
Supplementary material

Optimal control and additive perturbations help in

estimating ill-posed and uncertain dynamical

systems

1 Notations and Norm inequalities

The de�nition of the Tracking estimator is based on the following optimization problem:

Minimize: C(Y ;x, u, x0, θ, U) =
∫ T

0
‖Cx(t)− Y (t)‖22 dt+

∫ T
0
‖u(t)‖2U dt

Subject to:


ẋ(t) = f(t, x(t), θ) +Bu(t)

x(0) = x0

u ∈ L2
(
[0, T ] ,Rdu

) (1.1)

The cost S is pro�led on the admissible �perturbation� u:

S(Ŷ ; θ, U) = min
u∈La

C(Ŷ ;u, θ, U) (1.2)

and the Tracking estimator is the global minimum of S

θ̂T = arg min
θ∈Θ
S(Ŷ ; θ, U)

For this reason, it is useful to introduce Xθ,x0,u the solution of :{
ẋ(t) = f(t, x(t), θ) +Bu(t)

x(0) = x0

(1.3)

We recall ‖.‖2U and ‖.‖L2,U are respectively the weighted version of the squared euclidean norm

and L2 norm (e.g ‖f(t)‖2U = f(t)TUf(t) and ‖f‖2L2,U =
∫ T

0
‖f(t)‖2U dt ), for U = Id we simply use

the classic notation ‖.‖2 and ‖.‖L2 . For matrices, we use the Frobenius norm ‖A‖2 =
√∑d

i,j a
2
i,j .

Continuity and di�erentiability have to be understood according to these norms.

We recall conditions C1-C11 introduced in the paper:

C1 The vector �eld f has a compact support Q w.r.t x, that is Q is compact and f(t, x, θ) = 0 if

x /∈ Q. ∀θ ∈ Θ, there is a unique solution Xθ of the original ODE de�ned on [0, T ] .

C2 ∀θ ∈ Θ, (t, x) 7−→ f(t, x, θ) is continuous on [0, T ]×Q and ∀t ∈ [0, T ] , x 7−→ ∂f
∂x (t, x, θ) exists

and (t, x) 7−→ ∂f
∂x (t, x, θ) is continuous on [0, T ]×Q.

C3 The signal t 7−→ Y (t) is continuous on [0, T ] (at least has a continuous representative).
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C2 bis ∀θ ∈ Θ, (t, x) 7−→ f(t, x, θ) is C2 on [0, T ]×Q and bounded.

C3 bis The signal t 7−→ Y (t) is C2 on [0, T ].

C4 The model is structurally identi�able at (θ∗, x∗0) i.e

∀ (θ, x0) ∈ Θ×Q ; CXθ,x0
= CXθ∗,x∗0

=⇒ (θ, x0) = (θ∗, x∗0) .

C5 The functions (t, x, θ) −→ ∂f
∂θ (t, x, θ), (t, x, θ) −→ ∂2f

∂x∂θ (t, x, θ) are continuous on [0, T ]×Q×Θ

and bounded.

C6 The functions (t, x, θ) −→ ∂2f
∂2θ (t, x, θ), (t, x, θ) −→ ∂3f

∂x∂2θ (t, x, θ),(t, x, θ) −→ ∂3f
∂2x∂θ (t, x, θ) and

(t, x, θ) −→ ∂3f
∂3x (t, x, θ) are continuous on [0, T ]×Q×Θ and bounded.

C7
∂2S(Y ∗;θ∗,U)

∂θT ∂θ
is non singular.

C8 Observations (ti, Yi) are i.i.d with V ar(Yi | ti) = σId′ with σ < +∞ and the ti are uniformely

distributed on [0 , T ].

C9 It exists s ≥ 1 such t 7−→ f(t,X∗(t), θ∗) is Cs−1
(
[0 , T ] ,Rd

)
and
√
nK−s −→ 0 and Ks

n −→ 0.

C10 The meshize maxi |τi+1,K − τi,K | −→ 0 when K −→ +∞.

We recall also the following notations:

Xθ,x0
: solution of ẋ(t) = f(t, x, θ) with initial condition Xθ,x0

(0) = x0.

Xθ,x0,u: solution of ẋ(t) = f(t, x, θ) +Bu with initial condition Xθ,x0,u(0) = x0.

ΛU (Y, t, x, u) := ‖Cx− Y (t)‖22 + ‖u‖2U , running cost for the Optimal Control Problem (1.1).

φ := max Θ×Q×[0, T ] ‖Xθ,x0
(t)‖2

fx := max [0, T ]×Q×Θ

∥∥∥∂f∂x (t, x, θ)
∥∥∥

2

fxx := max [0, T ]×Q×Θ

∥∥∥∂f2

∂2x (t, x, θ)
∥∥∥

2

D(Y ) := supθ∈Θ ‖Y − CXθ,u(.Y )‖L2 <∞

E(Y ) := 2
√
d ‖C‖2

√
e2
√
dfxT−1

2
√
dfx

D(Y )

F (Y ) := 1
2 ‖B‖

2
2 d

2T 2e2
√
dfxT

(
fxxE(Y ) + 2 ‖C‖22

)
λ1 (Y ) :=

√
dT‖B‖22EQ(Y )

4
e2
√
dfxT

fx

λ2 (Y ) := d ‖B‖22

(
fxxE(Y )+2‖CTC‖

2

8fx
2

)√(
e2
√
dfxT − 1− 2

√
dfxT

)(
e2fxT − 1− 2fxT

)
λ3(ζ) = F (Y ∗) + 1

2

(
L1ζ +

√(
L1ζ + 4

√
d ‖C‖2 L2

)
L1ζ

)
λ4(ζ) = F (Y ∗) + L3ζ

L1 = ‖B‖22 d2
√
dT 2e2

√
dfxT fxx ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

L2 = d ‖B‖22 T 2e2
√
dfxT ‖C‖2
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L3 = d
3
2 ‖B‖22 T 2e2

√
dTfxfxx ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

(√
d‖C‖2L2

λ−H(Y ∗) + 1
)

B (Y ∗, ζ) =
{
Y ∈ L2

(
[0, T ] ,Rd′

)
s.t ‖Y − Y ∗‖L2 < ζ

}
In the following proofs, we use repeatedly the following norm inequalities: ‖AX‖2 ≤

√
d ‖A‖2 ‖X‖2

and d
dt ‖ϕ(t)‖2 ≤

∥∥∥dϕdt (t)
∥∥∥

2
where t 7→ ϕ(t) is a matrix valued function. Indeed, we have:

d
dt ‖ϕ(t)‖2 = d

dt

√∑I
i=1

∑J
j=1 ϕi,j(t)

2

=
2
∑I
i=1

∑J
j=1 ϕi,j(t)ϕ̇i,j(t)

2
√∑I

i=1

∑J
j=1 ϕi,j(t)

2

=
∑I
i=1

∑J
j=1 ϕi,j(t)ϕ̇i,j(t)

‖ϕ(t)‖2
≤ ‖ϕ(t)‖2‖ϕ̇(t)‖2

‖ϕ(t)‖2
= ‖ϕ̇(t)‖2

The last inequality is obtained by Cauchy-Schwarz.

2 Extended simulation: Misspeci�ed FitzHugh-Nagumo model

The FitzHugh-Nagumo is a nonlinear two-dimensional ODE introduced for modeling neurons.

For well-chosen parameters and initial conditions, it exhibits a periodic behavior, with typical

oscillations corresponding to a limit cycle.{
V̇ = c

(
V − V 3

3 +R
)

Ṙ = − 1
c (V − a+ bR)

. (2.1)

The true parameters are a∗ = b∗ = 0.2 and c∗ = 3 and x∗0 = (V ∗0 , R
∗
0) = (−1, 1), and are taken

from [7] where it was introduced as a benchmark for parameter estimation in ODE. In our case,

the original model is altered by a step function Z de�ned by: Z(t) = 0.3I[5, 10](t) + 0.3I[15, 20](t).

This function is originally present in the model proposed by [4] to picture an exogenous stimuli.

Hence, the true model is in fact{
V̇ = c

(
V − V 3

3 +R+ Z
)

Ṙ = − 1
c (V − a+ bR)

(2.2)

but we still use (2.1) as the true model during the estimation procedure. To give a clearer idea of

the in�uence of Z in the resulting dynamics, we plot in �gure 2.1 the solution of (2.1) and (2.2)

for the same parameter value (a∗, b∗, c∗) and initial conditions x∗0. We also plot an example of

generated data with the parameter θ∗: the data are generated by adding a Gaussian noise to the

trajectories of (V,R), for various sample sizes, see �gures . This experiment gives an idea of the

robustness of estimation with respect to model misspeci�cation (the case of the estimation of a

well-speci�ed model is not discussed here as NLS, GP and Tracking behave similarly). The results

are presented in table 2.2. In that case, Tracking or GP give notably superior estimates thanks to

the use of approximate models: the estimates are obtained by pro�ling the possible perturbations of

the model, and both the bias and variance of the estimators are reduced with respect to Nonlinear

Least Squares. For n = 100, Tracking and Generalized Pro�ling are equivalent, but for a smaller

size, Tracking gives a smaller bias and variance.
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Fig. 2.1: Left: Solution of (2.1) and (2.2). Right:Example of simulated data and corresponding
curves.

