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In these appendices, we provide some background information on the KKT conditions
and the Newton derivative, derive the SNA for penalized Huber loss regression, and prove
Theorems 3.3 and 3.4 in the main text. The proof of Theorem 3.1 is omitted since it is

very similar to that of Theorem 3.3.

A Background on Convex Analysis and Properties of

Newton Derivative

To derive the KKT conditions (2.3), we recall some background in convex analysis. We
also describe some useful properties of Newton derivative.
For a convex function f, a vector w is called a subgradient of f at z if
flx)—f(z)>w'(z —2), V. (A.1)

The set of all subgradients of f at z is called the subdifferential, denoted as df(z). For

example, the subdifferential of the absolute value function has the following form

sign(z if z#£0,
ooy ) it 7 "

[—1,1] if z=0.
For convex optimization problems, the necessary and sufficient optimality conditions are
called the KKT conditions. In the case of unconstrained optimization, the KKT conditions

can be stated in terms of Fermat’s rule (Rockafellar, 1970): for a convex function f,

0€0f(z") & " = argmzinf(z). (A.3)
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This holds because by definition 0 € df(z*) if and only if for any z we have f(z) —
f(z*)>07(2 —2*) =0, i.e. 2" =argminf(z).
A more general result (Combettes and Wajs, 2005) is

w € 0f(2) & z = Prox;(z + w), (A.4)

where Proxy is the prozimity operator for f defined as

1 2

Prox(z) := arg m1n§Hx —z||5 + f(2).

xT

The second statement can be shown as follows. Applying Fermat’s rule,
1
z = Proxs(z +w) = argmin§||x —z—wl|3+ f(x),
if and only if there exists s € df(x) such that
O=(z—z—w)+s=—-w+s,

that is,
w=se¢cdf(x).

It can shown that the proximity operator of the absolute value | - | is given in closed

form by the soft-thresholding operator with threshold 1, i.e.

Prox|(z) = S(z) = sgn(z)(|2] — 1)4. (A.5)

Then it follows from (A.4) that s; € 0|3;| can be expressed as an equation
ﬁj - S(ﬁj + Sj) =0. (A6>

According to the Fermat’s rule (A.3), the KKT conditions for the penalized Huber loss
regression (2.1) are

— LS by — Bo — 2 B) =0,
— 3 B (yi — Bo — ﬁ)xm + Aas; + A(1 — oz)ﬁj 0, (A.7)
Sj€a|ﬂj‘7 j:17"'7p7
where (Bo, 3) is an optimizer. Rewriting the last row by (A.6), we obtain the KKT condi-
tions as a system of equations (2.3).
The definition of “Newton derivative” is already given in the main text. Now we provide

several properties useful for calculating Newton derivatives. The first one is the following

chain rule for Newton derivatives (Ito and Kunisch, 2008).
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Lemma A.1. If FF : R™ — R" is continuously Fréchet differentiable at z € R™ with
Jacobian Jp and G : R™ — R! is Newton differentiable at F(z) with a Newton derivative
Hg. Then GoF is Newton differentiable at z with a Newton derivative Hg(F(z+h))Jrp(z+
h) for h sufficiently small.

We also derived two other results.

Lemma A.2. In the following, assume F : R™ — R, G : R™ — R!, z ¢ R™, F =
(Fy,..., )" and H= (H],...,H")", where H; € R>*™ =1 ... 1.

(1) If F is continuously Fréchet differentiable at z, then F' is also Newton differentiable
at z and Jp € VNF(2);

(ii) If F is Newton differentiable at z, then for any integer k > 0 and A € R¥! AF is
Newton differentiable at z; if H € VNF(z), then AH € VNAF(2);

(15i) If F' and G are Newton differentiable at z, then F' + G is Newton differentiable at z;
ZfHF S VNF(Z), HG € VNG(Z), then HF + HG € VN(F+ G)(Z),

(iv) F is Newton differentiable at z if and only if F, ..., F, are all Newton differentiable
at z and H €e VyF(2) & H; € VNEFi(2), i=1,...,1;

Lemma A.3. A univariate piecewise-smooth real function f is everywhere Newton differ-

entiable, with a Newton derivative H given by

f(2) if [ is differentiable at z,

H(z) =
r, € RV if f is not differentiable at z.

