
Complex-valued wavelet lifting and applications

B Supplementary Material: Real nonparametric regression using

complex lifting

In this document we examine how to employ complex lifting to denoise irregularly sampled real-valued
signals. Let us assume that we are in the nonparametric regression context, where f1, . . . , fn are noisy
observations of an unknown function g, taken at possibly irregularly spaced locations x1, . . . , xn. A popular
approach is to model the observations as

fi = g(xi) + εi, (B.1)

where ε1, . . . , εn are random variables that denote the noise, usually assumed to be independently distributed,
with zero mean and finite variance, σ2. The locations x = (x1, . . . , xn) are assumed fixed and are usually
assumed to span the interval [0,1], so g : [0, 1] −→ R. The regression problem consists of estimating g. Note
that as usual in nonparametric regression problems, we do not assume any functional form for g to assist us
in its estimation.

Wavelet approaches to nonparametric regression (Donoho and Johnstone, 1994, 1995) have been shown
to perform well in a range of denoising settings. Put simply, the wavelet shrinkage approach consists of
decomposing f = (f1, . . . , fn) by a DWT into wavelet coefficients, thresholding (somehow) the coefficients
with the aim of removing the noise, and then inverting the transform. The function obtained after inversion
gives an estimate, ĝ, for g. In what follows we shall modify this wavelet shrinkage paradigm in order to take
advantage of our complex-valued lifting transform. For an approach using classical complex-valued wavelets
for denoising real-valued signals, the reader is directed to Barber and Nason (2004).

Our proposed denoising procedure is:

1. Decompose the noisy signal f by the proposed C-LOCAAT. In what follows, let us denote the resulting
detail (wavelet) vector by d, obtained as described by equations (1)–(3) in the main article. As
the complex-valued lifting transform can be thought of as two lifting schemes, each of which is a
linear transform, we can write our transform as d = W (c)f , where the complex lifting matrix W (c) ∈
Mn×n(C) can be decomposed into the (real-valued) matrices associated to the two lifting schemes as
W (c) = WRe + iW Im.

After application of C-LOCAAT, we obtain W (c)f = W (c)g + W (c)ε, or equivalently using the non-
parametric regression formulation (B.1),

d = d⋆ + e(c). (B.2)

In the above d⋆ = W (c)g are the true (unknown) details and e(c) = W (c)ε represents the underlying

transformed noise. In this setting e(c) is a vector of complex-valued random variables and due to the
lifting construction, the noise (and consequently the detail coefficients) are now no longer independently

distributed but rather have a covariance structure given by var(d) = σ2W (c)W (c)
T
. The correlation

between wavelet coefficients is in effect induced by the lifting transform, and is analogous to that found
in the real-valued LOCAAT scheme (Nunes et al., 2006). Correlation is also present between the real
and imaginary parts of the complex wavelet vector, which we now describe.

Proposition 1. Let e(c) = W (c)ε, where ε ∼ Nn(0, σ
2In) and W (c) ∈ Mn×n(C) is a n × n complex

matrix that represents the complex-valued lifting transform. Then the real and imaginary parts of e(c)
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are normal real-valued random variables with the following covariance structure:

var(Re(e(c))) =
σ2

2
Re
(

W (c)W (c)
T
+W (c)(W (c))T

)

var(Im(e(c))) =
σ2

2
Re
(

W (c)W (c)
T
−W (c)(W (c))T

)

cov(Im(e(c)), Re(e(c))) =
σ2

2
Im
(

W (c)W (c)
T
+W (c)(W (c))T

)

cov(Re(e(c)), Im(e(c))) = −
σ2

2
Im
(

W (c)W (c)
T
−W (c)(W (c))T

)

. (B.3)

Proof. The covariance between the real and imaginary parts of the complex detail coefficient vector,
cov

(

Im(e(c)), Re(e(c))
)

, can be expressed as

cov
(

Im(e(c)), Re(e(c))
)

= cov

(

e(c) − e(c)

2i
,
e(c) + e(c)

2i

)

=
1

4i
cov

(

e(c) − e(c), e(c) + e(c)
)

=
1

4i

(

cov
(

e(c), e(c)
)

+ cov
(

e(c), e(c)
)

− cov
(

e(c), e(c)
)

− cov
(

e(c), e(c))
))

=
1

4i

(

σ2W (c)W (c)
T
+ σ2W (c)W (c)T − σ2W (c)W (c)

T
− σ2W (c)W (c)T

)

,

since e(c) = W (c)ε, and ε ∼ Nn(0, σ
2In) is a real-valued vector. Denoting z1 = W (c)W (c)

T
and

z2 = W (c)W (c)T , the covariance can be written as

cov
(

Im(e(c)), Re(e(c))
)

=
σ2

4i
((z1 − z1) + (z2 − z2))

=
σ2

2
(Im(z1) + Im(z2)) .