(n, σ) Bias(θ̂) Tr
(
V (θ̂)

)
×10−4 MSE (×10−2)

(100, 0.1)

θ̂T 0.30 6.36 3.41
θ̂NLS 0.43 13 7.13
θ̂GP 0.30 7.26 3.48

(50, 0.1)

θ̂T 0.28 9.31 3.45
θ̂NLS 0.42 17 6.52
θ̂GP 0.36 11 5.47

Tab. 2.1: Bias, Variance, MSE, for parameter estimation for ill speci�ed FitzHugh-Nagumo model

3 Pontryagin Maximum Principle and perturbed ODE

We want to �nd the optimal controls, i.e the solutions of the problem (1.1) in order to compute

S. By applying theorem 3.1 to the problem (1.1), we derive that the optimal processes (Xθ,u, u)

are obtained by solving a Boundary Value Problem.

Theorem 3.1. If conditions C1, C2 and C3 are satis�ed, then the optimal processes (Xθ,u, u) for

the problem (1.1) satisfy the Pontryagin Maximum Principle. That is, the optimal control and S
are respectively equal to:

u(t) =
1

2
U−1BT pθ(t) (3.1)

and

S(Y ; θ, U) =

∫ T

0

‖CXθ,u(t)− Y (t)‖22 dt+
1

4

∫ T

0

pθ(t)
TBU−1BT pθ(t)dt

where pθ is called the adjoint vector, an absolutely continuous vector valued function, de�ned such

that (Xθ,u, pθ) is the solution of the extended ODE with boundary constraint:
Ẋθ,u(t) = f(t,Xθ,u(t), θ) + 1

2BU
−1BT pθ(t)

ṗθ(t) = −∂f∂x (t,Xθ,u(t), θ)T pθ(t) + 2CT (CXθ,u(t)− Y (t))

(Xθ,u(0),pθ(T )) = (x0, 0)

. (3.2)

Proof. For applying the Pontryagin Maximum Principle, we need to check the required assump-

tions, given in [2].

The regularity assumptions C1 and C2 are enough in order to satisfy the �Classical regularity
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hypotheses� (22.1, page 427 in [2]): F (t, x, u) := f(t, x) + Bu and (t, x, u) 7−→ ΛU (Y, t, x, u) :=

‖Cx− Y (t)‖22 + ‖u‖2U are continuous, have derivatives w.r.t x continuous on [0, T ]×Q.
Since we do not know a priori if the optimal control is bounded, we need also to check hypothesis

22.16 p. 454 in [2]: there exists ε > 0, a constant c and a summable function d such that, for

almost every t ∈ [0, T ], we have:

‖x−Xu(t)‖2 ≤ ε =⇒
∥∥∥∥∂ (F,ΛU )

∂x
(t, x, u(t))

∥∥∥∥
2

≤ c ‖(F,ΛU ) (t, x, u(t))‖2 + d(t).

The hypothesis 22.16 is also satis�ed because∥∥∥∂f∂x (t, x, u)
∥∥∥

2
+
∥∥∂ΛU
∂x (t, x, u)

∥∥
2
≤

∥∥∥∂f∂x (t, x)
∥∥∥

2
+ 2

∥∥CT (Cx− Y (t))
∥∥

2

≤ fx + 2
∥∥CT (Cx− Y (t))

∥∥
2

on [0, T ] × Q. We can use Pontryagin Maximum Principle to derive the existence of an arc

p : [0, T ] −→ Rd and a scalar η satisfying ∀t ∈ [0, T ], (η, p(t)) 6= 0 (non-triviality condition),

p(T ) = 0 (transversality condition),

−ṗ(t) =
∂

∂x
Hη(t,Xu(t), p(t), u(t)) (adjoint equation)

and

Hη(t,Xu(t), p(t), u(t)) = sup
u
Hη(t,Xu(t), p(t), u(t)) (maximum condition)

where Hη is the Hamiltonian given by Hη(t, x, p, u) = pT f(t, x, u)− ηΛU (Y, t, x, u).

The nontrivially condition imposes η = 1. Indeed, if η = 0, the adjoint vector p is the solution

of the linear ODE {
ṗ(t) = −p(t)T ∂f∂x (t,Xu(t), u(t))

p(T ) = 0
.

By uniqueness, this implies that it should satis�es p(t) = 0 for all t in [0, T ], which violates the

nontrivially condition.

For all (t, x, p), H(t, x, p, u) is strictly concave w.r.t u , hence it has an unique maximum given

by the �rst order condition:

∂H

∂u
(t, x, p, u) = 0⇔ u =

1

2
U−1BT p

For every t, we can compute the optimal control u with the maximum condition, which gives

u(t) = 1
2U
−1BT p(t). Since we have:

∂H

∂x
(t, x, p, u) =

∂f

∂x
(t, x)T p− 2CT (Cx− Y (t))

we know the adjoint vector is driven by the ODE

ṗ(t) = −∂f∂x (t,Xu(t))T p(t) + 2CT (CXu(t)− Y (t))

by merging this equation with the original one ruling Xū and with the optimal control expression,

we obtain that (Xu(t), p(t)) is solution of the extended ODE with boundary constraint (3.2).



4 Existence theorem 6

4 Existence theorem

Theorem 4.1. If conditions C1 and C2 are satis�ed, then for all signals Y ∈ L2([0, T ] ,Rd
′

) and

for all θ ∈ Θ, the problem (1.1) admits at least one solution. It exists a process (Xθ,u, u) that

minimizes the cost i.e C(Y ;Xθ,u, u, θ, U) = minu∈L2
a
C(Y ;Xθ,u, u, θ, U).

Proof. For the sake of notation clarity, we drop the dependence in θ for the vector �eld and the

solution. Lemma (4.2) ensures the existence of admissible processes for problem (1.1), thus, we

can consider an admissible minimizing sequence (Xui , ui). Since we have:

λ ‖ui‖2L2 ≤ C(Y ;Xui , ui, U)

with λ maximum eigenvalue of U , the sequence {ui} is uniformly bounded in L2([0, T ] ,Rd), a
re�exive Banach space, according to theorem III.27 in [1], its exists a subsequence converging

weakly to a limit u. Using Hölder inequality:

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq with
1

p
+

1

q
= 1

, we also know the subsequence is bounded in L1([0, T ] ,Rd). (For the sake of notation here and

in the following we still denote the subsequence by {ui}). For the following, let us denote ũ the

upper bound of the sequence {ui}.
Knowing that:∥∥∥Ẋui(t)− Ẋ(t)

∥∥∥
2
≤ ‖f(t,Xui(t))− f(t,X(t))‖2 + ‖Bui(t)‖2
≤ fx ‖Xui(t)−X(t)‖2 +

√
du ‖B‖2 ‖ui(t)‖2

(here fx < ∞ thanks to C2 as a continuous function on a compact subset). Gronwall's lemma

gives us:

‖Xui(t)−X(t)‖2 ≤
√
du ‖B‖2

∫ t
0
efx(t−s) ‖ui(s)‖2 ds ≤

√
du ‖B‖2 efxt

∫ t
0
‖ui(s)‖2 ds

and so:

‖Xui(t)‖2 ≤ ‖Xui(t)−X(t)‖2 + ‖X(t)‖2 ≤
√
du ‖B‖2 e

fxt

∫ t

0

‖ui(s)‖2 ds+ φ

ui, being bounded in L1([0, T ] ,Rd), we deduce Xui (modulo a subsequence) is uniformly bounded

on [0, T ] and since:∥∥∥Ẋui(t)
∥∥∥

2
≤

∥∥∥Ẋui(t)− Ẋ(t)
∥∥∥

2
+
∥∥∥Ẋ(t)

∥∥∥
2

≤ ‖f(t,Xui(t))− f(t,X(t))‖2 + ‖Bui(t)‖2 + ‖f(t,X(t))‖2
≤ fx ‖Xui(t)−X(t)‖2 + ‖Bui(t)‖2 + f

we conclude from that Ẋui is bounded in L2([0, T ] ,Rd), hence (again modulo a subsequence) Ẋui

converges weakly to a limit Ẋ.

Since the sequence Xui is equicontinuous because

‖Xui(t)−Xui(t
′)‖2 ≤ f

∣∣∣t− t′ ∣∣∣+
√
du ‖B‖2 ũ

√
|t− t′ |
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we can invoke Arzela-Ascoli theorem to obtain the uniform convergence (modulo a subsequence)

of Xui toward a continuous function X on [0, T ]. Using the identity, Xui(t) = x0 +
∫ t

0
Ẋui(s)ds

and by taking the limit we know X is an absolutely continuous function with Ẋ(t) = Ẋ(t) a.e.

