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Proofs

Proof of Lemma 1.
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using the independence. The double sum is bounded under the assumption E [Hﬂstﬂﬂ < C. In the
mixing case, we apply Theorem 2 of Doukhan (1994, page 26). The lemma follows from Markov
inequality.

Proof of Proposition 2. First, consider the regularization bias. The eigenvectors {¢;} form

a basis of RV, so that
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where the last equality follows from Proposition 3.11 of Carrasco, Florens and Renault (2007).

Now, we turn our attention toward the estimation error. Let S,. = X’e/T. Then, by (3),
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Using the homoskedasticity and the normalization of the eigenvectors, we have
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Moreover, Zj (j?- < £ where ¢ is some constant for LF, R, and SC (see for instance Carrasco,

Florens, and Renault, 2007). Hence,
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It follows from Markov’s inequality that z} (S%,)"" Spe = O, (1 /V aT)) .
Now we analyze the term (S%,) ™! Spp0 — (22,) " Sppd. We can expand § with respect to both
orthonormal series ¢1, @2, ...and ¢1, do, ...obtaining § = Zjvzl (0, 05) dj = Z;VZI <5, g5]> qgj. (zo )t

is defined as the population version of (S,)~'. Using (2), we have
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For R and LF, Proposition 3.14 of Carrasco et al. (2007) combined with Lemma 1 permits to
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where €, = 0 for R and = ||S;» — X, for LF. So we see that without an extra assumption on £,

the term (25) dominates the term (26).

conclude that
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For SC, the discontinuity of ¢; makes the analysis more complicated. We have
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Let I, = {j : )\]2 > oz} and fa = {j : 5\]2 > oz}. Assume I, C fa (the case fa C I, can be treated
similarly). We have
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Eigenvectors associated with multiple eigenvalues are not uniquely defined and hence we can not

claim the consistency of gZ;j toward ¢;. However, the eigenvalues are continuous functions of the

58



elements of the matrix and hence are consistent. Similarly the projection operators are consistent.

The projection operator on the space of eigenvectors corresponding to the eigenvalue )\22 is defined

by P; = Zjeli (¢j,.) ¢; where I; = {j : )\? = )\12} Similarly define P; = Zjeli <q£j,.>¢;j. By
Propositions 3 and 7 of Dauxois, Pousse and Romain?? (1982), P converges to P; at v/T-rate. It
follows that
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where |.| denotes the cardinal. As the eigenvalues are consistent (see Dauxois, Pousse, and Romain

(1982)) and ‘5\3 — )\32‘ =0, (1/ﬁ>, it follows that |1, — In| = O, (1/ﬁ> and because ||0]] < oo,
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22Dauxois, Pousse, and Romain (1982) assume a random sample. For results on weakly dependent data, see Chen
and White (1998).
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Proof of Proposition 3. Let 6 = F (5“|X> . The expected MSPE can be decomposed as

the sum of variance term and a bias term:

%E [HXSO‘ _ X5H2 |X} - %E [Hxéa — X4°

2 1 9
\X} + = X6 — X6

We analyze these two terms separately. Note that, conditional on X 5\?, qASj, and 1/A1j are determin-
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According to Lemma 1, |[Sy, — Xpz|| = O, (1/\/T> , hence the eigenvalues and eigenspaces of Sy

are consistent and for 7" large enough,
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by Assumption 2.
For PC, we have
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Proof of Proposition 4. Let 65% ¢ be the population version of the regularized estimator as
defined in Delaigle and Hall (2012, page 328). It is the solution of
k . ! sk ! 2
0prLs = argélé%k E ((mté — xté) >
where K is the Krylov subspace defined as KF (2., Yay) = {Z$y, e Dayy - Z’;;IEW}. Then
using arguments similar to those of Blazére et al. (2014a), we are going to show that 5?; g can be

written as
min(N,T)

Sprs= Y. il i) i
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where gy; is as in (13) with j‘jz replaced by Aj, and p;, replaced by p;, = A, (J,¢;,) so that g is
not random. For an integer k, let P, ; denote the set of polynomials of degree less than k with
constant term equal to 1. Note that 5§%LS takes the form Zj fijg;;ley = Zj fij?,;lEmé. By an

argument similar to that of Blazere et al. (2014a, Proposition 3.1), we have
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where Qj, (t) =1 —tPy (t) € Py,1 satisfies

2
(Sae) 0|

Q) € arg min
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Then using a proof similar to that of Blazére et al. (2014a, Proposition 3.2), it can be shown
that Qo = 1, @1, ...is a sequence of orthonormal polynomials with respect to the measure dy =
> y A?p?& »; Where p; = A; (6, ¢;) . The specific expression of the gx; follows from Theorem 4.1. of
Blazére? et al. (2014a).

