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A Preliminaries
Consider an i.i.d. sample X = (X1, . . . ,Xn) ∈ Rn×p×q, with Xi ∼ MN (M,Σrow,Σcol).
Due to the factored covariance structure of matrix normal data, the rowwise and columnwise
covariance matrices Σrow and Σcol are only identified up to a multiplicative constant κ ̸= 0,
since replacing Σrow by κΣrow and Σcol by 1/κΣcol does not change the pdf of X. While the
Kronecker product Σcol⊗Σrow can be uniquely identified, the issue of trivial non-uniqueness
of Σrow and Σcol is commonly solved by either fixing a diagonal entry, the determinant, or the
norm of either matrix (Roś et al., 2016; Soloveychik and Trushin, 2016). For simplicity, we
assume that the first diagonal entry of Σcol is set to one. This implies that the uniqueness
of Σcol ⊗ Σrow is equivalent to the uniqueness of Σcol and Σrow with the identifiability
constraint σcol

11 = 1. The multiplicative constant for their estimators is also chosen such that
σ̂col
11 = 1.

Instead of using Equations (3)-(5) for mean and covariance estimation, it is also possible to
consider the vectorized samples xi = vec(Xi) ∼ N (µ,Σ), i = 1, . . . , n, where µ = vec(M)
and Σ = Σcol ⊗ Σrow denote the mean and covariance matrix, respectively. Then the
maximum likelihood estimators for mean and covariance are given by

µ̂ =
1

n

n∑
i=1

xi and Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)′, (A.1)

respectively. The computation of the MLEs for matrix-variate samples based on Equa-
tions (3)-(5) involves estimating p(p + 1)/2 + q(q + 1)/2 + pq parameters instead of
pq(pq + 1)/2 + pq parameters for the vectorized observations according to Equation (A.1).
This raises the question of whether fewer than pq + 1 observations are sufficient for guar-
anteeing the existence and uniqueness of MLEs for i.i.d. samples from a matrix normal
distribution. This question was investigated in several papers, such as Dutilleul (1999); Lu
and Zimmerman (2005); Srivastava et al. (2008); Roś et al. (2016); Soloveychik and Trushin
(2016). We rely on the latter for the most recent proof of those conditions. Note that it is
not necessary to assume that the sample consists of i.i.d. observations. In fact, the i.i.d.
assumption can be relaxed to allow for statistically dependent samples and it is not even

1



necessary to require identical distribution (Soloveychik and Trushin, 2016, Remarks 2 and
6). The critical condition for existence and uniqueness is that the sample contains at least
n ≥ ⌊p/q + q/p⌋ + 2 observations that are not collinear. The same holds for the existence
and uniqueness of the MMCD estimators, where n is replaced by h, and for properties like
the breakdown point the assumptions could be relaxed only requiring that the sample is
in general position, i.e., no subset of r, 2 ≤ r ≤ ⌊p/q + q/p⌋ + 2 samples lies on an r − 2
dimensional subspace. However, the i.i.d. assumption is still necessary when we consider
properties like consistency.

The idea of the multivariate MCD estimator is as follows: Let xi = (xi1, . . . , xip)
′ ∈ Rp

denote the i-th observation of a data set in the multivariate setting, where i = 1, . . . , n. The
objective of the MCD estimator is to find the subset of h out of n observations whose sample
covariance matrix has the lowest determinant, with n/2 ≤ h ≤ n and h > p. In total, there
are

(
h
n

)
possible h-subsets, and thus, a strategy needs to be used to tackle the optimization

problem efficiently. This has been done with the so-called Fast-MCD algorithm (Rousseeuw
and Driessen, 1999), which internally sorts the observations based on their Mahalanobis
distances. For an observation xi from a population with mean µ ∈ Rp and covariance
Σ ∈ PDS(p) it is given by

MD(xi,µ,Σ) =
√

(xi − µ)′Σ−1(xi − µ).

Since the Mahalanobis distance is vital for the computation of the MCD estimator, it
will also be crucial in a matrix-variate extension, where it can be directly derived from the
Mahalanobis distance of a vectorized matrix-variate observation X as

MMD2(X) = MMD2(X;M,Σrow,Σcol) = MD2(vec(X))

= vec(X −M)′(Ωcol ⊗Ωrow) vec(X −M)

=

p∑
i=1

p∑
j=1

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
row
ij ωcol

kl

= tr(Ωcol(X −M)′Ωrow(X −M)),

where mij, ωrow
ij and ωcol

ij denote the elements (i, j) of the matrices M, Ωrow and Ωcol,
respectively. If X has a matrix normal distribution, then the squared matrix Mahalanbois
distance has a χ2 distribution with pq degrees of freedom, MMD2(X) ∼ χ2

pq (Gupta and
Nagar, 1999).

B Proofs of Section 2
Proof of Proposition 2.0.1. In optimization problem (8) we want to maximize

l(w,M,Σrow,Σcol|X) =− 1

2

n∑
i=1

wi

(
p ln(det(Σcol)) + q ln(det(Σrow))

)
− 1

2

n∑
i=1

wi MMD2(Xi)− hpq ln(2π)

(B.1)
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subject to wi ∈ {0, 1} for all i = 1, . . . , n and
∑n

i=1 wi = h. In Equation (B.1), MMD2(Xi)
is defined as in Equation (7).

For any random h-subset H (or equivalently the corresponding set of weights w) the
constrained MLEs for M, Σrow, and Σcol of Equation (B.1) can be written as:

M̂H =
1

h

n∑
i=i

wiXi =
1

h

∑
i∈H

Xi

Σ̂row
H =

1

qh

n∑
i=i

wi(Xi − M̂H)Ω̂
col
H (Xi − M̂H)

′ =
1

qh

∑
i∈H

(Xi − M̂H)Ω̂
col
H (Xi − M̂H)

′

Σ̂col
H =

1

ph

n∑
i=i

wi(Xi − M̂H)
′Ω̂row

H (Xi − M̂H) =
1

ph

∑
i∈H

(Xi − M̂H)
′Ω̂row

H (Xi − M̂H)

Using those estimators to compute the sum of the Mahalanobis distances MMD2(Xi) in
Equation (B.1) we obtain

n∑
i=1

wi MMD2(Xi) =
∑
i∈H

tr
(
Ω̂col

H (Xi − M̂H)
′Ω̂row

H (Xi − M̂H)
)

=
∑
i∈H

tr
(
(Xi − M̂H)Ω̂

col
H (Xi − M̂H)

′Ω̂row
H

)
=tr

(∑
i∈H

((Xi − M̂H)Ω̂
col
H (Xi − M̂H)

′)Ω̂row
H

)
=tr

(
qhΣ̂row

H Ω̂row
H

)
= hpq.

Thus, the terms in the second row of Equation (B.1) are all constant, and it is sufficient
to maximize only the term in the first row, which contains the (negative) determinant of
Equation (9).

B.1 Properties of MMCD estimators

Proof of Lemma 3.0.1. Ad (a): We show that the MMCD estimators are matrix affine
equivariant. Let us consider the objective of the MMCD for the transformed samples, which
is to minimize

det(Σ̂col
ZH

⊗ Σ̂row
ZH

) = det
(
(B′Σ̂col

XH
B)⊗ (AΣ̂row

XH
A′)
)

=
[
det(B′Σ̂col

XH
B)
]p[

det(AΣ̂row
XH

A′)
]q

=
[
det(B′) det(Σ̂col

XH
) det(B)

]p[
det(A) det(Σ̂row

XH
) det(A′)

]q
= 4det(B)p det(A)q det(Σ̂col

XH
)p det(Σ̂row

XH
)q.

Since 4 det(B)p det(A)q is constant, the objective does not change, and we obtain the same
h-subset. Since the MMCD estimators correspond to the trimmed MLEs and the objective is
not affected by the transformation, the matrix affine equivariance of the MMCD estimators
follows from the matrix affine equivariance of the MLEs.
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Ad (b): Suppose that (M̂Z, Σ̂
row
Z , Σ̂col

Z ) are matrix affine equivariant estimators of location
and covariance of the transformed sample Z, then

MMD2(Zi; M̂Z, Σ̂
row
Z , Σ̂col

Z )

= tr(Ω̂col
Z (Zi − M̂Z)

′Ω̂row
Z (Zi − M̂Z))

= tr
((

B−1Ω̂col
X (B′)−1(AXiB +C − (AM̂XB +C))′

)
(
(A′)−1Ω̂row

X A−1(AXiB +C − (AM̂XB +C))
))

=tr(B−1Ω̂col
X (B′)−1B′(Xi − M̂X)

′A′(A′)−1Ω̂row
X A−1A(Xi − M̂X)B)

= tr(Ω̂col
X (Xi − M̂X)

′Ω̂row
X (Xi − M̂X)) = MMD2(Xi; M̂X, Σ̂

row
X , Σ̂col

X ).

