent space dimension under the high-dimensional setting with
k = 2 and mixture normal random errors. The upper panel displays the means of the
Numygs along with the standard deviations in parentheses, while the lower panel displays
CT.

p =50 p =100
ZO,ij ~ N (0,4) ZO,z’j ~ U (—3, 3) Z(),Z'j ~ N (0,4) Zow’ ~ U (-3, 3)
n  SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC

Numy,
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
cT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table S.9: The means of the ME+s along with the standard deviations in parentheses, which
are obtained under the low-dimensional setting with £ = 2 and standardized exponential
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Zoyl’jNN(074)

5 300 0.040 0.052 0.864 0.538  0.877 0.025  0.051 1.022 0529  1.005
(0.008) (0.009) (0.042) (0.150) (0.037) (0.004) (0.006) (0.037) (0.183) (0.038)

500  0.032 0.043 0.847 0.493 0.869 0.022 0.044 0.994 0.482 0.990
(0.004) (0.005) (0.021) (0.139) (0.021) (0.002) (0.004) (0.019) (0.153) (0.025)

800  0.023 0.027  0.824 0.388 0.843 0.018 0.028 0.955 0.345 0.972
(0.002) (0.003) (0.012) (0.043) (0.013)  (0.001) (0.002) (0.016) (0.041) (0.015)

10 300 0.045 0.067 0912 0975  0.926 0.028 0.064 1.098 1334 1.083
(0.009) (0.012) (0.062) (0.556) (0.067)  (0.006) (0.010) (0.063) (1.023) (0.067)

500  0.033 0.051 0.859 0.647 0.885 0.020 0.052 1.033 0.683 1.030
(0.005) (0.007) (0.039) (0.270) (0.039) (0.003) (0.005) (0.037) (0.248) (0.046)

800  0.023 0.030 0.844 0.447 0.866 0.015 0.032 0.978 0.454 1.002

(0.003) (0.003) (0.022) (0.093) (0.022) (0.001) (0.003) (0.025) (0.083) (0.025)
ZO,ij ~ U (—3, 3)

5 300 0028 0030 0827 0475  0.845 0017 0023 1016 0455  0.996
(0.007) (0.007) (0.044) (0.096) (0.036)  (0.003) (0.004) (0.044) (0.142) (0.047)

500 0.018 0.020 0788 0412  0.826 0011  0.016 0951 0347  0.974
(0.004) (0.004) (0.018) (0.064) (0.017)  (0.001) (0.002) (0.032) (0.042) (0.026)

800 0.012 0013 078 0365 0.812 0.008 0011 0931 0306 0.961
(0.002) (0.002) (0.017) (0.030) (0.017)  (0.001) (0.001) (0.019) (0.034) (0.018)

10 300 0032 0036 0867 0.748  0.883 0020 0029 1099 0882  1.082
(0.007) (0.008) (0.056) (0.571) (0.053)  (0.003) (0.005) (0.078) (1.030) (0.088)

500 0.019 0.022 0810 0477  0.854 0011 0019 0980 0506 1.017
(0.004) (0.004) (0.032) (0.143) (0.032)  (0.002) (0.002) (0.036) (0.208) (0.043)

800 0.013 0015 0796 0384  0.825 0.008 0013 0946 0379  0.981

(0.002) (0.002) (0.023) (0.088) (0.022)  (0.001) (0.001) (0.023) (0.051) (0.023)
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Table S.10: The means of the ME,s and the MEgs along with the standard deviations
in parentheses, which are obtained under the low-dimensional setting with £ = 2 and

standardized exponential random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
ME, MEjp ME, MEp
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Zo7ijNN(0,4)

5 300 0.029 0.033 0.037 0.038 0.035  0.067  0.023  0.029
(0.021) (0.023) (0.013) (0.014) (0.024) (0.047) (0.006) (0.011)

500 0.016  0.020  0.032  0.037 0.020  0.041 0.021 0.032
(0.012) (0.014) (0.007) (0.012) (0.013)  (0.027) (0.004) (0.009)

800 0.008  0.009 0.023  0.025 0.012 0.017  0.016  0.021
(0.006) (0.007) (0.006) (0.007) (0.008) (0.013) (0.003) (0.005)

10 300 0.038  0.053  0.045  0.056 0.055 0.120  0.036  0.044
(0.021) (0.030) (0.013) (0.018) (0.033) (0.055) (0.013) (0.016)

