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The Board of Directors of the American Statistical Associ-
ation recently issued a policy statement regarding the interpre-
tation of p-values and statistical significance. This statement
provides important guidance to scientists regarding the proper
use and interpretation of p-values, along with cautions to avoid
their misuse. In this note, I examine the common fallacy that
p-values near 0.05 provide “significant” evidence against a null
hypothesis.

The ASA statement on statistical significance and p-values
addresses a number of important issues regarding the interpre-
tation of p-values and statistical hypothesis testing. In this note,
I comment further on one of those issues, namely the assertion
that “a p-value near 0.05 taken by itself offers only weak evi-
dence against the null hypothesis.”

To provide a context for this statement, it is useful to consider
what is perhaps the most elementary of statistical hypothesis
tests, that of testing whether the mean µ of a normal population
is 0 when the variance is known to be σ 2, based on a random
sample (x1, . . . , xn) of size n from that population. If the alter-
native hypothesis requires that µ > 0 (so that a one-side test is
performed), then the null hypothesis is rejected at the 5% level
of significance in the uniformly most powerful test if the sam-
ple mean x̄ exceeds 1.645σ/

√
n. If x̄ = 1.645σ/

√
n, then the

p-value of the test is 0.05.
The “weakness of evidence” provided by this p-value is re-

vealed when one examines the likelihood ratio of the sampling
density of the data under the null hypothesis to the maximum of
the sampling density of the data under the alternative hypothe-
sis. If φ(x |µ, σ) denotes the normal density function with mean
µ and variance σ 2 evaluated at x , then the minimum likelihood
ratio equals

λ = arg min
µ>0

n∏

i=1

φ(xi |0, σ )

φ(xi |µ, σ)
= 0.258. (1)

In other words, the sampling density of the data under the null
hypothesis is at least 1/4 as large as it is under any alternative
hypothesis. If the null and alternative hypotheses are regarded
as being equally likely a priori (or from a repeated sampling
context, if one-half of tested null hypotheses are true), then the
probability that the null hypothesis is true when p = 0.05 is at
least 20%.

This fact is not new, of course, and an extended discussion
of this “paradox” was provided over 50 years ago by Edwards,
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Lindman and Savage (1963). This paradox is not specific to z-
tests or one-sided tests, and it is not caused by the specification
of a point null hypothesis to conveniently represent the notion
that the mean µ is close to a specified null value.

To see that the latter claim is true, it is useful to view the
hypothesis testing problem from a Bayesian perspective and re-
place the null hypothesis that µ = 0 by the assumption that µ
is drawn from a prior density function π0(µ) that is symmetric
around 0 and is positive only when |µ| < 1.645σ/

√
n. Then the

marginal likelihood of the data is evaluated by averaging over
this interval, i.e.,

f0(x1, . . . , xn) ≡
∫ 1.645σ/

√
n

−1.645σ/
√

n

n∏

i=1

φ(xi |µ, σ)π0(µ)dµ. (2)

If π1(µ) is the prior density for µ assumed under the alternative
hypothesis and

f1(x1, . . . , xn) ≡
∫ ∞

−∞

n∏

i=1

φ(xi |µ, σ)π1(µ)dµ, (3)

then the ratio λ in (1) can be replaced with the Bayes factor1

BF01(x̄) =
f0(x1, . . . , xn)

f1(x1, . . . , xn)
. (4)

When p = 0.05, it again follows that BF01(x̄) will be larger
than 0.258, no matter what prior density π1(µ) one choses for
µ, even when the point null hypothesis has been replaced by a
“small interval” null hypothesis.

