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Claims often heard about p-value and 
confidence interval 

• P-values of a significance test often 
misleading. 

• P-values could be smaller when the non-
inferiority margin is bigger. 

• Clinicians or scientists are interested to 
measure the drug effect instead of p-values. 

•  Significance of drug effect can be derived 
from confidence interval  
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I. Introduction 

• The debate between reporting p-value of statistical test or 
confidence interval in clinical trial, a few years ago was 
meaningful when both CI and statistical test lead to the 
consistent decision to the hull hypothesis.  

• However, it was never clearly emphasized on the 
difference on hypothesis test and general confidence 
interval estimation. 

• Furthermore, due to the recent development of statistical 
testing in drug development, the duality may lead to some 
of the difficulties in constructing test-based confidence 
interval to be consistent the with significance test.  

• We illustrate the problems with a few examples.  
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II. Comparing Mean Difference of Normal Outcomes 

Assuming ),,(~ 2

iii NX   i = T, R represent the outcome of test 
reference products. 
Considering test of mean difference: 

 When the study objective is to test the mean difference 
  RTH :0  versus   RTAH :  

where  is ≥ 0. Assuming equal sample size n and variance 2 , the 
most powerful unbiased test we use is the t-test with the following 
statistic 

n
s

T
2

̂


 

with ̂ the unbiased estimate of   RT and 2s the estimate of  
common variance . T is a monotone statistic that reaches its maximum 
type I error rate at 0  RT .  
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 The sampling distribution of T at 0  RT  is t with degrees of 
freedom of freedom 2(n-1).  

 We reject the null hypothesis if T > t(0.975, 2(n-1)).   

 On the other hand,   RT can be estimated with a (1-α)% 
confidence interval  

)))1(2,2/1(2ˆ)),1(2,2/1(2ˆ(  ntsntsCI   

 We will also reject H0 if the lower confidence level is greater than 
0.   

 That the lower confidence limit can be derived from the test 
statistic and its sampling distributions.  

 In this case, decisions made with both significance test and 
confidence interval are consistent although they may be derived 
independently.      
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III. Comparing Mean Difference of Binary Outcomes 
Assuming ),(~ ii PBX  i = T, R represent the binary outcome of test and 

reference products.  
Let us consider significance test, non-inferiority and equivalence tests 
under the setting separately.  
Superiority hypothesis 
Significance test: 

When comparing two proportions, the significance testing 
hypotheses are, 

0:0  RT PPH  versus 0:  RTA PPH   

Let RT PP  , the unbiased estimate of  is RT PP ˆˆˆ  . The asymptotic 
test of the hypotheses is a score test in the form that  

 )ˆˆ(

ˆˆ

RT

RT

PPe

PP
Z




         (III.1)  

)(e  is the standard error of estimation.  
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 Since the test is monotone, i.e. if 21  the Z value of 1  the Z 

value of 2 , the type I error rate of Z reaches its maximum at  = 
0.  

 The sampling distribution of the statistic is derived from 0| Z . 
Accordingly, the standard error is derived with restriction to  = 0. 
It leads to  

         [ 0|)ˆˆ(  RT PPe ] = nPP /)1(2           (III.2)                            

 
with 2/)( RT PPP  . When using this significance test, we reject the 
null hypothesis if Z > Z(1 -α/2) asmptotically.  

 When we estimate the standard error )ˆˆ( RT PPe   without 

restriction to null hypothesis, we have )ˆˆ( RT PPe   = 

n

PPPP RRTT )1()1( 
       (III.3)

                  2015 Duke Industry Stat Symposium 9 



 It can be shown that 
n

PPPP RRTT )1()1( 
 nPP /)1(2  . That means 

restricted standard error is at least as large as the unrestricted 
standard error.  

 The conventional confidence interval of  is 

)2/1(ˆ(  Z
n

PPPP RRTT )1()1(  , )2/1(ˆ  Z
n

PPPP RRTT )1()1(  ). 

 Using conventional confidence interval, one may claim 

superiority if )2/1(ˆ  Z
n

PPPP RRTT )1()1(  > 0. It is inconsistent to 

the significance test constructed under null hypothesis.  
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 With a continuity correction, the asymptotic test based on (III.1) 

becomes 
)ˆˆ(

/1ˆˆ

RT

RT

PPe

nPP
Z




  

 The continuity correction adjusted confidence interval is then, 

( )2/1(/1ˆ(  Zn
n

PPPP RRTT )1()1( 
, )2/1(/1ˆ  Zn

n

PPPP RRTT )1()1(  ) 

 It was pointed out by Farrington and Manning (1990, SIM ) that 
all three statistics converge to the standard normal distribution. 
But they argued that test statistic using (II.2) is both theoretically 
correct and convergent to N(0,1) faster. It is also pointed out the 
other two test statistics with small to moderate sample sizes, the 
type I error rate is not controlled.  
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Non-inferiority and equivalence tests 
When comparing two proportions, the non-inferiority hypotheses 

are, 
 RT PPH :0  versus  RTA PPH :   

where δ > 0 is a non-inferiority constant margin.  
The asymptotic test of the hypotheses is a score test in the form that 

