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A Proofs

Theorem 8 (Theorem 2 in Cuevas et al. (2006)). Assume (K1–2) and (G), then we

have

Haus
(
D̂h, Dh

)
= O(‖p̂h − ph‖0,max).

Theorem 9 (Talagrand’s inequality; version of Theorem 12 in Chen et al. (2014a)).

Assume (K1–2), then for each t > 0 there exists some n0 such that whenever n > n0,

we have

P
(
‖p̂h − ph‖∗`,max > t

)
≤ (`+ 1)e−tnh

d+2`A1 ,

for some constant A1 and ` = 0, 1, 2. Moreover,

E
(
‖p̂h − ph‖∗2,max

)
= O

(√
log n

nhd+4

)
.

Proof for Lemma 1. We first prove the lower bound for reach(Dh) and then

we will prove the additional assertions.

Part 1: Lower bound on reach. We prove this by contradiction. Take x near

Dh such that

d(x,Dh) <

(
δ0
2
,

g0
‖ph‖∗2,max

)
. (1)

We assume that x has two projections onto Dh, denoted as b and c.

Since b, c ∈ Dh, ph(b) − λ = ph(c) − λ = 0 so that ph(b) − ph(c) = 0. Now by

Taylor’s theorem

‖(b− c)T∇ph(b)‖ = ‖ph(b)− ph(c)− (b− c)T∇ph(b)‖

≤ 1

2
‖b− c‖2‖ph‖2,max.

(2)

By the definition of projection, we can find a constant tb ∈ R such that x − b =

tb∇ph(b). Together with (2),

2|(b− c)T (x− b)| = 2|(b− c)T∇ph(b)tb|

≤ ‖(b− c)T∇ph(b)‖|tb|

≤ ‖ph‖2,max‖b− c‖2|tb|.

(3)
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Since both b and c are projection points from x onto Dh,

‖x− b‖ = ‖x− c‖.

Thus, we have

0 = ‖x− c‖2 − ‖x− b‖2

= ‖b− c‖2 + 2(b− c)T (x− b)

≥ ‖b− c‖2 − ‖ph‖2,max‖b− c‖2|tb|

= ‖b− c‖2(1− ‖ph‖2,max|tb|).

(4)

Recall that d(x,Dh) ≤ g0
‖ph‖2,max

and by Taylor’s theorem,

g0
‖ph‖2,max

> d(x,Dh) = ‖x− b‖ = ‖tb∇ph(b)‖ = |tb|‖∇ph(b)‖ ≥ |tb|g0 (5)

so that |tb|‖ph‖2,max < 1. Note that the lower bound g0 in the last inequality is

because d(x,Dh) <
δ0
2

so it follows from assumption (G). Plugging in this result into

the last equality of (4), we conclude that ‖b − c‖ = 0. This shows b = c so that

we have a unique projection. Thus, whenever d(x,Dh) <
(
δ0
2
, g0
‖ph‖∗2,max

)
, we have a

unique projection onto Dh and thus we have proved the lower bound on reach.

Part 2: The three assertions. The first assertion is trivially true when

‖ph − q‖∗2,max is sufficiently small since assumption (G) only involves gradients (first

derivatives).

The second assertion follows from the lower bound on reach. By assertion 1,

(G) holds for q. And the lower bound on reach is bounded by gradient and second

derivatives so that we have the prescribed bound.

The third assertion follows from Theorem 1 in Chazal et al. (2007) which states

that if two d− 1 dimensional smooth manifolds M1 and M2 have Hausdorff distance

being less than (2 −
√

2) min{reach(M1), reach(M2)}, then M1 and M2 are normal

compatible to each other. Now by Theorem 8, the Hausdorff distance between Dh

and D(q) is at rate O(‖ph − q‖1,max) so that this assertion is true when ‖ph − q‖2,max

is sufficiently small. �

Proof of Lemma 2. Let x ∈ Dh. We define Π(x) ∈ Dh to be the pro-

jected point onto D̂h. By Lemma 1 and Theorem 8, when ‖p̂h − ph‖∗2,max → 0,

Haus(Dh, D̂h)
P→ 0 so that Π(x) is unique. Thus, we assume Π(x) is unique.
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Now since Π(x) ∈ D̂h and x ∈ Dh, p̂h(Π(x)) − ph(x) = 0. Thus, by Taylor’s

theorem

p̂h(x)− ph(x) = p̂h(x)− p̂h(Π(x))