We respect the hypothesis of theorem 6.38 in [2] we deduce from that:

C(Y ;X,u, U) ≤ lim inf
i−→∞

C(Y ;Xui , ui, U) = inf C(Y ;x, u, U).

We now demonstrate (X,u) is an admissible process (thus the in�mum is reached). Using uniform

convergence we have X(0) = x0. The last thing left to show is that X is a trajectory corresponding

to u, thus X = Xu. For any measurable subset A of [0, T ] we have:∫
A

(
Ẋui(t)− f(t,Xui(t))−Bui(t)

)
dt = 0

by weak convergence we directly obtain
∫
A
Ẋui(t)dt −→

∫
A
X(t)dt and

∫
A
Bui(t)dt −→

∫
A
Bu(t)dt.

Using continuity of the vector �eld on the compact [0, T ]×Q and invoking dominated convergence

theorem:
∫
A
f(t,Xui(t))dt −→

∫
A
f(t,X(t))dt. By taking the limit we obtain:∫

A

(
Ẋ(t)− f(t,X(t))−Bu(t)

)
dt = 0.

Hence, we have indeed demonstrate u ∈ L2([0, T ] ,Rd) and{
Ẋ(t) = f(t,X(t)) +Bu(t) a.e on [0, T ]

X(0) = x0

which �nishes the proof.

To prove the existence of solutions for the optimal control problem (1.1) de�ning our estimator,

we have considered in the proof a minimizing sequence (Xui , ui). But for doing so, we need to

ensure the controlled ODE (1.3) has indeed solutions, it is the point of the following lemma.

Lemma 4.2. Let us suppose conditions C1, C2 and, in the presence of functional parameters, that

z1,0 ∈ Θf . Then there exist admissible processes for the perturbed ODE (1.3) i.e ∃u 6= 0 s.t u ∈ L2
a.

Proof. In the �rst part of the lemma we will assume there is no functional parameter and B = Id

i.e the perturbated ODE is simply X = f(t,X) + u.

We assume that no admissible process u exists, i.e we can not �nd a control u de�ned on [0, T ],

with ‖u‖L1 6= 0 s.t the corresponding solutionXu exists on [0, T ]. Then each solutionXu value must

leave every compact in �nite time (Lemma 2.9 in [9]). Let us consider a compact C ′ which strictly

contains X value. We de�ne δ′ > 0 such that for a given x if ∃t ∈ [0, T ] ‖x−X(t)‖2 < δ′ =⇒ x ∈
C ′. Let us consider Xu the solution corresponding to a control u such that 0 < ‖u‖L2 < δ′

2eTfx
.

Let us de�ne t′ ∈ [0, T ] the time the solution Xu leaves C ′ we have:∥∥∥Ẋu(t)− Ẋ(t)
∥∥∥

2
≤ ‖f(t,Xu(t))− f(t,X(t))‖2 + ‖u(t)‖2
≤ fx ‖Xu(t)−X(t)‖2 + ‖u(t)‖2



5 Su�ciency of the Pontryagin maximum principle 8

Gronwall's Lemma implies that

‖Xu(t′)−X(t′)‖2 ≤
∫ t′

0
efx(t

′−s) ‖u(s)‖2 ds
≤ eTfx

∫ t′
0
‖u(s)‖2 ds

≤ δ′

2

So Xu(t′) is strictly contained in C ′, hence the contradiction.

Now let us deal with presence of functional parameters, we have to consider the extended ODE:
ẋ = f(t, x, z1)

ż1 = z2

ż2 = v2

Here the autonomous linear subsystem: {
ż1 = z2

ż2 = v2

ful�lls the Kalman condition: according to [8] (Chapter 3, Theorem 3 p 89), this system is control-

lable at any time t, from any initial conditions. Hence, starting from an initial condition z1,0 ∈ Θf

we can �nd controls (v1, v2) such that the resulting z1 gives a solution of ẋ = f(t, x, z1) de�ned on

[0, T ]. Then, we can apply the �rst part of the lemma to conclude.

5 Su�ciency of the Pontryagin maximum principle

The PMP only gives necessary conditions satis�ed by optimal processes (Xθ,u, uθ). In order to

turn these conditions into su�cient ones, we need to impose a lower bound condition on λ.

1. A �rst lower bound for local optimality is derived by using the quadratic conditions devel-

opped by Milyutin and Osmolovskii [5].

2. A second lower bound for global optimality is derived by �nding a condition on λ ensuring

uniqueness of the solution of BVP.

5.1 Local optimality of controls respecting the PMP

Theorem 5.1. Let a process (Xθ,u, u) be an admissible process respecting the PMP presented in

theorem 3.2. If C1, C2bis and C3bis are satis�ed, then for λ such that:

λ >
d

3
2

2

∥∥∥∥t 7−→ ∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)∥∥∥∥
L2

∫ T

0

(∫ t

0

‖Rθ(s)B‖22 ds
)
dt

or:

λ > λ1(Y )fxx, (5.1)

then (Xθ,u, u) is a strong local minimum for the problem (1.1).

Proof. We use theorem 11.1 in [5] proving, by the means of the so-called quadratic conditions,

su�ciency of the Pontryagin maximum principle for obtaining a bounded strong minimum. We

use the same formalism and we consider the alternative cost, J(x0, y0, xf , yf ) = k1yf , the extended
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ODE:
ẋ = f(t, x) +Bu

ẏ = Λλ(Y, t, x, u)

(x(0), y(0)) = (x0, y0)

and the constraint K(x0, y0, xf , yf ) =

(
k2 (x0 − x∗0)

k3y0

)
= 0. Here k1 > 0 and k3 > 0, k2

depending on k1 and k3 (its expression is given by 5.2). Obviously any minimizer (Xu, y, u) of the

alternative cost is a minimizer of our original cost and reciprocally. We will show for λ large enough,

the Pontryagin maximum principle is a su�cient condition for optimality for the alternative cost

and hence for our original cost.

We de�ne l(α0, β, ν) = α0J(ν) + βTK(ν) = α0k1yf + βT1 k2 (x0 − x∗0) + β2k3y0 with ν =

(x0, y0, xf , yf ), hence ∂l
∂v (α0, β, ν) =

(
k2β1 k3β2 0 k1α0

)
, we also introduce the extended

Pontryagin function Hλ(p, p1, w, t) = pT (f(t, x) + Bu) + p1Λλ(Y, t, x, u), with here w = (x, y, u).

With our regularity hypothesis, our cost and extended ODE vector �eld are twice di�erentiable

as required by [5]. As in Milyutin et al., for a given process (Xu, y, u), we denote M0 the set of

t-uples η = (α0, β1, β2, p, p1) verifying

α0 ≥ 0, α0 + |β1|+ |β2| = 1

ṗ = −∂f∂x (t,Xu(t))T p− p12CT (CXu(t)− Y (t))

ṗ1 = 0

(p(0), p1(0)) = (k2β1, k3β2)

(p(T ), p1(T )) = (0, −k1α0)
∂Hλ
∂u (p(t), p1, Xu(t), y(t), u(t), t) = 0

∀t ∈ [0, T ] , maxuHλ(p(t), p1(t), Xu(t), y(t), u, t) = Hλ(p(t), p1(t), Xu(t), y(t), u(t), t)

. (5.2)

Thanks to lemma 5.2, we know the set M0 is non empty if and only if (Xu, u) respects the

Pontryagin Maximum Principle version presented in theorem 3.2. Moreover, we have an expression

for a tuple η =
(
α0, β1, β2, p, p1

)
respecting (5.2), it is under the form η =

(
1
k1
, β1,− 1

k3
, p,−1

)
where β1 the vector with each component equal to 1

d

(
1− 1

k1
− 1

k3

)
and p such that (Xu, p) solution

of the BVP presented in theorem 3.2

We now introduce the Quadratic Form:

Ωλ(η, w̃) = −
∫ T

0

w̃(t)T
∂2Hλ(p(t), p1, Xu(t), y(t), u(t), t)

∂2w
w̃(t)dt

with w̃ = (x̃, ỹ, ũ) belonging to the critical cone K i.e, the points verifying:

∂J
∂ν (ν)ν̃ ≤ 0
∂K
∂ν (ν)ν̃ = 0

⇐⇒


ỹf ≤ 0

x̃0 = 0

ỹ0 = 0

and the linear ODE:

˙̃x = ∂f
∂x (t,Xu(t))x̃+Bũ

˙̃y = ∂Λλ
∂x (t,Xu(t), u(t))x̃+ ∂Λλ

∂u (t,Xu(t), u(t))ũ
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In our case, ∂
2Hλ(p,p1,w,t)

∂2w is a sparse matrix:

∂2Hλ(p, p1, w, t)

∂2w
=


∂2

∂2x

(
pT f(t, x)

)
+ 2p1C

TC 0 0

0 0 0

0 0 2p1λId


so the Quadratic Form has a simpler expression:

Ωλ(η, w̃) = −
∫ T

0
x̃(t)T

(
∂2

∂2x

(
pT f(t,Xu(t))

)
+ 2p1C

TC
)
x̃(t)dt− 2λp1 ‖ũ‖2L2

From this Quadratic Form, Milyutin et al. have expressed necessary and su�cient conditions for

the given process (Xu, y, u) to be a Pontryagin minimum.