Substituting the expressions for z1 and z2 back into this equation, the covariance is equal to

σ2

2

(

Im
(

W (c)W (c)
T)

+ Im
(

W (c)W (c)T
))

.

The expressions for var(Re(e(c))), var(Im(e(c))) and cov(Re(e(c)), Im(e(c))) can be established following
similar arguments.

This result can be seen as generalising Proposition 1 of Barber and Nason (2004).

2. In order to remove the noise, we use a thresholding approach in the multiwavelet spirit, as proposed
by Downie and Silverman (1998), see also Barber and Nason (2004). Following the application of
C-LOCAAT, the detail coefficient djk associated to each observed point may be viewed as a vector
(λjk , µjk) following a bivariate normal distribution djk ∼ N2(d

⋆
jk
,Σjk), where Σjk is a 2×2 matrix that

contains the covariance structure in the wavelet domain associated to the jkth point. The entries of
Σjk can be calculated using the equations (B.3) in Proposition 1.

The thresholding approach suggested in Downie and Silverman (1998) amounts to computing a thresh-
olding statistic θjk = dTjk(Σjk )

−1djk , where again we stress that djk is understood as a two-dimensional

random vector (rather than a complex variable). Under our model assumptions, θjk ∼ χ2
2(d

⋆
jk

T (Σjk)
−1d⋆jk)

and this statistic can then be fed into a thresholding procedure. Various thresholding procedures exist
for such bivariate vectors in the regular sampling setting, namely hard and soft thresholding rules as
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well as bivariate empirical Bayes’ thresholding methods, see Barber and Nason (2004) and Fryzlewicz
(2007) for more details.

In our denoising procedure in Section B.1 below, we employ a soft thresholding rule as detailed in
Downie and Silverman (1998). Each wavelet coefficient djk is shrunk-or-killed to obtain d̂⋆jk as d̂⋆jk =

djk ·max(θjk −λj , 0) |θjk |
−1. Note that we use a level-dependent threshold λj = 2σ2 log(nj) as opposed

to the universal threshold λ = 2σ2 log(n) as proposed by Downie and Silverman (1998). To compute
this threshold, we use an artificial level construction to mimic scales produced by a traditional DWT
(see Nunes et al. (2006) for more details). The threshold λj is then computed using the number of
coefficients nj in the artificial level to which djk belongs.

In practice the variance of the original noise (σ2) also needs to be estimated. We propose two alter-
native estimators for this. Firstly, in a similar spirit to Nunes et al. (2006), we estimate the noise

by σ̂c =
1
2

(

MAD
(

Re
(

d̃
1
))

+MAD
(

Im
(

d̃
1
)
)))

, where d̃
1
represent normalised complex detail co-

efficients dj{diag(W
(c)W (c)

T
)j}

−1/2 identified as lying in the finest artificial level. Alternatively, we
use the estimator detailed in Nunes et al. (2006), which amounts to only using the real part of the

transform. More specifically, this estimates the noise level by σ̂Re = MAD(d̃
Re,1

), where d̃
Re,1

rep-
resent normalised real detail coefficients Re(dj){diag(W

(Re)W (Re)T )j}
−1/2. The variance matrix Σjk

can then be estimated using σ̂2 and equations (B.3).

We have found that other thresholding procedures do not perform as well as soft thresholding in the
complex lifting setting: whilst in many cases, hard thresholding outperforms competitor methods, it can
produce results with visually undesirable artifacts; empirical Bayes procedures suffer from numerical
optimization problems in maximizing the likelihood, reflecting similar findings in Barber and Nason
(2004).

3. The complex lifting transform is then inverted and the real part of the estimated signal is considered
as our desired ĝ. Note that this follows Barber and Nason (2004) in performing inversion of the
(thresholded) real component of the complex wavelet coefficients (using equation (5) in the main
article). However, it is important to point out that the imaginary parts of the wavelet coefficients play
a crucial role in extracting additional information from data and thus in thresholding (see discussion
above), as bivariate thresholding is known to produce lower risk estimates than the univariate version.

B.1 Simulation study

In this section we assess the performance of our proposed method against that of state-of-the-art competitor
methods. The denoising performance of our estimator will be tested on the test functions Blocks, Bumps,
HeaviSine and Doppler (Donoho and Johnstone, 1994), and on the Ppoly function (Nason and Silverman,
1994). These test functions model various features of signals that arise in practical applications, see e.g.
Nason (2008) for more details.

