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In these appendices, we provide some background information on the KKT conditions

and the Newton derivative, derive the SNA for penalized Huber loss regression, and prove

Theorems 3.3 and 3.4 in the main text. The proof of Theorem 3.1 is omitted since it is

very similar to that of Theorem 3.3.

A Background on Convex Analysis and Properties of

Newton Derivative

To derive the KKT conditions (2.3), we recall some background in convex analysis. We

also describe some useful properties of Newton derivative.

For a convex function f , a vector w is called a subgradient of f at z if

f(x)− f(z) ≥ w>(x− z), ∀x. (A.1)

The set of all subgradients of f at z is called the subdifferential, denoted as ∂f(z). For

example, the subdifferential of the absolute value function has the following form

∂|z| =

{sign(z)} if z 6= 0,

[−1, 1] if z = 0.
(A.2)

For convex optimization problems, the necessary and sufficient optimality conditions are

called the KKT conditions. In the case of unconstrained optimization, the KKT conditions

can be stated in terms of Fermat’s rule (Rockafellar, 1970): for a convex function f ,

0 ∈ ∂f(z∗)⇔ z∗ = arg min
z
f(z). (A.3)
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This holds because by definition 0 ∈ ∂f(z∗) if and only if for any z we have f(z) −
f(z∗) ≥ 0>(z − z∗) = 0, i.e. z∗ = arg min

z
f(z).

A more general result (Combettes and Wajs, 2005) is

w ∈ ∂f(z)⇔ z = Proxf (z + w), (A.4)

where Proxf is the proximity operator for f defined as

Proxf (z) := arg min
x

1

2
‖x− z‖22 + f(x).

The second statement can be shown as follows. Applying Fermat’s rule,

z = Proxf (z + w) = arg min
x

1

2
‖x− z − w‖22 + f(x),

if and only if there exists s ∈ ∂f(x) such that

0 = (z − z − w) + s = −w + s,

that is,

w = s ∈ ∂f(x).

It can shown that the proximity operator of the absolute value | · | is given in closed

form by the soft-thresholding operator with threshold 1, i.e.

Prox|·|(z) = S(z) = sgn(z)(|z| − 1)+. (A.5)

Then it follows from (A.4) that sj ∈ ∂|βj| can be expressed as an equation

βj − S(βj + sj) = 0. (A.6)

According to the Fermat’s rule (A.3), the KKT conditions for the penalized Huber loss

regression (2.1) are
− 1
n

∑
i h
′
γ(yi − β̂0 − x>i β̂) = 0,

− 1
n

∑
i h
′
γ(yi − β̂0 − x>i β̂)xij + λαŝj + λ(1− α)β̂j = 0,

ŝj ∈ ∂|β̂j|, j = 1, . . . , p,

(A.7)

where (β̂0, β̂) is an optimizer. Rewriting the last row by (A.6), we obtain the KKT condi-

tions as a system of equations (2.3).

The definition of “Newton derivative” is already given in the main text. Now we provide

several properties useful for calculating Newton derivatives. The first one is the following

chain rule for Newton derivatives (Ito and Kunisch, 2008).
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Lemma A.1. If F : Rm → Rn is continuously Fréchet differentiable at z ∈ Rm with

Jacobian JF and G : Rn → Rl is Newton differentiable at F (z) with a Newton derivative

HG. Then G◦F is Newton differentiable at z with a Newton derivative HG(F (z+h))JF (z+

h) for h sufficiently small.

We also derived two other results.

Lemma A.2. In the following, assume F : Rm → Rl, G : Rm → Rl, z ∈ Rm, F =

(F1, . . . , Fl)
> and H = (H>1 , . . . , H

>
l )>, where Hi ∈ R1×m, i = 1, . . . , l.

(i) If F is continuously Fréchet differentiable at z, then F is also Newton differentiable

at z and JF ∈ ∇NF (z);

(ii) If F is Newton differentiable at z, then for any integer k > 0 and A ∈ Rk×l, AF is

Newton differentiable at z; if H ∈ ∇NF (z), then AH ∈ ∇NAF (z);

(iii) If F and G are Newton differentiable at z, then F +G is Newton differentiable at z;

if HF ∈ ∇NF (z), HG ∈ ∇NG(z), then HF +HG ∈ ∇N(F +G)(z);

(iv) F is Newton differentiable at z if and only if F1, . . . , Fl are all Newton differentiable

at z and H ∈ ∇NF (z)⇔ Hi ∈ ∇NFi(z), i = 1, . . . , l;

Lemma A.3. A univariate piecewise-smooth real function f is everywhere Newton differ-

entiable, with a Newton derivative H given by

H(z) =

f ′(z) if f is differentiable at z,

rz ∈ R1 if f is not differentiable at z.

