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APPENDIX A

Below, in detail, are the specifications for the hierarchical Bayesian registration and factor anal-

ysis model discussed in this paper. The first section includes the basic model for functional data

registration and factor analysis. Section A.2 describes the MCMC sampling scheme for this model.

A.1 Factor Analysis

The initial assumption of this model is that we are interested in registering and possibly

grouping functional data, Xi(t), i = 1, . . . , N . The registered functions, Xi(hi(t)), i = 1 . . . N , are

assumed to be characterized almost completely by a linear combination of two factors, f1(t) and

f2(t).

Furthermore, we assume the unregistered functions, Xi(t), i = 1, . . . , N , are observed at time

points, t = (t1 . . . tp)
′, such that the data distribution of each observation, Xi, of the ith unregis-

tered function evaluated over t has the following property:

Xi | wi, z0i, z1i, f1, z2i, f2 ∝ Xi(hi) | z0i, z1i, f1, z2i, f2
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where

Xi(hi) | z0i, z1i, f1, z2i, f2 ∼ Np(z0i1 + z1if1 +
γ2

γ1 + γ2
z2if2, (γ1 + γ2)

−1Σ). (1)

The joint distribution of the observed data and all unknown parameters is proportional to the

data distribution and following priors:

hi(tj) = t1 +

j∑
k=2

(tk − tk−1)ewi(tk−1), i = 1, . . . , N, j = 1, . . . , p,

wi ∝ Np−1(0, γ
−1
w Σ + λ−1w Pw)1{t1 +

p∑
k=2

(tk − tk−1)ewi(tk−1) = tp}, (2)

i = 1, . . . , N,

Σ = P1 + P2, (3)

Pw = P2,

z0i | σ2
z0 ∼ N(0, σ2

z0), i = 1, . . . , (N − 1), z0N = −
N−1∑
i=1

z0i,

σ2
z0 ∼ IG(a, b),

z1i | σ2
z1 ∼ N(1, σ2

z1), i = 1, . . . , N,

σ2
z1 ∼ IG(a, b),

z2i | σ2
z2 ∼ N(0, σ2

z2), i = 1, . . . , N,

σ2
z2 ∼ IG(a, b),

f1 | ηf , λf ∼ Np(0,Σf ),

f2 | ηf , λf ∼ Np(0,Σf ),

Σf = η−1f P1 + λ−1f P2,

ηf ∼ G(c, d) and

λf ∼ G(c, d).

The matrix Σ is a fixed matrix designed to penalize variation in any direction from the corre-

sponding mean of the distribution in which it is utilized. It is composed of two matrices, P1 and

P2, such that Σ = P1 + P2. The matrix P1 penalizes variation from the mean in constant and

linear directions, and P2 penalizes variation from the mean in directions of curvature.
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The following derivation provides the basis for the particular form of the covariance matrix, Σ,

utilized in our models. The derivations below are based on a more general discussion of functional

penalties found in Ramsay and Silverman [2005].

As an initial step, consider a given function, Yi(t) as a sum of its linear and non-linear

components. Under this assumption, each function, Yi, i = 1, . . . , N , can be represented as

Yi = ξi(t) + νi(t), where ξi(t) =
∑2

k=1 cikξik(t) is the constant and linear terms of the function Yi

and νi(t) ∈ kerB where B is the constraint operator such that BYi = [Yi(0), Y ′i (0)]′.

Let L be the linear operator such that LYi(t) = Y ′′i (t) and

kerL ∩ kerB = ∅.

Then, || Yi ||2= η(BYi)
′(BYi) + λ

∫
(LYi)

2(t)dt defines a penalty on Yi such that η penalizes

variation in constant and linear directions and λ penalizes curvature in Yi.

Let L and B be matrix representations of the operators L and B that define a penalty on the

finite approximations to the functions Yi, i = 1, . . . , N . Then,

η(BYi)
′(BYi) + λ

∫
(LYi)

2(t)dt ≈ ηY′iB
′BYi + λY′iL

′LYi (4)

Notice that (4) can be reexpressed as Y′i(ηB
′BYi +λL′L)Yi = Y′i(ηP

−
1 +λP−2 )Yi where here

we set P−1 = B′B and P−2 = L′L. The expression, Y′i(ηP
−
1 +λP−2 )Yi, takes a form proportional to

the power of the exponential term for a multivariate Gaussian probability density function on Yi.