 
)ˆˆ(

ˆˆ

RT

RT

PPe

PP
Z






          (III.4) 

)ˆˆ(

1ˆˆ

RT

RT

PPe

n
PP

Z







 with continuity correction, 

where )(e  is the standard error of estimation. The sampling distribution 

of the statistic is derived from |Z . Accordingly, the standard error is 

derived as the maximum likelihood estimate restricted to  = - δ. It can 
be shown as (Farrington and Manning, 1990) 

nPPPPPPe RRTTRT /)]
~

1(
~

)
~

1(
~

[|)ˆˆ(    
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where TP
~ and RP

~
 are the maximum likelihood estimates of PT and PR 

restricted to H0.  For testing against H0, TP
~ and 

RP
~ are shown to be the 

solutions in (δ, 1) of the following equation  
 

aX3 + bX2 + cX +d =0 
with 
 a =2 
 b =-[2+ Tp + Rp + 3δ] 

 c =δ2 +δ(2 Tp +2) + Tp + Rp  

 d = - Tp δ(1+δ) 

 
where Tp and Rp are the sample proportions of test and reference 

respectively, TP
~ = 

RP
~  + δ. Again without restriction, we have  

)ˆˆ( RT PPe   = 
n

PPPP RRTT )1()1(   

 
This confidence decision is not different from the one for superiority test 
except we compare its lower limit with – δ.  
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Equivalence test 
The equivalence test consists of two one-sided hypotheses 

 RT PPH :01  versus  RTA PPH :1   

 RT PPH :02  versus  RTA PPH :2  

 When rejecting both null hypotheses, one shows that 
   RT PP  

The test statistic corresponds to testing the second one-sided 
hypotheses is  

)ˆˆ(

ˆˆ

RT

RT

PPe

PP
Z






           (III.5) 

and  

)ˆˆ(

1ˆˆ

RT

RT

PPe

n
PP

Z







 with continuity correction. 

The standard error is derived as the maximum likelihood estimate 
restricted to  = δ. It can be derived as 

 nPPPPPPe RRTTRT /)]
~

1(
~

)
~

1(
~

[|)ˆˆ(    
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where TP
~ and RP

~
 are the maximum likelihood estimates of PT and PR 

restricted to H02.  For testing against H0, TP
~ and 

RP
~ are shown to be the 

solutions in (δ, 1) of the following equation  
aX3 + bX2 + cX +d =0 

with 
 a =2,  b =-[2+ Tp + Rp - 3δ] 

 c =δ2 -δ(2 Tp +2) + Tp + Rp , d = Tp δ(1 - δ) 

On the other hand, using the confidence interval, the decision of 
equivalence is derived with the unrestricted maximum likelihood 
estimate  

)ˆˆ( RT PPe   = 
n

PPPP RRTT )1()1(   

and equivalence if the lower confidence limit >   and the upper limit 
< .  
The RMLE confidence interval can be constructed using the intersection 
of two one-sided intervals defined by the tests.  
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The inconsistency applies to any distribution(such as Bernoulli and  

Poisson) of which the variance is a function is linearly dependent  

to the mean 



IV. Alternative Comparisons of Normal Outcomes 
VI.1  Considering test for exchangeability hypotheses involving both mean and 
variance, the duality of significance test and confidence interval decision rules 
may not be as consistent.  

For example, for a probability hypothesis of non-inferiority such as 

)1(5.0)Pr(:     vs.)1(5.0)Pr(:0 PLXXHPLXXH RTaRT   

where L is a pre-specified margin and P a pre-specified percentage.  
 

 Under the normality assumption, )2,(~ 2 RTRT NXX  , Tsong and 

Shen (2007) and Dong and Tsong (2015) showed the one-sided tolerance 

interval ),( PL of RT XX  with significance level 1-α/2 and coverage 

percentage 0.5(1+P). One reject the null hypothesis if PL > L. It is an 

exact test. 
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However , for an equivalence hypotheses 

 

 

 

•Corresponding to the two one-sided tests,  
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 Test based confidence interval is then ),( PL ∩ ),( PU . 

On the other hand, if we use a regular two-sided tolerance interval with 
1 – α confidence level and P coverage, we are considering a tolerance 
interval  

),( kSXXkSXX RTRT    

with k determined by the sample size n, α and P for two-sided tolerance 
interval.  

 In this case, the regular confidence interval provides a different decision 
rule that significance test. 



On the other hand, if we use a regular two-sided tolerance 
interval with 1 – α confidence level and P coverage, we are 
considering a tolerance interval  

 

),( kSXXkSXX RTRT    
with k determined by the sample size n, α and P.  

 One may reject the null hypothesis if LkSXX RT  .  

 Either using approximation method or exact method, this 

interval provides no assurance that ),( kSXX RT   covers 
less that < 0.5(1-P) at 1 - α/2 level.  