= (x− Π(x))T (∇p̂h(Π(x)) +OP(‖x− Π(x)‖)).
(6)

Note that x−Π(x) is normal to D̂h at Π(x) so that it points toward the same direction

as ∇p̂h(Π(x)). Thus, (6) can be rewritten as

p̂h(x)− ph(x) = ‖x− Π(x)‖
(
‖∇p̂h(Π(x))‖+OP(‖x− Π(x)‖)

)
. (7)

By Taylor’s theorem, ∇p̂h(Π(x)) is close to ∇ph(x) in the sense that

∇p̂h(Π(x)) = ∇ph(x) +O(‖p̂h − ph‖∗1,max). (8)

In addition, O(‖x−Π(x)‖)) is bounded by O(Haus(D̂h, Dh)) which is at rate O(‖p̂h−

ph‖∗1,max) due to Theorem 8. Putting this together with (7), we conclude

p̂h(x)− ph(x) = ‖x− Π(x)‖
(
‖ph(x)‖+O(‖p̂h − ph‖∗1,max)

)
= d(x, D̂h)

(
‖ph(x)‖+O(‖p̂h − ph‖∗1,max)

)
.

(9)

Note that the left hand side can be written as

p̂h(x)− ph(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
− 1

hd
E
(
K

(
x−Xi

h

))
=

1√
nhd

Gn(f̃x), (10)

where f̃x(y) = K
(
x−y
h

)
. After plugging (10) into the left hand side of (9), dividing

both side by ‖ph(x)‖ and setting fx(y) = f̃x(y)√
hd‖ph(x)‖

, we obtain

1√
nhd

Gn(fx)− d(x, D̂h)

d(x, D̂h)
= O(‖p̂h − ph‖∗1,max). (11)

This holds uniformly for all x ∈ Dh and note that the definition of F is

F =

{
fx(y) ≡ 1√

hd‖∇ph(x)‖
K

(
x− y
h

)
: x ∈ Dh

}
.
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So we conclude

sup
x∈Dh

∣∣∣∣∣
1√
nhd

Gn(fx)− d(x, D̂h)

d(x, D̂h)

∣∣∣∣∣ = O(‖p̂h − ph‖∗1,max).

�

Proof for Theorem 3. The proof for Theorem 3 follows the same procedure

as the proof of Theorem 6 in Chen et al. (2014b). The proof contains two parts:

Gaussian approximation and anti-concentration.

Part 1: Gaussian approximation. Basically, we will show that

√
nhdHaus(D̂h, Dh) ≈ sup

f∈F
|Gn(f)| ≈ sup

f∈F
|B(f)|,

where B is a Gaussian process defined in (13) of the original paper.

First, when ‖p̂h − ph‖ is sufficiently small, D̂h and Dh are normal compatible to

each other by Lemma 1. Then by the property of normal compatible,

sup
x∈Dh

d(x, D̂h) = Haus(D̂h, Dh). (12)

Thus, the difference∣∣∣∣√nhdHaus(D̂h, Dh)− sup
f∈F
|Gn(f)|

∣∣∣∣ =

∣∣∣∣√nhd sup
x∈Dh

d(x, D̂h)− sup
f∈F
|Gn(f)|

∣∣∣∣
≤

supx∈Dh

∣∣∣ 1√
nhd

Gn(fx)− d(x, D̂h)
∣∣∣

1√
nhd

= sup
x∈Dh

∣∣∣∣∣
1√
nhd

Gn(fx)− d(x, D̂h)

d(x, D̂h)

∣∣∣∣∣OP(1)

= O(‖p̂h − ph‖∗1,max).

(13)

Note that the last two inequality follows from the fact that d(x, D̂h) ≤ OP( 1√
nhd

). By

Theorem 9 the above result implies,

P
(∣∣∣∣√nhdHaus(D̂h, Dh)− sup

f∈F
|Gn(f)|

∣∣∣∣ > t

)
≤ 2e−tnh

d+2A2 (14)

for some constant A2.