Seen in this context, large values of this term correspond to less likely values of Yi. It follows that

defining the precision matrix of a Gaussian distribution on Yi to ηP−1 + λP−2 allows us to define

two types of penalties on the approximated functions. The first is a penalty on any deviation from

the mean function. To impose this penalty, we set η = λ where P−1 penalizes constant and linear

deviations and P−2 penalizes deviations in all other directions. When we would like to use this type

of penalty in our model, we set the precision matrix for the Gaussian distribution proportional

to Σ−1 = P−1 + P−2 . The other penalty of interest is a penalty on the roughness of Yi. Here we

will again use a precision matrix of the form ηP−1 + λP−2 . However to use this precision matrix to

penalize roughness, λ needs to be set greater than η so that the penalty on function curvature is

much larger than the penalty on constant and linear functions. All of the precision matrices used

in the multivariate Gaussian priors for this model are intended to include one or both of these

types of penalties.

A.2 MCMC Sampling
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Using these assumptions, the following full conditional distributions are derived to run a

MCMC sampler. Note, this list will not include an exact full conditional for the base functions as

their priors are not conjugate. The base functions are sampled via a Metropolis step.

4



wi | rest ∝ f(Xi(hi) | z0i, z1i, f1, z2i)f(wi), the product of (15) and (16) above

f1 | rest ∼ Np(µf1|rest,Σf1|rest)

Σf1|rest = (
N∑
i=1

z21i(γ1 + γ2)Σ
−1 + Σ−1f )−1

µf1|rest = Σf1|rest

[
(γ1 + γ2)Σ

−1
N∑
i=1

z1i

(
Xi(hi)− (z0i1 +

γ2
γ1 + γ2

z2if2)
)]

f2 | rest ∼ Np(µf2|rest,Σf2|rest)

Σf2|rest =
( N∑
i=1

z22i

( γ22
γ1 + γ2

)
Σ−1 + Σ−1f

)−1
µf2|rest = Σf2|rest

[
γ2Σ

−1
N∑
i=1

z2i

(
Xi(hi)− (z0i1 + z1if1)

)]
z0i | rest ∼ N(µz0i|rest, σ

2
z0i|rest)

σ2
z0i|rest = (σ−2z0 + 2 ∗ 1′p(γ1 + γ2)Σ

−11p)
−1

µz0i|rest = σ2
z0i|rest

(
Xi(hi)−XN(hN) + (z1N − z1i)f1 +

( γ2
γ1 + γ2

)
(z2N − z2i)f2 −

N−1∑
j=1

z0j1{j 6= i}1p
)′

(γ1 + γ2)Σ
−11p

σ2
z0
| rest ∼ IG(a+ (N − 1)/2, b+ 1/2

N−1∑
i=1

z20i)

z1i | rest ∼ N(µz1i|rest, σ
2
z1i|rest)

σ2
z1i|rest = (σ−2z1 + f ′2(γ1 + γ2)Σ

−1f2)
−1

µz1i|rest = σ2
z1i|rest

(
Xi(hi)− (z0i1p +

γ2
γ1 + γ2

z2if2)
)′

(γ1 + γ2)Σ
−1f1

σ2
z1
| rest ∼ IG(a+N/2, b+ 1/2

N∑
i=1

z21i)

z2i | rest ∼ N(µz2i|rest, σ
2
z2i|rest)

σ2
z2i|rest = (σ−2z2 + f ′2

γ22
γ1 + γ2

Σ−1f2)
−1

µz2i|rest = σ2
z2i|restγ2

(
Xi(hi)− (z0i1p + z1if1)

)′
Σ−1f2

σ2
z2
| rest ∼ IG(a+N/2, b+ 1/2

N∑
i=1

z22i)

ηf | rest ∼ G(c+ 2, d+
1

2
tr
(
(f1f

′
1 + f2f

′
2)P

−
1

))
λf | rest ∼ G(c+ (p− 2), d+

1

2
tr
(
(f1f

′
1 + f2f

′
2)P

−
2

))5



APPENDIX B

B.1 Adapted Variational Bayes

The variational Bayes procedure described here is based on the variational methods proposed

by Omerod and Wand [2010] and Bishop [2006]. Their proposed method optimizes a lower bound

of the marginal likelihood which results in finding an approximate joint posterior density that

has the smallest Kullback-Leibler (KL) distance, Kullback and Leibler [1951], from the true joint

posterior density.