500 0.019  0.026  0.034  0.047 0.028  0.075 0.019  0.039
(0.009) (0.013) (0.007) (0.015) (0.017) (0.042) (0.003) (0.011)

800 0.012  0.015  0.023  0.027 0.017  0.034 0.015  0.025
(0.007)  (0.009) (0.004) (0.006) (0.008) (0.020) (0.002) (0.006)

204 ~ U (=3,3)

5 300 0.024 0.026 0.018 0.017 0.030  0.036  0.010  0.007
(0.016) (0.017) (0.008) (0.008) (0.022)  (0.028) (0.005) (0.004)

500 0.013 0.013 0.014 0.014 0.015 0.017  0.007  0.009
(0.010) (0.011) (0.005) (0.005) (0.009) (0.011) (0.002) (0.003)

800 0.009  0.009  0.009  0.009 0.010  0.011 0.005  0.006
(0.006) (0.006) (0.003) (0.003) (0.007)  (0.009) (0.001) (0.002)

10 300 0.029  0.034  0.024  0.023 0.045  0.068  0.020 0.012
(0.016) (0.019) (0.008) (0.009) (0.023) (0.034) (0.008) (0.005)

500 0.015 0.016 0.016 0.018 0.020  0.030  0.009  0.010
(0.010) (0.011) (0.005) (0.005) (0.010) (0.015) (0.003) (0.003)

800 0.010  0.011 0.010  0.011 0.011 0.015 0.005  0.007
(0.007) (0.007) (0.002) (0.003) (0.006) (0.008) (0.001) (0.002)

Table S.11: The means of the ME+s along with the standard deviations in parentheses,
which are obtained under the high-dimensional setting with k£ = 2 and standardized expo-
nential random errors.

P n  SNVC TSNVC NVCM TNVC SNVC TSNVC NVCM TNVC
2045 ™~ N (0,4) 2045 ™~ U (—3, 3)

50 500  0.044 0.076 0.120 0.162 0.025 0.033 0.104 0.113
(0.015)  (0.022) (0.017) (0.022) (0.007) (0.011)  (0.020) (0.019)

800  0.029 0.039 0.074  0.093 0.014 0.016 0.052  0.056
(0.004)  (0.008) (0.010) (0.013) (0.002)  (0.002) (0.007) (0.007)

100 500  0.049 0.091 0.398 0.479 0.031 0.040 0.444 0.406
(0.016)  (0.026) (0.066) (0.067) (0.016) (0.017)  (0.077) (0.070)

800  0.030 0.041 0.168 0.201 0.015 0.017 0.137  0.141
(0.006)  (0.010) (0.022) (0.028) (0.003)  (0.004) (0.016) (0.016)
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Table S.12: The means of the four model selection measures (TPRp, TPR,,, FDRp and
FDR,) along with the standard deviations in parentheses, which are obtained under the
high-dimensional setting with standardized exponential random errors.

D n TPRp TPR, FDRp FDR,

SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Z(]’Z'jNN(O,Zl)
20 500  1.000 1.000 0.964 0.882 0.073 0.090 0.020 0.021
(0.000)  (0.000) (0.075) (0.115) (0.085) (0.094) (0.044) (0.050)
800  1.000 1.000 1.000 0.994 0.029 0.054 0.009 0.013
(0.000)  (0.000) (0.000) (0.024) (0.059) (0.075) (0.029) (0.034)
100 500  1.000 1.000 0.924 0.788 0.094 0.104 0.026 0.028
(0.000) (0.000) (0.092) (0.146) (0.101) (0.122) (0.051) (0.067)
800  1.000 1.000 0.996 0.989 0.040 0.099 0.008 0.024
(0.000)  (0.000) (0.020) (0.037) (0.067) (0.100) (0.026) (0.047)
20,5 ™~ U (—3,3)

50 500  1.000 1.000 0.994 0.983 0.038 0.053 0.019 0.019
(0.000)  (0.000) (0.024) (0.043) (0.065) (0.073) (0.043) (0.043)
800  1.000 1.000 1.000 1.000 0.005 0.016 0.004 0.005
(0.000)  (0.000) (0.000) (0.000) (0.024) (0.040) (0.018) (0.020)
100 500  1.000 1.000 0.982 0.965 0.053 0.086 0.029 0.035
(0.000) (0.000) (0.056) (0.066) (0.070) (0.077) (0.059) (0.063)
800  1.000 1.000 1.000 0.999 0.005 0.012 0.006 0.010
(0.000)  (0.000) (0.000) (0.010) (0.022) (0.033) (0.023) (0.031)
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Table S.13: The selection of latent space dimension under the low-dimensional setting with
k = 2 and standardized exponential random errors. The upper panel displays the means
of the Numygs along with the standard deviations in parentheses, while the lower panel
displays CT.

