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P-values and power estimates are both required in order to
understand reproducibility of results. Improving the power of a
study improves both the false discovery and false nondiscovery
rates at any p-value threshold. An idea from the multiple testing
literature, π0, the proportion of truly null hypotheses among the
tested hypotheses, can be used to reinterpret the p-value of a
single test as the false discovery rate if the null is rejected. Use
of bench-mark estimates of π0 based on whether the hypothesis
is a well-supported primary aim of the study, a secondary aim
formulated as part of the study design, or a hypothesis proposed
after examining the data can assist in interpreting the impor-
tance of observed p-values
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Ideas from multiple testing of high dimensional data provide
insights about reproducibility and false discovery rates of hy-
potheses supported by p-values.

Much of the statistical testing literature focuses on false re-
jection of the null hypothesis, also called false discovery. Indi-
vidual p-values of prespecified hypotheses provide protection
against a single false discovery if rejection of the null is done
at some prespecified threshold such as p < 0.05. In many con-
texts, however, false nondiscovery (i.e. failure to reject the null
hypothesis when it is false) is equally important, as it may lead
to lack of follow-up of important hypotheses or failure to under-
stand all the determinants of a system under study.

Both false positives and false negatives lead to irreproducibil-
ity of results. For example, sample sizes are often determined by
the specification of “80% power (probability of false nondiscov-
ery) when rejecting at p < 0.05.” In this case, with two indepen-
dent studies of the process both of which achieve the specified
power and use rejection threshold p < 0.05, the probability of
discordant results is 9.5% if the null hypothesis is true and 32%
if it is false. The probability of two rejections in two trials when
the null hypothesis is false is the square of the power—64%.
For a fixed sample size, decreasing the significance threshold
improves the probability of concordant results if the null hy-
pothesis is true, but decreases the power to detect true discover-
ies. If the power is reduced to 70%, then the probability of two
rejections in two trials in which the null distribution is false is
only 49% and the probability of discordant results increases.

Improved study design, including larger sample size, in-
creases power for any fixed significance threshold. What is less
appreciated is that if some proportion π0 of the hypotheses un-
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der test are truly null (and the remainder are truly not) then in-
creased power reduces both the false discovery rate (FDR, the
expected proportion of rejections for which the null is true) and
the false nondiscovery rate (the expected proportion of failures
to reject that are actually nonnull). If m independent hypotheses
are tested, with significance threshold α and power β, we expect
απ0m false discoveries and β(1 − π0)m rejections, so that the
FDR is απ0/(απ0 + β(1− π0)) which is a decreasing function
of β. Similarly, the expected proportion of nondiscoveries that
are false is (1−β)(1−π0)/((1−α)π0+(1−β)(1−π0))which
is also a decreasing function of β.

For high-dimensional data such as “omics” data, we can of-
ten obtain an estimate of π0 from the observed p-values (e.g.,
Storey 2002; Pounds and Cheng 2004). This can be used to de-
termine a significance threshold that produces a reasonable es-
timated FDR and is the basis behind methods such as Storey’s
q-value (Storey 2003).

For studies with much smaller numbers of test statistics, there
are two reasonable ways to proceed using this paradigm. We
could target a particular FDR (assuming known power) and de-
termine whether the π0 needed to achieve this FDR for the sig-
nificance threshold is reasonable given what is known about the
system under study or we could determine a benchmark value
for π0 and determine an appropriate threshold. For example, if
we select FDR = 0.05, then at α = 0.05 and β = 0.80, π0
needs to be 46% or less, which implies that fewer than half of
the hypotheses we expect to test are actually null. If we expect
π0 to be 90%, then to obtain FDR = 0.05, we need to use the
threshold α < 0.0046—however, recall that as α decreases so
does β, which has not been accounted for here.

My suggestion for studies with too few hypotheses for esti-
mation of π0 is to establish some benchmark levels of π0 which
can be used to estimate the false discovery rate when rejecting
with the observed p-value. This could be viewed as analogous
to a proposal of Rosenthal to assess the “file drawer problem” in
meta-analysis by computing the number of null results needed
to overturn the proposed conclusion.

For example, for primary hypotheses from a study with ade-
quate preliminary data, we might expect π0 to be 50%—that is,
equipoise . For exploratory results, found by multiple tests or
fitting multiple models after the data were collected, we might
expect π0 to be much higher, say 95%. In principle, appropriate
benchmarks could be determined for each discipline by a litera-
ture search, but lack of details in the literature about nonsignif-
icant results might make this difficult. Instead, I would pro-
pose benchmarks of 50% for well-supported primary hypothe-
ses, 75% for secondary hypotheses proposed when the study is
first designed, and 95% for fortuitous findings and findings that
require selection of covariates to attain statistical significance.
The observed p-values can be converted into false discovery
rates using the benchmark values and power appropriate to the
hypothesis being tested. As explained in Storey (2003) the false
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discovery rate associated with a hypothesis behaves much like
the posterior probability that the null is true. Use of benchmark
values of π0 yields many of the good properties of posterior
probabilities for interpreting test results without requiring for-
mulation of a full Bayesian model for each hypothesis.
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