
NOT-FOR-PUBLICATION APPENDIX TO:
IN-SAMPLE INFERENCE AND FORECASTING IN MISSPECIFIED

FACTOR MODELS
by Marine Carrasco and Barbara Rossi

Proofs
Proof of Lemma 1.

E
h
kSxx � �xxk2F

i
=

NX
i=1

NX
j=1

E
�
(Sxx (i; j)� �xx (i; j))2

�

=
1

T 2

NX
i=1

NX
j=1

E

0@ TX
t=1

xitxjt � E (xitxjt)
!21A :

In the case where xt are iid, we have

E
h
kSxx � �xxk2F

i
=
1

T

NX
i=1

NX
j=1

E
�
(xitxjt � E (xitxjt))2

�
using the independence. The double sum is bounded under the assumption E

h
kxtk4

i
< C: In the

mixing case, we apply Theorem 2 of Doukhan (1994, page 26). The lemma follows from Markov

inequality.

Proof of Proposition 2. First, consider the regularization bias. The eigenvectors f�jg form
a basis of RN , so that

�� � � =
NX
j=1

(qj � 1) h�; �ji�j :

Moreover,

E
��
x0t�

� � x0t�
�2�

= (�� � �)
0
E
�
xtx

0
t

�
(�� � �)

=
�1=2xx (�

� � �)
2

=

NX
j=1

(1� qj)2 �2j h�; �ji
2

Using Assumption 2, we have

E
��
x0t�

� � x0t�
�2�

=

NX
j=1

(1� qj)2 �2�j
h�; �ji2

�2��2j

� sup
j
(1� qj)2 �2�j

NX
j=1

h�; �ii2

�2��2i

=

(
O
�
�min(�;2)

�
for Ridge,

O
�
��
�
for SC and LF,

56



where the last equality follows from Proposition 3.11 of Carrasco, Florens and Renault (2007).

Now, we turn our attention toward the estimation error. Let Sx" = X 0"=T . Then, by (3),
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Moreover,
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the term (25) dominates the term (26).
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and Î� =

n
j : �̂2j � �

o
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Eigenvectors associated with multiple eigenvalues are not uniquely de�ned and hence we can not
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elements of the matrix and hence are consistent. Similarly the projection operators are consistent.
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Proof of Proposition 3. Let �� = E
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where the formula for
R b
a

x2

1�x2dx was found in Spiegel (1993, Formules et tables mathématiques).

Hence, Z k

1
f (s) ds = k ln

 
1�

�
k

j

�2!
� ln

�
1� 1

j2

�
+ 2� 2k + j ln

�
1 + k=j

1� k=j

�
� j ln

�
1 + 1=j

1� 1=j

�
:

This expression can be used to derive an equivalent of
Pk

l=1 ln

�
1�

�
l
j

�2�
as j and k go to in�nity.

Recall that j � k + 1:
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The result for the estimation error follows from Theorem 5.3 and Equation (5.11) of Delaigle

and Hall (2012).

Proof of Proposition 5. The results can be proved using a proof similar to that of Proposition

1 of De Mol. et al. (2008) exploiting some results already used in the proof of Proposition 2

combined with the shrinkage properties of our estimators, namely k��k � k�k.
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For Landweber-Fridman, supj �
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Proof of Proposition 7. Let � (MT (�)) be the largest eigenvalue of MT (�) : Let RT (�) �
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First we consider the case with discrete index set. We recall the assumptions of Li (1987).
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First, we are going to check the conditions for SC and LF.

Note that the eigenvalues of MT (�) are all bounded by 1, so that (A.1) is satis�ed. For PC,

MT (�) is a projection matrix and hence Corollary 2.1 of Li (1987) implies that (A.3) can be

replaced by

(A.3�) inf�2AT TRT (�)!1:
(A.3�) implies (A.3) with m = 2:

For LF, MT (�) is not a projection matrix, however we can still establish inequality (2.5) in the

proof of Corollary 2.1 by using the fact that tr
�
MT (�)

2
�
� C=� for some constant C. To see this

use the mean value theorem on qj (�) and qj (0) = 0: Hence for LF also, we can replace (A.3) by

(A.3�).
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According to Proposition 3, TRT (�) = O
�
1
�

�
+ O

�
T��

�
: The � which minimizes TRT (�) is

of order T�1=(�+1). Hence inf�2AT TRT (�) = O
�
T 1=(�+1)

�
!1: Therefore (A.3�) holds.