 In this case, the regular confidence interval provides a 
different decision rule from the significance test. 
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VI.2 Asymptotic Tests for Variance-Adjusted Equivalence with 
Normal Endpoints (Chen, Weng, Dong & Tsong, 2015) 

Test equivalence hypothesis 

 

 

 

 

•Two one-sided hypotheses  
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• Unknown parameters 

• Methods: 

– Unconstrained maximum likelihood estimates 

– Unconstrained uniformly minimum variance 
unbiased estimates (Ahn and Fessler, 2003) 

– Constrained maximum likelihood estimates 
(Farrington and Manning, 1990; Ng, Gu, and Tang, 2007; Stucke and 
Kieser, 2013) 
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• Under     , if                       , the log-likelihood 
function 

    

 

• Under     , if                     , the log-likelihood 
function 

22 
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•  Statistical inference for 

– Based on 

– Variance estimates of zL   

 

 

– estimates     , including MLE, UMVUE, constrained MLE 

– Test statistic         

– P-value =  

– Reject        if p-value <  

Similar test procedure for 
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Type I error rate comparison based on simulation 

• Set cL=1.5, cU=1.5, effect size=1.5,  

• Equal and unequal sample size  

•   

•   

• Generate  

• Repeat            times for each parameter 
configuration 

• Significance level             for each one-sided test 

24 
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Power comparisons based on simulation 

• Set cL=1.5 and cU=1.5 

• Equal and unequal sample size 

•   

• Effect size = -2.0(0.1)2.0  

• Generate  

• Repeat             times for each parameter 
configuration 

• Significance level              for each one-sided test 
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Power comparisons based on simulation  
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VI.3 Statistical Methods for Parallelism Test of Bioassays  
(Shao, Dong, Torigoe & Tsong, 2015) 

32 

• Bioassays are experiment to measure biological activity 
(potency) of a drug as a function of  concentration/dose; 

• Relative Potency : ratio of the conc. of the test product that 
produces the same biological response as one unit of the 
conc. of the reference product 

ρ < 1: Test drug produces higher 
response (lower conc. can produce 
the same response as the ref.); 
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Parallel-Line Model 

33 

• Independent 
• Normality 
• Homogenous variances of 

residuals 

Relative potency 
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Parallelism Test:  
Equivalence Test based on Slope Ratio 

• Hypothesis: test if the ratio of slopes is close to 1. 

 

 

H0 : βT / βS ≤ λL or βT / βS ≥ λU 

Ha :   λL < βT / βS <  λU 
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SLTH  :0 SUT  

SUTSLaH  :

Linearized hypothesis 

                                 or 
 

 

Use Wald test with restricted and unrestricted standard error 
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Equivalence Test based on Slope Ratio: Fieller’s Method 

2 2 2/ , ~ (0, )T S T S T SN         
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• Output of simulation studies: 

      

 

 

 

• Questions to be answered:  
– Can those methods control the type I error rate (≤ 5%)? 

– What is the coverage of CI-based approaches (close to 90%)? 

– What are the impact of sample size and variance on the Type I 
error rate and coverage? 

– Is the decision rule of Test Stat consistent with CI?  
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Simulation Studies 

Type I Error Rate   Pr (Conclude Parallel | Not Parallel) 

Coverage  Pr (CI Covers the True Value of Par.) 
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Consider 

Ha : 0.80 < βT / βS <   1.25 
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Simulation Studies: Type I Error Rate (5%) 
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Simulation Studies: Coverage (Target = 90%) 
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Simulation Studies:  
Type I Error Rate vs. Coverage 

• When the coverage of confidence interval can reach (1-2α) 
100%, say 90%, the type I error rate may not reach α (5%):  

– The definition of coverage is consistent with decision rule of 
the significant test, not the equivalence test; 

Fieller  βT/βS βT βS SD.β Coverage 
(%) 

RR_low 
(%) 

RR_Up 
(%) 

RR_Tost 
(%) 

N = 5 1.25 5 4 0.5 90.04 79.71 5 1.77 

N = 50 1.25 5 4 0.5 90.09 87.4 4.97 0.12 

N = 1000 1.25 5 4 0.5 89.93 87.84 4.97 0.02 

H0: βT / βS ≠  λL H0: λL < βT / βS  < λU 
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• Fieller’s Method: 

– provides a reliable inference for the ratio of slopes 

– controls the type I error rate;  

– However, this method is solvable only when both slopes are 
significant.  

• A confidence interval with a 90% two-sided coverage may 
not assure a type error rate of 5% for equivalence test.  
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Conclusion and recommendation 
 

In many situations the standard error estimated under null hypothesis 
is different from the one estimated without restriction. It leads to the 
failing of consistency in decision making using a significance test and a 
traditional confidence interval in various situations.  

Therefore, in various situations, estimation using regular confidence 
interval should be done after significance testing in order to maintain the 
consistency of decision making. 
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Thanks for your time! 

May I answer any question? 
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