Now by Corollary 2.2 in Chernozhukov et al. (2014c), there exists some random
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variable B
d
= supf∈F |B(f)| such that for all γ ∈ (0, 1) and n is sufficiently large,

P

(∣∣∣∣sup
f∈F
|Gn(f)| −B

∣∣∣∣ > A3
log2/3(n)

γ1/3(nhd)1/6

)
≤ A4γ. (15)

Note that this result basically follows from the same derivation of Proposition 3.1 in

Chernozhukov et al. (2014c) with the fact that g ≡ 1 in their definition.

Combining equations (14) and (15) and pick t = 1/
√
nhd+2, we have that for n is

sufficiently large and γ ∈ (0, 1),

P

(∣∣∣√nhdHaus(D̂h, Dh)−B
∣∣∣ > A3

log2/3(n)

γ1/3(nhd)1/6
+

1√
nhd+2

)
≤ A4γ + 2e−

√
nhd+2A2 .

(16)

Part 2: Anti-concentration. To obtain the desired Berry-Esseen bound, we

apply the anti-concentration inequality in Chernozhukov et al. (2014c) and Cher-

nozhukov et al. (2014a).

Lemma 10 (Modification of Lemma 2.3 in Chernozhukov et al. (2014c)). Let B
d
=

supf∈F |B(f)|, where B and F are defined as the above. Assume (K1-2) and that there

exists a random variable Y such that P(|Y −B| > η) < δ(η). Then

sup
t
|P(Y < t)− P (B < t)| ≤ A5E(B)η + δ(η)

for some constant A5.

It is easy to verify that assumptions (K1-2) imply the assumptions (A1-3) in

Chernozhukov et al. (2014c) so that the result follows. Note that in the original

Lemma 2.3 in Chernozhukov et al. (2014c), E(B) should be replaced by E(B) + log η.

However, E(B) = O(
√

log n) due to Dudley’s inequality for Gaussian process (Van

Der Vaart and Wellner, 1996) and later we will find that log η is also at this rate so

we ignore log η.
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From Lemma 10 and equation (16), there exists some constant A6 such that

sup
t

∣∣∣∣∣P(√nhdHaus(D̂h, Dh) < t
)
− P

(
sup
f∈F
|B(f)| < t

) ∣∣∣∣∣
≤ A5E(B)

(
A3

log2/3(n)

γ1/3(nhd)1/6
+

1√
nhd+2

)
+ A4γ + 2e−

√
nhd+2A2

≤ A6

(
A3

log7/6(n)

γ1/3(nhd)1/6
+

√
log n

nhd+2

)
+ A4γ + 2e−

√
nhd+2A2 .

(17)

Now pick γ =
(

log7 n
nhd

)1/8
and use the fact that 1√

nhd+2
and 2e−

√
nhd+2A2 converges

faster than the other terms; we obtain the desired rate. �

Proof for Theorem 4. This proof follows the same strategy for the proof of

Theorem 7 in Chen et al. (2014b). We prove the Berry-Esseen type bound first and

then show that the coverage is consistent. We prove the Berry-Esseen bound in two

simple steps: Gaussian approximation and support approximation.

Let Xn = {(X1, · · · , Xn) : ‖p̂h−ph‖∗2,max ≤ η0} for some small η0 so that whenever

our data is within Xn, (G) holds for p̂h. By Lemma 1, such an η0 exists and by

Theorem 9 we have P(Xn) ≥ 1 − 3−nh
d+4Ã0 for some constant Ã0. Thus, we assume

our original data X1, · · · , Xn is within Xn.

