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Appendix

Eigen-decomposition for Likelihood

Proposition. Given the symmetric matrices X, Y ∈ RP×P obey X−1−γX = Y for some
constant γ then X and Y share the same eigenvectors. Further to this, it is also the case
that the ith eigenvalues of X and Y denoted λXi

and λYi
will satisfy the quadratic equation

λ−1
Xi
− γλXi

= λYi
.

A matrix A is invertible iff all of its eigenvalues are non-zero, thus:

Av = λAi
v ⇐⇒ A−1v =

1

λAi

v.

Letting A−1 = Y + γX, from the above we find A−1vi = vi/λAi
and thus Y vi + γXvi =

vi/λXi
. We now have Y vi = vi/λXi

− γXvi, thus vi/λXi
− γλXi

vi = λYi
vi. Dividing

through by the common eigenvector we find the quadratic relation λ−1
Xi
− γλXi

= λYi
.

Solving the group lasso a note on GFLSeg

To solve the group lasso problem in the GFGL subroutine we use the GFLseg algorithm
developed by Bleakley and Vert (2011). This algorithm utilizes a natural block structure
in the group lasso problem (we formulate Eq. 14 in this form):

Γ̂ := arg min
Γ∈R(T−1)×P

1

2
‖Y −XΓ‖2

2 + λ2‖Γ‖2,1 ,
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where Y is a data or target matrix and X is referred to as the design matrix. We see that
the group lasso problem as formulated above is linearly separable across the groups, given
by rows in Γ. We can write the regularizer as; ‖Γ‖2,1 =

∑
T−1 ‖Γt,·‖ and note that the sum

of squared term can also be decomposed across such groups (in our application the groups
refer to time slices).

The update for block t can be found according to (Bleakley and Vert, 2011):

Γt,· ←
1

‖X·,t‖2

(
1− λ2

‖e−tt ‖

)
+

e−tt ,

where e−tt = X>·,t,Y −XΓ−t), and Γ−t denotes the matrix Γ with the t-th row set to zero. If
one applies the above update scheme then the estimates are guaranteed to converge (Yuan
and Lin, 2006). To speed up the algorithm Bleakley et al. adopt an active set strategy.
This takes advantage of the fact we expect only few active blocks (which would correspond
to changepoints), one simply iterates between adding blocks to the active set A according
to maximal violation of the KKT conditions and updating blocks in A according to the
above. The KKT conditions for the group lasso are given as:

−et +
λ2Γt,·

‖Γt,·‖
= 0 ∀ Γt,· 6= 0 ,

‖ − et‖ ≤ λ2 ∀ Γt,· = 0 ,

where et = X>·,t(Y −XΓ) is the residual projected along the t-th group.

Sensitivity to hyper-parameters (λ1, λ2)
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Figure 1: Example of averaged F1-score surfaces for; a) IFGL, and b) GFGL, P = 10, T =
50. Color represents F1-score averaged over each time-series for a particular (λ1, λ2) setting.

2



The surface formed by F1(λ1, λ2) as a function of hyper-parameters provides intuition
as to how the sparsity and smoothing regularizers constrain the estimate. As the example
in Figure1 demonstrates, recovery performance is coupled to both λ1 and λ2. In the IFGL
example, it appears that the performance gradient with respect to smoothing (variation in
λ2) is fairly independent of λ1. With GFGL the dependence between λ1 and λ2 may be
greater due to the grouping effect of the smoothing regularizer. For example, in the GFGL
case, it appears that to achieve a given level of performance increased sparsity regularization
(increased λ1) is required for a small λ2. In the paper, we fix the sparsity level λ1 and discuss
what happens under a range of smoothing parameters λ2 (see changepoint density plots, i.e.
Fig. 2). In the gene-dependency application, one can quite clearly see the inter-dependency
of the smoothing and sparsity parameters for GFGL, it is less pronounced for IFGL (see
Fig. 5).

Parameter estimation via BIC

It is interesting to consider the application of in-sample estimation methods for tuning
parameters. Whilst in traditional linear regression models, one adopts a degree of freedom
based on the number of parameters free to vary, in our regularized estimators the effective
degrees of freedom are much harder to estimate. In the canonical sparse-estimation model
of the lasso (Tibshirani, 1996), it can be shown that at least in standard asymptotic settings
the degrees of freedom are given simply by counting the number of non-zero parameters.