The proofs of Theorems 3.0.1 and 3.0.3 require some definitions and properties related
to the vector space of matrices, which are introduced before the proofs of the theorems.
Since all matrices of a fixed size form a vector space, objects such as ellipsoids or a simplex
that are defined on the more common vector spaces are also defined here. Let

E(T ,U ,V ) = {X : tr(V −1(X − T )′U−1(X − T )) ≤ 1} (B.2)

be the ellipsoid containing the matrices X ∈ Rp×q with MMD2(X;T ,U ,V ) ≤ 1, where
T ∈ Rp×q, U ∈ PDS(p) and V ∈ PDS(q). The volume of this ellipsoid is given by

vol(E(T ,U ,V )) =
πpq/2

Γ(pq/2 + 1)︸ ︷︷ ︸
=:βpq

p∏
i=1

q∏
j=1

√
λi(U)λj(V ) = βpq det(U)

q/2 det(V )
p/2︸ ︷︷ ︸

=:det(E(T ,U ,V ))

, (B.3)

where Γ is the gamma function, 0 < λp(U ) ≤ . . . ≤ λ1(U ) and 0 < λq(V ) ≤ . . . ≤ λ1(V ) are
the eigenvalues of U and V , respectively. Moreover, the axes have lengths

√
λi(U)λj(V ).

Let A be a symmetric nonnegative definite p× p matrix, then

λ1(A) = sup
z∈Rp

z′Az

z′z
and λn(A) = inf

z∈Rp

z′Az

z′z
. (B.4)

Consider another symmetric nonnegative definite p×p matrix B, then using Equation (B.4)
we get that

λ1(A+B) ≤ λ1(A) + λ1(B) and λp(A+B) ≥ λp(A) + λp(B). (B.5)

If A ∈ PDS(p) with eigenvalues 0 < λp(A) ≤ . . . ≤ λ1(A) then the eigenvalues of A−1

are the reciprocals of the eigenvalues of A, i.e. λi(A
−1) = λ−1

i (A). Hence, we have that

1

λ1(A)
= inf

z∈Rp

z′A−1z

z′z
,

which implies that for any x ∈ Rp

1

λ1(A)
≤ x′A−1x

x′x
⇔ x′x ≤ x′A−1xλ1(A). (B.6)
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Suppose A ∈ PDS(p), B ∈ PDS(q) and let λ(A) be an eigenvalue of A with cor-
responding eigenvector v(A), and λ(B) an eigenvalue of B with corresponding eigen-
vector v(B). Then λ(A)λ(B) is an eigenvalue of B ⊗A with corresponding eigenvector
v(B)⊗v(A). We denote the sequence of eigenvalues of A and B as 0 < λp(A) ≤ . . . ≤ λ1(A)
and 0 < λq(b) ≤ . . . ≤ λ1(b), respectively. It follows that the smallest eigenvalue
λpq(A,B) = λp(A)λq(B) and the largest eigenvalue λ1(A,B) = λ1(A)λ1(B). Moreover
note that for Z ∈ Rp×q

vec(Z)′(B ⊗A) vec(Z) = tr(BZ ′AZ),

as in Equation (7), which implies that

λpq(A,B) = inf
Z∈Rp×q

tr(BZ ′AZ)

tr(Z ′Z)
and λ1(A,B) = sup

Z∈Rp×q

tr(BZ ′AZ)

tr(Z ′Z)
.

This leads us to the matrix-variate version of Equation (B.6), where for any matrix X ∈ Rp×q

∥X∥2F = tr(X ′X) ≤ tr(B−1X ′A−1X)λ1(A,B) = tr(B−1X ′A−1X)λ1(A)λ1(B) (B.7)

Lemma B.1. Take p, q ∈ N, d = ⌊p/q+q/p⌋, d+2 ≤ s ≤ pq, and matrices X1, . . . ,Xs ∈ Rp×q

that are in general position, i.e., no subset of r, 2 ≤ r ≤ s samples lies on an r−2 dimensional
subspace. For an ellipsoid E(T ,U ,V ) as in Equation (B.2), containing the matrices
X1, . . . ,Xs, it holds that for every C > 0 there exists a constant α := α(X1, . . . ,Xs) > 0
only depending on X1, . . . ,Xs such that ∥T ∥F =

√
tr(T ′T ) > α implies det(E(T ,U ,V )) >

C, i.e.,

∀C > 0 ∃α > 0 : ∥T ∥F > α =⇒ det(E(T ,U ,V )) > C.

Proof. The samples X1, . . . ,Xs are in general position, which implies that they span a
nonempty s − 1 simplex. Since E(T ,U ,V ) contains those samples, it also contains the
simplex spanned by those matrices. This implies that there exists a constant a > 0 only
depending on X1, . . . ,Xs, such that the length of k, s− 1 ≤ k ≤ pq, of the pq axes of the
ellipsoid E(T ,U ,V ) is at least a, i.e., there are k out of pq indices (i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ q
such that √

λi(U)λj(V ) > a. (B.8)

In Equation (B.8), λi(U ), i ∈ {1, . . . , p}, are the eigenvalues of U , and λj(V ), j ∈ {1, . . . , q},
are the eigenvalues of V . For any matrix X contained in E(T ,U ,V ), Equations (B.2) and
(B.7) imply that

∥X − T ∥2F = tr((X − T )′(X − T ))

≤ tr(V −1(X − T )′U−1(X − T ))λ1(U)λ1(V )

≤ λ1(U)λ1(V ).

(B.9)

Without loss of generality, we assume that the matrix of all zeros 0 ∈ Rp×q is contained
in the ellipsoid E(T ,U ,V ), then Equation (B.9) implies that ∥T ∥2F ≤ λ1(U)λ1(V ). Take
α = C/(apq−1), then we have that

C

apq−1
< ∥T ∥F ≤

√
λ1(U)λ1(V ) ⇔ C <

√
λ1(U)λ1(V )apq−1
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and from Equaiton (B.8) it follows that

det(E(T ,U ,V )) : = det(U)
q/2 det(V )

p/2

=

p∏
i=1

q∏
j=1

√
λi(U)λj(V )

>
√
λ1(U )λ1(V )apq−1 > C.

Proof of Theorem 3.0.1. We show that the breakdown points of the MMCD estimators
of location and covariance defined in Equations (16) and (17), respectively, are both
m/n, with m = ⌊min(n − h + 1, h − (d + 1))⌋, d = ⌊p/q + q/p⌋. First, we prove that
ε∗(M̂,X) = ε∗(Σ̂row, Σ̂col,X) ≥ m/n. Let Y be the sample obtained by replacing at most
m − 1 matrices of X by arbitrary p × q matrices. Since n − (m − 1) ≥ h, Y contains at
least h matrices of the orginial sample X and because m− 1 ≤ h− (d+1)− 1, every subset
of size h of Y includes at least d+ 2 matrices of the original sample X. Hence, the MMCD
estimators can almost surely be computed for any h-subset of Y. Let us consider three
ellipsoids:

• Let Emax = E(0, cmaxI, I) denote the smallest sphere that contains all samples in X,
where cmax is chosen accordingly.

• Let Eh = E(0, chI, I) denote the smallest sphere that contains the h samples of X
that are also in Y, where ch is chosen accordingly.

• Let EMMCD = E(M̂Y, Σ̂
row
Y , Σ̂col

Y ) denote the MMCD ellipsoid.

It follows that det(EMMCD) ≤ det(Eh) ≤ det(Emax) =: α, where for an ellipsoid E =
E(T ,U ,V ), det(E) is defined in (B.3). Note that X is a collection of random samples
from a continuous distribution and therefore it is in general position almost surely. Further,
EMMCD covers at least h samples, and those include at least d+2 samples of X, which span
a nonempty d+ 1 simplex. Lemma B.1 shows that there exists a constant α > 0 that only
depends on those d+ 2 samples such that, if

∥∥∥M̂Y

∥∥∥
F
> C it would imply det(EMMCD) > α.

As shown above, this is not possible, hence
∥∥∥M̂Y

∥∥∥
F
≤ C.