B Derivation of SNA for Penalized Huber Loss Re-

gression

Following section 2.3.1, denote S(z) = (S(z1),...,5(2))" and d(Bo, 8) = (R, (y1 — fo —
x{ B), ... h(yn — Bo — x,, 3)) T, then the KKT conditions (2.3) can be written as (2.11).

Since the soft-thresholding operator is piecewise linear as shown in (2.8), we define

A:{ji|ﬁj+8j|>1},
B={j:|8;+s;] <1}

The set A works as an estimate for the support of 8. In fact, if (5, BO, B) satisfies the

~ ~

KKT conditions, then the set A defined on (3,3) is exactly the support for 5. This is easy

(B.1)



to see: since s; € 8|B\j|, ifBj # 0 then |§J + 55| = |B\] +sgn(§j)| = |B\]| + 1 > 1; otherwise,
if B; =0 then |8; + ;| = |5;] < 1.

We decompose (3 into 34, Bp and s into s4, sg, and denote Z = (s}, 84, Bo,

Then KKT conditions (2.11) can be rewritten as

F(Z) =

And from (2.8) we have

Ba—S(Ba+sa)
e —S(Be + sB)
—1174

—L X d+ dasy+ A1 — )B4
| 1 Xhd+ dasp + A1 —a)fp

Ba—S(Ba+sa)=—54+5g0(Ba + 54),
Bs —S(Bs + sB) = Bs.

Let 1, be as in (2.7), and for brevity denote

U =V(5,B) = %diag(%( Y1 — Bo — fIﬁ)a e >%(yn — Bo — ZUI/B))

Then the following result gives a Newton derivative of F\(Z).

Theorem B.1. F(Z) is Newton differentiable for any Z € R**! and

H(Z) = 0
)\OéI‘A‘

e VyF(2).

XIUXp

XX\I/].TL X;‘F\I/XA + )\(1 - Oé)I|A|
0 XLUXp+M1l-—a)lp XjV1,

0
0
10X,

XJUX,

Furthermore, for any v > 0 and o € (0,1), on the set {Z = (s, po, ) :
{1,...,n} such that |y; — Bo — z; B| < v}, H(Z) is invertible and H(Z)™' is uniformly

bounded in spectral norm.

From Theorems 2.1 and B.1, we immediately obtain the following result.

Aosp)’

(B.2)

(B.4)

© © O

e}

/\OéI|B| ]
(B.5)

there exists 1 €

Theorem B.2. Given A\, v,a € (0,1), define Z and F(Z) as (B.2). Suppose Z solves
F(Z) = 0 and there exists a neighborhood N(Z) such that for any Z € /\/'(2) there is an

i€ {1,...,n} that satisfies |y; — fo — x} B| <y, then the Newton-type iteration

converges superlinearly to 7 provided that || Z° — Z l2 is sufficiently small.

ZM = z8 — H(ZF) ' F(ZF)
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Now we describe the algorithm in details. The (k + 1)-th iteration can be split into two
steps:

1. Solve Dy, from H(Z*)Dy, = —F(Z*);

2. Update Zk! = Zk + D*.
At the first glance, step 1 seems to involve inverting a (2p+ 1) x (2p+ 1) matrix, which

is intractable in high dimensional settings. However, the definitions of sets A, B in (B.1)
motivate an “active set strategy” for dimension reduction. Given the estimates from the
kth iteration, define the active set A; and its complement By, by (2.12), d, = d(5%, 8%),
and Dy, = (D%, Dg:, Dy, Df‘:, D) " corresponding to Zj.

Now substituting these identities into step 1 and combining (B.3) we have

D; = —sf’qk + sgn(ﬁﬁk + s’zk),
Dp, = —Bh
Dy 1701, 170, X 4, -
D, - XA Ukln X0, W Xa + AL = a)]jay ]
_ LTd, 19X s, B, ]
| IXdk— A1 — )8, — dasgn(Bh, + b)) + X U Xp, B, |
Dy, = —sp, + %XE,C (%dk + Ui Xp, B, — UklaDg” + \IkaAkDﬁk) .