B Derivation of SNA for Penalized Huber Loss Re-

gression

Following section 2.3.1, denote S(z) = (S(z1), . . . , S(zp))
> and d(β0, β) = (h′γ(y1 − β0 −

x>1 β), . . . , h′γ(yn − β0 − x>nβ))>, then the KKT conditions (2.3) can be written as (2.11).

Since the soft-thresholding operator is piecewise linear as shown in (2.8), we define

A = {j : |βj + sj| > 1} ,
B = {j : |βj + sj| ≤ 1}.

(B.1)

The set A works as an estimate for the support of β. In fact, if (ŝ, β̂0, β̂) satisfies the

KKT conditions, then the set A defined on (β̂, ŝ) is exactly the support for β̂. This is easy
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to see: since ŝj ∈ ∂|β̂j|, if β̂j 6= 0 then |β̂j + ŝj| = |β̂j + sgn(β̂j)| = |β̂j| + 1 > 1; otherwise,

if β̂j = 0 then |β̂j + ŝj| = |ŝj| ≤ 1.

We decompose β into βA, βB and s into sA, sB, and denote Z = (s>A, β
>
B , β0, β

>
A , s

>
B)>.

Then KKT conditions (2.11) can be rewritten as

F (Z) =


βA − S(βA + sA)

βB − S(βB + sB)

− 1
n
1>d

− 1
n
X>Ad+ λαsA + λ(1− α)βA

− 1
n
X>Bd+ λαsB + λ(1− α)βB

 = 0. (B.2)

And from (2.8) we haveβA − S(βA + sA) = −sA + sgn(βA + sA),

βB − S(βB + sB) = βB.
(B.3)

Let ψγ be as in (2.7), and for brevity denote

Ψ = Ψ(β0, β) =
1

n
diag(ψγ( y1 − β0 − x>1 β), . . . , ψγ(yn − β0 − x>nβ)). (B.4)

Then the following result gives a Newton derivative of F (Z).

Theorem B.1. F (Z) is Newton differentiable for any Z ∈ R2p+1 and

H(Z) :=


−I|A| 0 0 0 0

0 I|B| 0 0 0

0 1>nΨXB 1>nΨ1n 1>nΨXA 0

λαI|A| X>AΨXB X>AΨ1n X>AΨXA + λ(1− α)I|A| 0

0 X>BΨXB + λ(1− α)I|B| X>BΨ1n X>BΨXA λαI|B|


∈ ∇NF (Z). (B.5)

Furthermore, for any γ > 0 and α ∈ (0, 1), on the set {Z = (s, β0, β) : there exists i ∈
{1, . . . , n} such that |yi − β0 − x>i β| ≤ γ}, H(Z) is invertible and H(Z)−1 is uniformly

bounded in spectral norm.

From Theorems 2.1 and B.1, we immediately obtain the following result.

Theorem B.2. Given λ, γ, α ∈ (0, 1), define Z and F (Z) as (B.2). Suppose Ẑ solves

F (Z) = 0 and there exists a neighborhood N (Ẑ) such that for any Z ∈ N (Ẑ) there is an

i ∈ {1, . . . , n} that satisfies |yi − β0 − x>i β| ≤ γ, then the Newton-type iteration

Zk+1 = Zk −H(Zk)−1F (Zk)

converges superlinearly to Ẑ provided that ‖Z0 − Ẑ‖2 is sufficiently small.
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Now we describe the algorithm in details. The (k+ 1)-th iteration can be split into two

steps:

1. Solve Dk from H(Zk)Dk = −F (Zk);

2. Update Zk+1 = Zk +Dk.

At the first glance, step 1 seems to involve inverting a (2p+ 1)× (2p+ 1) matrix, which

is intractable in high dimensional settings. However, the definitions of sets A,B in (B.1)

motivate an “active set strategy” for dimension reduction. Given the estimates from the

kth iteration, define the active set Ak and its complement Bk by (2.12), dk = d(βk0 , β
k),

and Dk = (Ds>
Ak
, Dβ>

Bk
, Dβ0

0 , D
β>
Ak
, Ds>

Bk
)> corresponding to Zk.