In minimizing the KL distance between the approximate and true posterior distribution, pa-

rameters are updated by an optimization method that requires an approximate posterior density

that not only factors but factors into components of known parametric forms. Suppose, q(θ)

is the approximated posterior joint distribution. Then for some partition of θ = {θ1, . . . ,θd},

q(θ) =
∏d

k=1 qk(θk), where each distribution qk is of a known parametric form.

In our model, the Gaussian process priors for the base functions, wi(t), i = 1, . . . , N , are not

conditionally conjugate to the likelihood function. Therefore, the traditional variational Bayes

optimization method does not apply directly since qk(wi), i = 1, . . . , N are not known parametric

distributions. Thus, we propose an adapted variational Bayes algorithm.

After initializing all parameters, in each iteration, the adapted variational Bayes algorithm

performs two steps. In the first step, the ‘likelihood’ as a function of the base functions is max-

imized. For this ‘likelihood’, all other parameters are fixed at their current values. The second

step uses a traditional variational Bayes iterative scheme to update all other parameters. Specif-

ically, assuming θk = wk, for k = 1 . . . N , so that, θ = {w1, . . . ,wN ,θN+1, . . . ,θd}, the adapted

variational Bayes algorithm is as follows:

1. Initialize θ

2. For each iteration, m, and each k, k = 1, . . . , N , update the estimate for

wk so that w
(m)
k = supwk

qk(wk | θ(m−1)
j , j = (N + 1), . . . , d)

3. For each iteration, m, and each k, k = (N+1), . . . , d, update qk so that q
(m)
k ∝ exp[E(θ−k)(log f(θk |

rest)], where the expectation is taken with respect to the distributions q
(m−1)
j (θj), j =

1, . . . , d, j 6= k

6



4. Repeat steps (2) and (3) until the desired convergence criterion is met

This algorithm is guaranteed to converge. However, convergence is not guaranteed to a global

maximum, and in practice it is sometimes necessary to adjust the registration and warping penal-

ties as the functions become registered. An unregistered function that requires a substantial

amount of warping can cause convergence to a local maximum due to the small penalty on warp-

ing. The flexibility in warping allowed by this small penalty can cause the function to deform

rather than register. This can be remedied in two ways. The first option might be to perform

a simple initial warping for this function that prevents the optimization from falling into a local

mode. The second option is to adjust the registration and warping parameters over time. Initially

a stronger warping penalty is employed to prevent function deformation. Then, as the functions

register, the warping penalty can be reduced to allow for a more complete registration. When

initializing an MCMC sampler, the final penalties on warping and registration from the adapted

variational Bayes algorithm should be used. For further information on the convergence properties

of the adapted variational Bayes algorithm and an analysis of how well adapted variational Bayes

estimates correspond to MCMC estimates, see Earls and Hooker [2016].

Below are the approximate posterior distributions, qk(θk), k = (N + 1), . . . , d, for the adapted

variational Bayes estimation procedure for the registration and factor analysis model. Note, the

subscripts on the q distributions has been omitted. For a more thorough discussion and illustration

of how the optimal q distributions are derived see Goldsmith et. al. [2011].
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q(f1) ∼ Np(µq(f1),Σq(f1))

q(f2) ∼ Np(µq(f2),Σq(f2))

q(z0i) ∼ N(µq(z0i), σ
2
q(z0i)

)

q(σ2
z0

) ∼ IG(aq(σ2
z0

), bq(σ2
z0

))

q(z1i) ∼ N(µq(z1i), σ
2
q(z1i)

)

q(σ2
z1

) ∼ IG(aq(σ2
z1

), bq(σ2
z1

))

q(z2i) ∼ N(µq(z2i), σ
2
q(z2i)

)

q(σ2
z2

) ∼ IG(aq(σ2
z2

), bq(σ2
z2

))

q(ηf ) ∼ G(cq(ηf ), dq(ηf ))

q(λf ) ∼ G(cq(λf ), dq(λf ))

The approximate joint posterior distribution of all parameters except the base functions is

q(θ) =
d∏

k=(N+1)

qk(θk) = q(f1)q(f2)q(σ
2
z0

)q(σ2
z1

)q(σ2
z2

)q(ηf )q(λf )

(N−1)∏
i=1

q(z0i)
N∏
i=1

q(z1i)q(z2i) (5)