Condition A: The set M0 is nonempty and ∀w̃ ∈ K, maxη∈M0
Ωλ(η, w̃) ≥ 0.

According to theorem 10.1 in [5], condition A is a necessary condition for a Pontryagin minimum.

But if we strengthened condition A, we can turn it into a su�cient condition for (Xu, y, u) to be

a bounded strong minimum.

We denote Leg+(M+
0 ) the subset of M0 respecting the additional conditions:

1) Strict maximum:

∀t ∈ [0, T ] ,∀u 6= u(t), Hλ(p(t), p1, Xu(t), y(t), u, t) < Hλ(p(t), p1, Xu(t), y(t), u(t), t).

2) Strengthened Legendre-Klebch condition: ∀t ∈ [0, T ] , ∂
2Hλ(p,p1,Xu(t),y(t),u(t),t)

∂2u is negative

de�nite.

Condition B: The set Leg+(M+
0 ) is nonempty and it exists a nonempty compact set M ⊂

Leg+(M+
0 ) and a constant ε > 0 such that ∀w̃ ∈ K, maxη∈M Ωλ(η, w̃) ≥ ε ‖ũ‖2L2 .

According to theorem 10.2 in [5], if condition B is full�lled for a trajectory Xu then it is a

bounded strong minimum. Since ∂2Hλ(p,p1,Xu(t),y(t),u(t),t)
∂2u = 2p1λId, choosing in M0 the tuple

η gives us p1 = −1 and ∂2Hλ(p,p1,Xu(t),y(t),u(t),t)
∂2u is negative de�nite in that case. Hence η ∈

Leg+(M+
0 ) and we choose M = {η}.

Thus we have to �nd a lower bound under the form ε ‖ũ‖2L2 for ΩU (η, w̃). For p1 = −1 we have:

Ωλ(η, w̃) > 2λ ‖ũ‖2L2 −
∫ T

0

x̃(t)T
∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)
x̃(t)dt (5.3)

By using Cauchy-Schwarz and norm inequality, we have:

∫ T
0
x̃(t)T ∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)
x̃(t)dt ≤ ‖x̃‖L2

∥∥∥t 7−→ ∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)
x̃(t)

∥∥∥
L2

≤
√
d
∥∥∥t 7−→ ∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)∥∥∥
L2
‖x̃‖2L2

All we have left to do is to control ‖x̃‖2L2 w.r.t ‖ũ‖L2 . For this, we recall that x̃ follows a linear

ODE, so we can use Duhamel's formula to obtain:

x̃(t) =
∫ t

0
Rθ(s)Bũ(s)ds

Ṙθ(t) = ∂f
∂x (t,Xu(t))Rθ(t)

Rθ(0) = Id
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so:
‖x̃(t)‖2 ≤

√
d
∫ t

0
‖Rθ(s)B‖2 ‖ũ(s)‖2 ds

≤
√
d
√∫ t

0
‖Rθ(s)B‖22 ds ‖ũ‖L2

Taking the L2-norm gives us: ‖x̃‖2L2 ≤ d
∫ T

0

(∫ t
0
‖Rθ(s)B‖22 ds

)
dt ‖ũ‖2L2 and �nally we obtain the

bound:

Ωλ(η, w̃) >

(
2λ− d 3

2

∥∥∥∥t 7−→ ∂2

∂2x

(
pTθ (t)f(t,Xθ,u(t))

)∥∥∥∥
L2

∫ T

0

(∫ t

0

‖Rθ(s)B‖22 ds
)
dt

)
‖ũ‖2L2

which gives a tractable and computable in practice a posteriori criteria.

However, if we want a theoretical a priori upper bound for λ (i.e which do not depends on the

found control u), we need lemma lemma 7.4 which gives the uniform upper bound ‖pθ(t, Y )‖2 ≤
E(Y ) , to obtain:

∫ T
0
x̃(t)T p(t)T ∂

2f
∂2x (t,Xu(t))x̃(t)dt ≤

√
dE(Y )fxx ‖x̃‖2L2 (5.4)

and the Gronwall's lemma to have the bound: ‖x̃‖2L2 ≤ T ‖B‖22
e2
√
dfxT

2fx
‖ũ‖2L2 . By reinjecting

these inequalities in (5.3), we can �nd a lower bound for ΩU (η, w̃) only expressed in terms of the

controls:

ΩU (η, w̃) ≥
(

2λ− E(Y )
√
dT ‖B‖22

e2
√
dfxT

2fx
fxx

)
‖ũ‖2L2

Hence taking λ larger than the values given by (5.1) ensures the existence of a constant ε > 0 such

that ∀w̃ ∈ K, Ωλ(η, w̃) ≥ ε ‖ũ‖2L2 , and so (Xu, y, u) is a bounded strong minimum.

We now use theorem 9.4 in [5] to show that bounded strong minimum is a strong one for our

cost. For this, we need to full�ll condition B∞H presented in page 275 in [5]: it exists ε > 0, ρ > 0

such that for all t ∈ [0, T ] and x ∈ Rd such that ‖x−Xu(t)‖2 < ε imply −Hλ(p,−1, x, y, u, t) ≥
−Hλ(p,−1, x, y, u(t), t) + ρ ‖u− u(t)‖2.

Here Hλ(p,−1, x, y, u(t), t) = pT (f(t, x) +Bu(t))−Λλ(Y, t, x, u(t)) and we have already shown

that ∀t ∈ [0, T ] , x ∈ Rd, we have ∂Hλ∂u (p,−1, x, y, u(t), t) = 0 and ∂2Hλ
∂2u (p,−1, x, y, u(t), t) = −2λId.

We can conclude using theorem 9.4 in [5].

Lemma 5.2. (Xu, y, u) respects the simpli�ed Pontryagin maximum principle presented in theorem

3.2 if and only if it respects Pontryagin Maximum Principle presented in Milyutin et al. for the

alternative cost with constraint:

J(x0, y0, xf , yf ) = k1yf

K(x0, y0, xf , yf ) =

(
k2 (x0 − x∗0)

k3y0

)
= 0

ẋ = f(t, x) +Bu

ẏ = Λλ(t, x, u)

(x(0), y(0)) = (x0, y0)

where k
2

= dp(0)

1− 1
k1
− 1
k3

with p such that (Xu, p) is the solution of the extended ODE with boundary

constraint:
Ẋu(t) = f(t,Xu(t)) + 1

2λBB
T p(t)

ṗ(t) = −∂f∂x (t,Xu(t))T p(t) + 2CT (CXu(t)− Y (t))

(Xu(0),p(T )) = (x∗0, 0)

(5.5)
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Moreover we have an expression for a tuple η ∈M0 under the form: η =
(

1
k1
, β1,− 1

k3
, p,−1

)
with

β1 the vector with each component equal to 1
d

(
1− 1

k1
− 1

k3

)
.

Proof. We consider w = (Xu, y, u) respecting our simpli�ed Pontryagin maximum principle, i.e

the optimal control is equal to u(t) = 1
2λB

T p(t), such (Xu, p) is the solution of the extended

ODE with boundary constraint 5.5. Again we denote M0 the set of tuples η = (α0, β1, β2, pe, p1)

verifying (5.2). The Pontryagin maximum principle presented in Milyutin for the alternative cost

is equivalent to haveM0 nonempty. Starting from the simpli�ed maximum principle let us contruct

a tuple η respecting (5.2).

Firstly let us choose α0 = 1
k1

obviously α0 > 0 and p1 beeing constant it imposes p1(t) = −1 =

k3β2 so we take β2 = − 1
k3
. The adjoint equation become:

ṗ(t) = −∂f∂x (t,Xu(t))T p(t) + 2CT (CXu(t)− Y (t))

p(T ) = 0

which is indeed respected by p(t). The non triviality condition α0 + |β1| + |β2| = 1 imposes

|β1| = 1− 1
k1
− 1
k3
. We can choose for β1 the vector with each component equal to 1

d

(
1− 1

k1
− 1

k3

)
.

In order to respect the constraint p(0) = k2β1 we have to set k2 = dp(0)

1− 1
k1
− 1
k3

. Since Hλ(p, p1, w, t) =

pT (f(t, x) +Bu) + p1Λλ(t, x, u) is the same for the two problems, the maximality constraints:

∂Hλ
∂u (p,−1, w, t) = 0

maxuHλ(p(t),−1, Xu(t), y(t), u, t) = Hλ(p(t),−1, Xu(t), y(t), u(t), t)

are already full�llled. Hence the tuple: η =
(

1
k1
, β1,− 1

k3
, p,−1

)
with β1 the vector with each

component equal to 1
d

(
1− 1

k1
− 1

k3

)
belongs to M0.