Now substituting these identities into step 1 and combining (B.3) we have

Ds
Ak

= −skAk
+ sgn(βkAk

+ skAk
),

Dβ
Bk

= −βkBk
,[

Dβ0
0

Dβ
Ak

]
=

[
1>nΨk1n 1>nΨkXAk

X>Ak
Ψk1n X>Ak

ΨkXAk
+ λ(1− α)I|Ak|

]−1
[

1
n
1>dk + 1>nΨkXBk

βkBk

1
n
X>Ak

dk − λ(1− α)βkAk
− λαsgn(βkAk

+ skAk
) +X>Ak

ΨkXBk
βkBk

]
,

Ds
Bk

= −skBk
+

1

λα
X>Bk

(
1

n
dk + ΨkXBk

βkBk
−Ψk1nD

β0
0 + ΨkXAk

Dβ
Ak

)
.

Combining steps 1 and 2, the (k + 1)th iteration of SNA is carried out as follows:

(i) Update sk+1
Ak

and βk+1
Bk

:

sk+1
Ak

= sgn(βkAk
+ skAk

),

βk+1
Bk

= 0.

(ii) Find the direction Dβ0
0 for the intercept β0, and Dβ

Ak
for the active coefficients βAk

:[
Dβ0

0

Dβ
Ak

]
=

[
1>nΨk1n 1>nΨkXAk

X>Ak
Ψk1n X>Ak

ΨkXAk
+ λ(1− α)I|Ak|

]−1
[

1
n
1>dk + 1>nΨkXBk

βkBk

1
n
X>Ak

dk − λ(1− α)βkAk
− λαsk+1

Ak
+X>Ak

ΨkXBk
βkBk

]
.

(iii) Update the intercept, the active coefficients, and the inactive subgradients:

βk+1
0 = βk0 +Dβ0

0 ,

βk+1
Ak

= βkAk
+Dβ

Ak
,

sk+1
Bk

=
1

λα
X>Bk

(
1

n
dk + ΨkXBk

βkBk
−Ψk1nD

β0
0 + ΨkXAk

Dβ
Ak

)
.
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C Proofs

Here we give proofs of Theorems 3.3, 3.4 in the main text and Lemmas A.2, A.3 and

Theorem B.1 in the appendices.

Proof of Theorem 3.3.

Proof. Without loss of generality, assume θk has exactly one cluster point θ?, i.e. θk → θ?.

Notice that

|t| − γ

2
≤ hγ(t) ≤ |t|,

hence

fA(θ;λ)− γ

2
≤ fH(θ;λ, γ) ≤ fA(θ;λ).

Let θ̂A be a minimizer of fA(θ;λ), and f 0
A = min

θ
fA(θ;λ) = fA(θ̂A;λ), then

fH(θk;λ, γk) ≤ fH(θ̂A;λ, γk) ≤ fA(θ̂A;λ) = f 0
A.

For any ε > 0, there exists K such that for k ≥ K, γk < 2ε, then

fH(θk;λ, γk) ≥ fA(θk;λ)− ε ≥ f 0
A − ε.

Hence for k ≥ K,

f 0
A − ε ≤ fA(θk;λ)− ε ≤ f 0

A.

Let k →∞, we obtain f 0
A ≤ fA(θ?) ≤ f 0

A+ ε. Since ε is arbitrary, we have fA(θ?) = f 0
A.

Proof of Theorem 3.4.

Proof. Without loss of generality, assume θk has exactly one cluster point θ?, i.e. θk → θ?.

Notice that

γhγ(t) ≤
1

2
t2,

which implies

γfH(θ;λ/γ, γ) ≤ fS(θ;λ).

Let θ̂S be a minimizer of fS(θ;λ), and f 0
S = min

θ
fS(θ;λ) = fS(θ̂S;λ), then

γkfH(θk;λ/γk, γk) ≤ γkfH(θ̂S;λ/γk, γk) ≤ fS(θ̂S;λ) = f 0
S.