As the q densities are all of known distributional forms, updating these densities is equivalent

to updating their parameters. For each iteration, the following parameters are updated for the q

densities found in (5). Here we have ordered these updates so that a formal convergence criterion

to be calculated. Details on this convergence criterion can be found in Appendix B.2. However as

an alternative to using the convergence criterion, in practice it may be more practical to instead

monitor changes in the unknown parameters estimates from iteration to iteration and terminate

the algorithm when these changes are below a certain threshold.
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Σq(f1) =
[ N∑
i=1

(σ2
q(z1i)

+ µ2
q(z1i)

)(γ1 + γ2)Σ
−1 + µq(ηf )P

−
1 + µq(λf )P

−
2

]−1
µq(f1) = Σq(f1)(γ1 + γ2)Σ

−1
[ N∑
i=1

µq(z1i)
(
Xi(hi)− (µq(z0i)1p +

γ2
γ1 + γ2

µq(z2i)µq(f2))
)]

Σq(f2) =
[ N∑
i=1

(σ2
q(z2i)

+ µ2
q(z2i)

)
γ22

γ1 + γ2
Σ−1 + µq(ηf )P

−
1 + µq(λf )P

−
2

]−1
µq(f2) = Σq(f2)γ2Σ

−1
[ N∑
i=1

µq(z2i)
(
Xi(hi)− (µq(z0i)1p + µq(z1i)µq(f1))

)]
σ2
q(z0i)

= (µq(σ−2
z0

) + 21′p(γ1 + γ2)Σ
−11p)

−1

µq(z0i) =
[
σ2
q(z0i)

(
Xi(hi)

′ −XN(hN)′ + (µq(z1N ) − µq(z1i))µ′q(f1) +
γ2

γ1 + γ2
(µq(z2N ) − µq(z2i))µ′q(f2)

)
−

σ2
q(z0i)

(N−1∑
j=1

µq(z0j)1{i 6= j}1′p
)]

(γ1 + γ2)Σ
−11p

σ2
q(z1i)

= (µq(σ−2
z1

) + tr((Σq(f1) + µq(f1)µ
′
q(f1)

)(γ1 + γ2)Σ
−1))−1

µq(z1i) = σ2
q(z1i)

(
µ′q(f1)(γ1 + γ2)Σ

−1(Xi(hi)− (µq(z0i)1p +
γ2

γ1 + γ2
µq(z2i)µq(f2))

))
σ2
q(z2i)

= (µq(σ−2
z2

) +
γ22

γ1 + γ2
tr((Σq(f2) + µq(f2)µ

′
q(f2)

)Σ−1))−1

µq(z2i) = σ2
q(z2i)

(
µ′q(f2)γ2Σ

−1(Xi(hi)− (µq(z0i)1p + µq(z1i)µq(f1))
))

dq(ηf ) = d+ 1/2 ∗ tr(P−1 (Σq(f1) + µq(f1)µ
′
q(f1)

+ Σq(f2) + µq(f2)µ
′
q(f2)

))

dq(λf ) = d+ 1/2 ∗ tr(P−2 (Σq(f1) + µq(f1)µ
′
q(f1)

+ Σq(f2) + µq(f2)µ
′
q(f2)

))

bq(σ2
z0

) = b+ 1/2
N−1∑
i=1

(σ2
q(z0i)

+ µ2
q(z0i)

)

bq(σ2
z1

) = b+ 1/2
N∑
i=1

(σ2
q(z1i)

+ µ2
q(z1i)

)

bq(σ2
z2

) = b+ 1/2
N∑
i=1

(σ2
q(z2i)

+ µ2
q(z2i)

)

B.2 Convergence Criterion

The adapted variational Bayes algorithm is run until changes in

Eq(θ−w)

[
log f(X,w,θ−w) − log q(θ−w)

]
are below a certain threshhold. This value can be com-

puted in each iteration as follows.
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Eq(θ−w)

[
log f(X,w,θ−w)− log q(θ−w)

]
= Eq(θ−w)

[
log (f(X,w | θ−w)f(θ−w))− log q(θ−w)

]
= Eq(θ−w)

[
log f(X,w | θ−w) + log f(θ−w)− log q(θ−w)

]
= Eq(θ−w)

[
log f(X,w | θ−w)

]
+ Eq(θ−w)

[
log f(f1)− log q(f1)

]
+ Eq(θ−w)

[
log f(f2)− log q(f2)

]
+

(N−1)∑
i=1

Eq(θ−w)