Boji ~ U (0.25,0.5)
ZO,ij ~ N (O, 4) ZO,ij ~U (—3, 3)

By~ U(-3,3)
ZO,ij ~ N (O, 4) ZO,ij ~U (—3, 3)

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC
Numy,
5 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
10 300 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0)  (0.0)  (0.0)  (0.0) (0.0)  (0.0)  (0.0)  (0.0)
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
CT
5 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 300 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table S.14: The selection of latent space dimension under the high-dimensional setting
with £ = 2 and standardized exponential random errors. The upper panel displays the
means of the Numygs along with the standard deviations in parentheses, while the lower
panel displays CT.

p =50 = 100
20,i5 ~ N (0,4) 205 ~ U (=3,3) z0,ij ~ N (0,4) 20,5 ~ U (=3,3)
n  SNVC TSNVC SNVC TSNVC SNVC TSNVC SNVC TSNVC
Numy,
500 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
800 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
CT
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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S.8.2 Additional simulation studies for collinearity

In this subsection, we explore the effect of collinearity on the performance of our proposed
method. To assess the effect of collinearity, we compared NVCM with the other four
methods, TNVC, NLM, FMM, and CLR, used in simulation studies. The parameters and
random errors are the same as those generated from the low dimensional setting in Section
4. As for generating the covariates, we consider the model X = Z,C, + &, where the
elements of C, € R¥*? are independently generated from a standard normal distribution,
and the elements of £ € R™*P are independently generated from N (0, ) with o = 0.25,
0.5, and 1. As a result, the degree of collinearity increases as ¢ decreases.

Tables S.15-S.20 present simulation results and show the following findings. As ¢ de-
creases, the NVCM’s performance deteriorates as expected. For example, Table S.15 in-
dicates that MEss of NVCM are 0.037, 0.064, and 0.177 when o = 1, 0.5, and 0.25,
respectively, under the setting p = 10, n = 300, zg;; ~ N(0,4), and By;; ~ U (0.25,0.5).
Furthermore, the robustness of NVCM against collinearity is either comparable or superior
to TNVC and outperforms NLM, FMM, and CLR.

Table S.15: The means of the MEss along with the standard deviations in parentheses,
which are obtained under the setting that X = Z,C, + £ with ¢ = 1 and standard normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Z(]’ijNN(O,ZL)

5 300 0.035 0.040 0.771 0.766 0.794 0.028 0.043 0.955 0.847  0.949
(0.004) (0.004) (0.012) (0.079) (0.009) (0.003) (0.003) (0.009) (0.108) (0.009)

500  0.031 0.039 0.834 0.727  0.841 0.024 0.041 0.970  0.805 0.966
(0.002) (0.002) (0.015) (0.073) (0.012) (0.002) (0.002) (0.011) (0.108) (0.011)

800 0.020 0.025 0.835  0.559  0.844 0.016  0.027 0969  0.573  0.963
(0.001) (0.001) (0.016) (0.063) (0.009)  (0.001) (0.001) (0.008) (0.077) (0.008)

10 300 0.037 0.077 0939 1.032 0974 0.032 0.082  1.068 1.287 1.134
(0.007) (0.015) (0.081) (0.319) (0.086) (0.005) (0.013) (0.086) (0.799) (0.092)

500  0.025 0.054  0.905 0.866 0.908 0.015 0.058 1.033  0.954 1.046
(0.003) (0.007) (0.046) (0.309) (0.047) (0.002) (0.007) (0.052) (0.227) (0.055)

800 0.017  0.032  0.885 0.557  0.882 0.011 0.034 1.020  0.609 1.019
(0.002) (0.003) (0.033) (0.182) (0.034)  (0.001) (0.003) (0.041) (0.062) (0.042)

20,i5 ™ U (—3, 3)