Similarly, since Y contains at least d+ 2 matrices of the original sample X, the MMCD
estimators almost surely yield positive definite covariance estimates Σ̂row

Y and Σ̂col
Y . More

specifically, let XT , T ⊆ H be the subset of the at least d+2 matrices of the original sample
that are in Y. Since |T | ≥ d+ 2 = ⌊p/q + q/p⌋+ 2 the MLE estimators (M̂XT

, Σ̂row
XT

, Σ̂row
XT

)

of this subsample are almost surely positive definite. Let ET = E(M̂XT
, Σ̂row

XT
, Σ̂row

XT
) denote

the corresponding ellipsoid which is the smallest ellipsoid, of the type E = E(T,U,V)
as in Equation (B.2), containing the samples XT as one can think of it as the MMCD
ellipsoid for those |T | ≥ d+ 2 samples with H = T . This further implies that the volume
of the corresponding ellipsoid ET is bounded from below by a constant only depending
on X, i.e. det(ET ) ≥ v > 0. As EMMCD is also an ellipsoid containing the samples XT ,
det(EMMCD) ≥ det(ET ) ≥ v > 0. Moreover, it also means that there exists a constant k
depending only on X, such that ET ⊆ kEMMCD, implying that there exists a constant γ > 0
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depending only on X, such that λi(Σ̂
row
Y )λj(Σ̂

col
Y ) > γ, 1 ≤ i ≤ p, 1 ≤ j ≤ q. Especially,

λp(Σ̂
row
Y )λq(Σ̂

col
Y ) > γ. Since also det(EMMCD) ≤ α there exists a constant δ > 0, depending

only on X such that λi(Σ̂
row
Y )λj(Σ̂

col
Y ) < δ, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Next we show that ε∗(M̂,X) = ε∗(Σ̂row, Σ̂col,X) ≤ m/n. If m = n− h+ 1, we replace
m = n−h+1 matrices of X to obtain Y, then n−m = h−1, implying that every subset of h
samples of Y contains at least one conaminated sample. Hence, EMMCD = E(M̂Y, Σ̂

row
Y , Σ̂col

Y )
also includes at least one contaminated sample. Let ∥X∥F → ∞ for all contaminated
samples X, then at least one eigenvalue of EMMCD explodes and the MMCD location and
covariance estimators break down. Finally, consider the case where m = h− (d+ 1). To
construct Y, take any d+1 samples of X and consider the d dimensional hyperplane L they
determine. Replace h− (d+ 1) samples that are not in L and replace them with matrices
on L. Then L contains h points of Y and the ellipsoid covering those points has volume
zero and hence determinant zero. Since X is in general position, we can construct Y such
that no other lower dimensional hyperplane contains h points of Y. Hence, M̂Y lies on
L and EMMCD = E(M̂Y, Σ̂

row
Y , Σ̂col

Y ) has zero determinant. This implies that at least one
eigenvalue is zero, hence the MMCD location and covariance estimators break down.

Proof of Theorem 3.0.2. Let (X1, . . . ,Xn) be a sample of matrix-variate observations
and (x1, . . . ,xn), xi = vec(Xi), i = 1, . . . n its vectorized form. The MCD estimator can
also be found as a solution to the following maximization problem:

max
w,µ̂,Σ̂

l(w, µ̂, Σ̂|(x1, . . . ,xn)) = max
w,µ̂,Σ̂

−1

2

n∑
i=1

wi(ln(det(Σ̂)) + pq ln(2π) + MD2(xi, µ̂, Σ̂))

subject to w1, . . . , wn ∈ {0, 1},
∑n

i=1wi = h, µ̂ ∈ Rpq, Σ̂ ∈ PDS(pq); see Raymaekers and
Rousseeuw (2023) for more insight. Similarly, the MMCD estimator is a solution to the
following maximization problem:

max
w,M̂,Σ̂row,Σ̂col

l(w, M̂, Σ̂row, Σ̂col|(X1, . . . ,Xn))

= max
w,M̂,Σ̂row,Σ̂col

−1

2

n∑
i=1

wi

(
p ln(det(Σ̂col)) + q ln(det(Σ̂row)) + MMD2(Xi) + pq ln(2π)

)
subject to w1, . . . , wn ∈ {0, 1},

∑n
i=1wi = h, M̂ ∈ Rp×q, Σ̂row ∈ PDS(p), Σ̂col ∈ PDS(q);

see Proposition 2.0.1.
Denote further (wMCD, µ̂MCD, Σ̂MCD) and (wMMCD, µ̂MMCD, Σ̂

col
MMCD ⊗ Σ̂row

MMCD) weights,
mean and covariance estimators for the vectorized sample (x1, . . . ,xn), based on MCD and
MMCD, respectively, noting also that these estimators are implicit functions of the sample
size n too. However, for the simplicity of the notation, we omit adding the additional
subscript n everywhere, unless explicitly needed. As Xi ∼ ME(M,Σrow,Σcol, g), then
xi ∼ E(µ,Σcol ⊗Σrow, g), with E(xi) = µ = vec(M), cov (xi) = cgΣ

col ⊗Σrow, where cg
is a distribution-specific scaling parameter; for more details see Theorem 2.11 in Gupta
and Varga (2012). Moreover, the mean estimator µ̂MCD and properly scaled covariance
estimator Σ̂MCD are strongly consistent for the population counterparts µ and Σcol ⊗Σrow;
see e.g. Croux and Haesbroeck (1999) and Cator and Lopuhaä (2012). Especially, this
implies that for every δ > 0 there exists n0 ∈ N such that

∥µ̂MCD,n − µ∥
a.s.
< δ,

∥∥∥Σ̂MCD,n −A⊗B
∥∥∥ a.s.

< δ,
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for some A ⊗B ∈ PDS(p) ⊗ PDS(q) and all n ≥ n0. In the following, we will drop a.s.
superscript from (in)equality signs when it is clear from the context. For fixed weights w,
the log-likelihood function l·,w|(x1,...,xn) : (µ,Σ) 7→ l(µ,Σ|w, (x1, . . . ,xn)) is continuous in
both µ, and Σ. Take now ε > 0. The continuity then implies that there exists δ > 0 such
that, ∣∣∣l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMCD,µ,A⊗B|(x1, . . . ,xn))

∣∣∣ < ε,

for ∥µ̂MCD − µ∥
a.s.
< δ and

∥∥∥Σ̂MCD −A⊗B
∥∥∥ a.s.

< δ. Moreover, the solution (wMCD, µ̂MCD, Σ̂MCD)

is optimal for l(·|(x1, . . . ,xn)), implying that

0 < l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMCD,µ,A⊗B|(x1, . . . ,xn)) < ε. (B.10)

Similarly, (wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD) is a maximizer of l(·|(x1, . . . ,xn)) in the
set of all feasible weights, means, and covariances with Kronecker product structure. As
(wMCD,µ,A⊗B) belongs to the same set,

l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn)) > l(wMCD,µ,A⊗B|(x1, . . . ,xn)).

Denote further ŜMMCD = 1
h

∑n
i=1wMMCD,i(xi− µ̂MMCD)(xi− µ̂MMCD)

′ to be the estimate of
Σcol ⊗Σrow, based on the weights (subset) produced by the MMCD algorithm. As ŜMMCD

is optimal for l given fixed weights wMMCD,

l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn)) > l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn))

> l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn))

> l(wMCD,µ,A⊗B|(x1, . . . ,xn)). (B.11)

(B.10) and (B.11) now give that

0 < l(wMCD, µ̂MCD, Σ̂MCD|(x1, . . . ,xn))− l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn)) < ε,

i.e., due to Proposition 2.0.1,

0 < det(ŜMMCD)− det(Σ̂MCD) < ε, (B.12)

for ε = ε(n) > 0, arbitrarily small (ε(n) → 0, n → ∞). As both Σ̂MCD and ŜMMCD are
weighted sample covariances for the random sample of vectorized observations calculated
using the weights satisfying the same constraints, Corollary 4.1. in Cator and Lopuhaä
(2012) (taking Pt to be the empirical measure based on the sample (x1, . . . ,xn)) implies
that

µ̂MMCD
a.s.−−→ µ, ŜMMCD

a.s.−−→ c(α)−1Σcol ⊗Σrow , (B.13)

where c(α) > 0 is a distribution-specific consistency factor of the MCD given in Croux and
Haesbroeck (1999).