Reciprocal is obtained by substituting η in (5.2).

5.2 Uniqueness of BVP solutions

We need to introduce the reversed time solutions piθ(t) = pθ(T − t) and Xi
θ,u(t) = Xθ,u(T − t).

Theorem 5.3. If C1, C2bis are satis�ed, then for λ > λ2(Y ), we have uniqueness of the solution

of

Ẋθ,u(t) = f(t,Xθ,u(t), θ) + 1
2λBB

T pθ(t)

ṗθ(t) = −∂f∂x (t,Xθ,u(t), θ)T pθ(t) + 2CT (CXθ,u(t)− Y (t))

(Xθ,u(0),pθ(T )) = (x0, 0)

(5.6)

Proof. Let us de�ne
(
X1, p1

)
and

(
X2, p2

)
two solutions of:

Ẋ(t) = f(t,X(t)) + 1
2λBB

T p(t)

ṗ(t) = −∂f∂x (t,X(t))T p(t) + 2CT (CX(t)− Y (t))

(X(0), p(T )) = (x0, 0)

First let us control
∥∥X1 −X2

∥∥
L2 w.r.t

∥∥p1 − p2
∥∥
L2 , we have:

Ẋ1(t)− Ẋ2(t) = f(t,X1(t))− f(t,X2(t)) +
1

2λ
BBT

(
p1(t)− p2(t)

)
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Taking the Frobenius norm gives us:

d
dt

∥∥X1(t)−X2(t)
∥∥

2
≤

∥∥f(t,X1(t))− f(t,X2(t))
∥∥

2

+
d‖B‖22

2λ

∥∥p1(t)− p2(t)
∥∥

2

≤ fx
∥∥X1(t)−X2(t)

∥∥
2

+
d‖B‖22

2λ

∥∥p1(t)− p2(t)
∥∥

2

Using Gronwall's lemma we obtain:

∥∥X1(t)−X2(t)
∥∥

2
≤
d ‖B‖22

2λ

∫ t

0

efx(t−s) ∥∥p1(s)− p2(s)
∥∥

2
ds

and Cauchy-Schwarz inequality gives us:

∥∥X1(t)−X2(t)
∥∥

2
≤ d‖B‖22

2λ

√∫ t
0
e2fx(t−s)ds

√∫ t
0
‖p1(s)− p2(s)‖22 ds

≤ d‖B‖22
2λ

√
e2fxt−1

2fx

∥∥p1 − p2
∥∥
L2

We �nally obtain the following upper bound for
∥∥X1 −X2

∥∥
L2 :

∥∥X1 −X2
∥∥
L2 ≤

d ‖B‖22
2λ

√
e2fxT − 2fxT − 1

2fx

∥∥p1 − p2
∥∥
L2 (5.7)

Now we have to bound
∥∥p1 − p2

∥∥
L2 w.r.t

∥∥X1 −X2
∥∥
L2 for the reversed time solutions we have

the di�erential relation:

˙p1,i(t)− ˙p2,i(t) = −
(
∂f
∂x (T − t,X1,i(t))− ∂f

∂x (T − t,X2,i(t))
)T

p1,i(t)

−∂f∂x (T − t,X2,i(t))T
(
p1,i(t)− p2,i(t)

)
+ 2CTC

(
X2,i(t)−X1,i(t)

) (5.8)

Taking the Frobenius norm we have the following inequality:

d
dt

∥∥p2,i(t)− p1,i(t)
∥∥

2
≤
√
d
∥∥∥∂f∂x (T − t,X2,i(t))

∥∥∥
2

∥∥p2,i(t)− p1,i(t)
∥∥

2

+ 2
√
d
∥∥CTC∥∥

2

∥∥X2,i(t)−X1,i(t)
∥∥

2

+
√
d
∥∥p1,i(t)

∥∥
2

∥∥∥∂f∂x (T − t,X1,i(t))− ∂f
∂x (T − t,X2,i(t))

∥∥∥
2

≤
√
dfx

∥∥p2,i(t)− p1,i(t)
∥∥

2

+
√
d
(
fxx

∥∥p1,i(t)
∥∥

2
+ 2

∥∥CTC∥∥
2

) ∥∥X2,i(t)−X1,i(t)
∥∥

2

Using Gronwall's lemma we obtain:∥∥p2,i(t)− p1,i(t)
∥∥

2
≤
√
d
∫ t

0
e
√
dfx(t−s) (fxx ∥∥p1,i(t)

∥∥
2

+ 2
∥∥CTC∥∥

2

) ∥∥X2,i(s)−X1,i(s)
∥∥

2
ds

≤
√
d
(
fxxE(Y ) + 2

∥∥CTC∥∥
2

) ∫ t
0
e
√
dfx(t−s)

∥∥X2,i(s)−X1,i(s)
∥∥

2
ds

Cauchy-Schwarz inequality gives us:

∥∥p2,i(t)− p1,i(t)
∥∥

2
≤
√
d
(
fxxE(Y ) + 2

∥∥CTC∥∥
2

)√∫ t
0
e2
√
dfx(t−s)ds

√∫ t
0
‖X2,i(s)−X1,i(s)‖22 ds

≤
√
d
√

e2
√
dfxt−1

2
√
dfx

(
fxxE(Y ) + 2

∥∥CTC∥∥
2

) ∥∥X1 −X2
∥∥
L2

Taking the L2 norm �nally gives us the desired upper bound:

∥∥p1 − p2
∥∥
L2 ≤

√
e2
√
dfxT − 2

√
dfxT − 1

(fxxE(Y )+2‖CTC‖
2
)

2fx

∥∥X1 −X2
∥∥
L2

(5.9)
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By plugging (5.7) into this inequality, we get

∥∥p1 − p2∥∥
L2 ≤ d‖B‖22

λ

(
fxxE(Y )+2‖CTC‖

2

8fx
2

)√(
e2
√
dfxT − 1− 2

√
dfxT

)(
e2fxT − 1− 2fxT

)∥∥p1 − p2∥∥
L2

Hence the solution uniqueness follows if λ > λ2(Y ).

6 Consistency

Xθ,u and pθ depend on the data through Y , to emphasize they are functions of Y , we sometimes

denote Xθ,u(t, Y ) and pθ(t, Y ) for the controlled trajectory and adjoint variable for a given θ and

Y . For the sake of simplicity, we denote X̂θ,u(t) := Xθ,u(t, Ŷ ), p̂θ(t) := pθ(t, Ŷ ) and X∗θ,u(t) :=

Xθ,u(t, Y ∗), p∗θ(t) := pθ(t, Y
∗). Since we have de�ned an M-estimator, we need to prove:

1. S(Y ∗; θ, λ) has a global well-separated minimum at θ = θ∗ (proposition 6.1),

2. uniform convergence of S(Ŷ ; θ, λ) toward S(Y ∗; θ, λ) (proposition 6.2),

to ensure consistency of θ̂Tλ by using the theorem 5.7 in [10].

Proposition 6.1. If C1, C2bis,C3 and C4 are satis�ed, then for all λ > F (Y ∗) we have:

S(Y ∗; θ, λ) = 0⇐⇒ θ = θ∗

Proof. In that case our asymptotic criteria become: C(Y ∗;u, θ, λ) =
∫ T

0
‖CXθ,u(t)− CX∗(t)‖22 dt+

λ ‖u‖2L2 . If θ = θ∗ then the process (X∗θ∗,u, u ≡ 0) ensures C(Y ∗;u, θ, λ) = 0, is solution of the

asymptotic ODE with boundary value and is unique thanks to lemma 7.5, since λ > F (Y ∗) , hence

S(Y ∗; θ∗, λ) = 0.

We denote θ0 s.t S(Y ∗; θ0, λ) = 0 since we have reached the minimum, we have by de�nition of

S(Y ∗; θ, λ) that the related optimal control u is equal to the null function. So X∗θ0,u is solution of

the unpertubated ODE, thus we have
∫ T

0

∥∥∥CX∗θ0,u(t)− CX∗(t)
∥∥∥2

2
dt = 0, identi�ability condition

imposes θ0 = θ∗.

