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APPENDIX A

Below, in detail, are the specifications for the hierarchical Bayesian registration and factor anal-
ysis model discussed in this paper. The first section includes the basic model for functional data

registration and factor analysis. Section A.2 describes the MCMC sampling scheme for this model.

A.1 Factor Analysis

The initial assumption of this model is that we are interested in registering and possibly
grouping functional data, X;(¢),i =1,..., N. The registered functions, X;(h;(t)),i=1...N, are
assumed to be characterized almost completely by a linear combination of two factors, fi(t) and
f2(t).

Furthermore, we assume the unregistered functions, X;(¢), 7 =1,..., N, are observed at time
points, t = (¢1...1,)’, such that the data distribution of each observation, X;, of the ith unregis-

tered function evaluated over t has the following property:
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The joint distribution of the observed data and all unknown parameters is proportional to the

data distribution and following priors:
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The matrix X is a fixed matrix designed to penalize variation in any direction from the corre-

sponding mean of the distribution in which it is utilized. It is composed of two matrices, P; and

P5, such that X = P; + P5. The matrix P; penalizes variation from the mean in constant and

linear directions, and P, penalizes variation from the mean in directions of curvature.
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The following derivation provides the basis for the particular form of the covariance matrix, 33,
utilized in our models. The derivations below are based on a more general discussion of functional
penalties found in Ramsay and Silverman [2005].

As an initial step, consider a given function, Y;(¢) as a sum of its linear and non-linear
components. Under this assumption, each function, Y;, ¢ = 1,..., N, can be represented as
Y; = &(t) + v4(t), where &(t) = 327 ci(t) is the constant and linear terms of the function Y;
and v;(t) € ker B where B is the constraint operator such that BY; = [Y;(0), Y/(0)].

Let L be the linear operator such that LY;(t) = Y/ (¢) and
kerL N kerB = ().

Then, || Y; ||*= n(BY;)'(BY;) + A [(LY;)?(t)dt defines a penalty on Y; such that 1 penalizes
variation in constant and linear directions and A penalizes curvature in Y;.

Let L and B be matrix representations of the operators L and B that define a penalty on the

finite approximations to the functions Y;,72 =1,..., N. Then,
n(BY:) (BY:) + A / (LY. 2(1)dt ~ nY'B'BY; + A\Y/L'LY; (@)

Notice that (4) can be reexpressed as Y;(nB'BY,; + AL'L)Y; = Y/(nP; + AP; )Y, where here
we set P7 = B’'B and P, = L'L. The expression, Y/(nP; + AP )Y}, takes a form proportional to
the power of the exponential term for a multivariate Gaussian probability density function on Y.
Seen in this context, large values of this term correspond to less likely values of Y;. It follows that
defining the precision matrix of a Gaussian distribution on Y; to nP; + AP, allows us to define
two types of penalties on the approximated functions. The first is a penalty on any deviation from
the mean function. To impose this penalty, we set 7 = A\ where P| penalizes constant and linear
deviations and P, penalizes deviations in all other directions. When we would like to use this type
of penalty in our model, we set the precision matrix for the Gaussian distribution proportional
to X' = P; + P,. The other penalty of interest is a penalty on the roughness of Y;. Here we
will again use a precision matrix of the form 7P, + AP, . However to use this precision matrix to
penalize roughness, A needs to be set greater than 1 so that the penalty on function curvature is
much larger than the penalty on constant and linear functions. All of the precision matrices used
in the multivariate Gaussian priors for this model are intended to include one or both of these

types of penalties.
A.2 MCMC Sampling



Using these assumptions, the following full conditional distributions are derived to run a
MCMC sampler. Note, this list will not include an exact full conditional for the base functions as

their priors are not conjugate. The base functions are sampled via a Metropolis step.
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APPENDIX B
B.1 Adapted Variational Bayes

The variational Bayes procedure described here is based on the variational methods proposed
by Omerod and Wand [2010] and Bishop [2006]. Their proposed method optimizes a lower bound
of the marginal likelihood which results in finding an approximate joint posterior density that
has the smallest Kullback-Leibler (KL) distance, Kullback and Leibler [1951], from the true joint
posterior density.

In minimizing the KL distance between the approximate and true posterior distribution, pa-
rameters are updated by an optimization method that requires an approximate posterior density
that not only factors but factors into components of known parametric forms. Suppose, ¢(8)
is the approximated posterior joint distribution. Then for some partition of 8 = {0,...,0,},
q(0) = szl qr(0), where each distribution ¢y is of a known parametric form.

In our model, the Gaussian process priors for the base functions, w;(t), i = 1,..., N, are not
conditionally conjugate to the likelihood function. Therefore, the traditional variational Bayes
optimization method does not apply directly since gx(w;), ¢ = 1,..., N are not known parametric
distributions. Thus, we propose an adapted variational Bayes algorithm.