To complete the proof consider reparametrization of l(w,a,A|(x1, . . . ,xn)) for fixed
weights w ∈ Rn, mean a ∈ Rpq, and covariance A ∈ PDS(pq) in terms of the preci-
cion matrix B = A−1. Denote this new parametrization as g(B|w,a, (x1, . . . ,xn)) =
l(w,a,B−1|x1, . . . ,xn), which is now concave in B. Especially, for w = wMMCD and
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a = µ̂MMCD, the function g(B|wMMCD, µ̂MMCD, (x1, . . . ,xn)) is concave in B and achieves
a unique global maximum at B = ŜMMCD. Equations (B.10) and (B.11) then give

0 <l(wMMCD, µ̂MMCD, ŜMMCD|(x1, . . . ,xn))

− l(wMMCD, µ̂MMCD, Σ̂
col
MMCD ⊗ Σ̂row

MMCD|(x1, . . . ,xn)) < ε,

further implying that

0 <g(Ŝ−1
MMCD|wMMCD, µ̂MMCD, (x1, . . . ,xn))

− g((Σ̂col
MMCD ⊗ Σ̂row

MMCD)
−1|wMMCD, µ̂MMCD, (x1, . . . ,xn)) < ε,

as both ŜMMCD and Σ̂col
MMCD⊗Σ̂row

MMCD are a.s. positive definite for n large enough. Concavity
of g and the fact that Ŝ−1

MMCD is its global maximum further imply that

∥Ŝ−1
MMCD − (Σ̂col

MMCD ⊗ Σ̂row
MMCD)

−1∥ < δ1,

for δ1 = δ1(ε) → 0 as n → ∞. Almost sure positive definiteness of ŜMMCD and Σ̂col
MMCD ⊗

Σ̂row
MMCD, and continuity of matrix inverse imply that

∥ŜMMCD − Σ̂col
MMCD ⊗ Σ̂row

MMCD∥ < δ, (B.14)

for δ = δ(ε) → 0 as n → ∞. Equations (B.13) and (B.14) now complete the proof. Observe
that the proof indicates that the distribution-specific consistency factor is inherited from
the MCD covariance estimator; see Croux and Haesbroeck (1999).

Proof of Theorem 3.0.3. We show that the breakdown points of the reweighted MMCD
estimators are at least as high as the breakdown points of the raw MMCD estimators.
Let Y be the sample obtained by replacing at most m − 1 matrices of X by arbitrary
p × q matrices. Let M̂Y, Σ̂row

Y , and Σ̂col
Y denote the raw MMCD estimators and M̃Y,

Σ̃row
Y , and Σ̃col

Y denote the reweighted MMCD estimators based on the corrupted sample
Y. Further, d(Yi) = MMD(Yi; M̂Y, Σ̂

row
Y , Σ̂col

Y ), i ∈ N = {1, . . . , n}, denote the matrix
Mahalanbois distances of the corrupted sample based on the raw MMCD estimators. Since
m ≤ ε∗(M̂X,X)− 1 = ε∗(Σ̂row

X , Σ̂col
X ,X)− 1 it follows that there exist constants k0, k1, and

k2 that only depend on X, such that∥∥∥M̂Y

∥∥∥ ≤ k0 < ∞ and

0 < k1 < λp(Σ̂
row
Y )λq(Σ̂

col
Y ) ≤ λ1(Σ̂

row
Y )λ1(Σ̂

col
Y ) ≤ k2 < ∞.

(B.15)

Since at least ⌊(n+d+2)/2⌋ have a positive weight and at most ⌊(n−d)/2⌋ − 1 observations are
replaced, there are at least d+ 2 observations of the orginal sample X contained in Y that
have a positive weight. Let T ⊆ N denote the indices of those samples, then we have that

n∑
i=1

w(d(Yi)) =
∑

i∈N\T

w(d(Yi)) +
∑
i∈T

w(d(Xi)) ≥
∑
i∈T

w(d(Xi)) ≥ (d+ 2)c0 > 0, (B.16)

with c0 := mini∈T w(d(Xi)) > 0. This implies that the denominators of M̃Y, Σ̃row
Y , and

Σ̃col
Y are always positive.
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Let us now show that there exists a constant α0 < ∞ only dependent on X such that∥∥∥M̃Y

∥∥∥
F
< α0. From Equation (B.7) we have that

∥∥∥Yi − M̂Y

∥∥∥2
F
≤ tr(Ω̂col

Y (Yi − M̂Y)
′Ω̂row

Y (Yi − M̂Y))λ1(Σ̂
row
Y )λ1(Σ̂

col
Y )

= d(Yi)λ1(Σ̂
row
Y )λ1(Σ̂

col
Y ).

When computing M̃Y we have that w(d(Yi)) = 0 if d(Yi) > c1 and for all Yi ∈ Y that are
assigned positive weights, Equation (B.15) yields

∥Yi∥2F ≤
∥∥∥Yi − M̂Y

∥∥∥2
F
+
∥∥∥M̂Y

∥∥∥2
F
≤ c1k2 + k2

0. (B.17)

Since the denominator of is M̃Y bounded according to Equation (B.16), w is non-increasing
and bounded, and k0 and k2 are only dependent on X, there exsits a constant α0 only
dependent on X such that ∥∥∥M̃Y

∥∥∥
F
≤ α0 < ∞. (B.18)

To show that the covariance does not break down, we first consider the case of the weight
function w(di) = 1(di ≤ c1), for c1 > 0. Let S ⊆ {1, . . . , N} denote the subset of indices
of the s = |S| samples of Y = {Y1, . . . ,Yn} for which di ≤ c1, i ∈ S. Observe that the h
samples Yi, i ∈ H are those with the smallest MD, hence T ⊆ H ⊆ S. Let M̂YT

, Σ̂YT
, Ω̂YT

and M̂YS
, Σ̂YS

, Ω̂YS
denote the MLE estimators of YT = (Yi)i∈T and YS = (Yi)i∈S,

respectively. Consider the following three ellipsoids:

• Let ET = E(M̂YT
, Σ̂YT

, Ω̂YT
) denote the ellipsoid corresponding to the MLEs of

YT , i.e., the smallest ellipsoid containing those at least d+ 2 samples.

• Let ES = E(M̂YS
, Σ̂YS

, Ω̂YS
) denote the ellipsoid corresponding to the MLEs of YS.

• Let E0 = E(0, kIp, Iq) denote the smallest sphere containing the samples YS, where
k = c1k2 + k2

0 is as in (B.17).

Observe first that as ET is the smallest ellipsoid containing the samples YT = XT that
are also in ES, there exists a constant a1 depending only on XT , such that ET ⊆ a1ES :=
E(M̂YS

, a1Σ̂YS
, Ω̂YS

). On the other hand, ES is the smallest ellipsoid containing YS. As
these points are also in E0, then there exist α = α(c1) such that det(ES) ≤ det(E0) ≤ α.
Equivalent argumentation as in the proof of Theorem 3.0.1 completes the first part of the
proof.

Let now w = w(di) be an arbitrarily, nondecreasing, bounded weight function, such that
w(di) = 0 if di > c1, i = 1, . . . , n. The weighted log-likelihood function for the sample Y,

10



with the weights satisfying
∑n

i=1 wi = s is given by

l(w,M,Σrow,Σcol|Y) =− 1

2

m∑
i=1

wi

(
p ln(det(Σcol)) + q ln(det(Σrow))

+ tr(Ωcol(Yi −M)′Ωrow(Yi −M)) + pq ln(2π)
)

=− 1

2

(
s
(
p ln(det(Σcol)) + q ln(det(Σrow))

)
+

s∑
i=1

tr(Ωcol(Zi −M)′Ωrow(Zi −M)) + pq ln(2π)
)

= l(w̃,M ,Σrow,Σcol|Z),

where w̃ = (w̃(d1), . . . , w̃(dn)), the new weight function satisfies w̃(di) = 1(d1 ≤ c1),
Z = {Z1, . . . ,Zn}, and Zi =

√
wiYi, i = 1, . . . , n. To complete the proof it is sufficient to

observe the following: Z1, . . . ,Zh contains at least d+ 2 points of the form
√
wiXi and are

in a general position, as wi ≥ a2 > 0, for some constant depending only on X. Moreover,
∥Zi∥2F = wi∥Yi∥2F ≤ wi(c1k2 + k2

0) ≤ w(0)(c1k2 + k2
0), i = 1, . . . , s. The statement now

follows from the first part of the proof, observing that assumption
∑m

i=1 wi = s without loss
of generality, since 0 < w(0) ≤

∑n
i=1wi ≤ sw(0) < ∞.
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C MMCD algorithm

Algorithm 1 Iterative C-step procedure for the MMCD estimators
1: procedure CSTEP((X1, . . . ,Xn), Hold, ε > 0)
2: (M̂Hnew , Σ̂

row
Hnew

, Σ̂col
Hnew

) = MLE((Xi)i∈Hold
)

3: h = |Hold|
4: repeat
5: (M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

) = (M̂Hnew , Σ̂
row
Hnew

, Σ̂col
Hnew

)