Since θk = (βk0 , β
k) is convergent, rk = y − βk01 − Xβk is convergent too. Then there

exists M > 0 such that ‖rk‖∞ ≤ M . There exists K such that for k ≥ K, γk > M , then

hγ(rik) = 1
2
rik

2, and

γkfH(θk;λ/γk, γk) = fS(θk;λ).
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Hence for k ≥ K,

fS(θk;λ) ≤ f 0
S.

Let k → ∞, we obtain fS(θ?;λ) ≤ f 0
S. Since fS(θ?;λ) ≥ min

θ
fS(θ;λ) = f 0

S, we have

fS(θ?) = f 0
S.

Proof of Lemma A.2.

Proof. (i) By assumption, the Jacobian JF is continuous at z. Since

‖F (z + h)− F (z)− JF (z + h)h‖2
‖h‖2

≤ ‖F (z + h)− F (z)− JF (z)h‖2 + ‖(JF (z)− JF (z + h))h‖2
‖h‖2

≤ ‖F (z + h)− F (z)− JF (z)h‖2
‖h‖2

+ ‖JF (z)− JF (z + h)‖

→ 0

as h→ 0, by definition JF ∈ ∇NF (z).

(ii)

‖AF (z+h)−AF (z)−AH(z+h)h‖2 ≤ ‖A‖‖F (z+h)−F (z)−H(z+h)h‖2 = o(‖h‖2),

hence AH ∈ ∇NAF (z).

(iii)

‖(F (z + h) +G(z + h))− (F (z) +G(z))− (HF (z + h) +HG(z + h))h‖2
≤ ‖F (z + h)− F (z)−HF (z + h)h‖2 + ‖G(z + h)−G(z)−HG(z + h)h‖2
= o(‖h‖2),

hence HF +HG ∈ ∇N(F +G)(z).

(iv) It can be seen by observing that

‖F (z + h)− F (z)−H(z + h)h‖22 =
l∑

i=1

(Fi(z + h)− Fi(z)−Hi(z + h)h)2.
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Proof of Lemma A.3.

Proof. If f is differentiable at z with derivative f ′ defined in its neighborhood, by smooth-

ness assumption and Lemma A.2(i), f ′ ∈ ∇Nf(z).

If f is not differentiable at z, by assumption there exists s > 0 such that f is smooth

on both (z − s, z) and (z, z + s) implying that f ′(z−) = limh→0−
f(z+h)−f(z)

h
and f ′(z+) =

limh→0+
f(z+h)−f(z)

h
exist and

f ′(z + h)→ f ′(z−) as h→ 0−,

f ′(z + h)→ f ′(z+) as h→ 0+.

Hence for any ε > 0, there exists a sufficiently small δ > 0 such that

∀ x ∈ (z − δ, z), |f(x)−f(z)−f ′(z−)(x−z)|
|x−z| < ε/2, |f ′(x)− f ′(z−)| < ε/2;

∀ x ∈ (z, z + δ), |f(x)−f(z)−f ′(z+)(x−z)|
|x−z| < ε/2, |f ′(x)− f ′(z+)| < ε/2.

Thus for x ∈ (z − δ, z),

|f(x)− f(z)− f ′(x)(x− z)|
|x− z|

≤ |f(x)− f(z)− f ′(z−)(x− z)|
|x− z|

+ |f ′(z−)− f ′(x)| < ε,

and similarly for x ∈ (z, z + δ). Define H(z) as in the lemma, then the above implies

∀ε > 0,∃δ > 0 s.t. ∀|x− δ| < z,
|f(x)− f(z)−H(x)(x− z)|

|x− z|
< ε.

In other word, f is Newton differentiable at z with H ∈ ∇Nf(z).

Proof of Theorem B.1.

Proof. Notice that the derivative of Huber loss h′γ is piecewise-smooth, which implies by

Lemma A.3 that ψγ ∈ ∇Nh
′
γ(t),∀t ∈ R. As shown in (2.8), the soft-thresholding operator

is also piecewise-smooth. Hence by Lemma A.1, A.2 and A.3, it is easy to show F (Z) is

Newton differentiable with a Newton derivative H(Z) taking the form of (B.5).

Next we show H = H(Z) is invertible with its inverse H−1 bounded in spectral norm.