Similar comments apply to the case of p-values in two-sided
z tests. In that setting, p=0.05 if x̄ = ±1.96σ/

√
n. To ac-

count for the fact that the null hypothesis is rejected for both
large positive and large negative values of x̄ , it makes sense to
assume that the prior density on µ is symmetrically distributed
around the null value of µ = 0. If one accepts this assumption,
then the ratio of the sampling density of the data under the null
hypothesis to the average sampling density of the data under
the alternative hypothesis, obtained by averaging over any prior
distribution on µ that is symmetric around 0, exceeds 0.29. If
the null hypothesis is assumed be at least as likely as the alter-
native hypothesis a priori, then the posterior probability that the
null hypothesis is true when p = 0.05 in a two-sided z-test is at
least 0.226 (Berger and Sellke 1987).

The one-sample z-test is a special case of a null hypothesis
significance test (NHST) in a one parameter exponential fam-
ily model (1PEF). The Neyman-Pearson lemma guarantees the
existence of uniformly most powerful tests (UMPTs) for many

1In general, the Bayes factor of a test can be viewed from a classical per-
spective as an integrated likelihood ratio, integrated with respect to the prior
densities on the unknown parameters.
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Figure 1. P-values versus posterior probabilities of null hypotheses. The curves in this plot were constructed using UMPBT alternative
hypotheses and by assigning equal prior probability to the null and alternative hypotheses. Tests labeled Bin(0.5, n) test a null hypothesis that a
success probability is 0.5 based on a sample size of n. All tests are one-sided. Both axes are scaled logarithmically.

NHSTs in 1PEFs. As it happens, it is also possible to define
uniformly most powerful Bayesian tests (UMPBTs) in the same
setting by choosing the alternative hypothesis in a NHST so as
to maximize the probability that the Bayes factor of the test ex-
ceeds a specified threshold (Johnson 2013a). Furthermore, the
threshold of a UMPBT can be chosen so that the Bayesian test
has the same type I error as the classical UMPT.

The correspondence between UMPTs and UMPBTs
(matched by appropriately chosen test sizes and evidence
thresholds) makes it straightforward to extend the analysis
of marginally significant p-values beyond simple z-tests to
more general NHSTs. Again assuming the null hypothesis is
assigned prior probability of 0.5 (as it might in the case when
the evidence in “a p-value near 0.05 is taken by itself”), Figure
1 displays a plot of p-values for common normal and binomial
tests versus the posterior probability that the null hypothesis
is true. The posterior probabilities displayed in this plot were
obtained by using the UMPBT that corresponds to the size 0.05
one-sided test. Similar plots can also be constructed for two
sided tests, other 1PEF tests, and (using approximate UMPBTs)
t tests (Johnson, 2013b).

The red box in Figure 1 highlights the posterior probabilities
of null hypotheses based on p-values of 0.05. Under the mild
assumptions described above, this box shows that the posterior
probability of the null hypotheses for p-values near 0.05 range
between 0.20 and about 0.35. Note that when p = 0.05, higher
posterior probabilities would be assigned to the null hypothesis
for any alternative hypotheses other than the UMPBT.

The blue box in Figure 1 highlights posterior probabilities
for p = 0.005, and shows that the corresponding posterior
probabilities of null hypotheses for these z-tests and binomial
tests range between approximately 1/20 and 1/12. At this level

of significance, the posterior probability of the null hypotheses
has fallen to the level of evidence that many scientists implic-
itly believe that p = 0.05 represents. Which begs the question,
“should p = 0.005 be the new p = 0.05?” (Johnson, 2013b).

In summary, simple calculations of likelihood ratios and
Bayes factors suggest that p-values near 0.05, by themselves,
provide very little evidence against a null hypothesis in NHSTs.
For likelihood ratios, the ratio of the data density under the
null hypothesis to the data density under the alternative hy-
pothesis exceeds 0.20 when p = 0.05 for common hypothesis
tests. Similarly, from a Bayesian perspective using alternative
hypotheses that are chosen so as to minimize the probability as-
signed to the null, the posterior probability of the null hypothe-
ses typically exceeds 0.20 when p = 0.05 (provided that both
hypotheses are assigned equal probability a priori.)

As the ASA statement asserts, “a p-value near 0.05 taken by
itself offers only weak evidence against the null hypothesis.”
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