5 300 0.020 0.021 0.751 0.726 0.774 0.016 0.019 0.945 0.768  0.940
(0.004) (0.004) (0.013) (0.091) (0.012) (0.002) (0.002) (0.009) (0.122) (0.010)

500 0.014 0.015 0.743  0.658  0.763 0.011  0.014 0922 0.719  0.934
(0.002) (0.002) (0.007) (0.084) (0.007)  (0.001) (0.001) (0.016) (0.093) (0.008)

800 0.009 0.010 0.775  0.666  0.794 0.008 0.010 0935 0.675  0.944
(0.001) (0.001) (0.006) (0.045) (0.006) (0.001) (0.001) (0.013) (0.058) (0.006)

10 300 0.026 0.028  0.809 0.617  0.824 0.018 0.027 1.000  0.735 1.020
(0.006) (0.005) (0.041) (0.141) (0.043) (0.003) (0.004) (0.046) (0.139) (0.047)

500 0.014 0.018  0.800 0.623 0.826 0.010 0.017  0.982 0.703  0.990
(0.002) (0.002) (0.033) (0.057) (0.029)  (0.001) (0.002) (0.031) (0.074) (0.029)

800 0.010 0.012 0.768  0.639  0.806 0.007  0.012 0963  0.741  0.975

(0.001) (0.001) (0.015) (0.061) (0.015) (0.001) (0.001) (0.025) (0.075) (0.022)
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Table S.16: The means of the MEss along with the standard deviations in parentheses,
which are obtained under the setting that X = Z,C, + & with p = 0.5 and standard normal
random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Zoyl’jNN(074)

5 300 0.043 0.047 0.783  0.844  0.797 0.035 0.046 0951 0912  0.952
(0.007) (0.007) (0.012) (0.079) (0.012) (0.004) (0.004) (0.011) (0.098) (0.011)

500 0.036 0.043 0.837 0.772 0.849 0.028 0.043 0.975 0.807  0.975
(0.004) (0.004) (0.021) (0.074) (0.018) (0.003) (0.003) (0.018) (0.103) (0.017)

800  0.022 0.027  0.838 0.567 0.850 0.017 0.028 0.971 0.573 0.969
(0.002) (0.002) (0.017) (0.056) (0.014)  (0.001) (0.002) (0.012) (0.063) (0.014)

10 300 0.064 0.114 1.067 1.455 1.114 0.048 0.117 1.223 1.669 1.290
(0.019) (0.028) (0.151) (0.835) (0.157)  (0.013) (0.024) (0.162) (1.025) (0.168)

500 0.034 0.070 0.976 0.963 0.981 0.019 0.073 1.110 1.061 1.127
(0.006) (0.012) (0.084) (0.212) (0.087) (0.003) (0.012) (0.093) (0.156) (0.099)

800  0.022 0.040 0.936 0.593 0.938 0.014 0.041 1.076 0.678 1.080

(0.004) (0.006) (0.058) (0.073) (0.063) (0.002) (0.006) (0.070) (0.070) (0.077)
ZO,ij ~ U (—3, 3)

5 300 0028 0028 0764 0801 0.777 0019 0022 0936 0842  0.942
(0.007) (0.007) (0.014) (0.084) (0.014)  (0.002) (0.003) (0.012) (0.091) (0.011)

500 0.019 0019 0754 0.758  0.765 0014 0016 0923 0778  0.936
(0.004) (0.004) (0.009) (0.058) (0.009)  (0.001) (0.001) (0.011) (0.083) (0.010)

800 0.012 0012 0784 0692 0.796 0.009 0011 0934 0713  0.946
(0.002) (0.002) (0.008) (0.040) (0.008)  (0.001) (0.001) (0.009) (0.047) (0.008)

10 300 0.045 0.043 0858 0.661  0.891 0.028 0036 1066 0736  1.099
(0.014) (0.009) (0.075) (0.141) (0.079)  (0.007) (0.007) (0.082) (0.103) (0.085)

500 0.021 0.025 0.823 0637 0.863 0013 0021 0991 0726 1.033
(0.005) (0.004) (0.049) (0.048) (0.049)  (0.002) (0.003) (0.047) (0.060) (0.049)