Combining steps 1 and 2, the (k 4 1)th iteration of SNA is carried out as follows:

(i) Update s and gj™":

St = sen(B4, + 54,),
k41 _
BB]C — 0.
(ii) Find the direction Dgo for the intercept (3, and Dflk for the active coefficients 84, :
- -1
Dy | | 1)wa, 170, X 4,
DY XUkl X WX, 4 A1 — o)l
17dy, + 1,9, Xp, 05,
| X4 d = A1 = @)Bh, = dasht + XL W Xp BE |

(iii) Update the intercept, the active coefficients, and the inactive subgradients:
(I)H_1 = Bg + Dgov
k+1  _  pk B
BA: - ﬁAk + DAk7

1 1
sg;l = EX;k (Edk + \IjijBk/ng — W1, D5 + \IijAkDf"“) '



C Proofs

Here we give proofs of Theorems 3.3, 3.4 in the main text and Lemmas A.2, A.3 and

Theorem B.1 in the appendices.

Proof of Theorem 3.3.

Proof. Without loss of generality, assume 6, has exactly one cluster point *, i.e. 6, — 0*.
Notice that
g
=3 < ha0) < It

hence
FaB:0) = 3 < Fu(0: A7) < Fa(0; ).

Let 64 be a minimizer of fa(0; )), and f§ = maian(H; A) = fA(gA; A), then

PO A ) < fu(@a; X ) < fa(Bas A) = 5.

For any € > 0, there exists K such that for £ > K, . < 2¢, then

Fr(Oks A k) > fa(O;A) —e > fi —e.
Hence for k > K,
fi—e< fallis\) —e < fi.

Let k — 0o, we obtain f§ < fa(6*) < f4 +e€. Since € is arbitrary, we have f4(6*) = f4. O

Proof of Theorem 3.4.

Proof. Without loss of generality, assume 6 has exactly one cluster point *, i.e. 6, — 6*.
Notice that
vhy(t) < %tQ,
which implies
VIu(0:M[7,7) < fs(6; A).
Let 6 be a minimizer of fs(6; \), and o= m@infg(ﬁ; A) = fs(fs; \), then

e i O M W) < i f O MAws ) < fs(Bs; \) = £3.

Since 0, = (8%, 5%) is convergent, 7¥ = y — g¥1 — X 3% is convergent too. Then there
exists M > 0 such that ||r*|, < M. There exists K such that for k > K, 4, > M, then
h,(rik) = $r;k?, and

VS u (Ok; Ak, 1) = fs(Or; A).
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Hence for k > K,

fs(Ok; \) < fg.
Let k — oo, we obtain fs(6*;\) < fJ. Since fs(6%)\) > mginfs(ﬁ; A) = f2, we have
fs(0%) = f3. 0

Proof of Lemma A.2.
Proof. (i) By assumption, the Jacobian Jp is continuous at z. Since

[F(z+h) = F(z) = Je(z + h)hlls

172112
1E(z +h) = F(z) = Je(z)hllo + [(Jp(2) = Je(z + h)h]s
- 172112
< EEeh _’f;l(Hz) —Ie e ) - gz 4 )
— 0

as h — 0, by definition Jr € VyF(z).

(i)
[AF(z+h) = AF(2) = AH(z+h)hll2 < [[A[[[[F(2+h) = F(2) = H(z+Rh)hlls = o([|All2),
hence AH € VNAF(2).

(i)

[(F'(z +h) + G(z + h)) = (F(2) + G(2)) — (Hr(z + h) + He(z + h))h|2
< ||IF(z4+h) — F(2) — Hp(z + h)h|2 + [|G(z + h) — G(2) — Hg(z + h)h]|2
= o([|hll2),

hence Hp + Hg € VN(F+ G)(Z)

(iv) It can be seen by observing that

1F(z+h) = F(2) = H(z + Wh|l5 = > _(Fi(z +h) = Fi(2) = Hi(z + h)h)*.

i=1



Proof of Lemma A.3.

Proof. If f is differentiable at z with derivative f’ defined in its neighborhood, by smooth-
ness assumption and Lemma A.2(i), f' € Vyf(2).

