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1. Hexagonal Structure Factor Model

The following is a brief overview of paracrystals in general and the outline for deriving the paracrys-
talline structure factor for a 2-dimensional hexagonal lattice. A more complete derivation is pro-
vided in [1] and [2].

1.1 Hosemann’s Theory of Paracrystals in One Dimension

A paracrystalline structure is one that is subject to lattice distortions of the second kind, that is
although it possesses short range order, the nearest neighbour distances are not identical. Instead,
these distances follow a distribution function governed by the shape of the structural units and the
interaction between them. This is in contrast to distortions of the first kind, where the equilibrium
positions of all neighbours, near and distant, are fixed at the nodes of the crystalline lattice. If the
distribution function of nearest neighbours, H1(x), is known, it is possible to calculate the mean
distance between nearest neighbours:

a =

∫
xH1(x) dx (S1)

as well as the position of the next nearest neighbour by convoluting H1(x) with itself, displaced
by a distance x′:

H2(x) =

∫ ∞
0

H1(x′)H1(x− x′) dx′ = H1 ⊗H1 (S2)

Repeating this convolution step gives rise to the positions of the third nearest neighbours:

H3(x) = H2 ⊗H1 = H1 ⊗H1 ⊗H1 = H1

3
⊗H1 (S3)
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whereby it may be seen that the positions of the n-th nearest neighbours may be found via n
self-convolutions of H1(x) and the total distribution function is the sum of these convolutions:

S(x) = H0 +
∞∑
n=1

H1

n
⊗H1 +H−1

n
⊗H−1 (S4)

where H0 is a delta function at the origin and H−1 is the distribution of nearest neighbours in
the negative direction, required for centrosymmetry.

The expected diffraction pattern of the paracrystalline lattice described above is simply the
Fourier transform of S. It can be expressed in terms of the transform of H1 as::

F [H1(x)] = F (Qx) (S5)

where Q(x) is the scattering vector in the x direction. The convolution theorem states that the
Fourier transform of a convolution is the product of transforms of the convoluted functions i.e.

F [H2(x)] = F 2(Qx) (S6)

To a first approximation, the distributionH1 can be represented by a Gaussian curve with width
∆, such that:

H1(x+ a) =
1√

2π∆
e−

1

2
(x2/∆2) (S7)

The Fourier transform of which is also a Gaussian:

F = e−2π2Q2
x∆2

(S8)

Applying the convolution theorem to (S4) and summing the series, one arrives at the following
functional form:

S(Qx) = Re

(
1 + F (Qx)

1− F (Qx)

)
(S9)

which, when combined with the Gaussian approximation in (S7) and (S8) is shown graphically
in Figure S1. It can be seen that the amplitude of the peaks decays and the peak width increases
with increasing Q, however the position of the peaks remains at 2nπ/a.

1.2 Extension to Multiple Dimensions

The same principles can easily be extended to cover an orthogonal, two- or three-dimensional
coordinate system. In this case, the Gaussian approximation of the original pair distribution for
first neighbours, as described in (S7), becomes:
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Figure S1. Schematic of the 1-dimensional structure factor S(Qx) as a function of the scattering vector Qx.

H1(r+a) =
1

(2π)
3

2 ∆1x∆1y∆1z

exp

[
−1

2

(
x2

∆2
1x

+
y2

∆2
1y

+
z2

∆2
1z

)]
(S10)

where the subscripts 1x, 1y and 1z refer to displacements from axis 1 in the x, y and z direction
respectively. The Fourier transform of (S10) is:

F [H1(r+a)] = F1(Q) = exp[−2π2(∆2
1xQ

2
x + ∆2

1yQ
2
y + ∆2

1zQ
2
z)] (S11)

where Q is the scattering vector in the reciprocal lattice. By analogy with (S9), the overall
expected diffraction pattern is then given by:

S(Q) =
∏

k=1,2,3

Re

(
1 + Fk(Q)

1− Fk(Q)

)
(S12)

Note that here the subscript (k) refers to each of the three orthogonal lattice vectors as opposed
to the order of nearest neighbours as in the one dimensional case. This formula applies to the
case of an ideal paracrystal where the unit cells of the prefect crystals are always distorted into
parallelepipeds.

For the more general case of a real paracrystal, the distributions of the diagonals must be included.
For a two dimensional net, with no correlation between the lattice vector 1 and the lattice vector
2 (i.e. a1 and a2), Hosemann has shown [1]:

S = 1 + 2 Re

[
F10

1− F10
+

F01

1− F01
+

F1̄1

1− F1̄1

· 1− F1̄0F01̄

(1− F1̄0)(1− F01̄)
+

F1̄0

1− F1̄0

· F01

1− F01

]
(S13)

where the subscripts represent the Miller indices of the reciprocal lattice.

