How to analyze Next-gen data from BPA project.

Global Repeats

Unfiltered Data Output for general stats (CpG, Class, Family, Subfamily)

RepeatMasking Human TRIM data.

Convert fastq to fasta
sed -n '1~4s/^@/>/p;2~4p' [lanenumber].fastq > [lanenumber].fasta

RepeatMasker analysis (Whole Data Set)
	Move each fasta file into its own directory.
	Each file was split into manageable sizes for RepeatMasking (xaa, xab, xac…)
	split -C 100000000 [lanenumber].fastq.trim.13.90.fasta
	Repeatmasker was run with the following options
	RepeatMasker -qq -xsmall -species human xaa..xzz

	Output
	Repeatmasker (RM) runs resulted in multiple output files.
	xaa.masked = Fasta file with all sequences masked to lowercase
	xaa.out = RM output file with ID line and repeat info on each line.

Repeat Analysis (Whole Data Set)
Statistics in figures generated with HumanSubfamilyAnalysis.R

Nucleotide Frequency Analysis, CpG content 	
	To generate stats per lane:	
	cat *.masked > [lanenumber].masked Makes single masked file.

	Use software galculator
	Available at: http://www.bioinf.uni-leipzig.de/Software/galculator/
	Combine all the output into spreadsheet.
	galculator [lanenumber].fasta.masked > [lanenumber].galculator

	To determine genomic frequencies
	galculator /data/human_genome/Homo_sapiens.GRCh37.69.dna.Total.fa

Repeat Class Frequency Analysis
	“FrequencyStats Human.xlsx|HumFreq by class” contains overall repeat analysis for each lane (derived from .tbl files).

Sum totals from ALUs lines in all the tbl files:
	Assuming <col 2> <col 3> = <# of elements> <length occupied>
	cat *.tbl | grep ALUs | awk 'BEGIN { ok = 1 } {a += $2; b +=$3 } END { if (ok) print a “\t” b }'

Sum sequence counts from all lines in tbl files:
	cat *.tbl | grep sequences | awk 'BEGIN { ok = 1 } {a += $2 } END { if (ok) print a }'

Sum total length from all lines in tbl files:
	cat *.tbl | grep "total length:" | awk 'BEGIN { ok = 1 } {a += $3 } END { if (ok) print a }'

Generate counts for each Subfamily
To generate stats per lane:
	cat *.out > [lanenumber].total.out Makes single out file.
	awk '{print $10}' [lanenumber].total.out | sort | uniq -c > [lanenumber].total.subfamily.count
	
Use gawk script to combine all count files into “combined.sorted.txt”
Join files together with empty replacement
	gawk -f joinemptyreplace.awk $(ls -v *.a) > combined.sorted.txt
	Results in “FrequencyStats Human.xlsx / HumFreqbySubFamily”

Repeat Subfamily Analysis

Filtering criteria for subfamilies
	Use averages from each exposure level (total 7312 subfamilies)
1) Remove any simple repeats (6991 subfamilies)
2) Remove any repeats with N/A counts or <10 in any treatment group (955 subfamilies)
3) Perform Anova to detect differences between groups on longform data HumanSubfamily.long in R. Write output to tukey.output.
4) Convert tukey output to tab-delimited and filter for lines containing only columns with identical values, i.e. Aluj-Low:Aluj-High.
5) awk '$1 == $3' tukey.output.csv > tukey.output.filtered.txt

Individual Repeats
Select Individual Repeats with Unique Flanking Regions
We use reads with at least 20 bp of either unique or RepeatMasked sequence to detect individual repeats.

Filter lane reads by those passing 20 bp criteria, combine with RepeatMasker ID.
“FreqStatsFiltered Human.xlsx” contains families of repeats that passed the criteria and are counted for frequency by exposure group.