One previously suggested estimate of the degrees of freedom (Monti et al., 2014), was
used in IFGL type models and considers counting the number of active edges at t = 1
and corresponding changes for t = 1, . . . , T . More formally, we can define this as a part
corresponding to the changes: kdiff = |{1(Θi,j,t 6= Θi,j,t−1) |∀i 6= j, t = 2, . . . , T}|, and the
initial edges, such that ktotal = kdiff + |{1(Θi,j,1 6= 0) | ∀i 6= j}|. In Figure 2 below, we
compare the BIC surfaces defined as:

BIC(λ1, λ2) ∝ −2L({Θ̂},Y ) + ktotal(log(T )− log(2π)) .

As BIC is a form of in-sample estimation for the tuning parameters, Fig. 2 only presents
analysis on a single synthetic data-set. This is in contrast to Fig. 1 where the surfaces are
averaged across a set of Ntrain time-series. It is, however, clear from these examples that
the BIC heuristic implemented does not appropriately select a set of parameters which will
perform well in terms of selecting the correct model structure. We see quite clearly that
the minima of the BIC surface does not correspond with good F1-score results.

We hypothesize that this is due in part to the large bias imparted on the likelihood term
by the shrinkage, and relatively strong priors we are using in this circumstance. One may
attempt to correct for this by using GFGL/IFGL as a first stage screening step and then
re-fitting a GGM based on the identified sparsity pattern. In the GFGL case, estimation of
the degrees of freedom may be complicated by the presence of grouping effects. However,
it is not obvious how to effectively estimate these, we therefore leave this as a potential
topic for future research.
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BIC Surface (GFGL)
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Figure 2: Examples of BIC vs F1-score surfaces for IFGL (left) and GFGL (right), P =
10, T = 50.

Accompanying MATLAB code

Code associated with this paper is available online. This package contains the basic Alter-
nating Directed Method of Multipliers algorithm, alongside files to simulate data, demon-
strate, and visualise the recovery of graphical structures.

Requirements

This package depends on two libraries for efficiently computing projection operators:

1. Within GFGL, for solving the group lasso projection we utilise a block-coordinate
descent routine developed by Bleakley and Vert (2011) in the paper "The group fused
Lasso for multiple change-point detection".

http://cbio.ensmp.fr/~jvert/svn/GFLseg/html/
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2. For the solving the independent Fused Graphical Lasso (IFGL) we utilise the effi-
cient routines described in the paper "An Efficient Algorithm for a Class of Fused
Lasso Problems" Liu et al. (2010). Such routines for sparse learning are conveniently
packaged in the Sparse Learning with Efficient Projections (SLEP) package.

http://www.yelab.net/software/SLEP/

*Files are downloaded in the absence of required libraries being specified on the MAT-
LAB path

Installation

NOTE: The installation procedure has been tested in Mac OSX and Linux (Redhat) but
relies on the use of wget, tar and unzip commands. This may not work automatically in
Windows. The required packages (SLEP and GFLseg) may be required to be installed by
hand and can be found at the addresses given in "Requirements".

1. Extract the contents of this folder into a directory included on the MATLAB path

2. Run *install.m* to attempt to automatically download dependencies

Examples

We give two examples of GFGL and IFGL applied to simulated data. The first "normalDemo()"
demonstrates recovery of graphical structure in the standard T>P setting; the second "hd-
Demo()" looks at the high-dimensional case. Hyper-parameters can be specified through
setting lambda1 (for sparsity), or lambda2 (for smoothness), note I/G refer to parameters
for IFGL/GFGL respectively.

>>normalDemo(lambda1G,lambda2G,lambda1I,lambda2I)

Estimation of a graph with size P = 5, T = 30, with n = 5 true edges. Data is from
zero-mean Gaussian with dynamic correlation structure specified by the graph and a single
changepoint located at cp=T/2.

Plot 1 - presents the estimated graph within each segment alongside the recovered
estimates for GFGL and IFGL.

Plot 2 - plots the estimates for the active ground-truth edges (highlighting change-
points) as a function of t = 1, .., T . The grouping property of GFGL in this setting.

High-dimensional setting

>>hdDemo(lambda1G,lambda2G,lambda1I,lambda2I)

Same as above but in high dimensional (P > T ) setting, with P = 20,T = 10, and n = 5
true edges
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