6: d = (MMD2(X1; M̂Hold
, Σ̂row

Hold
, Σ̂col

Hold
), . . . ,MMD2(Xn; M̂Hold

, Σ̂row
Hold

, Σ̂col
Hold

))
7: π1(i) = {{1, . . . , n} → {1, . . . , n} : i 7→ j : dπ(1) ≤ . . . ≤ dπ(n)}
8: Hnew = {π(1), π(2), . . . , π(h)}
9: (M̂Hnew , Σ̂

row
Hnew

, Σ̂col
Hnew

) = MLE((Xi)i∈Hnew)

10: until
∣∣∣p(ln(det(Σ̂col

Hold
))− ln(det(Σ̂col

Hnew
))) + q(ln(det(Σ̂row

Hold
))− ln(det(Σ̂row

Hnew
)))
∣∣∣ < ε

11: return M̂Hnew , Σ̂
row
Hnew

, Σ̂col
Hnew

,d, Hnew

12: end procedure
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Algorithm 2 Fast reweighted MMCD procedure
1: procedure MMCD(X = (X1, . . . ,Xn))
2: h = ⌊(n+d+2)/2⌋
3: α = h/n
4: N = {1, . . . , n}
5: for k = 1 to 500 do
6: Hk = sample(N , size = d+ 2)
7: (M̂k, Σ̂

row
k , Σ̂col

k ,dk, Hk) = CSTEP2(X, Hk) ▷ 2 MLE and C-step iterations
8: δk = p ln(det(Σ̂col

k )) + q ln(det(Σ̂row
k ))

9: end for
10: πδ(i) = {{1, . . . , 500} → {1, . . . , 500} : i 7→ j : δπδ(1) ≤ . . . ≤ δπδ(500)}
11: for l ∈ {πδ(1), πδ(2), . . . , πδ(10)} do
12: (M̂l, Σ̂

row
l , Σ̂col

l ,dl, Hl) = CSTEP(X, Hl) ▷ Iterating C-steps until convergence
13: δl = p ln(det(Σ̂col

l )) + q ln(det(Σ̂row
l ))

14: end for
15: j = argmink∈N(δk)

16: (M̂, Σ̂row, Σ̂col) = (M̂j, c(α)Σ̂
row
j , Σ̂col

j ) ▷ Consistency scaling for raw MMCD
17: d = (MMD2(X1; M̂, Σ̂row, Σ̂col), . . . ,MMD2(Xn; M̂, Σ̂row, Σ̂col))
18: H = Hj ∪ {i ∈ N |di < χ2

0.975;pq}
19: (M̂, Σ̂row, Σ̂col) = MLE(Xi∈H) ▷ Computation of reweighted MMCD
20: α̃ = |H|/n
21: (M̂∗, Σ̂

row
∗ , Σ̂col

∗ ) = (M̂, c(α̃)Σ̂row, Σ̂col) ▷ Consistency scaling for reweighted MMCD
22: return M̂∗, Σ̂

row
∗ , Σ̂col

∗
23: end procedure
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C.1 Elemental subsets

For large n, the probability of obtaining at least one clean subset with d+ 2 observations
among m random subsets tends to

1− (1− (1− ε)d+2)m,

with ε denoting the percentage of outliers, see also Rousseeuw and Driessen (1999). Hence,
the number of subsets we must investigate to obtain at least one clean subset with a
probability of β is

⌈log(1− β)/log(1− (1− ε)d+2)⌉. (C.1)

In Figure C.1, we plot the number of necessary subsets according to Equation (C.1) for
β = 0.99 for d between 1 and 50 and ε between 0 and 0.5. The different green-shaded areas
starting from the bottom right indicate settings where up to m = 500 initial subsets of size
d+ 2 are sufficient to obtain at least one clean subset with a probability of β = 0.99 and
the various shades of orange indicate settings where we need more elemental subsets.
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(2000, 10000]

(10000, 100000]

(100000, Inf]

Figure C.1: Number of subsets of size d + 2 we have to investigate for various levels of
contamination, to obtain at least one clean subset with a probability of 99%

We assess the influence of using only 2 C-step and MLE iterations on the MMCD
estimators’ objective, the determinant of Σ̂col ⊗ Σ̂row. We consider a setting with n = 200
observations with p = 2 rows and q = 8 columns. The clean observations are generated by
a centered matrix normal distribution with Σrow = Σfix(0.7) and Σcol = Σmix(0.7), with
diagonal entries σfix

jj = σmix
jj = 1 and off-diagonal entries σfix

jk (0.7) = 0.7 and σmix
jk (0.7) =

0.7|j−k|, respectively. The outliers have a mean of 5 and the same covariance as the regular
observations. We use 100 random subsets and plot det(Σ̂col ⊗ Σ̂row) for subsequent C-step
iterations with 40% of contamination. We compare the setting when we limit the number of
MLE iterations to 2 or iterate until convergence and/or use elemental subsets with d+2 = 6
instead of h-subsets of size n/2 = 100. Comparing the top and bottom row of Figure C.2,
we see that there is virtually no difference in the objective function while limiting the ML
iterations increases the computation speed. For the subset size, we see that several of
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Figure C.2: Logarithm of determinant for successive C-step iterations to analyze the effects
of initial subset size and the number of ML iterations.

the elemental subsets yield robust solutions with a lower covariance determinant than the
larger h-subsets and that most of them are identified after 1 or 2 iterations. While 40%
contamination is not often encountered in practice, it shows that the algorithm can deal
with settings with such a high level of contamination. We also analyzed settings with lower
contamination, and using elemental subsets and fewer ML iterations had no negative effects
in those settings, however, the larger h-subsets also led to robust solutions more frequently.

Remark C.1.1. Instead of using the consistency factor c(α) given in Equation (18), we
could also scale the estimators to align the MMDs with a quantile of the chi-square distribution
as in Rousseeuw and Driessen (1999). Across the simulations and the examples considered
in this paper, we have only seen very slight changes in the resulting estimators for both the
raw and reweighted MMCD.
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D Shapley proofs
Proof of Proposition 5.2.1. To show that cellwise Shapley values are not matrix affine
equivariant, we consider a rowwise addition matrix A that adds the w-th row to the v-th
row. For simplicity, let B be the identity matrix. Then Equation (D.1) yields

((AX) ◦ (CY ))jk =

{
(xjk + xwk)(yjk − ywk) j = v

xjkyjk j ̸= v

while

(A(X ◦ Y ))jk =

{
xjkyjk + xwkywk j = v

xjkyjk j ̸= v
.

Hence, we do not get invariance nor equivariance for rowwise or columnwise addition
matrices. This also implies that the cellwise Shapley values are not, in general, matrix affine
equivariant.

Shift invariance follows from

Φ(X +C) = ((X +C)− (M+C)) ◦Ωrow((X +C)− (M+C))Ωcol = Φ(X),

which means that we can assume that X has zero mean without loss of generality.
Let Y := ΩrowXΩcol, C := (A′)−1 and D := (B′)−1, then we can write the cellwise

Shapley values as Φ(AXB) = (AXB) ◦ (CY D). The jk-th entry of this matrix can be
written as

ϕjk(AXB) =((AXB) ◦ (CY D))jk = (AXB)jk(CY D)jk

=

p∑
i=1

q∑
l=1

ajixilblk

p∑
m=1

q∑
n=1

cjmymndnk

=

p∑
i=1

q∑
l=1

p∑
m=1,m ̸=i

q∑
n=1,n ̸=l

ajicjmxilymnblkdnk

+

p∑
i=1

q∑
l=1

q∑
n=1,n̸=l

ajicjixilyinblkdnk

+

p∑
i=1

q∑
l=1

p∑
m=1,m ̸=i

ajicjmxilymlblkdlk

+

p∑
i=1

q∑
l=1

ajicjixilyilblkdlk.

(D.1)

If A is a scaling matrix, i.e., a diagonal matrix with non-zero entries, we have that

ajicjm =

{
1 j = i = m

0 otherwise
,

and similarly for B. This implies that

ϕjk(AXB) = xjkyjk = (X ◦ Y )jk = ϕjk(X),

16



showing the scale invariance.
If A is a permutation matrix, i.e., a matrix consisting of any permutation of the canonical

basis vectors, we have that (A′)−1 = A and

ajicjm = ajiajm =

{
aji i = m

0 i ̸= m
,

and similarly for B. Hence Equation (D.1) becomes

((AXB) ◦ (CY D))jk =

p∑
i=1

q∑
l=1

ajicjixilyilblkdlk = (A(X ◦ Y )B)jk,

verifying the permutation equivariance.