Now, we analyze the regularization bias.
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where the last equality can be proved using an argument similar to Blazére et al. (2014a, Lemma

3.6). Again using Blazere et al. (2014a, Propositions 6.1 and 6.2), we have
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Moreover,
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So an upper bound is given by C)\k 1

To be more precise, we consider the special case where there is a constant C' > 0 such that
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Without loss of generality, we focus on the case )\2- = j72. Then
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We see that the first term decreases with j whereas the second term increases. As the function

Let us take the log

2
f(z)=In (1 — (%) ) is decreasing and continuous in x, we can apply the comparison theorem
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When k + 1 = j, the lower bound goes to -oo but for j > k + 1, the lower bound is finite and both
bounds can be used to derive an equivalent of the series.

Using a change of variables x = s/j, we obtain
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where the formula for (1993, Formules et tables mathématiques).

/1kf(s)ds:kln (1_ (’;>2> n <1_j12)

, 1+k/j . 1+1/j
+2 2k+jln<1_k/j> jln<1_1/j .

Hence,

This expression can be used to derive an equivalent of Zle In <1 — (]1) 2) as j and k go to infinity.
Recall that j > k + 1.

We consider two possible scenarios:

1) k/j — ¢* with 0 < ¢* < 1,

2)k/j—0

and see which of these possibilities is compatible with the maximization of the criterion given
n (27).

1) When k/j — ¢* > 0, we have

/ff(s)ds- Eln(l—c*)+jln <1t2:> + o(1).

To maximize (27), we need to equate the rates for kln(l — ¢*) 4 jln ( +¢ ) and —451n (j) or by

—c*

dividing by j, we need to equate the rates of ¢*In(1 — ¢*) + In (1+C ) and —4f1n(j) /j. This is

1—c*

possible only if ¢* is close to zero which yields the second case.

2) When k/j — 0, we obtain
/ f(s - +0(1)

using In(1 + x) ~ x as x goes to zero.

Now using the first order condition of the maximization of —<% — 431n (j), we see that the
maximum is reached for j = Ck3/2 for some constant C' > 0. This concludes the proof.

The result for the estimation error follows from Theorem 5.3 and Equation (5.11) of Delaigle
and Hall (2012).

Proof of Proposition 5. The results can be proved using a proof similar to that of Proposition
1 of De Mol. et al. (2008) exploiting some results already used in the proof of Proposition 2
combined with the shrinkage properties of our estimators, namely ||d%|| < ||d]|.

We have

5 = 6% = (S2) " Sy — (22) 7" Ty
= (52)7" (Say — Tay) (28)
- (2207 Ty (29)



First consider (28),
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where [|Szy — Zay|l = Oy ( ) comes from Lemma 2 of De Mol et al. (2008). (29) can be rewritten
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The term (31) was analyzed in Section 3.1 and is negligible with respect to (32). We have
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where || Sye — Xazl| = Op (%) comes from Lemma 2 of De Mol et al. (2008).
Regarding the estimation bias, the only major difference with De Mol et al. (2008) is the

presence of the term o and d. It comes from
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For SC, sup; /\jﬂ (g5 — 1) = o if & < Apin (MA) and 0 otherwise. By Weyl’s theorem, )\f >

Amin (A’A), we obtain for SC:
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For Landweber-Fridman, sup; \; 26 (g5 — 1)% < (a/d)”? where d is such that 0 < d < 1/Amax (Syz) SO
that d goes to zero with 1/N. Therefore,

P NI 1
_ < (= 7
I ol < (3) Amin (MA)”

<2
: . . 47

The variance term differs for LF from the other two regularizations because ;\—”4 < % for some
J

52
constant C' for SC and R, however % a% for LF. Given d depends on N, it can not be ignored.

Amin (AR
Proof of Proposition 7. Let A (Mr (a)) be the largest eigenvalue of Mr (a). Let Ry (o) =
ElLr (a) 1X].
First we consider the case with discrete index set. We recall the assumptions of Li (1987).
(A.1) limp o0 SUPLe Ay A (Mr (@) < 00,
(A.2) Ee}™ < oo for some m,
(A.3) Xnen, (TRy (@)™ — oo,
For completeness, we recall here the theorems 2.1 and 3.2 of Li (1987).
Theorem 2.1 (Li, 1987) Assume that (A.1)-(A.3) hold. Then C7, is asymptotically optimal.
Theorem 3.2 (Li, 1987) Assume that (A.1)-(A.3) and the following conditions hold:
(A4) infoea, Ly (o) — 0,
(A.5) for any sequence {ar € Ar} such that T~ 1tr My (ar) — 0, we have

The fact that [|6|| = O < VAmax(A 1) ) has been established by De Mol et al. (2008).

(T tr My (ar))® / (T’ltr (MT (aﬁ)) 0,

(A.6) supaeca, T~ trMy (o) < 71, for some 1 > 71 > 0,
(A.7) supaca, (T~ HrMr (a))2/ (T‘ltr (MT (04)2)) < 79, for some 1 > 73 > 0.
Then GCV is asymptotically optimal.

First, we are going to check the conditions for SC and LF.

Note that the eigenvalues of M7 («) are all bounded by 1, so that (A.1) is satisfied. For PC,
Mr (@) is a projection matrix and hence Corollary 2.1 of Li (1987) implies that (A.3) can be
replaced by

(A.3) infoea, TRy () — o0

(A.3’) implies (A.3) with m = 2.