The irregular sampling locations x = {xi}
n=256
i=1 are generated by ‘jittering’ a regular grid on the interval

[0,1] (Nunes et al., 2006). For comparability with the results in Nunes et al. (2006) and with techniques that
only work on regular observations, we use grids with three (increasing) degrees of irregularity, d1 = 0.01, d2 =
0.1 and d3 = 1. As customary, the true signal (x, g) is contaminated with additive noise, ε ∼ N(0, σ2

ε). The

signal-to-noise ratio SNR =
√

var(g)/σε takes values 3, 5 and 7.

In order to quantify the performance of each method, for each grid type and level of noise we performed
the denoising procedure K = 100 times. A measure of the overall accuracy of the estimates is given by the
estimated average mean square error,

amse = (nK)−1
K
∑

k=1

n
∑

i=1

(ĝ
(k)
i − g

(k)
i )2.

We compared our method against the successful real-valued adaptive lifting scheme AP1S of Nunes et al.
(2006) (referred to as ‘R-lift’ in the tables below). For completeness, we reproduce the results for Locfit local
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regression method (Loader, 1997, 1999), spline smoothing with cross-validation (SSCV) and the Kovac-
Silverman (KS) wavelet procedure (Kovac and Silverman, 2000) from tables in Nunes et al. (2006).

We report results using a linear regression order in the predict step of the C-LOCAAT algorithm, and
denote this by C-LP1S. As already mentioned in Section 2.2, we also propose the use of the adaptive filter
AP1S of Nunes et al. (2006) as our lead filter L. This amounts to building an adaptive complex-valued
lifting scheme, referred to as C-AP1S in subsequent text. Table 1 also reports on the performance of the
(univariate) complex nondecimated lifting transform using the adaptive filter AP1S (denoted CNLT-AP1S)
and P = 50 trajectories.

Simulation results. Table 1 shows the denoising performance of our proposed procedure against com-
petitor methods described above. Overall, our method performs very well.

Table B.1: AMSE (×103) simulation results for test signals with SNR=3 with three levels of jitter, d, for
various denoising methods described in the text. For the reported CNLT results, P = 50 trajectories were
used.

Blocks Bumps HeaviSine Doppler Ppoly

Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
R-lift 72 68 59 77 77 62 20 20 23 52 50 48 16 17 18

C-LP1S σ̂c 36 34 35 53 53 48 21 21 23 44 45 44 17 16 18

C-LP1S σ̂Re 45 44 42 78 77 65 18 17 18 53 53 51 12 11 13

C-AP1S σ̂c 32 33 32 51 50 48 22 22 23 45 44 44 17 16 18

C-AP1S σ̂Re 37 39 34 70 69 54 18 18 19 49 49 46 12 12 13

Locfit 73 72 64 110 108 101 11 11 11 58 58 54 21 20 19

SSCV 74 74 67 307 315 250 12 11 12 61 60 53 20 20 19
KS 79 78 87 179 181 259 13 12 15 51 52 57 18 17 18

CNLT-AP1S σ̂c 27 26 27 45 44 42 18 18 19 42 40 42 13 13 14
CNLT-AP1S σ̂Re 33 31 28 62 60 46 15 15 17 48 46 43 9 9 11

Table B.2: AMSE (×103) simulation results for test signals with SNR=5 with three levels of jitter, d, for
various denoising methods described in the text. For the reported CNLT results, P = 50 trajectories were
used.

Blocks Bumps HeaviSine Doppler Ppoly

Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
AP1S 22 23 20 30 29 23 10 10 10 22 22 21 6 6 7

C-LP1S σ̂c 13 13 13 18 18 18 9 9 10 21 21 20 7 7 7

C-LP1S σ̂Re 16 16 15 25 26 22 8 8 9 24 24 23 5 5 5

C-AP1S σ̂c 13 12 12 18 18 17 10 9 10 21 20 19 7 7 7

C-AP1S σ̂Re 14 14 13 24 22 19 9 8 9 23 22 20 5 5 5

Locfit 35 35 34 40 40 39 7 7 7 25 26 25 12 12 11

SSCV 51 51 46 277 285 227 7 7 7 37 37 30 11 12 11

KS 52 52 59 130 134 213 8 7 8 29 28 33 9 9 10
CNLT-AP1S σ̂c 10 9 10 15 15 16 8 8 9 18 18 19 5 5 6

CNLT-AP1S σ̂Re 10 10 10 19 19 17 7 7 8 20 19 19 4 4 5

Examination of the simulation results shows that the proposed denoising procedure yields excellent
performance for the signals Blocks and Bumps, which are known to be difficult to denoise, with a percentage
improvement over (the best) competitors, ranging between 50%–60% for Blocks and 23%–35% for Bumps

in a high noise setting (SNR=3). The reason for this improvement over the real-valued lifting procedure is
that bivariate thresholding such as we use here almost always produces a lower risk than that of univariate
thresholding (see Fryzlewicz (2007, Section 2) in the standard wavelet context).