Proof of Theorem 5.2.2. To show that the computation of the rowwise Shapley value
can be simplified, we start by rewriting the rowwise marginal contributions to the matrix
Mahalanobis distance.
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∆a MMD(X̂S) :=MMD(X̂S∪{a})−MMD(X̂S)

=

p∑
i=1

p∑
j=1

q∑
k=1

q∑
l=1

(x̂
S∪{a}
ik −mik)(x̂

S∪{a}
jl −mjl)ω

col
lk ωrow

ij

−
p∑

i=1

p∑
j=1

q∑
k=1

q∑
l=1

(x̂S
ik −mik)(x̂

S
jl −mjl)ω

col
lk ωrow

ij

=
∑

i∈S∪{a}

∑
j∈S∪{a}

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

−
∑
i∈S

∑
j∈S

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

=
∑

i∈S∪{a}

∑
j∈S

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

+
∑

i∈S∪{a}

q∑
k=1

q∑
l=1

(xik −mik)(xal −mal)ω
col
lk ωrow

ia

−
∑
i∈S

∑
j∈S

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

=
∑
i∈S

∑
j∈S

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

−
∑
i∈S

∑
j∈S

q∑
k=1

q∑
l=1

(xik −mik)(xjl −mjl)ω
col
lk ωrow

ij

+
∑
j∈S

q∑
k=1

q∑
l=1

(xak −mak)(xjl −mjl)ω
col
lk ωrow

aj

+
∑
i∈S

q∑
k=1

q∑
l=1

(xik −mik)(xal −mal)ω
col
lk ωrow

ia

+

q∑
k=1

q∑
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

=2
∑
i∈S

q∑
k=1

q∑
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+

q∑
k=1

q∑
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa .
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Now the coordinates ϕa(X) of the Shapley value ϕ(X) are given by (w(|S|) = |S|!(p−|S|−1)!
p!

)

ϕa(X) =
∑

S⊆P\{a}

w(|S|)∆a MMD(X̂S)

=2
∑

S⊆P\{a}

w(|S|)
∑
i∈S

q∑
k=1

q∑
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+
∑

S⊆P\{a}

w(|S|)
q∑

k=1

q∑
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

and we can simplify the first term of the sum as

2
∑

S⊆P\{a}

w(|S|)
∑
i∈S

q∑
k=1

q∑
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1∑
s=1

w(|S|)
∑

S⊆P\{a},|S|=s

∑
i∈S

q∑
k=1

q∑
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1∑
s=1

q∑
k=1

t∑
l=1

w(|S|)
∑

S⊆P\{a},|S|=s

∑
i∈S

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2

p−1∑
s=1

q∑
k=1

q∑
l=1

|S|!(p− |S| − 1)!

p!

(
p− 2

s− 1

) ∑
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2
1

p(p− 1)

p−1∑
s=1

s

q∑
k=1

q∑
l=1

∑
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

= 2
1

p(p− 1)

p(p− 1)

2

q∑
k=1

q∑
l=1

∑
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

=

q∑
k=1

q∑
l=1

∑
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia .

Since the second term is independent of the subset S and
∑

S⊆P\{a}w(|S|) = 1, we obtain

ϕa(X) =

q∑
k=1

q∑
l=1

∑
i∈P\{a}

(xal −mal)(xik −mik)ω
col
lk ωrow

ia

+

q∑
k=1

q∑
l=1

(xak −mak)(xal −mal)ω
col
lk ωrow

aa

=

p∑
i=1

q∑
k=1

q∑
l=1

(xal −mal)(xik −mik)ω
col
lk ωrow

ia ,

which completes the proof.
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E Further simulation results
In order to select a simulation setting, one has to consider that the ML estimators for the
parameters of the matrix-variate normal distribution employ an iterative algorithm, which
is commonly initialized by setting either the rowwise or columnwise covariance matrix equal
to the identity matrix (Dutilleul, 1999). Therefore, identity covariance matrices will not be
used for data generation as this could lead to an undesirable advantage for the estimation.

To assess the quality of covariance estimation, we consider two additional measures to
the KL divergence: the relative Frobenius error given as∥∥∥Σ̂col ⊗ Σ̂row −Σcol ⊗Σrow

∥∥∥
F

∥Σcol ⊗Σrow∥F
,

and angle error between eigenvalues given as

1− â⊤a√
â⊤â

√
a⊤a

,

where â and a are the vectors of sorted eigenvalues of Σ̂col⊗Σ̂row and Σcol⊗Σrow, respectively.
Large values of the KL divergence and the relative Frobenius error indicate difficulties in
the estimation of the covariances. The angle error between the eigenvalues is in the interval
[0, 1], and a large value means that the shape of the covariance matrix is not appropriately
estimated. To assess the efficacy of outlier detection, we include the F-score in addition to
precision and recall. The F-score is defined as the harmonic mean of precision and recall,
where precision denotes the proportion of correctly identified outliers among all detected
samples, while recall represents the proportion of correctly identified outliers among all
contaminated samples. The R code of the simulations and all simulation results are available
in the online supplement.

E.1 Effects of dimensionality and computation time

We start by considering additional metrics for the simulations discussed in Section 6.
Figure E.1 shows the F-score in addition to precision and recall. The F-score shows that for
n = 100 and increasing dimensionality the robust MMCD estimators and the MLEs yield
similar results. This is due to an increasing recall of the MLEs and a decreasing precision
of the MMCD estimators. For n = 1000, the F-score of the MMCD estimators is close to
the benchmark and for the MCD we see the advantage of using the deterministic MCD
approach over the Fast-MCD method with increasing sample size. In Figure E.2 we see that
the MCD performs best in all settings across all evaluation measures. For the MCD we do
not see a difference in the KL divergence when swapping to the deterministic procedure.
However, the angle error between eigenvalues shows clear improvements, indicating that the
estimation of the shape of the covariance matrix improves. Both in terms of the angle and
Frobenius error, the MCD estimator attains better scores than the MLEs even for higher
pq, while the MLEs have better KL divergence.

We also analyze the computation times of the estimators in this setting. Figure E.3
clearly shows that computation time depends on the dimensionality of the matrix-variate
samples and the number of samples for all approaches. The relative increases of computation
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time of the matrix MLEs and the MMCD estimators are similar for n ∈ {20, 100, 300} but
for n = 1000 the relative increase in computation time for the matrix MLEs is larger than
for the MMCD estimators, highlighting the effectiveness of the subsampling approach with
increasing sample size. For the MCD, we observe a decrease in computation time when
pq > 300 since the deterministic MCD is used instead of the Fast-MCD procedure. However,
computing the MCD still takes longer than the MMCD approach. Hence, the matrix-variate
approach does yield higher robustness and more accurate covariance estimation with shorter
computation times. Although parallel processing is available for the MMCD procedure, it was
not utilized in the simulations to ensure better comparability for the algorithms. Depending
on the number of available threads, parallel processing yields substantial improvements in
computation time.

E.2 Cellwise and block contamination

We also consider the additional metrics for the simulations comparing the three different
contamination types in Figures E.4 and E.5. The robustness of the MMCD estimators is
again confirmed using all three metrics assessing the quality of the covariance estimation.
The angle error reveals that the cell contamination has less effect on the shape of the
covariance matrix than the other two scenarios and that all three estimators seemingly do
a good job of estimating the covariance shape. For block contamination, the MCD yields
better results than the MLEs with increasing sample size and even gets close to the MMCD
in terms of angle error.

Remark E.2.1. Our cell contamination setting does not correspond to the setting of cellwise
outliers (Alqallaf et al., 2009). We first select a subset of outlying observations and permute
the cells for this selection while Alqallaf et al. (2009) select a fraction of all cells from
all samples. In our setting, we can guarantee that only 10 percent of the samples are
contaminated while the cellwise contamination scheme of Alqallaf et al. (2009) would likely
lead to more than half of the samples being contaminated.

In further simulations, we considered different fractions of contaminated samples as well
as multiple rowwise and columnwise covariance matrices for cellwise and block contamination.
Additionally, we analyzed the effect of the fraction of permuted cells per observation for cell
contamination, and for block contamination, we considered different mean matrices. Those
simulation results are not discussed here but are available in the online supplement.

E.3 Shift outliers

For shift outliers, we include an in-depth analysis of the effect of the various simulation
parameters. The simulations involve generating regular and outlying samples from a matrix
normal distribution. A fraction, ε, of the clean data is replaced by outliers. The clean
observations are drawn from a centered distribution, while the mean of the outliers shifts
based on the parameter γ, i.e., the mean of the outliers is set to a matrix with all entries
equal to γ. Three types of covariance matrices are considered: The covariance matrix Σrnd,
as proposed by Agostinelli et al. (2015), is randomly generated with low correlations. The
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covariance matrix Σfix(0.7) induces a relatively collinear setting, with entries defined as:

σfix
jk (0.7) =

{
1 if j = k

0.7 if j ̸= k
.