800 0.014 0016 0798 0715  0.832 0.008 0014 0971 0821  1.008

(0.002) (0.002) (0.027) (0.051) (0.027)  (0.001) (0.001) (0.037) (0.056) (0.039)
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Table S.17: The means of the MEss along with the standard deviations in parentheses,
which are obtained under the setting that X = Z,C, + £ with o = 0.25 and standard
normal random errors.

p n NVCM TNVC NLM FMM CLR NVCM TNVC NLM FMM CLR
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
Zoyl’jNN(074)

5 300 0.089 0.059 0.795 0873  0.804 0.044  0.052 0953 0948  0.958
(0.015) (0.012) (0.017) (0.094) (0.017) (0.007) (0.006) (0.016) (0.076) (0.016)

500  0.045 0.050 0.852 0.804 0.866 0.033 0.047 0.985 0.811 0.992
(0.008) (0.008) (0.031) (0.074) (0.031) (0.004) (0.004) (0.030) (0.107) (0.031)

800  0.027 0.032 0.851 0.569 0.863 0.019 0.030 0.978 0.582 0.981
(0.004) (0.004) (0.026) (0.052) (0.025)  (0.002) (0.003) (0.022) (0.063) (0.024)

10 300 O0.177  0.189  1.339  2.273 1.394 0.103  0.188 1.530 2427  1.600
(0.112)  (0.052) (0.292) (1.762) (0.297)  (0.040) (0.047) (0.314) (1.513) (0.318)

500  0.054 0.104 1.116 1.317 1.128 0.031 0.103 1.265 1.446 1.290
(0.014) (0.023) (0.160) (0.396) (0.167) (0.013) (0.023) (0.178) (0.583) (0.186)

800  0.034 0.057 1.035 0.718 1.051 0.022 0.056 1.185 0.787 1.203

(0.008) (0.011) (0.115) (0.123) (0.122) (0.005) (0.012) (0.135) (0.119) (0.146)
ZO,ij ~ U (—3, 3)

5 300 0.042 0041 0776 0884  0.783 0.025 0.026 0938 0940  0.945
(0.014) (0.014) (0.018) (0.120) (0.018)  (0.004) (0.005) (0.014) (0.090) (0.014)

500 0.028  0.027 0.763 0.850 0.770 0.017  0.018 0930 0855  0.939
(0.008) (0.008) (0.013) (0.071) (0.013)  (0.002) (0.002) (0.014) (0.082) (0.014)

800 0.016 0.016 0792  0.667  0.801 0.011  0.013 0940 0715  0.951
(0.004) (0.004) (0.012) (0.042) (0.012)  (0.001) (0.002) (0.012) (0.046) (0.012)

10 300 0.177 0071 0984 0737 1.024 0.058  0.055 1211  0.829 1257
(0.196) (0.017) (0.147) (0.196) (0.150)  (0.021) (0.012) (0.157) (0.177) (0.161)

500 0.036 0.039 0.897 0673 0.938 0022 0029 1068 0781 1118
(0.010) (0.008) (0.088) (0.062) (0.088)  (0.005) (0.005) (0.088) (0.069) (0.089)

800 0.021  0.024 0853 0.784  0.885 0012 0018 1.034 0923 1073

(0.005) (0.004) (0.051) (0.069) (0.050)  (0.002) (0.003) (0.070) (0.094) (0.072)
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Table S.18: The means of the ME,s and the MEgs along with the standard deviations
in parentheses, which are obtained under the setting that X = Z,C, + £ with o = 1 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC

ME, MEj ME, MEj
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
ZOJ'J‘NN(O,ZL)

5 300 0.011 0.012  0.029  0.027 0.014  0.017  0.022  0.024
(0.008) (0.008) (0.011) (0.011)  (0.013) (0.013) (0.007) (0.011)

500 0.007  0.009  0.027  0.032 0.009  0.015 0.017  0.029
(0.005) (0.006) (0.008) (0.011)  (0.007) (0.012) (0.005) (0.009)

800 0.004  0.005  0.020  0.023 0.005 0.010  0.014  0.022
(0.003) (0.004) (0.006) (0.007)  (0.004) (0.009) (0.002) (0.005)

10 300 0.022 0.049 0.041 0.071 0.039  0.142 0.053  0.064
(0.011) (0.024) (0.015) (0.027)  (0.019) (0.072) (0.015) (0.022)

500 0.012  0.026  0.027  0.054 0.015 0.072 0.017  0.048
(0.006) (0.013) (0.007) (0.018)  (0.007) (0.034) (0.005) (0.018)