Proposition 6.2. If C1 and C2bis are satis�ed, then for all λ > F (Y ∗) we have:∣∣∣S(Y ∗; θ, λ)− S(Ŷ ; θ, λ)
∣∣∣ ≤ (

D(Y ∗) +D(Ŷ )
)(

M1‖C‖2
λ−F (Y ∗) + 1

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

+ 1
2λ

(
E(Y ∗) + E(Ŷ )

)(
M2

λ−F (Y ∗) +M3

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

with

M1 = d ‖B‖22 T 2e2
√
dfxT ‖C‖2

M2 = T 2 ‖B‖22 d
3
2e
√
dfxTM1

(
fxxE(Y ∗) + 2 ‖C‖22

)
M3 = 2T 2 ‖B‖22 d

3
2e
√
dfxT ‖C‖2

Proof. We have using Cauchy-Schwarz inequality:∣∣∣S(Y ∗; θ, λ)− S(Ŷ ; θ, λ)
∣∣∣ ≤ ∫ T

0

∣∣∣∣(CXθ,u(t)− CX∗θ,u(t) + Y ∗(t)− Ŷ (t)
)T (

CXθ,u(t)− Ŷ (t)
)∣∣∣∣ dt

+
∫ T

0

∣∣∣∣(CX∗θ,u(t)− Y ∗(t)
)T (

CXθ,u(t)− CX∗θ,u(t) + Y ∗(t)− Ŷ (t)
)∣∣∣∣ dt

+
d‖B‖22

2λ

∫ T
0
‖pθ(t) + p∗θ(t)‖2 ‖pθ(t)− p

∗
θ(t)‖2 dt

≤ ‖C‖2
(∥∥∥CXθ,u − Ŷ

∥∥∥
L2

+
∥∥∥CX∗θ,u − Y ∗∥∥∥

L2

)∥∥∥Xθ,u −X∗θ,u
∥∥∥
L2

+
(∥∥∥CXθ,u − Ŷ

∥∥∥
L2

+
∥∥∥CX∗θ,u − Y ∗∥∥∥

L2

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

+
d‖B‖22

2λ ‖pθ + p∗θ‖L2 ‖pθ − p∗θ‖L2
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By using lemma 7.4, which gives us ‖pθ(t, Y )‖2 ≤ E(Y ), we obtain the following upper bound:

∣∣∣S(Y ∗; θ, λ)− S(Ŷ ; θ, λ)
∣∣∣ ≤ (

D(Y ∗) +D(Ŷ )
)(
‖C‖2

∥∥∥Xθ,u −X∗θ,u
∥∥∥
L2

+
∥∥∥Y ∗ − Ŷ ∥∥∥

L2

)
+

dT‖B‖22
2λ

(
E(Y ∗) + E(Ŷ )

)
‖pθ − p∗θ‖L2

(6.1)

Using lemma 7.5, we know we have for λ > F (Y ∗),

‖Xθ,u −Xθ,u(., Y ∗)‖L2 ≤ M1

λ−F (Y ∗)

∥∥∥Y ∗ − Ŷ ∥∥∥
L2

and

‖pθ − pθ(., Y ∗)‖L2 ≤
√
dTe

√
dfxT

(
(fxxE(Y ∗)+2‖C‖22)K1

λ−F (Y ∗) + 2 ‖C‖2

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

.

By reinjecting theses inequalities, we obtain the desired result.

These two results have allowed to conclude about the consistency:

Theorem 6.3. If conditions C1, C2bis, C3, C4 are satis�ed and Ŷ
L2

−→
n−→∞

Y ∗ in probability, then

for any λ > F (Y ∗), we have:

θ̂Tλ
P→ θ∗

Proof. Using proposition 6.2 we have the following uniform upper bound on Θ:∣∣∣S(Y ∗; θ, λ)− S(Ŷ ; θ, λ)
∣∣∣ ≤ (

D(Y ∗) +D(Ŷ )
)(

M1‖C‖2
λ−F (Y ∗) + 1

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

+ 1
2λ

(
E(Y ∗) + E(Ŷ )

)(
M2

λ−F (Y ∗) +M3

)∥∥∥Y ∗ − Ŷ ∥∥∥
L2

We can conclude that if is Ŷ is consistent we have supθ∈Θ

∣∣∣S(Y ∗; θ, λ)− S(Ŷ ; θ, λ)
∣∣∣ = oP (1).

Application of proposition 6.1 gives us the identi�ability criteria. Hence we conclude by using

the theorem 5.7 in [10].

7 Asymptotics proof

We obtain the asymptotic normality with
√
n-rate of θ̂Tλ , by proving that, as long as Ŷ ∈ B (Y ∗, ζ)

and λ > max(λ3(ζ), λ4(ζ)),

1. θ̂Tλ − θ∗ behaves like the di�erence Γ(Ŷ )− Γ(Y ∗), where Γ is a continuous function,

2. Γ(Ŷ )− Γ(Y ∗) is asymptotically normal by using the plug-in properties of regression splines.

7.1 Asymptotic representation

Proposition 7.1. Let ζ such that Y ∈ B (Y ∗, ζ). Under conditions 1-6 and λ > max(λ3(ζ), λ4(ζ)),

we have:

θ̂T − θ∗ = −2
∂2S(Y ∗; θ∗, λ)

∂θT∂θ

−1

∇θS(Ŷ ; θ∗, λ) + oP (1)

Proof. For the sake of notation we will simply denote the estimator θ̂. In the multidimensional

case the Hessian expression is cumbersome in matrician form so for the demonstration we will

consider d = 1 but the demonstration stay the same in the multidimensional case. First of all we

need to show θ 7−→ S(Y ; θ, λ) is C2 for all Y ∈ B (Y ∗, ζ) and (θ, Y ) 7−→ ∂2S(Y ;θ,λ)
∂2θ is continuous

on Θ ×B (Y ∗, ζ).
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According to lemma 7.5 if λ is greater than λ3(ζ) we have:

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2

≤
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6+λK3

λ−F (Y ∗)−K5‖Y ′−Y ∗‖L2

∥∥∥θ − θ′∥∥∥
2

+

√
T
(√

dTfxe
√
dfxT+1

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

∥∥∥x0 − x′0∥∥∥
2

+ K1

λ−F (Y ∗)−‖Y ′−Y ∗‖
L2K5

∥∥∥Y − Y ′∥∥∥
L2∥∥∥pθ(., Y )− pθ′ (., Y

′
)
∥∥∥
L2

≤ K7

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)(
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6+λK3

)
(
λ−F (Y ∗)−K5‖Y ′−Y ∗‖L2

) ∥∥∥θ − θ′∥∥∥
2

+ K8

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)∥∥∥θ − θ′∥∥∥
2

+
K9

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

∥∥∥x0 − x′0∥∥∥
2

+

(
K10 +

K11

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

)∥∥∥Y − Y ′∥∥∥
L2

Hence (θ, Y ) 7−→ Xθ,u(., Y ) and (θ, Y ) 7−→ pθ(., Y ) are continuous on Θ × B (Y ∗, ζ) and so θ 7−→
S(Y ; θ, λ) is continuous for all Y ∈ B (Y ∗, ζ).

We now show θ 7−→ S(Y ; θ, λ) is C1 for all Y ∈ B (Y ∗, ζ), the main point is to show (θ, Y ) 7−→(
∂Xθ,u(.,Y )

∂θ , ∂pθ(.,Y )
∂θ

)
is continuous. We have

(
∂Xθ,u(t,Y )

∂θ , ∂pθ(t,Y )
∂θ

)
solution of the ODE:

d
dt

(
∂Xθ,u(t,Y )

∂θ
∂pθ(t,Y )

∂θ

)
= H (t, θ, Y )

(
∂Xθ,u(t,Y )

∂θ
∂pθ(t,Y )

∂θ

)
+ G(t, θ, Y ) (7.1)

with:

H (t, θ, Y ) =

(
∂f
∂x (t,Xθ,u(t, Y ), θ) 1

2λBB
T

−∂
2f
∂2x (t,Xθ,u(t, Y ), θ)pθ(t, Y ) + 2CTC −∂f∂x (t,Xθ,u(t, Y ), θ)

)

G(t, θ, Y ) =

(
∂f
∂θ (t,Xθ,u(t, Y ), θ)

− ∂2f
∂x∂θ (t,Xθ,u(t, Y ), θ)pθ(t, Y )

)

Condition C1, C2bis, C5, C6 gives us the continuity of (θ, Y ) 7−→ H (., θ, Y ), (θ, Y ) 7−→ G (., θ, Y )

and ‖G (., θ, Y )‖L2 uniform boundedness on Θ×B (Y ∗, ζ). Using lemma 7.6 if

‖B‖22 d2T 2

2λ

(
fxx (E(Y ∗) +K4ζ) + 2 ‖C‖22

)
e2
√
dTfx < 1

and so if λ > λ4(ζ), we have continuity of (θ, Y ) 7−→
(
∂Xθ,u(.,Y )

∂θ , ∂pθ(.,Y )
∂θ

)
. In particular we derive

from that θ 7−→ S(Y ; θ, λ) is C1 for all Y ∈ B (Y ∗, ζ) and:

∇θS(Y ; θ, λ) = 2
∫ T

0
∂Xθ,u(t,Y )

∂θ

T
CT (CXθ,u(t, Y )− Y (t)) dt

+ 1
2λ

∫ T
0

∂pθ(t,Y )
∂θ

T
BBT pθ(t, Y )dt

We now demonstrate θ 7−→ S(Y ; θ, λ) is C2 for all Y ∈ B (Y ∗, ζ), again we need to prove