1.3 The Hexagonal Lattice

In the main text, the case of a two-dimensional hexagonal lattice is discussed. A simple 2D hexago-
nal net may be defined using two lattice vectors a1 and a2 of identical magnitude, a, and separated
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Figure S2. Diagram showing the lattice vectors and nearest neighbour distribution functions of a 2D hexagonal net.

by 120◦. Following Hosemann, the reciprocal lattice of the 2D hexagonal net also takes the form
of hexagonal lattice with lattice vectors a∗1 and a∗2 orthogonal to a1 and a2 respectively and of
magnitude 4π/(

√
3a). The lattice distortions in a 2D hexagonal lattice may be represented by two

pair distribution functions H10 and H01 as shown in Figure S2. Due to the symmetry of the system,
this must also be averaged over all 6 possible orientations:

SH = 1 +
6∑

k=1

Re
Fk

(1− Fk)(1− Fk−1)
(S14)

When the six-fold symmetry is taken into account, the diagonal correlation H11 and H10 are
determined by H01 and Hosemann has shown that the Fourier transforms for the first three axis
directions of a 2D hexagonal net, assuming a Gaussian pair distribution function, can be calculated
and are given by:

F1(Q) = e−iQxa1e−
1

2
(Q2

x∆2
r+Q

2
y∆2

t ) (S15a)

F2(Q) = e−i(Qxa1 cos π
3

+Qya1 sin π

3
)e−

1

2
(Q2

x∆2
r cos2 π

3
+Q2

y∆2
t sin2 π

3
) (S15b)

F3(Q) = e−i(Qxa1 cos 2π

3
+Qya1 sin 2π

3
)e−

1

2
(Q2

x∆2
r cos2 2π

3
+Q2

y∆2
t sin2 2π

3
) (S15c)

where Qx and Qy are the components of Q in the 2D plane and ∆r and ∆t are the radial and
transverse distortions respectively (as defined in Figure S2). F4−6 are the complex conjugates of
F1−3 respectively (i.e. F4 = F ∗1 and so on). It is worth noting here that, in contrast to rectangular
lattices, the distribution function of node (1,1) is not the convolution of the (1,0) and (0,1) distri-
bution functions, rather it is exactly identical to the (1,0) and (0,1) functions due to the hexagonal
symmetry. In the method used by Hosemann and Bagchi, outlined above, the symmetry is restored
by averaging over the 6 possible orientations, this is somewhat arbitrary and cannot be used to
express the distribution functions in real space for example. A more elegant approach is provided
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by Bousson and Doucet, [3] whereby the hexagonal symmetry is preserved throughout by defining
the shape of the nearest neighbour distribution functions as the product of three Gaussians (of
standard deviation σ). In the isotropic case (where ∆r = ∆t = ∆), this ultimately leads to the
equivalent result as attained by Hosemann, when ∆ =

√
2/3 σ.

1.4 Distribution of Lattice Parameters

For flexible micelles, in addition to the distribution of lattice parameters arising from paracrystalline
distortions in the lattice as given by (S1), it is postulated that there are regions within the lattice
that are well crystallised and regions that are less well crystallised. This behaviour can be included
very simply in (S16) by replacing the average lattice parameter a with some distribution of lattice
parameters g(a). It is also reasonable to assume that regions with larger lattice parameters will have
greater distortions, hence the dependence of the distortion parameters on the lattice parameter,
see equation (2) and Figure 4a in main text. To obtain the final structure factor for the whole
paracrystal, the average over the distribution of lattice parameters is taken:

S(Q) =

∫
g(a)SH(Q, a,∆r,∆t) da (S16)

1.5 Preferred Alignment

For long rods in suspension, the total scattered intensity is given by:

I(Q) =
2πL

Q
(ρπR)2

{
2J1(QR)

QR

}2

S(Q) (S17)

where J1 is the first order Bessel function, R, L and ρ are the radius, length and density of the
rod and S(Q) is given by:

S(Q) =
3

π

∫ π/3

0
f(φ)S(Q⊥, φ) dφ (S18)

where φ is the relative rotation around the long axis, as shown in Figure S3. If there is no
preferred alignment, then f(φ) = 1 and S(Q) is independent of φ. If there is a preferred alignment
in the system, this may be characterised by a trigonometric series in 6φ:

f(φ) = 1 + c6 cos(6φ) + c12 cos(12φ) + c18 cos(18φ) + ... (S19)

In practice, it is only the c6 term that meaningfully affects the I(Q), the higher order terms may
safely be neglected. When c6 > 0, the amplitude of the first, third and fifth peaks (1,

√
4 and

√
9

respectively) are enhanced by the alignment and the second and sixth peaks (
√

3 and
√

12) are
weakened. When c6 < 0, this result is reversed. To achieve the fit shown in Figure 4 of the main
text, a small preferred alignment correction was required. This alignment is probably imparted
onto the sample by the walls of the capillary.

5



February 26, 2016 Liquid Crystals Hex˙SI˙For˙ReSubmission

x

z

α

β

y

φ

Figure S3. Schematic of a rod-like particle with arbitrary orientation with respect to a Cartesian co-ordinate system. The

direction of the incoming X-rays is given by the positive x-axis

2. Supplementary Figures
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Figure S4. (a) Comparison of background subtracted and azimuthally averaged scattered intensity from small-angle X-ray

scattering measurements of PFS133-b-PI1250 micelles at high and low concentration. (b) The effective structure factor of
PFS133-b-PI1250 micelles at 100 mg/mL, found by taking the ratio of the 100 mg/mL and 10 mg/mL samples shown in (a).
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Figure S5. Comparison of scattering from original, dried sample and resolvated sample of PFS90-b-PI890 micelles. The original

concentration was 100 mg/mL, the sample was resolvated with approximately the same volume of decane but the exact
concentration was not determined. The data are shifted arbitrarily in intensity for clarity.
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