[
log f(z0i)− log q(z0i)

]
+

N∑
i=1

Eq(θ−w)

[
log f(z1i)− log q(z1i)

]
+

N∑
i=1

Eq(θ−w)

[
log f(z2i)− log q(z2i)

]
+ Eq(θ−w)

[
log f(σ2

z0
)− log q(σ2

z0
)
]

+ Eq(θ−w)

[
log f(σ2

z1
)− log q(σ2

z1
)
]

+ Eq(θ−w)

[
log f(σ2

z2
)− log q(σ2

z2
)
]

+ Eq(θ−w)

[
log f(ηf )− log q(ηf )

]
+ Eq(θ−w)

[
log f(λf )− log q(λf )

]
Now looking at each piece individually,
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Eq(θ−w)

[
log f(X,w | θ−w)

]
= Eq(θ−w)

[ N∑
i=1

(
log[(2π)−p/2 | (γ1 + γ2)

−1Σ |−1/2]
)]

+ Eq(θ−w)

[ N∑
i=1

−1

2
[(Xi(hi)

′(γ1 + γ2)Σ
−1Xi(hi)− 2Xi(hi)

′(γ1 + γ2)Σ
−1(z0i1p + z1if1 +

γ2
γ1 + γ2

z2if2) +

(z0i1p + z1if1 +
γ2

γ1 + γ2
z2if2)

′(γ1 + γ2)Σ
−1(z0i1p + z1if1 +

γ2
γ1 + γ2

z2if2)]
]

=
N∑
i=1

(
log[(2π)−p/2 | (γ1 + γ2)

−1Σ |−1/2]
)

+
[ N∑
i=1

−1

2

(
Xi(hi)

′(γ1 + γ2)Σ
−1Xi(hi)−

2Xi(hi)
′(γ1 + γ2)Σ

−1µq(z0i)1p − 2Xi(hi)
′(γ1 + γ2)Σ

−1µq(z1i)µq(f1) −

2Xi(hi)
′γ2Σ

−1µq(z2i)µq(f2) +

(σ2
q(z1i)

+ µ2
q(z1i)

)tr((Σq(f1) + µq(f1)µ
′
q(f1)

)(γ1 + γ2)Σ
−1) +

(σ2
q(z2i)

+ µ2
q(z2i)

)tr((Σq(f2) + µq(f2)µ
′
q(f2)

)
γ22

(γ1 + γ2)
Σ−1) +

2µq(z0i)µq(z1i)1
′
p(γ1 + γ2)Σ

−1µq(f1) + 2µq(z1i)µq(z2i)µ
′
q(f1)

γ2Σ
−1µq(f2) +

2µq(z0i)µq(z2i)1
′
pγ2Σ

−1µq(f2)

)]
−[N−1∑

i=1

(σ2
q(z0i)

+ µ2
q(z0i)

) +
1

2

N−1∑
i=1

N−1∑
j=1

µq(z0i)µq(z0j)1{j 6= i}
]
1′p(γ1 + γ2)Σ

−11p

Eq(θ−w)

[
log f(f1)− log q(f1)

]
= Eq(θ−w)

[
− p

2
log 2π +

1

2
log | ηfP−1 + λfP

−
2 |
]
−

Eq(θ−w)

[1

2
(tr[f1f

′
1(ηfP

−
1 + λfP

−
2 )]
]

+

Eq(θ−w)

[p
2
log 2π +

1

2
log | Σq(f1) |

]
+

Eq(θ−w)

[1

2
tr(f1f

′
1Σ
−1
q(f1)

)− f ′1Σ
−1
q(f1)

µq(f1)

]
+

Eq(θ−w)

[1

2
µ′q(f1)Σ

−1
q(f1)

µq(f1)

]
= C +

1

2
Eq(θ−w)

[
2log ηf

]
+

1

2
Eq(θ−w)

[
(p− 2)log λf

]
−

1

2
tr
(

(Σq(f1) + µq(f1)µ
′
q(f1)

)(µq(ηf )P
−
1 + µq(λf )P

−
2 )
)
−

1

2
log | Σ−1q(f1) | +

p

2
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where C is a constant that does not change from one iteration to the next. Similarly,

Eq(θ−w)

[
log f(f2)− log q(f2)

]
= Eq(θ−w)

[
− p

2
log 2π +

1

2
log | ηfP−1 + λfP

−
2 |
]
−

Eq(θ−w)