The justi�cation for replacing �2" by �̂
2
" is provided by Corollary 2.2. of Li (1987). The optimality

of CL for SC and LF follows from Theorem 2.1. of Li (1987).

For GCV, we need to check Assumptions (A.4) to (A.6).

(A.4) We have E inf�2AT LT (�) � inf�2AT ELT (�) = O
�
T��=(�+1)

�
: Hence by Markov�s

inequality, inf�2AT LT (�) converges to zero.

MT (�) is idempotent so (A.5) is automatically satis�ed and (A.7) is equivalent to (A.6).

T�1trMT (�) = 1= (�T ) � 1. So that � � 1=(T1): This is satis�ed for the set AT we have

selected. Thus, Assumptions (A.4) to (A.6) hold. The optimality of GCV for SC and LF follows

from Theorem 3.2. of Li (1987).

Now, we turn our attention to Ridge. Theorem 1 of Li (1986) establishes the optimality of

CL for R under Assumption (A.3�) which can be checked using the same argument as above. The

optimality of GCV for R follows from Theorem 2 of Li (1986) under the extra assumption 3(iii)

which corresponds to Condition (A.2) in Li (1986). Note that the condition (A.2) in Li (1986)

is expressed in terms of the eigenvalues of XX 0 instead of XX 0=T but the ratio is invariant to a

rescaling of the eigenvalues.
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Additional Empirical Results

Table A1. Empirical Analysis (Forecast horizon = 1 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.56 -0.61 58.2 0.00

Cross V. 1.35 -0.52 25.4 0.00

Ridge -1.09 0.25 1.81 0.40

PLS 1.57 -0.60 44.4 0.00

LF 3.86 -1.35 4.51 0.10

Comb. CV -0.67 0.12 1.25 0.53

Comb. Mall. 0.13 -0.15 2.67 0.26

BMA 0.34 -0.26 6.00 0.05

Comb. 0.04 -0.07 0.61 0.74

Panel B. In�ation

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.03 -0.92 141.4 0.00

Cross V. -0.02 -1.01 28.2 0.00

Ridge -0.02 -1.01 62.3 0.00

PLS -0.02 -1.51 51.3 0.00

LF -0.02 -3.41 9.01 0.01

Comb. CV -0.02 -1.06 11.4 0.00

Comb. Mall. -0.02 -0.82 17.3 0.00

BMA -0.01 -0.46 3.23 0.20

Comb. -0.04 -0.58 8.60 0.01
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Table A2. Empirical Analysis (Forecast horizon = 4 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.04 -0.43 42.9 0.00

Cross V. 0.82 -0.34 14.7 0.00

Ridge -1.04 0.25 1.63 0.44

PLS 1.28 -0.50 54.5 0.00

LF 2.87 -1.03 3.56 0.17

Comb. CV -1.73 0.47 5.78 0.06

Comb. Mall. -0.41 0.04 1.82 0.40

BMA -0.08 -0.07 1.31 0.52

Comb. -0.55 0.14 0.77 0.68

Panel B. In�ation

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.12 -0.56 32.4 0.00

Cross V. -0.09 -0.56 17.4 0.00

Ridge -0.11 -0.45 13.2 0.00

PLS -0.11 -0.80 113.4 0.00

LF -0.07 -1.13 2.08 0.35

Comb. CV -0.11 -0.12 1.15 0.56

Comb. Mall. -0.13 -0.20 2.08 0.35

BMA -0.01 -0.12 0.52 0.77

Comb. -0.10 -0.31 4.68 0.10

Notes to Tables A1 and A2. The pool of regressors contains three lags of the predictors (xt�h includes

Zt�h, Zt�h�1, and Zt�h�2).
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Figure A1. Forecasting GDP, h=1. Forecast Rationality.
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Figure A2. Forecasting In�ation, h=1. Forecast Rationality.
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Figure A3. Forecasting GDP, h=4. Forecast Rationality.
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Figure A4. Forecasting In�ation, h=4. Forecast Rationality
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Notes to Figures A1-A4. The �gures report Rossi and Sekhposyan�s (2015) Fluctuation Rationality test

(solid line) and critical values (dotted lines) for the forecasting models listed in the title. Figures A1-A2

focus on forecasting output growth and in�ation in the short-run, while �gures A3-A4 focus on the long-run.

The pool of regressors contains three lag of the predictors (xt�h includes Zt�h, Zt�h�1, and Zt�h�2).
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