Supplementary material

Proof of Property 2.1

Following Domowitz and White (1982), we made assumptions as follows:

Assumption 1. Sequence $g(y_i, \theta), i = 1, \dots, N$ are continuous functions of θ for $\forall y_i \in \Omega$ and measurable functions of y_i for each $\theta \in \Theta$, where Θ is a compact subset of a finite-dimensional Euclidean space.

Assumption 2. The random vectors ${Y_i}$ are either ϕ -mixing, with $\phi(m)$ of size $r_1/(2r_1 - 1)$, $r_1 \geq$ 1; or α -mixing, with $\alpha(m)$ of size $r_1/(r_1 - 1)$, $r_1 > 1$ (Domowitz and White, 1982).

Assumption 3. Sequence $g(y_i, \theta)$ is dominated by uniformly $(r_1 + \rho)$ -integrable functions, $r_1 \geq$ $1, 0 < \varrho \leq r_1$.

Assumption 4. $\bar{G}_N(\vartheta)$ has a unique maximum ϑ_0 .

Assumption 5. $g(y_i, \theta)$ is continuously differentiable of order 2 for θ .

Assumption 6. $\{g'_j(y_i, \theta)^2\}$ are dominated by uniformly r_2 -integrable functions, where $r_2 > (y_i, \theta) - \frac{\partial g(y_i, \theta)}{\partial \theta}$. $1, g'_{j}(y_{i}, \boldsymbol{\vartheta}) = \partial g(y_{i}, \boldsymbol{\vartheta}) / \partial \vartheta_{j}.$

Assumption 7. Define $\mathbf{Q}_{a,N} = var[N^{-1/2} \sum_{i=a+1}^{a+N} g'(y_i, \vartheta_0)]$. Assume there exists a positive nite metric \mathbf{Q} cugh that $\sum_{i=a+1}^{n} \mathbf{Q}_{a} = \sum_{i=a+1}^{n} g'(y_i, \vartheta_0)$. Assume there exists a positive definite matrix **Q** such that $\lambda^T \mathbf{Q}_{a,N} \lambda - \lambda^T \mathbf{Q} \lambda \to 0$ as $N \to \infty$ for any real non-zero vector λ .

Assumption 8. $\{g_{jk}^{\prime\prime}(y_i, \theta)\}\$ are dominated by uniformly $r_1 + \varrho$ -integrable functions, where $0 < \frac{n}{r}$ $\varrho \leq r_1, g_{jk}''(y_i, \boldsymbol{\vartheta}) = \partial^2 g(y_i, \boldsymbol{\vartheta}) / \partial \vartheta_j \partial \vartheta_k.$

Assumption 9. For all N sufficiently large, the matrix $\bar{G}_N''(\theta) = 1/N\Sigma_{i=1}^N E[g''(y_i, \theta)]$ has constant rank in some open ϵ -neighborhood of ϑ_0 .

We can strengthen slightly the memory requirements of Assumption 2 to allow the application of Theorem 2.6 of Domowitz and White (1982).

Assumption 2'. Assumption 2 holds, and either $\phi(m)$ is of size $r_2/(r_2 - 1)$ or $\alpha(m)$ is of size $max[r_1/(r_1-1), r_2/(r_2-1)], r_1, r_2 > 1.$

Under Assumptions $1 - 4$, $g(y_i, \theta)$ satisfies conditions of Theorem 2.5 of Domowitz and White (1982), then, we have

$$
\left|N^{-1}\sum_{i=1}^N\left[g(y_i,\boldsymbol{\vartheta})-E(g(y_i,\boldsymbol{\vartheta}))\right]\right|\to 0, a.s.
$$

Furthermore, apply Theorem 2.2 of Domowitz and White (1982), Property 2.1(a) can be proved.

Under assumptions 2', 5, 8 and 9, $g_{jk}^{\prime}(y_i, \theta)$ satisfies conditions of Theorem 2.5 of Domowitz and the (1982) therefore White (1982), therefore,

$$
\left|N^{-1}\sum_{i=1}^N[g_{jk}^{''}(y_i,\boldsymbol{\vartheta})-E(g_{jk}^{''}(y_i,\boldsymbol{\vartheta}))]\right|\to 0, a.s.
$$

Thus, $|G''_N(y, \vartheta) - \bar{G}''_N(\vartheta)| \to 0$, *a.s.* From $\hat{\vartheta}_N \to \vartheta_0$ *a.s.*, by the result in Theorem 2.3 in Do-
meanite and White (1983) are home $|G''_N(x, \hat{\vartheta}) - \bar{G}''_N(x, \hat{\vartheta})| \to 0$ as a surface $\hat{\vartheta}$ is hatter $\hat{\vartheta$ mowitz and White (1982), we have $|G_N''(y, \tilde{\theta}) - \bar{G}_N''(\theta_0)| \to 0$, *a.s.*, where $\tilde{\theta}$ is between $\hat{\theta}_N$ and θ_0 .
Under assumptions 2', 5, 6 and 7, according to Theorem 2.6 in Domowitz and White (1982), we get $\overline{N}G'_{N}(\mathbf{y},\boldsymbol{\vartheta}_{0}) \xrightarrow{L} N(\mathbf{0},\mathbf{Q}_{N})$, where $\mathbf{Q}_{N} = \mathbf{Q}_{0,N} = var(\mathbf{w})$ √ $\sqrt{N}G'_{N}(\mathbf{y},\boldsymbol{\vartheta}_{0}) \stackrel{\nu}{\longrightarrow} N(\mathbf{0},\mathbf{Q}_{N})$, where $\mathbf{Q}_{N} = \mathbf{Q}_{0,N} = var(\sqrt{N}G'_{N}(\mathbf{y},\boldsymbol{\vartheta}_{0}))$. Applying mean-value argument analogous (2.6) Property 2.1(b) is proved.