Step 1: Gaussian approximation. Let P̂n and P̂∗n be the empirical measure

and the bootstrap empirical measure. A crucial observation is that for a function

fx(y) = K
(
x−y
h

)
,

P̂n(fx) =

∫
K

(
x− y
h

)
dP̂n(y) = hdp̂h(x). (18)

Also note

P̂∗n(fx) =

∫
K

(
x− y
h

)
dP̂∗n(y) = hdp̂∗h(x). (19)

Therefore, for the bootstrap empirical process G∗n =
√
n(P̂∗ − P̂),

p̂∗h(x)− p̂h(x) =
1√
nhd

G∗n(fx). (20)

Thus, if we sample from p̂h and consider estimating p̂h by p̂∗h, we are doing exactly

the same procedure of estimating ph by p̂h. Therefore, Lemma 2 and Theorem 3 hold
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for approximating Haus(D̂∗h, D̂h) by a maxima for a Gaussian process. The difference

is that the Gaussian process is defined on

Fn =

{
fx(y) ≡ 1√

nhd‖∇p̂h(x)‖
K

(
x− y
h

)
: x ∈ D̂h

}
(21)

since the “parameter (level sets)” being estimated is D̂h (the estimator is D̂∗h). Note

that Fn is very similar to F except the denominator is slightly different and the

support D̂h is also different from Dh. That is, we have

sup
t

∣∣∣∣∣P
(
√
nhdHaus(D̂∗h, D̂h) < t

∣∣∣∣∣X1, · · · , Xn

)

− P

(
sup
f∈Fn

|Bn(f)| < t

∣∣∣∣∣X1, · · · , Xn

)∣∣∣∣∣ ≤ O

((
log7 n

nhd

)1/8
)
,

(22)

where Bn is a Gaussian process on Fn such that for any f1, f2 ∈ Fn,

E(Bn(f1)|X1, · · · , Xn) = 0, Cov(Bn(f1),B(f2)|X1, · · · , Xn) =
1

n

n∑
i=1

f1(Xi)f2(Xi).

(23)

Step 2: Support approximation. In this step, we will show that

sup
f∈Fn

|Bn(f)| ≈ sup
f∈F
|Bn(f)| ≈ sup

f∈F
|B(f)|. (24)

The first approximation can be shown by using the Gaussian comparison lemma

(Theorem 2 in Chernozhukov et al. (2014b); also see Lemma 17 in Chen et al. (2014b)).

We do the same thing as Step 3 in the proof of Theorem 8 in Chen et al. (2014b)

so we omit the details. Essentially, given any ε > 0, we can construct a pair of

balanced ε-nets for both F and Fn, denoted as {g1, · · · , gK} and {gn1 , · · · , gnK} so

that maxj ‖gj − gnj ‖∗max = O(‖p̂h − ph‖∗1,max). Then this ε-net leads to

sup
t

∣∣∣∣∣P
(

sup
f∈Fn

|Bn(f)| < t

∣∣∣∣∣X1, · · · , Xn

)

− P

(
sup
f∈F
|Bn(f)| < t

∣∣∣∣∣X1, · · · , Xn

)∣∣∣∣∣ ≤ O
((
‖p̂h − ph‖∗1,max

)1/3)
.

(25)

The difference between supf∈F |Bn(f)| and supf∈F |B(f)| is small since the these two
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Gaussian processes differ in their covariance but as n→∞, the covariances converges

at rate 1/
√
n so that we can neglect the difference between them. Thus, combining

(22) and (25) and the argument from previous paragraph, we conclude

sup
t

∣∣∣∣∣P
(
√
nhdHaus(D̂∗h, D̂h) < t

∣∣∣∣∣X1, · · · , Xn

)
− P

(
sup
f∈F
|B(f)| < t

) ∣∣∣∣∣
≤ O

((
log7 n

nhd

)1/8
)

+O
((
‖p̂h − ph‖∗1,max

)1/3)
.

(26)

Now comparing the above result to Theorem 3 and using the fact that the first big-O

term dominates the second term (the first is of rate −1/8 for n but the second term

is at rate −1/6 by Theorem 9), we conclude the result for first assertion.

For the coverage, let Wn = Haus(D̂h, Dh) and wn,1−α = F−1Wn
(1 − α). Since Dh ⊂

D̂h ⊕ Haus(D̂h, Dh), we have

P(Dh ⊂ D̂h ⊕ wn,1−α) = 1− α. (27)

Now by the first assertion, the difference for wn,1−α and the bootstrap estimate w∗n,1−α

differs at rate O

((
log7 n
nhd

)1/8)
, which completes the proof.

�
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