800 0.007  0.013  0.019  0.032 0.008  0.031 0.013  0.029

(0.003) (0.006) (0.005) (0.010)  (0.004) (0.016) (0.002) (0.008)
20,35 ™ U(*3,3)

5 300 0.009 0009 0010 0.008 0.010  0.011  0.005 0.004
(0.006) (0.006) (0.006) (0.005)  (0.008) (0.008) (0.003) (0.002)

500 0.006  0.006 0.011  0.010 0.006  0.006  0.006  0.006
(0.004) (0.005) (0.005) (0.005)  (0.004) (0.004) (0.002) (0.002)

800 0.003  0.003 0.007  0.007 0.004  0.005 0.005 0.005
(0.003) (0.003) (0.003) (0.003)  (0.003) (0.004) (0.001) (0.002)

10 300 0.018 0.019 0.019 0.016 0.024 0031 0019 0011
(0.010) (0.010) (0.007) (0.006)  (0.010) (0.016) (0.008) (0.004)

500 0.009  0.010 0.011  0.012 0.012 0017  0.007  0.009
(0.005) (0.005) (0.004) (0.004)  (0.005) (0.009) (0.003) (0.003)

800 0.005 0.006 0.008  0.008 0.007  0.009 0.004 0.006

(0.003) (0.003) (0.002) (0.002)  (0.003) (0.004) (0.001) (0.002)
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Table S.19: The means of the ME,s and the MEgs along with the standard deviations in
parentheses, which are obtained under the setting that X = Z,C, + & with ¢ = 0.5 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC

ME, MEj ME, MEj
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
ZOJ'J‘NN(O,ZL)

5 300 0.020 0.021 0.037  0.033 0.024 0.027r  0.026  0.027
(0.015) (0.015) (0.015) (0.014)  (0.022) (0.021) (0.010) (0.013)

500 0.014  0.015 0.032  0.037 0.016  0.025 0.019  0.031
(0.010) (0.011) (0.011) (0.014)  (0.013) (0.020) (0.006) (0.010)

800 0.008  0.009  0.022  0.025 0.010  0.016  0.015  0.023
(0.006) (0.006) (0.008) (0.009)  (0.009) (0.015) (0.003) (0.007)

10 300 0.044  0.091 0.079  0.115 0.071 0.257  0.076  0.100
(0.023) (0.045) (0.037) (0.043)  (0.035) (0.126) (0.029) (0.035)

500 0.023  0.048 0.038 0.074 0.029 0129  0.022  0.065
(0.012) (0.025) (0.011) (0.026)  (0.014) (0.060) (0.007) (0.026)

800 0.014  0.024  0.026  0.042 0.016  0.058  0.017  0.036

(0.007) (0.012) (0.008) (0.014)  (0.008) (0.030) (0.003) (0.011)
20,35 ™ U(*3,3)

5 300 0017 0017 0017 0.014 0.018 0.019 0.007 0.005
(0.013) (0.012) (0.009) (0.008)  (0.014) (0.015) (0.004) (0.003)

500 0.011  0.011  0.015 0.014 0.011 0011  0.008  0.007
(0.008) (0.008) (0.008) (0.007)  (0.007) (0.007) (0.003) (0.003)

800 0.006  0.006 0.009  0.009 0.008  0.009 0.006 0.006
(0.005) (0.005) (0.005) (0.005)  (0.007) (0.007) (0.002) (0.002)

10 300 0.036 0.036 0.038  0.029 0.048 0.055 0.027 0.018
(0.020) (0.019) (0.018) (0.010)  (0.020) (0.028) (0.013) (0.007)

500 0.018  0.019 0.018  0.019 0.023 0030 0010 0.012
(0.009) (0.009) (0.007) (0.006)  (0.011) (0.016) (0.004) (0.004)

800 0.010 0.011 0011  0.012 0.014 0017 0.006 0.008

(0.005) (0.005) (0.003) (0.003)  (0.007) (0.007) (0.002) (0.003)
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Table S.20: The means of the ME,s and the MEgs along with the standard deviations in
parentheses, which are obtained under the setting that X = Z,C, + £ with p = 0.25 and
standard normal random errors.