[1

2
(tr[f2f

′
2(ηfP

−
1 + λfP

−
2 )]
]

+

Eq(θ−w)

[p
2
log 2π +

1

2
log | Σq(f2) |

]
+

Eq(θ−w)

[1

2
tr(f2f

′
2Σ
−1
q(f2)

)− f ′2Σ
−1
q(f2)

µq(f2)

]
+

Eq(θ−w)

[1

2
µ′q(f2)Σ

−1
q(f2)

µq(f2)

]
= C +

1

2
Eq(θ−w)

[
2log ηf

]
+

1

2
Eq(θ−w)

[
(p− 2)log λf

]
−

1

2
tr
(

(Σq(f2) + µq(f2)µ
′
q(f1)

)(µq(ηf )P
−
1 + µq(λf )P

−
2 )
)
−

1

2
log | Σ−1q(f1) | +

p

2

where C is a constant that does not change from one iteration to the next. For z0 = (z01, . . . , z0(N−1))
′

Eq(θ−w)

[
log f(z0)− log q(z0)

]
= Eq(θ−w)

[
− N − 1

2
log 2π − N − 1

2
log σ2

z0
−

N−1∑
i=1

− 1

2σ2
z0

z20i +

N − 1

2
log 2π +

N − 1

2
log σ2

q(z0i)
+

N−1∑
i=1

1

2σ2
q(z0i)

(z0i − µq(z0i))2
]

(6)

=
N − 1

2
log σ2

q(z0i)
− Eq(θ−w)

[N − 1

2
log σ2

z0

]
− (7)

1

2
µq( 1

σ2z0

)

(N−1∑
i=1

(σ2
q(z0i)

+ µ2
q(z0i)

)
)

+
N − 1

2

For z1 = (z11, . . . , z1N)′
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Eq(θ−w)

[
log f(z1)− log q(z1)

]
= Eq(θ−w)

[
− N

2
log 2π − N

2
log σ2

z1
−

N∑
i=1

− 1

2σ2
z1

z21i +

N

2
log 2π +

N

2
log σ2

q(z1i)
+

N∑
i=1

1

2σ2
q(z1i)

(z1i − µq(z1i))2
]

=
N

2
log σ2

q(z1i)
− Eq(θ−w)

[N
2
log σ2

z1

]
−

1

2
µq( 1

σ2z1

)

( N∑
i=1

(σ2
q(z1i)

+ µ2
q(z1i)

)
)

+
N

2

For z2 = (z21, . . . , z2N)′

Eq(θ−w)

[
log f(z2)− log q(z2)

]
= Eq(θ−w)

[
− N

2
log 2π − N

2
log σ2

z2
−

N∑
i=1

− 1

2σ2
z2

z22i +

N

2
log 2π +

N

2
log σ2

q(z2i)
+

N∑
i=1

1

2σ2
q(z2i)

(z2i − µq(z2i))2
]

=
N

2
log σ2

q(z2i)
− Eq(θ−w)

[N
2
log σ2

z2

]
−

1

2
µq( 1

σ2z2

)

( N∑
i=1

(σ2
q(z2i)

+ µ2
q(z2i)

)
)

+
N

2

For σ2
z0

Eq(θ−w)

[
log f(σ2

z0
)− log q(σ2

z0
)
]

= Eq(θ−w)

[
log

ba

Γ(a)
− (a+ 1)log σ2

z0
− b 1

σ2
z0

−

log
b
a
q(σ2z0

)

q(σ2
z0

)

Γ(aq(σ2
z0

))
+ (aq(σ2

z0
) + 1)log σ2

z0
+

bq(σ2
z0

)

1

σ2
z0

]

= Eq(θ−w)

[
− (a+ 1)log σ2

z0

]
− bµq( 1

σ2z0

) − log
b
a
q(σ2z0

)

q(σ2
z0

)

Γ(aq(σ2
z0

))
+

log
ba

Γ(a)
+ Eq(θ−w)

[
(aq(σ2

z0
) + 1)log σ2

z0

]
+ bq(σ2

z0
)µq( 1

σ2z0

)

For σ2
z1

13



Eq(θ−w)

[
log f(σ2

z1
)− log q(σ2

z1
)
]

= Eq(θ−w)

[
log

ba

Γ(a)
− (a+ 1)log σ2

z1
− b 1

σ2
z1

−

log
b
a
q(σ2z1

)

q(σ2
z1

)