After initializing all parameters, in each iteration, the adapted variational Bayes algorithm
performs two steps. In the first step, the ‘likelihood’ as a function of the base functions is max-
imized. For this ‘likelihood’, all other parameters are fixed at their current values. The second
step uses a traditional variational Bayes iterative scheme to update all other parameters. Specif-
ically, assuming 6, = wy, for k = 1... N, so that, @ = {wy,...,Wx,On.41,...,04}, the adapted

variational Bayes algorithm is as follows:

1. Initialize 6

2. For each iteration, m, and each k, k =1,..., N, update the estimate for

wy, so that w™ = SUDPyy, k(W | Hg.m_l),j =(N+1),...,d)

3. For each iteration, m, and each k, k = (N+1), ..., d, update gx so that q,gm) x exp[Ew_,)(log f(O} |

rest)], where the expectation is taken with respect to the distributions q](-m_l)(ﬂj), ] =

1,....d, j#k



4. Repeat steps (2) and (3) until the desired convergence criterion is met

This algorithm is guaranteed to converge. However, convergence is not guaranteed to a global
maximum, and in practice it is sometimes necessary to adjust the registration and warping penal-
ties as the functions become registered. An unregistered function that requires a substantial
amount of warping can cause convergence to a local maximum due to the small penalty on warp-
ing. The flexibility in warping allowed by this small penalty can cause the function to deform
rather than register. This can be remedied in two ways. The first option might be to perform
a simple initial warping for this function that prevents the optimization from falling into a local
mode. The second option is to adjust the registration and warping parameters over time. Initially
a stronger warping penalty is employed to prevent function deformation. Then, as the functions
register, the warping penalty can be reduced to allow for a more complete registration. When
initializing an MCMC sampler, the final penalties on warping and registration from the adapted
variational Bayes algorithm should be used. For further information on the convergence properties
of the adapted variational Bayes algorithm and an analysis of how well adapted variational Bayes
estimates correspond to MCMC estimates, see Earls and Hooker [2016].

Below are the approximate posterior distributions, qx(6x), k = (N +1),...,d, for the adapted
variational Bayes estimation procedure for the registration and factor analysis model. Note, the
subscripts on the ¢ distributions has been omitted. For a more thorough discussion and illustration

of how the optimal ¢ distributions are derived see Goldsmith et. al. [2011].
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The approximate joint posterior distribution of all parameters except the base functions is

d (N-1) N
90) = [ @6 =a(f)a(f)a(02)a(o?)alo?)anr)ar) [ alzo) [ alzi)a(z2)  (5)
k=(N+1) i=1 i=1

As the ¢ densities are all of known distributional forms, updating these densities is equivalent
to updating their parameters. For each iteration, the following parameters are updated for the ¢
densities found in (5). Here we have ordered these updates so that a formal convergence criterion
to be calculated. Details on this convergence criterion can be found in Appendix B.2. However as
an alternative to using the convergence criterion, in practice it may be more practical to instead
monitor changes in the unknown parameters estimates from iteration to iteration and terminate

the algorithm when these changes are below a certain threshold.
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B.2 Convergence Criterion
The adapted variational Bayes algorithm is run until changes in
Eq6_.)[log [(X,w,0_y) — log g(0_y)] are below a certain threshhold. This value can be com-

puted in each iteration as follows.
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where C' is a constant that does not change from one iteration to the next. Similarly,
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The expression for Eyg_,)[log f(X,w,0_y) — log q(0_w)] can be simplified much further by
combining terms that cancel out. However, in some cases the ability to cancel terms depends on
the order of the updates. For instance, in the expression, Ey@_,) [log f(o2)—log q(ago)} , the terms

: N-1
—qu(%) and bq(ogo)uq(%) cancel with —%,uq( )<Z¢=1 (ag(zm)jwzg(zm))) from Eyq_,,)[log f(20)—

1
-2
UZO
log q(zo)] as long as the parameters of ¢(zg) are updated before bq(ago). For convenience, we have
taken account the ordering necessary to compute the convergence criterion in the updates given
above. Additionally, note all components in this expression that do not change from one iteration

to the next can be ignored.

APPENDIX C

For comparison purposes, the remaining 88 cycles of the juggling dataset were split into a
partition of 4 subsets of 22 functions. Each subset was registered using the proposed registration
and factor analysis model. Figure 1, below, illustrates the consistency of our registration model
through a combined plot of all estimated registered functions from all 5 subsets of the original
data. It can be seen in this plot that the registration is consistent throughout the 5 subsets.
Figures 2 and 3 show the similarity between the estimated factors resulting from the 4 additional
runs. These estimated factors all contain similar features to the estimated factors from the original

data set found in Figure 7 of the main text.
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Figure 1: Consistency in registration of the entire dataset. Left Unregistered functions Right

Registered functions
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Figure 2: The estimated first factor for each of the 4 additional subsets.
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Figure 3: The estimated second factor for each of the 4 additional subsets.
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