p n NVCM TNVC NVCM TNVC NVCM TNVC NVCM TNVC

ME, MEj ME, MEj
Boji ~ U (0.25,0.5) Boji ~ U (0.5,1)
20,35 ™ N (0, 4)

5 300 0.039 0.039 0.054  0.046 0.045 0.047  0.033  0.033
(0.028) (0.028) (0.025) (0.021)  (0.041) (0.039) (0.017) (0.016)

500 0.026  0.028  0.041 0.045 0.030  0.043 0.023  0.035
(0.018) (0.020) (0.017) (0.019)  (0.024) (0.037) (0.008) (0.013)

800 0.015  0.017  0.027  0.030 0.019  0.029  0.017  0.026
(0.011) (0.012) (0.011) (0.013)  (0.017) (0.027) (0.004) (0.008)

10 300 0.101 0173  0.259  0.202 0.154 0486  0.162  0.173
(0.057) (0.086) (0.206) (0.076)  (0.074) (0.234) (0.069) (0.062)

500 0.047  0.092 0.063 0.114 0.059  0.244  0.036  0.098
(0.024) (0.048) (0.022) (0.042)  (0.028) (0.113) (0.023) (0.042)

800 0.028  0.046  0.042  0.060 0.031 0.114  0.029  0.051

(0.013) (0.023) (0.015) (0.021)  (0.016) (0.059) (0.007) (0.018)
20,35 ™ U(*3,3)

5 300 0032 0032 0030  0.026 0.035 0.035 0.010 0.008
(0.026) (0.025) (0.018) (0.016)  (0.027) (0.027) (0.006) (0.005)

500 0.020  0.020 0.024  0.021 0.020 0.020 0.010  0.009
(0.016) (0.016) (0.013) (0.011)  (0.012) (0.013) (0.004) (0.004)

800 0.012 0.012 0014 0.013 0.016  0.016  0.007  0.007
(0.010) (0.010) (0.007) (0.007)  (0.013) (0.013) (0.003) (0.003)

10 300 0.090 0.069 0.200  0.055 0.109  0.102  0.060  0.034
(0.066) (0.036) (0.253) (0.019)  (0.051) (0.051) (0.029) (0.013)

500 0.035  0.037  0.033  0.033 0.047 0057 0018  0.019
(0.018) (0.018) (0.014) (0.011)  (0.022) (0.030) (0.007) (0.007)

800 0.020 0.021  0.020  0.020 0.027 0.032 0009 0011

(0.010) (0.010) (0.006) (0.006)  (0.013) (0.014) (0.003) (0.004)
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S.9 Additional Data Description and Results of Data
Analysis

S.9.1 Ten financial ratios

The detailed description of the 10 financial ratios is provided in Table S.21.

Table S.21: Definitions of the 10 financial ratios.

Covariates Description
X book to market ratio
X5 earnings per share/stock price
X3 firm equity /interest-bearing debt
Xy fixed assets ratio
X5 total operating revenue
Xs net debt
X5 interest-free liabilities
X3 operating cash flow/net debt
Xy price-to-book ratio
X0 working capital

S.9.2 Stock groups

To better understand the varying relationships between stock returns and ten financial
ratios, the stocks are grouped based on their correspondingly estimated coefficients BZ
classified by K-means. The number of groups is determined by the elbow method, which
yields three groups. In sum, the number of stocks in each group is 283, 134, and 383,
respectively. For each individual group, Figure S.1 depicts the boxplots of the coefficients
for the intercept and ten financial ratios. Moreover, Figure S.1 supports the findings of
Figure 2. That is identifying the distributional difference in regression coefficients among
the three groups, especially for the intercept and Xg.

S.9.3 Estimation stability

We employ the approach of Li et al. (2020) to evaluate the stability of the estimates of
B. We generate adjacency matrices A with 90% edges being randomly selected from those
of the true adjacency matrix A. Given A, we fit models (1) and (2) to estimate B. This
procedure was repeated 50 times, and Figure S.2 depicts the estimates of B. The results
indicate that the estimation of B is robust to small changes in the network structure.
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Figure S.1: Boxplots of the estimated regression coefficients for the intercept and 10 finan-
cial ratios in three groups separately, which are obtained by fitting all the stocks via NVCM
and SNVC. The upper and lower panels depict plots for NVCM and SNVC, respectively.
For each covariate, the three boxplots from left to right correspond to the first to the third
groups.
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