If f is not differentiable at z, by assumption there exists s > 0 such that f is smooth
on both (z — s,2) and (z, 2z + s) implying that f'(z—) = limj_,o- w and f'(z+) =

fz+h)—f(2)
h

limy,_o+ exist and

f'(z4+h)— fl(z2—=) ash—0,
f'(z+h) = f'(z+) ash—0".

Hence for any € > 0, there exists a sufficiently small § > 0 such that

Vae (z—6,2), LOASOFCIC] o9 | f(z) — f(z—)] < e/2:

|z—2|

Ve (2,2 +0), HOTEOTEDC o cio | f(2) — f(24)] < e/2.

|z—2|

Thus for z € (2 — 9, 2),
[f@) = f(2) = f'(@)(@ = 2)| _ [f(&) = f(2) = f'(z=) (@ = 2)|

|z — z| - |z — z|

+1f(z=) = fl(@)] <,
and similarly for « € (z,z + ¢). Define H(z) as in the lemma, then the above implies

Ve > 0,36 > 0s.t. V|jz—0| < z, ) = f(jl:[j(x)(m —2) <e.

In other word, f is Newton differentiable at z with H € V f(2).

Proof of Theorem B.1.

Proof. Notice that the derivative of Huber loss h’y is piecewise-smooth, which implies by
Lemma A.3 that 1, € Vyh.(t),Vt € R. As shown in (2.8), the soft-thresholding operator
is also piecewise-smooth. Hence by Lemma A.1, A.2 and A.3, it is easy to show F(Z) is
Newton differentiable with a Newton derivative H(Z) taking the form of (B.5).

Next we show H = H(Z) is invertible with its inverse H~! bounded in spectral norm.

Denote

H 0
H=| "' ,

Hy Hj

where

o 0 1 UXp
H, = [ O‘A' ;| R Ha= | dalyy X UXp e RO+DxP,
il 0  XLUXp+A1—a)lp



101, 10X, 0
Hy= | X U1, X UXs+Al—a) sy O € RPHIxHD), (C.1)
XEu1, XEUX,y Aad|g
Clearly, H; is invertible. From Lemma C.1 to be stated later, Hs is also invertible.

Then via some algebra we have

H! 0
H'= - (C.2)
Let g = (9{,9; )" € RP x RPT! then
12 gll3 = [1H o3 + || = Hy ' HoHy 'g1 + Hy ' g3
< HT 1 Ngall3 + (HS M E N H [ gall2 + [1H5 | g2]l2)? (©3)
< (1H lgillz + [ Hs N H 1 H [ lgll2 + 1Hz Hlg2]12)*
< (NHTH A+ 12+ = T E D19l
which implies

L < (VA (L L+ [ 2 (C.4)

Notice || X 4| V | X5| < || X]|. Taking X for example, without loss of generality shuffle
columns of X such that X = (X4|Xp), then for any g € R4l such that ||g||; = 1, we have

9
[ Xaglls = 1X [ 0 ] lo < sup {1 X[l [Jofla = 1} = [|X]],

implying that || X 4| < ||X]||. Similarly, we can show || Xg|| < ||X||.

In addition, with a similar argument as (C.3) for Hy, we have
[Ha ]| <1+ a+2]X]% (C.5)

Note that |[H; || = 1. Combining (C.4), (C.5) with Lemma C.1, we obtain the uniform

boundedness of H in spectral norm, i.e.,

1 1 Amax(XTX)? + nyA(1 — a) x| ’
ot (g A (L))

« <1 + %ﬁ'{x)] (24 a+ 2 X]2).

2 < 1+

In order to complete the proof of Theorem B.1, we need the following lemma.



Lemma C.1. Given o € (0,1) and By, B satisfy lyi — Bo — x} 8| < 7 for some i, then Hj

in (C.1) is invertible with its inverse uniformly bounded in spectral norm, i.e.