Γ(aq(σ2
z1

))
+ (aq(σ2

z1
) + 1)log σ2

z1
+

bq(σ2
z1

)

1

σ2
z1

]

= Eq(θ−w)

[
− (a+ 1)log σ2

z1

]
− bµq( 1

σ2z1

) − log
b
a
q(σ2z1

)

q(σ2
z1

)

Γ(aq(σ2
z1

))
+

log
ba

Γ(a)
+ Eq(θ−w)

[
(aq(σ2

z1
) + 1)log σ2

z1

]
+ bq(σ2

z1
)µq( 1

σ2z1

)

For σ2
z2

Eq(θ−w)

[
log f(σ2

z2
)− log q(σ2

z2
)
]

= Eq(θ−w)

[
log

ba

Γ(a)
− (a+ 1)log σ2

z2
− b 1

σ2
z2

−

log
b
a
q(σ2z2

)

q(σ2
z2

)

Γ(aq(σ2
z2

))
+ (aq(σ2

z2
) + 1)log σ2

z2
+

bq(σ2
z2

)

1

σ2
z2

]

= Eq(θ−w)

[
− (a+ 1)log σ2

z2

]
− bµq( 1

σ2z2

) − log
b
a
q(σ2z2

)

q(σ2
z2

)

Γ(aq(σ2
z2

))
+

log
ba

Γ(a)
+ Eq(θ−w)

[
(aq(σ2

z2
) + 1)log σ2

z2

]
+ bq(σ2

z2
)µq( 1

σ2z2

)

For ηf

Eq(θ−w)

[
log f(ηf )− log q(ηf )

]
= Eq(θ−w)

[
log

dc

Γ(c)
+ (c− 1)log ηf − dηf −

log
d
cq(ηf )

q(ηf )

Γ(cq(ηf ))
− c log ηf + dq(ηf )ηf

]
= log

dc

Γ(c)
− log

d
cq(ηX )

q(ηf )

Γ(cq(ηf ))
− 2Eq(θ−w)

[
log ηf

]
− dµq(ηf ) +

dq(ηf )µq(ηf )

For λf

14



Eq(θ−w)

[
log f(λf )− log q(λf )

]
= Eq(θ−w)

[
log

dc

Γ(c)
+ (c− 1)log λf − dλf −

log
d
cq(λf )

q(λf )

Γ(cq(λf ))
−
(p− 2

2
+ c− 1

)
log λf + dq(λf )λf

]
= log

dc

Γ(c)
− log

d
cq(λf )

q(λf )

Γ(cq(λf ))
− (p− 2)Eq(θ−w)

[
log λf

]
− dµq(λf ) +

dq(λf )µq(λf )

The expression for Eq(θ−w)

[
log f(X,w,θ−w)− log q(θ−w)

]
can be simplified much further by

combining terms that cancel out. However, in some cases the ability to cancel terms depends on

the order of the updates. For instance, in the expression, Eq(θ−w)

[
log f(σ2

z0
)−log q(σ2

z0
)
]
, the terms

−bµq( 1

σ2z0

) and bq(σ2
z0

)µq( 1

σ2z0

) cancel with −1
2
µq( 1

σ2z0

)

(∑N−1
i=1 (σ2

q(z0i)
+µ2

q(z0i)
)
)

from Eq(θ−w)

[
log f(z0)−

log q(z0)
]

as long as the parameters of q(z0) are updated before bq(σ2
z0

). For convenience, we have

taken account the ordering necessary to compute the convergence criterion in the updates given

above. Additionally, note all components in this expression that do not change from one iteration

to the next can be ignored.

APPENDIX C

For comparison purposes, the remaining 88 cycles of the juggling dataset were split into a

partition of 4 subsets of 22 functions. Each subset was registered using the proposed registration

and factor analysis model. Figure 1, below, illustrates the consistency of our registration model

through a combined plot of all estimated registered functions from all 5 subsets of the original

data. It can be seen in this plot that the registration is consistent throughout the 5 subsets.

Figures 2 and 3 show the similarity between the estimated factors resulting from the 4 additional

runs. These estimated factors all contain similar features to the estimated factors from the original

data set found in Figure 7 of the main text.
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Figure 1: Consistency in registration of the entire dataset. Left Unregistered functions Right

Registered functions
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Figure 2: The estimated first factor for each of the 4 additional subsets.
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Figure 3: The estimated second factor for each of the 4 additional subsets.
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