Denote

H =

[
H1 0

H2 H3

]
,

where

H1 =

[
−I|A| 0

0 I|B|

]
∈ Rp×p, H2 =

 0 1>nΨXB

λαI|A| X>AΨXB

0 X>BΨXB + λ(1− α)I|B|

 ∈ R(p+1)×p,
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H3 =

 1>nΨ1n 1>nΨXA 0

X>AΨ1n X>AΨXA + λ(1− α)I|A| 0

X>BΨ1n X>BΨXA λαI|B|

 ∈ R(p+1)×(p+1). (C.1)

Clearly, H1 is invertible. From Lemma C.1 to be stated later, H3 is also invertible.

Then via some algebra we have

H−1 =

[
H−11 0

−H−13 H2H
−1
1 H−13

]
. (C.2)

Let g = (g>1 , g
>
2 )> ∈ Rp × Rp+1, then

‖H−1g‖22 = ‖H−11 g1‖22 + ‖ −H−13 H2H
−1
1 g1 +H−13 g2‖22

≤ ‖H−11 ‖2‖g1‖22 + (‖H−13 ‖‖H2‖‖H−11 ‖‖g1‖2 + ‖H−13 ‖‖g2‖2)2

≤ (‖H−11 ‖‖g1‖2 + ‖H−13 ‖‖H2‖‖H−11 ‖‖g1‖2 + ‖H−13 ‖‖g2‖2)2

≤ (‖H−11 ‖+ ‖H−13 ‖+ ‖H−13 ‖‖H2‖‖H−11 ‖)2‖g‖22

(C.3)

which implies

‖H−1‖ ≤ ‖H−11 ‖+ ‖H−13 ‖+ ‖H−13 ‖‖H2‖‖H−11 ‖. (C.4)

Notice ‖XA‖ ∨ ‖XB‖ ≤ ‖X‖. Taking XA for example, without loss of generality shuffle

columns of X such that X = (XA|XB), then for any g ∈ R|A| such that ‖g‖2 = 1, we have

‖XAg‖2 = ‖X

[
g

0

]
‖2 ≤ sup {‖Xv‖2 : ‖v‖2 = 1} = ‖X‖,

implying that ‖XA‖ ≤ ‖X‖. Similarly, we can show ‖XB‖ ≤ ‖X‖.
In addition, with a similar argument as (C.3) for H2, we have

‖H2‖ ≤ 1 + α + 2‖X‖2. (C.5)

Note that ‖H−11 ‖ = 1. Combining (C.4), (C.5) with Lemma C.1, we obtain the uniform

boundedness of H in spectral norm, i.e.,

‖H−1‖ ≤ 1 +

[
1

λα
+

(
1

λ(1− α)
+
λmax(X

>X)2 + nγλ(1− α)

λ(1− α)

(
1 +

‖X‖√
nγλ(1− α)

)2
)

×
(

1 +
2‖X‖√
nγλα

)]
(2 + α + 2‖X‖2).

In order to complete the proof of Theorem B.1, we need the following lemma.
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Lemma C.1. Given α ∈ (0, 1) and β0, β satisfy |yi − β0 − x>i β| ≤ γ for some i, then H3

in (C.1) is invertible with its inverse uniformly bounded in spectral norm, i.e.

‖H−13 ‖ ≤
1

λα
+

[
1

λ(1− α)
+
λmax(X

>X)2 + nγλ(1− α)

λ(1− α)

(
1 +

‖X‖√
nγλ(1− α)

)2
](

1 +
2‖X‖√
nγλα

)
.

Proof. Denote J = nγΨ, then J is diagonal and idempotent. We have

1>nΨ1n =
1

nγ
1>n J1n =

1

nγ
(J1n)>(J1n),

and

1>nΨXA

(
X>AΨXA + λ(1− α)I|A|

)−1
X>AΨ1n

=
1

nγ
(J1n)>(JXA)

(
(JXA)>(JXA) + nγλ(1− α)I|A|

)−1
(JXA)>(J1n).

Denote a = J1n, Z = JXA, t = nγλ(1− α), and m = |A|. Then the LHS becomes

1

nγ

(
a>a− a>Z(Z>Z + tIm)−1Z>a

)
.

Since |yi − β0 − x>i β| ≤ γ for some i, we have ψi = 1
nγ
> 0, implying that Jii = 1 and

a>a ≥ J2
ii = 1. Thus we are guaranteed that a = J1n is not a zero vector.