- 1 1 Amax(X TX)2 + nyA(1 — «) X 2 2| X|
Hl < — 1 1 .
” 3 || - )\OZ+ )\(1 o a) + )\(1 _ O./) ( T + \/ﬁ")/)\CY

VIyA(l = a)

Proof. Denote J = nyW, then J is diagonal and idempotent. We have

1

1
1,01, =—1]J1, =
n-y ny

(J1,) " (J1,),
and

WX, (XJUX, 4+ A(1—a)ly) Xj01,

= L 1) TIX) (X)) T(TX) + myA( — a)a) ™ (TXa) T (J1,),

nwy
Denote a = J1,,, Z = JX 4, t = nyA(1 — «), and m = |A|. Then the LHS becomes

1
— (aTa —a' Z(Z"Z + t[m)_lZTa) :
ny

Since |y; — Bo — x; 8] < 7 for some i, we have 1); = % > 0, implying that J; = 1 and
a'a > J2 =1. Thus we are guaranteed that a = J1, is not a zero vector.

Now apply SVD to Z such that Z = UDV' ", where U, »,, and V,,xm are both orthogonal
matrices, and D,,,, is a rectangular diagonal matrix with non-negative diagonal elements

di,...,dmr,. Hence

Z2(Z"Z +tl,) ' Z" = UDV(VD'UTUDVT +tI,)"'VD'U"
— UDVT (V(D'D+tL,)VT) " vDTUT
= UDV'V(D'D+tL,)'V'VvDU"
= UDD'D+tl,)"'D'U".

When n > m,

di dy,

Bt A+t

D(D"D +tI,,)"'D" = diag( 0,...,0),

and when n < m,

di dy

D(D'D+tI,)"'D" = di
( +thn) lag(d%ﬂ’ Td2+t

).
In either case D(D"D +tI,,) "' DT is p.s.d. with A\pax(D(DTD +t1,,)7*DT) < 1.
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Next we will derive the upper bound of eigenvalues of the above matrix. First, for any

eigenvalue d and corresponding nonzero eigenvector u of Z'Z = X 4JX 4, we have
du'u=u"X} JXAu < Apax (X T X)u " u,

hence d < Apax(X ' JX). Then again, for any eigenvalue ¢ and corresponding nonzero
eigenvector v of X' .JX, we have

cw'v=0v'X"JXv= Z JuvTzx v < Z vzl v=0" X" X0 < Apa(X T X)v 0,
i i

implying that ¢ < Apax (X T X).
Therefore, we have d < Apax (X' JX) < Anax(X T X). Then since the eigenvalues of

Z 17 are the diagonal elements of D, the eigenvalues of D(D"D +tI,,)"*D" are bounded
Amax (X T X)?
A (X T X241

Then recall t = nyA(1 — a) and a’a > 1, we have

1001, — 10X, (XJUX, 4+ A(1—a)ly)  Xj0L,

1
= n—’y (CLT(I_ (UTa)TD(DTD+t]m)_1DT(UTa))
1 Amax (X T X)?2
> T, max UT TUT
> nv(a a )\max(XTX)Z_'_t( a) a)
1 nyA(1l — a) -
= ny X )\maX(XTX)Q‘f'nV/\(l — Oé)a a
> A1 — )
N )\max(XTX)Z + n’y)\(l — CY)
> 0.
Let
1,1 170X,
H — n n n , H :|:XT\Ijln XT\IJX :|,H :)\a]. .
" XX\II]-n XX\I’XA -+ )\(1 — O‘>IIA\ ] 32 B B A 33 |B|

Observe that H§31 = ﬁ] 15| Then if Hz; is invertible, we have

H;' = ~
[ _$H32H311 ﬁI\B\
Hence to show Hj is invertible, it suffices to show Hs; is invertible. Let
M=X3UX,+AN1—a)l, b=X,V1,,

and
k=1]01, — 10X, (XJUX,+ A1 —a)ljy) X[UL,.
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Since k > 0, we have

1T 1
Hi! = K ] :

1
Iy M MM

and it follows that Hjs is invertible.

It can be easily shown that ||b|| = [|b7]] < ﬁHXH, M| < ﬁ Combine this

with + < )‘ma"(XT;({l)z_J;;WA(l_a), then similar to (C.3), we have
. 1 Amac(XTX)? + nyA(1 — a) X ’
| Ha' || < — T — 1 —
A1l - a) Al —a) VYAl — a)
and then
_ 1 1 Amax(XTX)? 4+ nyA(1 — o) X i RS
H' < — X 1+ ———— 1+ —=].
N vl bYg e s NI—a) JiN1 —a) T e
[
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