The covariance matrix Σmix(0.7) exhibits both large and small correlations, featuring entries
as follows:

σmix
jk (0.7) =

{
1 if j = k

0.7|j−k| if j ̸= k
.

While maintaining the same covariance structure for both outliers and clean samples, we
explore the impact of increasing the outlier covariance by scaling the covariance of clean
observations by the parameter s. Each simulation setting is replicated 100 times. Unless
specified otherwise, we set Σrow = Σrnd, Σcol = Σmix(0.7), and s = 1 as detailed in Section 6.
An overview of all parameters for the simulations is provided in Table E.1. For (p, q) = (5, 20),
all listed parameter combinations are considered, while for (p, q) ∈ (50, 20), (100, 50), we
only consider s = 1.

Parameter Parameter values

Sample size n 20, 50, 100, 200, 300, 400, 500, 750, 1000
Contamination ε 0.1, 0.2, 0.3, 0.4
Rowwise covariance Σrow Σfix(0.7),Σrnd

Columnwise covariance Σcol Σmix(0.7),Σrnd

Mean shift γ 1, 2, 3, 4, 5
Covariance multiplier s 1, 2, 3, 4

Table E.1: Parameters considered for the simulations with p, q = (5, 20).

We analyze the effect of the mean shift in a setting with contamination of ε = 0.2
and compare γ = 1 and γ = 3. In the upper row of Figure E.6, the boxplots depict
F-scores across various parameter configurations. Notably, the MMCD estimators exhibit
improved performance as sample sizes increase across all settings, consistently outperforming
ML estimators. However, for (p, q) = (5, 20), in a scenario involving a minor mean shift,
the F-scores derived from MMCD exhibit some volatility with larger sample sizes. This
situation arises due to the proximity of outliers to regular observations, posing challenges in
their identification. Notably, a more pronounced mean shift significantly simplifies outlier
detection. Moreover, we see that the recall of the MMCD estimators is close to one across
all settings, except for (p, q) = (5, 20) and a small mean shift. The MLE estimators only
detect the most severe outliers due to the masking effect, leading to a median recall below
0.25 across all settings. With an increasing sample size, the precision of the MMCD is
improving and has very low variability. On the other hand, the MLE shows very unstable
results.

Figure E.7 presents the scores depicting covariance estimation. For the MMCD estimators
the covariance estimation performance is improving with the sample size across all settings.
On the other hand, the sample size has a negligible effect on the quality of the MLE
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estimators in the presence of outliers and a larger mean shift decreases performance. For
small sample sizes, MLE and MMCD estimators are close in terms of KL divergence, but
the angle error and Frobenius error indicate worse performance of the MLE estimators also
for small sample sizes. The relative Frobenius error of MMCD estimators is smaller than
one and thus only plotted on [0, 1]. For the MLE estimators, it is often above one and those
settings are not visible in plots.

Figure E.8 shows the difference between a contamination of ε = 0.1 and ε = 0.4 with
mean shift γ = 1. The KL divergence reveals that the MMCD estimator yields more
accurate results across all settings. However, for ε = 0.1, the F-scores of the MLE are
increasing with the dimensionality and perform better than the MMCD for small sample
sizes. For ε = 0.4, only the MMCD yields reliable results.

For the setting with (p, q) = (5, 20) and ε = 0.2, we also computed the MCD on the
vectorized samples in addition to the matrix MLE and MMCD and considered the true mean
and covariance used to generate the data as a benchmark. Figures E.9 and E.10 summarize
the results and reveal that the MCD on the vectorized observations does not lead to robust
estimators. This issue arises because the robustness of the MCD and MMCD depends on
the dimensionality of the data. For the MCD it depends on p · q and for the MMCD it
depends on p/q + q/p. To achieve a 99% probability of obtaining at least one clean initial
subset with (p, q) = (5, 20) and a contamination ε = 0.2, MCD requires approximately
2.8 · 1010 initial subsets, while MMCD only needs 16. For the setting with the smallest mean
shift, the comparison between MMCD and the actual parameters in Figure E.10 highlights
the difficulty of this setting since even using the actual parameters; the recall shows a lot of
variability.

In addition to shifting the mean of the outliers by γ ∈ {1, . . . , 5}, we now consider the
effect of scaling the covariance by s ∈ {1, . . . , 4}. The difference between s ∈ {2, 3, 4} was
negligible and Figures E.11 and E.12 summarize the results for s = 2. While the MLE
performs quite well for outlier detection, especially compared to the setting with s = 1 (see
Figure E.8), the estimated covariance matrices are not accurate. The overall performance
of the MCD computed on the vectorized samples improves with increasing sample size n
but even more samples would be necessary to obtain similar results to the MMCD.

Finally, we compare the 4 different combinations of row- and columnwise covariance
matrices with ε = 0.2. In Figure E.13 we use γ = 1 and in Figure E.14 we increase the
mean shift to γ = 5. The F-score based on the true parameters is included as a reference.
When Σrow = Σfix(0.7), Σcol = Σmix(0.7), and γ = 1, the mean shift is too small and the
outliers cannot be separated from the regular observations. Increasing the mean shift to
γ = 5, the separation becomes clearer and the MMCD yields robust results. If γ = 1, we
still see a lot of variability in the F-score if only the rowwise or columnwise covariance
matrix is generated randomly. However, if both are generated randomly the distinction
between outliers and regular observations is easier.

E.3.1 Effects of fine-grained mean shifts

To get a more in-depth view of the effect of the mean shift we consider a finer grid for
the parameter γ ∈ {0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, (p, q) = (5, 20), ε = 0.1. In
Figure E.15, we see that for n = 20, the MMCD has a low precision but an even higher
recall than we can achieve using the actual parameters used to generate the data to compute
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the Mahalanobis distances for outlier detection. For larger sample sizes, the precision of
the MMCD increases while the recall remains high, resulting in an F-score close to the
one achieved by the actual parameters. For n = 1000, we also computed the MCD on the
vectorized observations, it attains a higher recall than the matrix MLEs but lower precision
and performs worse than the MMCD in all settings. Likewise, to the results for outlier
detection, Figure E.16 shows similar results for covariance estimation. While the MMCD
performs best in most settings it shows potential for improvement for small n and γ. The
simulations also show that at a level of 10 percent contamination, even a small shift γ of
the outliers negatively impacts covariance estimation and, consequently, outlier detection
due to the masking effect.

E.4 Beyond normality, contaminated t-distribution

To analyze the effect of deviations from the matrix normal distribution we consider samples
from a matrix t-distribution. Similar to the matrix normal distribution, the matrix t-
distribution is parameterized by a mean matrix, rowwise and columnwise covariance matrices,
and degrees of freedom as an additional parameter, see Gupta and Nagar (1999) for more
details. We also consider the ML estimators for the matrix t-distribution proposed by
Thompson et al. (2020), which are implemented in the R package MixMatrix. We consider
samples from a p× q = 5× 20 centered matrix t-distribution with ν ∈ {1, . . . , 30} degrees of
freedom with Σrow = Σrnd ∈ PDS(p) and Σcol = Σmix(0.7) ∈ PDS(q) for n ∈ {20, 100, 1000},
(p, q) = (5, 20), ε ∈ {0.1, 0.2}. The outliers are generated from a shifted distribution with a
mean matrix of all ones with the same covariance structure and the same degrees of freedom.
In Figure E.17, we analyze the influence of the degrees of freedom on precision, recall, angle
error between eigenvalues, and the logarithm of the relative Frobenius error for various
estimators, number of samples, and levels of contamination. The angle and Frobenius
error clearly show the advantage of the MMCD estimators for covariance estimation. If the
distribution of the samples is known, the consistency correction outlined in Theorem 3.0.2
allows us to obtain consistency for any matrix elliptical distribution. Since we do not
know the underlying distribution in practice, we use the consistency factor for the normal
model given in Equation (18) which does affect the scale of the covariance but not the
shape. This is also reflected in the difference between the angle and Frobenius error of the
MMCD estimators and MLEs for the matrix t-distribution since the scale of the covariance
has a more profound impact on the Frobenius error. In terms of angle error, the MMCD
estimators perform better than the MLEs for the matrix t-distribution for all degrees of
freedom ν while the MMCD shows high Frobenius errors for ν ≤ 4.

