Supplement to “Pairwise Estimation of Multivariate Gaussian Process Models With
Replicated Observations: Application to Multivariate Profile Monitoring”

Yongxiang Li, Qiang Zhou*, Xiaohu Huang, Li Zeng

*corresponding author email: gq.zhou@arizona.edu

A. PROPOSITIONS

Proposition 1. Under the usual regularity conditions, as n — oo, estimates of the
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augmented parameters in ®” are consistent, i.e., ® —>@, and
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where H is a lower triangular block matrix with blocks H,, and J is a

symmetric matrix containing blocks J__, given by
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Proof: Clearly, if s, = 1 and r, = 2, 3,..., k (this corresponds to p = 1, 2, ..., k — 1),

A

O, is a consistent estimator because it falls into a regular maximum likelihood

estimation framework. Next we prove that, for s, > 1 (i.e., p > k), the estimator @)[p]

obtained by maximizing the conditional likelihood Ly, (®[p];Y[p]‘(:)[1],---,(:)[&1]) is
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consistent, given the consistency of all (:)[i] s with i <p.
Since C:)[i]—p>®[i] with i < p, then v[p]—>v[p] Recall that T, =¢,(u,) and
Urpp = Vipy U{;}- Define another function e, zf[p] (T[p],v[p]). With fixedv,,
glp](u[p])zg[p] (V[p],a)[p]) is monotonically decreasing with @, based on
relationships from the HD, i.e., ¢} (v[p],ﬂ)<§[p] (V[p],a)[p]) T; <§[p]( (o]’ )
Define the following events

A= { (1 € [g[p]( [(;}’ )’ g[p]( [(;%’O)J}

=AUA ={T}, <§[p1( 5, )}U{T[p] >§[p]( [(31)0)}
{C[p]( (p1: 7% ) éV[p]("[p]’”)>‘3‘}=
B, = {gtp] (Vip1:0) = €1 (951, 0) > a}
{‘T[(pn]) [p]‘>a}.

where )/ T[(p]) denotes the estimate is based on a sample of size n.

Since Vi, —p>v[p] and ¢, is a continuous function, then for any a satisfying 0 <a <
M, where M = min(T[p] — Sl (v[p], ) g[p]( (o]’ ) T[p]), and any ¢ > 0, there must
exist a common Ni(¢) > 0, such that for any sample size n1 > Ni(¢g),
Pr(B,)<&/4 and Pr(B,)<el/4.
Since A'cB, and A’ =B, , we have A°c{B UB,} . In addition with
Tio1=Stol (V[p],a)[p]) , we have Pr(4°) < &/2 for any sample size n1 > Ni(¢). Since
P(C)=P(C|A)P(A)+P(C|A°)P(A%),

it immediately follows that Pr(C) < Pr(C|4) + Pr(A4). It is noted that 'f[p] can be
consistently estimated from L, (®[p];Y[p] ‘é[ll""'@[ p_l]) if 4 is true (in this case, it

is possible that T[p] Tpeven if &, # ey, with giveny, ). Hence there exists an



Na(€) > Ni(e), such that for any sample size n2 > Na(e), Pr(Cl4) < &/2 and thus Pr(C) <
¢, where the choice of n2 is independent of 1. Therefore, for any a satisfying 0 < a <
M, and any ¢ > 0, there exists an N = N2(¢), such that for any sample size n > N,

P(\T}p] T[> a) <e .

Thus T[p] is a consistent estimator. By the continuous mapping theorem,

@y = 4 (ol ('f[p],V[p]) is also consistent. All other parameters in ®[p] are estimated

consistently, which is straightforward from the regular maximum likelihood

estimation. Therefore ®[p] and hence ®  are consistent.

Now we prove the asymptotic normality. By applying the Taylor series expansion of

the score function U[p](®[p];Y[p] |®[l],---,®[p71])20 around the true parameter

values and dropping higher order terms (Lehmann 1983; Cox and Reid 2004), we get
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By the law of large numbers,
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By the central limit theorem,
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since E[U[p](G)[p];y[p] |G)[l],---,®[pfl])]20for all p. According to Lemma 5.2 in

Chapter 6 of Lehmann (1998), the limit distribution of ~/n ((:)*—(9*) is that of

Jalr

H™'U , following which the asymptotic normality of O s then obtained
Jn(6-@")~N (o, HlJ(Hl)T).

To prove the equation (A.3), we first define the random column vector y = [y1; y2; ...,;

y«], where y — Fp ~ N(0, C). The covariance matrix C consists of blocks C;s defining

cross-covariance between the rth and sth profiles. Let AA” = C and define a random

vector u ~ N(0, I) with the same dimension as y, then Au =y — FB. Write

AT = [AI,---,AH such that the block matrices satisfy A Al = C,, and define

Al = [AIP ,AID ], then we have

[p]
T Crp,rq Crp,sq
ApAra = Croq = C C :
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The pth conditional log-likelihood component can be written as (p =1, 2, ..., K)

1 _
|y (®[p];y[p] |®[1]""'®[p71]) - _E(Iog‘c[p]‘J“ (y[p] - ':[p]B[p])T Cioy (y[p] —FioiBro) )) ’

where Cpp = Cpp.p) and F :diag(Frp : Fsp). By taking its score function, plugging

into (A.2) and after some derivations and simplification, the equation (A.3) can be

derived. W

Proposition 2. Under the usual regularity conditions, as n — oo, estimates of the



A P
original parameters in @ are consistent, i.e., @ >®, and
Jn(6-8)~N (O,BHlJ(Hl)T BT) (A4)

Proof: By the linear relationship 0= B(:)*, the proposition 2 can be quickly obtained

by the delta method. W

Define K x 1 vectors =[ayy, @prer @]’ > £ =Ty Tpogoeon Tigl' > @nd
& =[O g ()r s Sy (D17 » whose elements are arranged according to the sequence
S. The following proposition is obtained.

Proposition 3. Under the usual regularity conditions, as n — oo, estimates of the

AP
cross-correlation factors are consistent, i.e., t—t, and

Jn(i-t)~N (o, aéc B,H'J(H?) Bl %] (A.5)

®' O0®

where matrix B is defined based on the linear transform & =B,0".

Proof: The proposition 3 is obvious by the continuous mapping theorem and the delta

method. W
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B. NOTATION

[Vi;Vy5-;vy5e-] | denotes [v),V}, -+, V] ,---]", a column vector
[p] denotes the index to the pth bivariate GP model (a pair of profiles)
Yio responses of the pth model, i.e. Y, = [yrp ;ysp]
i regression coefficient of the pth model, i.e. B, = [Bijp) ; Bi:p)]
Vi all parameters in the covariance function of the pth model, i.e.
Vi =100 007 0l 0y ol
o o s, in the Hypersphere Decomposition of the pth model
ol measurement error of the pth model, i.e. o) =g,
O all parameters of the pth model, i.e. ©,,; =[B,;; W]
(0] all parameters of the MGP, i.e. @=[p; ¢; 6;0m; Q]
0} a collection of the parameters in all bivariate models, i.e.

*

® =[®[1];®[2];---;®[K]]