Notably, the overcomplete adaptive complex lifting transform (CNLT-AP1S) yields a marked improve-
ment over the already appealing C-AP1S, even when bootstrapped over a small number of trajectories.

4



Table B.3: AMSE (×103) simulation results for test signals with SNR=7 with three levels of jitter, d, for
various denoising methods described in the text. For the reported CNLT results, P = 50 trajectories were
used.

Blocks Bumps HeaviSine Doppler Ppoly

Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
AP1S 10 10 10 15 14 12 6 6 6 12 12 11 3 3 4

C-LP1S σ̂c 7 7 7 9 9 9 5 5 6 12 12 11 4 4 4

C-LP1S σ̂Re 8 8 8 12 11 11 5 5 5 13 13 13 3 3 3

C-AP1S σ̂c 7 7 7 9 9 9 5 5 6 12 12 11 4 4 4

C-AP1S σ̂Re 7 7 7 11 11 10 5 5 5 12 12 11 3 3 3

Locfit 20 20 19 21 20 20 5 5 5 13 13 16 9 9 8

SSCV 44 44 39 269 273 220 5 5 5 30 30 23 8 8 8

KS 45 45 52 119 122 195 6 6 5 22 22 25 5 5 6
CNLT-AP1S σ̂c 5 5 5 8 8 8 5 5 5 10 11 11 3 3 3

CNLT-AP1S σ̂Re 5 5 5 9 9 8 4 4 5 10 11 10 2 2 3

In the high noise setting (SNR=3), the amse improvement over the C-AP1S procedure stands at approxi-
mately 16% for Blocks, 12% for Bumps, 30% for HeaviSine, 6% for Doppler and 15–25% for Ppoly. For the
smoother HeaviSine and Ppoly corrupted with milder levels of noise (SNR=5 or SNR=7), the performance
of CNLT-AP1S matches or slightly exceeds that of Locfit or SSCV methods, designed to deal with smooth
signals.

Figure B.1 shows an example of the denoising performance for the Bumps signal for SNR=3. Visually,
the estimate of the underlying function appears quite similar across the real and complex-valued lifting.
However, our proposed complex-valued methods are able to pick out more of the features of the signals,
most importantly around the peaks of the Bumps signal.

Table B.4 shows simulations results for the test signals described in the text for different numbers of
bootstrap trajectories, P . Our investigations on the effect of the number of bootstrap trajectories in the
nonparametric regression context shows that, similar to the real-valued LOCAAT in Knight and Nason
(2009), the improvement from increasing the number of bootstrap trajectories plateaus for P > 30.

Table B.4: AMSE (×103) simulation results for test signals with SNR=3 with three levels of jitter, d, for
various denoising methods described in the text, and different numbers of trajectories, P .

Blocks Bumps HeaviSine Doppler Ppoly

Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
CNLT-AP1S σ̂c (P = 10) 28 27 29 47 45 44 19 19 20 42 42 42 14 13 14

CNLT-AP1S σ̂Re (P = 10) 34 33 31 63 62 50 16 16 17 48 48 43 10 9 11
CNLT-AP1S σ̂c (P = 20) 27 28 27 44 45 42 19 18 19 42 42 42 14 13 14

CNLT-AP1S σ̂Re (P = 20) 32 33 29 61 59 46 15 15 17 48 46 43 10 9 10
CNLT-AP1S σ̂c (P = 30) 27 26 28 45 44 43 18 19 19 41 41 42 13 13 13

CNLT-AP1S σ̂Re (P = 30) 32 31 29 62 59 48 15 15 17 47 47 42 9 9 10
CNLT-AP1S σ̂c (P = 50) 27 26 27 45 44 42 18 18 19 42 40 42 13 13 14

CNLT-AP1S σ̂Re (P = 50) 33 31 28 62 60 46 15 15 17 48 46 43 9 9 11
CNLT-AP1S σ̂c (P = 75) 26 27 27 43 44 41 18 18 19 41 41 41 13 13 13

CNLT-AP1S σ̂Re (P = 75) 31 33 28 60 59 45 15 15 16 47 46 42 9 9 10
CNLT-AP1S σ̂c (P = 100) 26 27 27 43 44 41 18 18 19 41 41 41 13 13 13

CNLT-AP1S σ̂Re (P = 100) 31 32 28 60 58 45 15 15 16 47 46 42 9 9 10
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Figure B.1: Examples of denoising a Bumps signal contaminated with noise of SNR = 3. Top-left: the
noisy signal; top-right: denoising with R-lift; bottom-left: adaptive complex lifting denoising (our proposed
C-AP1S procedure); bottom-right: denoising with our proposed CNLT-AP1S procedure (P=50 trajectories).
The dotted function shows the true signal, sampled at n = 256 irregular locations.
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