(θ, Y ) 7−→
(
∂2Xθ,u(.,Y )

∂2θ , ∂
2pθ(.,Y )
∂2θ

)
shares the same degree of regularity w.r.t θ. Here

(
∂2Xθ,u(t,Y )

∂2θ , ∂
2pθ(t,Y )
∂2θ

)
is solution of the ODE:

d
dt

(
∂2Xθ,u(t,Y )

∂2θ
∂2pθ(t,Y )

∂2θ

)
= H (t, θ, Y )

(
∂2Xθ,u(t,Y )

∂2θ
∂2pθ(t,Y )

∂2θ

)
+I(t, θ, Y ) (7.2)
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with:

I(t, θ, Y ) =

(
I1(t, θ, Y )

I2(t, θ, Y )

)
=
∂H

∂θ
(t, θ, Y )

(
∂Xθ,u(t,Y )

∂θ
∂pθ(t,Y )

∂θ

)
+
∂G

∂θ
(t, θ, Y )

∂H
∂θ (t, θ, Y ) =

(
∂H1

∂θ (t, θ, Y ) 0
∂H3

∂θ (t, θ, Y ) ∂H4

∂θ (t, θ, Y )

)
∂G
∂θ (t, θ, Y ) =

(
∂G1

∂θ (t, θ, Y )
∂G2

∂θ (t, θ, Y )

)

where the components of ∂H∂θ (t, θ, Y ) and ∂G
∂θ (t, θ, Y ) are respectively equal to:

∂H1

∂θ (t, θ, Y ) = ∂2f
∂2x (t,Xθ,u(t, Y ), θ)

∂Xθ,u(t,Y )
∂θ + ∂2f

∂x∂θ (t,Xθ,u(t, Y ), θ)
∂H3

∂θ (t, θ, Y ) = −∂
3f
∂3x (t,Xθ,u(t, Y ), θ)

∂Xθ,u(t,Y )
∂θ pθ(t, Y )

− ∂2f
∂2x (t,Xθ,u(t, Y ), θ)∂pθ(t,Y )

∂θ − ∂3f
∂2x∂θ (t,Xθ,u(t, Y ), θ)pθ(t, Y )

∂H4

∂θ (t, θ, Y ) = −∂
2f
∂2x (t,Xθ,u(t, Y ), θ)

∂Xθ,u(t,Y )
∂θ − ∂2f

∂x∂θ (t,Xθ,u(t, Y ), θ)

and:

∂G1

∂θ (t, θ, Y ) = ∂2f
∂x∂θ (t,Xθ,u(t, Y ), θ)

∂Xθ,u(t,Y )
∂θ + ∂2f

∂2θ (t,Xθ,u(t, Y ), θ)
∂G2

∂θ (t, θ, Y ) = − ∂3f
∂2x∂θ (t,Xθ,u(t, Y ), θ)

∂Xθ,u(t,Y )
∂θ pθ(t, Y )

− ∂2f
∂x∂θ (t,Xθ,u(t, Y ), θ)∂pθ(t,Y )

∂θ − ∂3f
∂x∂2θ (t,Xθ,u(t, Y ), θ)

Condition C1, C2bis, C5, C6 gives us the continuity of (θ, Y ) 7−→ I (., θ, Y ) and ‖I (., θ, Y )‖L2

uniform boundedness on Θ × B (Y ∗, ζ). So, by using again lemma 7.6, if λ > λ4(ζ) we have

continuity of (θ, Y ) 7−→
(
∂2Xθ,u(.,Y )
∂θT ∂θ

, ∂
2pθ(.,Y )
∂θT ∂θ

)
. In particular we derive from that θ 7−→ S(Y ; θ, λ)

is C2 for all Y ∈ B (Y ∗, ζ) and:

∂2S(Y ;θ,λ)
∂2θ = 2

∑d
i=1

∫ T
0

∂2Xiθ,u(t,Y )

∂2θ

T (
CT (CXθ,u(t, Y )− Y (t))

)
i
dt

+ 2
∫ T

0
∂Xθ,u(t,Y )

∂θ

T
CTC

∂Xθ,u(t,Y )
∂θ dt

+ 1
2λ

∑d
i=1

∫ T
0

∂2piθ(t,Y )
∂2θ BBT piθ(t, Y )dt

+ 1
2λ

∫ T
0

∂pθ(t,Y )
∂θ

T
BBT ∂pθ(t,Y )

∂θ dt

Moreover continuity on Θ×B (Y ∗, ζ) of the derivative form of (θ, Y ) 7−→ Xθ,u(., Y ) and (θ, Y ) 7−→
pθ(., Y ) ensures continuity of (θ, Y ) 7−→ ∂2S(Y ;θ,λ)

∂2θ as well.

Now we can obtain the desired asymptotic representation. According to �rst order optimality

condition:

∇S(Ŷ ; θ̂, λ) = 0

We have shown θ 7−→ S(Ŷ ; θ, λ) is C2 on Θ and hence it exists a point θ̃ between θ̂ and θ∗ s.t

θ̃ −→ θ∗ when n −→ +∞ and:

−∇θS(Ŷ ; θ∗, λ) =
1

2

∂2S(Ŷ ; θ̃, λ)

∂θT∂θ

(
θ̂ − θ∗

)
and thanks to the continuous mapping theorem we have:

∂2S(Ŷ ; θ̃, λ)

∂θT∂θ
→ ∂2S(Y ∗; θ∗, λ)

∂θT∂θ

in probability because of (θ, Y ) 7−→ ∂2S(Y ;θ,λ)
∂2θ continuity. Since condition C6 imposes ∂2S

∂θT ∂θ
(θ∗, Y ∗, λ)
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non singularity, we obtain the desired asymptotic representation:

θ̂ − θ∗ = −2
∂2S(Y ∗; θ∗, λ)

∂θT∂θ

−1

∇θS(Ŷ ; θ∗, λ) + oP (1)

7.2 Linear representation of the di�erential of Y 7−→ ∇θS (Y ; θ, λ)

Lemma 7.2. Let us suppose C1, C2bis, C5, C6 and λ > max(λ3(ζ), λ4(ζ)). Then ∀θ ∈ Θ, Y 7−→
∇θS(Y ; θ, λ) is di�erentiable on B (Y ∗, ζ), (Y1, Y2) 7−→ D (∇θS ( . ; θ, λ)) (Y1).Y2 is continuous on

B (Y ∗, ζ)×B (Y ∗, ζ) and can be represented as a scalar product in L2 i.e:

D (∇θS ( . ; θ, λ)) (Y1).Y2 = < V (Y1, θ), Y2 >

with V (Y1, θ) ∈ C1
(

[0, T ] ,Rp×d
′)
.

Proof. Taking λ greater than λ3(ζ) gives us continuity of Y 7−→

(
Xθ,u(., Y )

pθ(., Y )

)
on B (Y ∗, ζ). As-

suming conditions C1, C2bis , Y 7−→

(
Xθ,u(., Y )

pθ(., Y )

)
is di�erentiable onB (Y ∗, ζ) with

(
dXθ(Y1, Y2)

dPθ(Y1, Y2)

)
=(

D (Xθ,u) (Y1).Y2

D (pθ) (Y1).Y2

)
solution of:


d
dt

(
dXθ(Y1, Y2)(t)

dPθ(Y1, Y2)(t)

)
= H (t, θ, Y1)

(
dXθ(Y1, Y2)(t)

dPθ(Y1, Y2)(t)

)
−

(
0

2CTY2(t)

)
dXθ(Y1, Y2)(0) = 0

dPθ(Y1, Y2)(T ) = 0

(7.3)

with:

H (t, θ, Y ) =

(
∂f
∂x (t,Xθ,u(t, Y ), θ) 1

2λBB
T

−∂
2f
∂2x (t,Xθ,u(t, Y ), θ)pθ(t, Y ) + 2CTC −∂f∂x (t,Xθ,u(t, Y ), θ)

)

Using lemma 7.6 we have continuity of (Y1, Y2) 7−→

(
dXθ(Y1, Y2)

dPθ(Y1, Y2)

)
on B (Y ∗, ζ)× B (Y ∗, ζ) as

soon as λ > λ4(ζ), in that case we have also continuity of Y 7−→

(
∂Xθ,u(.,Y )

∂θ
∂pθ(.,Y )

∂θ

)
on B (Y ∗, ζ).