For LF, My (o) is not a projection matrix, however we can still establish inequality (2.5) in the
proof of Corollary 2.1 by using the fact that tr (MT (a)2> > C'/«a for some constant C. To see this
use the mean value theorem on ¢; (A\) and ¢; (0) = 0. Hence for LF also, we can replace (A.3) by

(A.3).
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According to Proposition 3, TRy () = O (é) +0 (TafB ). The o which minimizes TRy (a) is
of order T=Y/(#*+1). Hence infaea, TRy (@) = O (T B+ — oo, Therefore (A.3’) holds.

The justification for replacing o2 by 42 is provided by Corollary 2.2. of Li (1987). The optimality
of Cp, for SC and LF follows from Theorem 2.1. of Li (1987).

For GCV, we need to check Assumptions (A.4) to (A.6).

(A.4) We have Einf,ca, L1 (o) < infpea, ELr (a) = O (T‘B/(B‘H)). Hence by Markov’s
inequality, inf,ea, L7 (o) converges to zero.

M7 (o) is idempotent so (A.5) is automatically satisfied and (A.7) is equivalent to (A.6).
T~ YrMy (o) = 1/(aT) < v1. So that o > 1/(Ty;). This is satisfied for the set Ay we have
selected. Thus, Assumptions (A.4) to (A.6) hold. The optimality of GCV for SC and LF follows
from Theorem 3.2. of Li (1987).

Now, we turn our attention to Ridge. Theorem 1 of Li (1986) establishes the optimality of
Cp, for R under Assumption (A.3") which can be checked using the same argument as above. The
optimality of GCV for R follows from Theorem 2 of Li (1986) under the extra assumption 3(iii)
which corresponds to Condition (A.2) in Li (1986). Note that the condition (A.2) in Li (1986)
is expressed in terms of the eigenvalues of X X’ instead of X X'/T but the ratio is invariant to a

rescaling of the eigenvalues.
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Additional Empirical Results

Table A1l. Empirical Analysis (Forecast horizon = 1 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coefficients Wald Test
Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.56 -0.61 58.2 0.00

Cross V. 1.35 -0.52 25.4 0.00
Ridge -1.09 0.25 1.81 0.40
PLS 1.57 -0.60 44.4 0.00
LF 3.86 -1.35 4.51 0.10
Comb. CV -0.67 0.12 1.25 0.53
Comb. Mall. 0.13 -0.15 2.67 0.26
BMA 0.34 -0.26 6.00 0.05
Comb. 0.04 -0.07 0.61 0.74
Panel B. Inflation

Coefficients Wald Test
Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.03 -0.92 141.4 0.00

Cross V. -0.02 -1.01 28.2 0.00
Ridge -0.02 -1.01 62.3 0.00
PLS -0.02 -1.51 51.3 0.00
LF -0.02 -3.41 9.01 0.01
Comb. CV -0.02 -1.06 114 0.00
Comb. Mall. -0.02 -0.82 17.3 0.00
BMA -0.01 -0.46 3.23 0.20
Comb. -0.04 -0.58 8.60 0.01
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Table A2. Empirical Analysis (Forecast horizon = 4 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coefficients Wald Test
Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.04 -0.43 42.9 0.00

Cross V. 0.82 -0.34 14.7 0.00
Ridge -1.04 0.25 1.63 0.44
PLS 1.28 -0.50 54.5 0.00
LF 2.87 -1.03 3.56 0.17
Comb. CV -1.73 0.47 5.78 0.06
Comb. Mall. -0.41 0.04 1.82 0.40
BMA -0.08 -0.07 1.31 0.52
Comb. -0.55 0.14 0.77 0.68
Panel B. Inflation

Coefficients Wald Test
Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.12 -0.56 324 0.00

Cross V. -0.09 -0.56 17.4 0.00
Ridge -0.11 -0.45 13.2 0.00
PLS -0.11 -0.80 113.4 0.00
LF -0.07 -1.13 2.08 0.35
Comb. CV -0.11 -0.12 1.15 0.56
Comb. Mall. -0.13 -0.20 2.08 0.35
BMA -0.01 -0.12 0.52 0.77
Comb. -0.10 -0.31 4.68 0.10

Notes to Tables A1l and A2. The pool of regressors contains three lags of the predictors (z;_j includes
Zi hy Zt—p—1, and Zy_p_3).

69



Figure Al. Forecasting GDP, h=1. Forecast Rationality.
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Figure A3. Forecasting GDP, h—=4. Forecast Rationality.
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Figure A4. Forecasting Inflation, h—=4. Forecast Rationality
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Notes to Figures A1-A4. The figures report Rossi and Sekhposyan’s (2015) Fluctuation Rationality test
(solid line) and critical values (dotted lines) for the forecasting models listed in the title. Figures A1-A2
focus on forecasting output growth and inflation in the short-run, while figures A3-A4 focus on the long-run.

The pool of regressors contains three lag of the predictors (z;_p, includes Zy_p, Z;_p_1, and Z;_p_9).
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