Run the following script with required inputs.
	Sharktopus.pl will filter for 20bp reads, and combine the resulting read names with their associated output from the RepeatMasker output file.
		touch [lanenumber] necessary for script naming purposes
		copy sharktopus.pl to directory (requires smoosh.pl)
		sharktopus.pl [lanenumber].masked [lanenumber].out
	File names and meanings:
9830.total - Script naming purposes (empty)
9830.total.masked – Masked output
9830.total.masked.galculator – Nucleotide counts
9830.total.masked.subset – Passed criteria
9830.total.masked.subset.subset.combined – Passed criteria and have associated names
9830.total.masked.subset.subset.combined.txt – Passed criteria and have associated names, summary count
9830.total.masked.txt – Summary of # passed criteria
9830.total.out – Repeatmasker output of all seqs.

Prepare passed reads for alignment
Create working directory /data/TRIM_Human_Repeats/analysis/alignments/STAR/
Copy *.subset.subset.combined files to here
Convert .combined file into fasta.
perl -p -e 's/(.*)\t([ACTGNactgn]+)\s+(.*)/>$1$3\n$2/g' [lanenumber].total.masked.subset.subset.combined > [lanenumber].total.masked.subset.subset.combined.fa

Strip repeat sequence.
Note: It is necessary to remove all repeat sequence (in lowercase) from all reads in order to facilitate STAR or bowtie alignment. Failure to remove repeat will dramatically reduce matched alignments (from ~50% to ~4%, see data below)
perl -p -e 's/[actgn]+//' [lanenumber].total.masked.subset.subset.combined.fa > [lanenumber].stripped.fa

	Verify no missed reads or formatting problem or if there are lines containing all unique or repeat seq
cat *.stripped.fa | grep -E '^D.*'
perl -n -e 'print if /[actg]{71,}/' [lanenumber].stripped.fa | wc -l # None of the reads should have more than 70 bp of repeat or unique sequence on either end, since read length was 90.

Differential methylation by read count
Reference "target" consists of 100bp sequences flanking every known repeat in the human genome. Pipeline diverges from typical analysis by TopHat, Cufflinks, etc. because our reads are 20-50mers of unique sequence flanking a repeat. We align these to known repeat locations and generate counts for differential methylation analysis.

Use STAR to map reads to genome
Download hg19 reference from STAR website
wget ftp://ftp2.cshl.edu/gingeraslab/tracks/STARrelease/STARgenomes/hg19.tar

Optionally, generate our own genome for use with STAR
wget http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
Remove non-canonical chromosomes
STAR --runMode genomeGenerate --genomeDir /path/to/GenomeDir --genomeFastaFiles /path/to/genome/fasta1 /path/to/genome/fasta2 --runThreadN <n>

Map reads to genome (Use genome downloaded from STAR site)
cd /data/TRIM_Human_Repeats/analysis/alignments/STAR

for i in *.stripped.fa ; do STAR --genomeLoad LoadAndKeep --outFilterMultimapNmax 1 --genomeDir ../hg19 --runThreadN 14 --readFilesIn $i --outFileNamePrefix $i.Star; done

Move output files to new directories
mv *.out *.tab /data/TRIM_Human_Repeats/analysis/alignments/STAR/STARoutfiles/

Generate and sort bam files
for i in *.sam ; do samtools view -Sb $i > $i.bam ; done
rm *.sam (save space)
samtools sort [lanenumber].stripped.fa.bam [lanenumber].stripped.fa.sorted
samtools index [lanenumber].stripped.fa.sorted.bam

Generate Read counts

Create target reference in GTF format for HTseq-count
In Galaxy, Get data from UCSC table browser -> Human -> Repeats Track -> Send to Galaxy (GTF format)
Download as ucsc-repeats.orig.gtf
Fix tabs in vi %s/ /\t/g

Prepare GTF for alignment match

Expand the range of each repeat by -71 and +71 in GTF file to account for flanking region matches.
	awk '{$4 = $4 - 71; $5 = $5 +71 ; print}' ucsc-repeats.orig.gtf > ucsc-repeats.expanded.gtf