Now apply SVD to Z such that Z = UDV >, where Un×n and Vm×m are both orthogonal

matrices, and Dn×m is a rectangular diagonal matrix with non-negative diagonal elements

d1, . . . , dm∧n. Hence

Z(Z>Z + tIm)−1Z> = UDV >(V D>U>UDV > + tIm)−1V D>U>

= UDV >
(
V (D>D + tIm)V >

)−1
V D>U>

= UDV >V (D>D + tIm)−1V >V D>U>

= UD(D>D + tIm)−1D>U>.

When n > m,

D(D>D + tIm)−1D> = diag(
d21

d21 + t
, . . . ,

d2m
d2m + t

, 0, . . . , 0),

and when n ≤ m,

D(D>D + tIm)−1D> = diag(
d21

d21 + t
, . . . ,

d2n
d2n + t

).

In either case D(D>D + tIm)−1D> is p.s.d. with λmax(D(D>D + tIm)−1D>) < 1.
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Next we will derive the upper bound of eigenvalues of the above matrix. First, for any

eigenvalue d and corresponding nonzero eigenvector u of Z>Z = XAJXA, we have

du>u = u>X>AJXAu ≤ λmax(X
>JX)u>u,

hence d ≤ λmax(X
>JX). Then again, for any eigenvalue c and corresponding nonzero

eigenvector v of X>JX, we have

cv>v = v>X>JXv =
∑
i

Jiiv
>xix

>
i v ≤

∑
i

v>xix
>
i v = v>X>Xv ≤ λmax(X

>X)v>v,

implying that c ≤ λmax(X
>X).

Therefore, we have d ≤ λmax(X
>JX) ≤ λmax(X

>X). Then since the eigenvalues of

Z>Z are the diagonal elements of D, the eigenvalues of D(D>D + tIm)−1D> are bounded

by λmax(X>X)2

λmax(X>X)2+t
.

Then recall t = nγλ(1− α) and a>a ≥ 1, we have

1>nΨ1n − 1>nΨXA

(
X>AΨXA + λ(1− α)I|A|

)−1
X>AΨ1n

=
1

nγ

(
a>a− (U>a)>D(D>D + tIm)−1D>(U>a)

)
≥ 1

nγ
(a>a− λmax(X

>X)2

λmax(X>X)2 + t
(U>a)>U>a)

=
1

nγ
× nγλ(1− α)

λmax(X>X)2 + nγλ(1− α)
a>a

≥ λ(1− α)

λmax(X>X)2 + nγλ(1− α)
> 0.

Let

H31 =

[
1>nΨ1n 1>nΨXA

X>AΨ1n X>AΨXA + λ(1− α)I|A|

]
, H32 =

[
X>BΨ1n X>BΨXA

]
, H33 = λαI|B|.

Observe that H−133 = 1
λα
I|B|. Then if H31 is invertible, we have

H−13 =

[
H−131 0

− 1
λα
H32H

−1
31

1
λα
I|B|

]
.

Hence to show H3 is invertible, it suffices to show H31 is invertible. Let

M = X>AΨXA + λ(1− α)I|A|, b = X>AΨ1n,

and

κ = 1>nΨ1n − 1>nΨXA

(
X>AΨXA + λ(1− α)I|A|

)−1
X>AΨ1n.
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Since κ > 0, we have

H−131 =

[
1
κ

− 1
κ
b>M−1

− 1
κ
M−1b M−1 + 1

κ
M−1bb>M−1

]
,

and it follows that H3 is invertible.

It can be easily shown that ‖b‖ = ‖b>‖ ≤ 1√
nγ
‖X‖, ‖M−1‖ ≤ 1

λ(1−α) . Combine this

with 1
κ
≤ λmax(X>X)2+nγλ(1−α)

λ(1−α) , then similar to (C.3), we have

‖H−131 ‖ ≤
1

λ(1− α)
+
λmax(X

>X)2 + nγλ(1− α)

λ(1− α)

(
1 +

‖X‖√
nγλ(1− α)

)2

and then

‖H−13 ‖ ≤
1

λα
+

[
1

λ(1− α)
+
λmax(X

>X)2 + nγλ(1− α)

λ(1− α)

(
1 +

‖X‖√
nγλ(1− α)

)2
](

1 +
2‖X‖√
nγλα

)
.
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