While the MMCD estimators and MLEs for the matrix t-distribution have a recall
close to one in all settings, we see a difference in precision depending on the fraction of
contaminated samples and the number of samples. For ε = 0.1, the MLEs for the matrix
t-distribution show a steep increase in precision with rising degrees of freedom for all the
sample sizes. On the other hand, for ε = 0.2, the precision is constant and low for all
n. Similarly to the simulations based on the normal model, the precision of the MMCD
estimators is low for n = 20 and remains low for increasing degrees of freedom. While the
precision increases alongside the degrees of freedom for larger sample sizes it is still low.
However, this is what we would expect since the matrix t-distribution has heavier tails than
the matrix normal distribution and the mean shift is rather small, such that we do not see
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the full potential of the MMCD estimators even under the normal model, see Section E.3.
Both the normal MLEs and the MCD estimators computed on the vectorized samples

perform poorly for covariance estimation and outlier detection when the samples are
generated from a matrix t-distribution.

E.5 Banded covariance

Zhang et al. (2022) proposed distribution-free regularized covariance estimation methods
for matrix-valued data assuming separability and a banded or tapering covariance structure
on both Σrow and Σcol. They also proposed robust versions of their banded and tapering
estimators for heavy-tailed distributions. In their simulations for the robust setting, Zhang
et al. (2022) assume a banded structure with entries of Σrow and Σcol equal to σjk =
0.5|j−k|1[|j−k|<2], resulting in tridiagonal covariance matrices. Here, 1[a] denotes the indicator
function, and j, k ∈ {1, . . . , p} or j, k ∈ {1, . . . , q}, for Σrow or Σcol, respectively. They
compared their estimators to the sample covariance matrix of the vectorized data for samples
generated from a heavy-tailed t-distribution with 3 degrees of freedom.

We compare the standard and robust banded and tapering covariance estimators of
Zhang et al. (2022) in a setting where a fraction of ε = 0.1 of the samples are replaced by
outliers. In this setting, we use the same tridiagonal covariance structure, (p, q) = (20, 10),
n ∈ {100, 500, 1000}, and consider different shifts γ ∈ {0, 0.2, . . . , 4.8, 5} of the outlying
observations. The clean data are sampled from a matrix normal distribution with a mean
of zero, and the outliers are sampled from a matrix normal distribution with a mean matrix
where all entries are equal to δ. As performance metrics we compute the Frobenius error as
well as the KL divergence of the covariance estimators. Procedures to compute the banded
and tapering covariance estimators are only available in Matlab and we used the code
provided in the supplement to Zhang et al. (2022) to perform the simulations. Comparing
the sample estimates based on the vectorized clean and contaminated data both in R and
Matlab confirms the comparability of the two environments.

Figure E.18 shows the average score for 100 replications as well as the standard error,
which is very small and barely visible in the plot, confirming the stability of all procedures.
The standard and robust banded and tapering estimators yield similar results on average,
only for n = 100 and increasing δ, the robust banded and tapering procedures show better
performance than the standard procedures. The simulations highlight the difficulties of the
banded and tapering estimators for higher values of δ, and they prove to be less reliable than
the MLEs for the matrix normal distribution. In terms of Frobenius error, the banded and
tapering estimators show favorable properties for low levels of contamination since they force
many entries of the covariance to be exactly zero. This is not reflected in the KL divergence,
which accounts for the underlying distribution while the banded and tapering estimators are
distribution-free. Overall, only the MMCD estimators remain robust for increasing levels of
contamination and they clearly outperform the sample covariance estimator computed on
the clean data.
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Figure E.1: Outlier detection capabilities comparing multiple matrix sizes p ∈ {2, . . . , 30}
and q ∈ {10, 20, 30} for n ∈ {100, 1000}, γ = 1, ε = 0.1.
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Figure E.2: Quality of covariance estimation comparing multiple matrix sizes p ∈ {2, . . . , 30}
and q ∈ {10, 20, 30} for n ∈ {100, 1000}, γ = 1, ε = 0.1.
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Figure E.4: Quality of covariance estimation comparing block, cell, and sample contamina-
tion.
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Figure E.5: Outlier detection capabilities comparing block, cell, and sample contamination.
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Figure E.6: Overview of simulation results with a fraction ε = 0.2 of contaminated samples.
The outlier detection capabilities are measured by F-score, precision, and recall.
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Figure E.7: Overview of simulation results with a fraction ε = 0.2 of contaminated samples.
The quality of covariance estimation is evaluated based on the logarithm of KL divergence,
angle error between eigenvalues, and the logarithm of relative Frobenius error.
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Figure E.8: F-score and logarithm of KL divergence for simulations with mean shift γ = 1.
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Figure E.9: Quality of covariance estimation for simulations with ε = 0.2 and (p, q) = (5, 20).
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Figure E.10: Outlier detection capabilities for simulations with ε = 0.2 and (p, q) = (5, 20).
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Figure E.11: Quality of covariance estimation for simulations where the covariance of the
outliers is scaled by s = 2.
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Figure E.12: Outlier detection capabilities for simulations where the covariance of the
outliers is scaled by s = 2.
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Figure E.13: F-score and logarithm of KL divergence comparing 4 different combinations of
row- and columnwise covariance matrices, γ = 1, and ε = 0.2.
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Figure E.14: F-score and logarithm of KL divergence comparing 4 different combinations of
row- and columnwise covariance matrices, γ = 5, and ε = 0.2.
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Figure E.15: Outlier detection capabilities for simulations with mean shift γ ∈
{0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, ε = 0.1.
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Figure E.16: Quality of covariance estimation for simulations with mean shift γ ∈
{0.1, 0.2, . . . , 2} for n ∈ {20, 100, 1000}, ε = 0.1.
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Figure E.17: The eigen angle and the logarithm of relative Frobenius error of samples from a
contaminated t-distribution with ν ∈ {1, . . . , 30} degrees of freedom for n ∈ {20, 100, 1000},
γ = 1, ε ∈ {0.1, 0.2}.
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Figure E.18: Covariance estimation performance, where both the rowwise and columnwise
covariance matrices are banded, evaluated with γ ∈ {0, 0.2, . . . , 5}, n ∈ {100, 500, 1000},
ε = 0.1.
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Theorem E.1. Let n ≥ d+ 1, and the sample is in a general position. Then the breakdown
point of any matrix affine equivariant (in the sense of REF) location and scatter estimator
is at most 1

n
⌊(n− d+ 1)/2⌋.

Proof of Theorem E.1. Let X = {X1, . . . ,Xn} be a sample of p× q-matrices in the general
position such that n ≥ d + 1 for d = ⌊p

q
+ q

p
⌋, and denote further χ = {x1, . . . ,xn}, xi =

vec (Xi) ∈ Rpq, i = 1, . . . , n. Consider first the class of location and scatter estimators (T̂ , Σ̂)
in Rpq that are affine equivariant under the affine transformation with Kronecker-structure
matrices, i.e. for any regular A ∈ Rp×p,B ∈ Rq×q, Σ̂((A ⊗ B)x) = (A ⊗ B)Σ̂(x)(A′ ⊗ B′).
We first show that the breakdown point of such an estimator, when applied to the vectorized
matrices in a general position is at most 1

n
⌊(n− d+ 1)/2⌋.

Let §′ be the contaminated sample with at most ⌊(n− d+ 1)/2⌋ contaminated points.
Then, there are at least n− ⌊(n− d+ 1)/2⌋ ≥ d uncontaminated points. Let those points
be precisely x1, . . . ,xn−⌊(n−d+1)/2⌋.

Choose now any d out of those n− ⌊(n− d+ 1)/2⌋ ≥ d uncontaminated points that lay
on the plane a′Xb = 0, for a ∈ Rp, b ∈ Rq, i.e. (a ⊗ b)′x = 0. W.l.o.g., assume that these
points are x1, . . . ,xd. Due to the affine equivariance of the estimator, we can choose a and
b to be the first vectors of the corresponding canonical bases.

There are then n′ = n− ⌊(n− d+ 1)/2⌋ ≥ d− d uncontaminated points in §′. W.l.o.g,
let those points be xd+1, . . . ,xd+n′ . Since n′ ≤ ⌊(n − d + 1)/2⌋, choose n′ points from
⌊(n− d+ 1)/2⌋ contaminated ones and replace them with the points of the form:

yi =

(
u 0
0 Ip−1

)
⊗
(
u 0
0 Iq−1

)
xi,

for u > 0, i = d + 1, . . . , d + n′. The contaminated sample §′(u) now consists of the
points: §′(u) = {x1, . . . ,xd,xd+1, . . . ,xd+n′ , . . . ,yd+1, . . . ,yd+n′ , . . . ,xn}. Denoting Λp(u) =
diag(u, Ip−1), Λq(u) = diag(u, Iq−1), construct now the second contaminated sample §′′ =
Λp(u)

−1 ⊗ Λq(u)
−1x′.
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