Fix transcript_id name for htseq-count to more easily identify in output
	awk '{print $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6"\t"$7"\t"$8"\t"$9,$10"\t"$11"\t"$10$1":"$4"-"$5}' ucsc-repeats.expanded.gtf > ucsc-repeats.expanded.gtf2
	
	vi <file> %s/"\;c\(.*\)/_c\1"\;/g
	%s/\ttranscript_id\t/ repeat_id /g
	mv ucsc-repeats.expanded.gtf2 ucsc-repeats.expanded.gtf

Error check any sequences that have become negative in starting position
Since all the entries with starts < 1 are in non-canonical positions, just delete them.
	awk '$4 > 1 {print $0}' ucsc-repeats.expanded.gtf > ucsc-repeats.expanded.gtf.clean
	mv ucsc-repeats.expanded.gtf.clean ucsc-repeats.expanded.gtf

Run htseq-count to generate counts
	samtools view [lanenumber].bam | htseq-count -s no -i transcript_id -o [lanenumber].htseqOUTPUT - tracks/ucsc-repeats/ucsc-repeats.expanded.gtf > [lanenumber].bam.htcount.txt
-or-
	for i in *.bam ; do samtools view $i | htseq-count -s no -i transcript_id -o $i.htseqOUTPUT - tracks/ucsc-repeats/ucsc-repeats.expanded.gtf > $i.bam.htcount.txt ; done

Count with featureCounts instead.
Use featureCounts to generate counts instead (Must use -O option to allow overlapping reads, because repeats overlap often. Increases reads from 50% to 98%)
	for i in *.sorted.bam ; do featureCounts -O -a ../../tracks/ucsc-repeats/ucsc-repeats.expanded.gtf -t exon -g repeat_id -o ../../counts/$i.count $i ; done

EdgeR analysis
Use R script in Rstats/oneshuman-edgeR.R
Howtos: 	Primary use: http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
Join the count files
Make a dataframe containing joined count files
Run EdgeR commands to create top lists.
Copy results to spreadsheet ~/Dropbox/Next-gen Human Mouse/human/Individual Repeats Human/ DE transposons human.xlsx

Note on filtering library size
Filtering step was done with counts per million = 5, with n-1 samples (i.e 5 cpm). Interpret as at least 4 lanes must have an average of 5 reads per locus to include in the library.
Filenames contain "relaxed". e.g. "resultsTbl.relaxed.lrt2vs1"

Graphical view of reads passing criteria (~10 minutes)
Since the aligned reads consist of unique sequence from 20-50 bp, graphical overview provides quality assessment of the reads when stripped of repeat content.

Use the prinseq-lite.pl tool to generate report file
prinseq-lite.pl -verbose -fasta [lanenumber].total.stripped.fa -graph_data [lanenumber].gd -out_good null -out_bad null

Convert .gd output file to html (need linux probably)
prinseq-graphs-noPCA.pl -i [lanenumber].gd -html_all -o [lanenumber].html

Visualize pileup differences at sig diff loci with SeqMonk
	Merge high, med, and low bam files
cd ~/Desktop/oneshuman-working/masked sorted bam files/
samtools merge high.merge.bam 9829 9830... etc.
	Sort and index bam files
samtools sort seqhigh.merged.bam high.merged.sorted.bam
samtools index high.merged.sorted.bam
	Load bam files into SeqMonk
	Find example locus: AluSg_chr1:28899465-28899911 or L1M1_chr8:39700207-39701242
	Saved into SeqMonk folder in oneshuman-working

How to get gene names
Use "humanfor-awk" and paste UCSC gene IDs into a file.
awk 'NR==FNR {h[$1] = $0; next} {print h[$1]}' human-forawk sharedml-mh.txt

Supplementary Data below
File attached:
script.awk
sharktopus.pl
[bookmark: _GoBack]smoosh.pl

