
Supplement: An exemplary computation of the quantities
τ
(i)
d ,ξc, and αc

Here, we consider the case where the distribution P is specified by: the random
variable X is univariate and distributed according to some unknown distribution PX ,
and the joint distribution of (Y,X) is given by the simple model Y = β0 + β1X + ε ,
where ε ∼ N (0,σ2) with β0 and σ2 unknown. The goal is to compute the quantities
τ
(i)
d ,ξc, and αc analytically.

Since β0 = E(Y −β1X), one has β̂0 = g−1
∑

g
i=1(Yi −β1Xi) and Γ takes the form

Γ(1, . . . ,g;g+1) = G((X1,Y1), . . . ,(Xg,Yg);(Xg+1,Yg+1))

=
(
g−1

g

∑
i=1

(Yi −β1Xi)+β1Xg+1 −Yg+1
)2
,

using the mean squared error as the loss function. By a slight abuse of notation, let us
write Zi :=Yi −β1Xi = β0 +εi. (Correctly, one would have to use yet another notation,
say Wi instead of Zi; however, one would then obtain

G(Z1, . . . ,Zg;Zg+1) = G(W1, . . . ,Wg;Wg+1)

as equality of random variables on the entire probability space which is why we use
the notation Zi in the first place.) Then, Zi is i.i.d. from Z ∼ N (β0,σ

2) and Γ can be
written in terms of these variables as

Γ(1, . . . ,g;g+1) = G(Z1, . . . ,Zg;Zg+1) = (g−1
g

∑
i=1

Zi −Zg+1)
2 = (g−1

g

∑
i=1

εi − εg+1)
2.

Therefore, Γ is σ2(1/g+ 1) times a chi-square variable with one degree of freedom.
Moreover, Θ = EΓ = V(g−1

∑
g
i=1 εi − εg+1) = σ2(1+ g−1). This formula is similar

to Zhang and Qian (2013, (9), (10)).
Recall that the covariance between two chi-square random variables can be computed
as follows. Let (P,Q) be a bivariate normal distribution with covariance matrix

(
a b
b c

)
and mean (0,0)T . Then, Cov(P2,Q2) = 2b2. Hence, all τ

(i)
d are non-negative in this

case.
Some care has to be taken: the degree of Θ is two rather than g+1; thus, Assump-

tion 1 is not valid in this case. However, in this chapter we will only make use of the
non-degeneracy of the associated U-statistic which is a slightly weaker statement than
the assumption; non-degeneracy still remains valid. On a related note, let s2 denote the
usual unbiased variance estimator for σ2, which is a U-statistic of degree two. Then
one can check that the symmetrized form Γ0 of Γ coincides with s2(1+ g−1), which
also follows from the uniqueness of the U-statistic for a regular parameter.
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Another possibility to resolve the issue would be to add a negligibly small term of
degree g+1 to Γ; in other words, the collection of choices of Γ such that the assump-
tion is violated is a null set in some sense.
Let us abbreviate A=∑

d
i=1 εi,C =∑

g
i=d+1 εi,D=∑

2g−d+1
i=g+2 εi. Then, A∼ (dσ2)1/2N (0,1),

C ∼ ((g−d)σ2)1/2N (0,1),D∼ ((g−d)σ2)1/2N (0,1). Furthermore, EA4 = 3(dσ2)2

due to the normal kurtosis, EA3 = EA = EC = ED = 0,EA2 = dσ2,EC2 = ED2 =
(g−d)σ2.
Note that for type one, the overlap is only between the two learning sets, thus d =
c, and we only use the letter d. Making use of the mutual independences between
A,C,D,εg+1,ε2g+2−d , we obtain:

τ
(1)
c =Cov((g−1(A+C)− εg+1)

2,(g−1(A+D)− ε2g+2−c)
2) =

= 2
(
Cov(g−1(A+C)− εg+1,g−1(A+D)− ε2g+2−c)

)2
=

= c2[2g−4
σ

4]

This is remarkable because there seem to be few places in the literature where the quan-
tities σd of a U-statistic are explicitly calculated. In particular, no variance formulae
for the leave-p-out error of linear regression are known, except in the “leave-one-out”-
case.
For type two, we have d = c+1 and it is convenient to choose the following abbrevia-
tions: A = ∑

c
i=1 εi, C = ∑

g
i=c+1 εi, and D = ∑

2g−c
i=g+2 εi. Note that the symmetry between

C and D is lost and we have EC2 = (g− c)σ2 and ED2 = (g− c−1)σ2. We prefer to
perform the index shift c+1 on the left hand-side of the equation in order to stress the
analogy of the computation with type one above. We then have

τ
(2)
c+1 = 2Cov

[
(g−1(A+C)− εg+1),(g−1(A+ εg+1 +D)− ε2g−c+1)

]2
= c2[2g−4

σ
4]+ c[−4g−3

σ
4]+2g−2

σ
4.

(1)

For type three, we have d = c+2 and it is convenient to choose the following abbrevi-
ations: A and D as above, but C = ∑

g
c+2 εi. We then have

τ
(3)
c+2 = 2Cov

[
(g−1(A+ εc+1 +C)− εg+1),(g−1(A+ εg+1 +D)− εc+1)

]2
= c2[2g−4

σ
4]+ c[−8g−3

σ
4]+8g−2

σ
4.

(2)

For type four, we abbreviate A = ∑
c
i=1 εi,C = ∑

g
i=c+1 εi, and D = ∑

2g−c+1
i=g+2 εi. Using that

Eε3
g+1 = 0 because the third central moment of a normal random variate vanishes, we

obtain:

τ
(4)
c+1 = 2Cov

[
(g−1(A+C)− εg+1),(g−1(A+D)− εg+1)

]2
= c2[2g−4

σ
4]+ c[4g−2

σ
4]+2σ

4.

By (3.5), the expressions for the quantities τ as functions of c yield for ξc:

ξc = 2σ
4
[

c−2g+n+
c2

g2 − 2c
g

+
2c2n

g3 − 4cn
g2 +

2n
g

+
c2n2

g4

]
.
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By (3.12), we have

α0 = 2σ
4[−2g+n+2ng−1]

α1 = 2σ
4[−2

g
− 4n

g2 +
1
g2 +

2n
g3 +

n2

g4 +1
]

α2 = 4σ
4[g−2 +2ng−3 +n2g−4]

αγ = 0, γ ≥ 3.
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