Moreover by assuming condition C5 and C6 Y 7−→

(
∂Xθ,u(.,Y )

∂θ
∂pθ(.,Y )

∂θ

)
is di�erentiable on B (Y ∗, ζ)

with

(
d∂Xθ(Y1, Y2)

d∂Pθ(Y1, Y2)

)
=

 D
(
∂Xθ,u
∂θ

)
(Y1).Y2

D
(
∂pθ
∂θ

)
(Y1).Y2

 solution of:


d
dt

(
d∂Xθ(Y1, Y2)(t)

d∂Pθ(Y1, Y2)(t)

)
= H (t, θ, Y1)

(
d∂Xθ(Y1, Y2)(t)

d∂Pθ(Y1, Y2)(t)

)
+ I(θ, Y1, Y2)(t)

d∂Xθ(Y1, Y2)(0) = 0

d∂Pθ(Y1, Y2)(T ) = 0

(7.4)
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with:

I(θ, Y1, Y2)(t) = HY (t, θ, Y1, Y2)

(
∂Xθ,u(.,Y1)

∂θ
∂pθ(.,Y1)

∂θ

)
+GY (t, θ, Y1, Y2)

and:

HY (t, θ, Y1, Y2) =

(
H1
Y (t, θ, Y1, Y2) 0

H3
Y (t, θ, Y1, Y2) H4

Y (t, θ, Y1, Y2)

)

GY (t, θ, Y1, Y2) =

(
G1
Y (t, θ, Y1, Y2)

G2
Y (t, θ, Y1, Y2)

)
where the components of HY and GY are respectively equal to:

H1
Y (t, θ, Y1, Y2) = ∂2f

∂2x (t,Xθ,u(t, Y1), θ)dXθ(Y1, Y2)(t)

H3
Y (t, θ, Y1, Y2) = −∂

3f
∂3x (t,Xθ,u(t, Y1), θ)dXθ(Y1, Y2)(t)pθ(t, Y1)− ∂2f

∂2x (t,Xθ,u(t, Y1), θ)dPθ(Y1, Y2)(t)

H4
Y (t, θ, Y1, Y2) = ∂2f

∂2x (t,Xθ,u(t, Y1), θ)dXθ(Y1, Y2)(t)

and:

G1
Y (t, θ, Y1, Y2) = ∂2f

∂x∂θ (t,Xθ,u(t, Y1), θ)dXθ(Y1, Y2)(t)

G2
Y (t, θ, Y1, Y2) = −∂

3f
∂3x (t,Xθ,u(t, Y1), θ)dXθ(Y1, Y2)(t)pθ(t, Y )− ∂2f

∂2x (t,Xθ,u(t, Y1), θ)dPθ(Y1, Y2)(t)

Again using lemma 7.6 we have continuity of (Y1, Y2) 7−→

(
d∂Xθ(Y1, Y2)

d∂Pθ(Y1, Y2)

)
on B (Y ∗, ζ) ×

B (Y ∗, ζ) as soon as λ > λ4(ζ) .

Hence Y 7−→ ∇θS(Y ; θ, λ) is di�erentiable on B (Y ∗, ζ) and equal to:

D (∇θS ( . ; θ, λ)) (Y1).Y2 = 2
∫ T

0
d∂Xθ(Y1, Y2)(t)TCT (CXθ,u(t, Y1)− Y1(t)) dt

+ 2
∫ T

0
∂Xθ,u(t,Y1)

∂θ

T
CT (dXθ(Y1, Y2)(t)− Y2(t)) dt

+ 1
2λ

∫ T
0
d∂Pθ(Y1, Y2)(t)

T

BBT pθ(t, Y1)dt

+ 1
2λ

∫ T
0

∂pθ(t,Y1)
∂θ

T
BBT dPθ(Y1, Y2)(t)dt

(7.5)

and thanks to previous regularity results we derive (Y1, Y2) 7−→ D (∇θS ( . ; θ, λ)) (Y1).Y2 continuity

on B (Y ∗, ζ)×B (Y ∗, ζ).

Using Duhamel formula we have the explicit expression respectively for

(
dXθ(Y1, Y2)

dPθ(Y1, Y2)

)
and(

d∂Xθ(Y1, Y2)

d∂Pθ(Y1, Y2)

)
:

(
dXθ(Y1, Y2)(t)

dPθ(Y1, Y2)(t)

)
= RY (t, θ, Y1)

(
0

dPθ(Y1, Y2)(0)

)
−RY (t, θ, Y1)

∫ t
0 RY (s, θ, Y1)−1

(
0

2CTY2(s)

)
ds

(
d∂Xθ(Y1, Y2)(t)

d∂Pθ(Y1, Y2)(t)

)
= RY (t, θ, Y1)

(
0

d∂Pθ(Y1, Y2)(0)

)
+RY (t, θ, Y1)

∫ t
0 RY (s, θ, Y1)−1I(θ, Y1, Y2)(s)ds

with RY (t, θ, Y1) solution of:{
d
dtRY (t, θ, Y1) = H (t, θ, Y1)RY (t, θ, Y1)

RY (0, θ, Y1) = I2d
(7.6)
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In particular(
dXθ(Y1, Y2)(T )

0

)
=

(
R2
Y (T, θ, Y1)dPθ(Y1, Y2)(0)

R4
Y (T, θ, Y1)dPθ(Y1, Y2)(0)

)
−RY (T, θ, Y1)

∫ T
0 RY (s, θ, Y1)−1

(
0

2CTY2(s)

)
ds

(7.7)

and(
d∂Xθ(Y1, Y2)(T )

0

)
=

(
R2
Y (T, θ, Y1)d∂Pθ(Y1, Y2)(0)

R4
Y (T, θ, Y1)d∂Pθ(Y1, Y2)(0)

)
+RY (T, θ, Y1)

∫ T
0 RY (s, θ, Y1)−1I(θ, Y1, Y2)(s)ds

(7.8)

In order to represent the gradient di�erential as a scalar product:

D (∇θS ( . ; θ, λ)) (Y1).Y2 = < V (Y1, θ), Y2 >

with V (Y1, θ) a C
1 function for each couple (Y1, θ), we need to demonstrate R4

Y (T, θ, Y1) is invert-

ible.

Let us choose x such that R4
Y (T, θ, Y1)x = 0. Hence

(
R2
Y (t, θ, Y1)x

R4
Y (t, θ, Y1)x

)
respects the ODE with

boundary condition:
d
dt

(
R2
Y (t, θ, Y1)x

R4
Y (t, θ, Y1)x

)
= H (t, θ, Y1)

(
R2
Y (t, θ, Y1)x

R4
Y (t, θ, Y1)x

)
R2
Y (0, θ, Y1)x = 0

R4
Y (T, θ, Y1)x = 0

here

(
R2
Y (t, θ, Y1)x

R4
Y (t, θ, Y1)x

)
=

(
0

0

)
is an obvious solution. Using lemma 7.6, we know for λ > λ4(ζ)

it is the only one which implies R4
Y (0, θ, Y1)x = 0 by resolvant de�nition we know R4

Y (0, θ, Y1) = Id

which necessarily implies x = 0, hence the invertibility of R4
Y (T, θ, Y1).

Since R4
Y (T, θ, Y1) is invertible and t −→ RY (t, θ, Y1) is C1 (by using classic regularity results

about ODE solutions), using equation (7.7) we have access to a function VP (θ, Y1) ∈ C1
(

[0, T ] , Rd×d
′)

such that:

dPθ(Y1, Y2)(0) =

∫ T

0

VP (θ, Y1)(t)Y2(t)dt

and so:(
dXθ(Y1, Y2)(t)

dPθ(Y1, Y2)(t)

)
= RY (t, θ, Y1)

(
−2
∫ t
0
R2
Y (s, θ, Y1)

−1CTY2(s)ds∫ T
0
VP (θ, Y1)(s)Y2(s)ds− 2

∫ t
0
R2
Y (s, θ, Y1)

−1CTY2(s)ds

)

=

(
J1(t, θ, Y1)

∫ t
0
R2
Y (s, θ, Y1)

−1CTY2(s)ds+R2
Y (t, θ, Y1)

∫ T
0
VP (θ, Y1)(s)Y2(s)ds

J2(t, θ, Y1)
∫ t
0
R2
Y (s, θ, Y1)

−1CTY2(s)ds+R4
Y (t, θ, Y1)

∫ T
0
VP (θ, Y1)(s)Y2(s)ds

)

with:
J1(t, θ, Y1) = −2

(
R1
Y (t, θ, Y1) +R2

Y (t, θ, Y1

)
J2(t, θ, Y1) = −2

(
R3
Y (t, θ, Y1) +R4

Y (t, θ, Y1

)
The same holds for Y2 7−→ d∂Pθ(Y1, Y2)(0), hence for each (θ, Y1) we know it exists an unique C1

function V∂P (θ, Y1) such that:

d∂Pθ(Y1, Y2)(0) =

∫ T

0

V∂P (θ, Y1)(t)Y2(t)dt
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Similar computation lead us to(
d∂Xθ(Y1, Y2)(t)

d∂Pθ(Y1, Y2)(t)

)
= RY (t, θ, Y1)

(
J3(t, θ, Y1, Y2)

J4(t, θ, Y1, Y2)

)

where J3(t, θ, Y1, Y2) and J3(t, θ, Y1, Y2) are continuous linear functions in Y2 and di�erentiable in

t given by:

J3(t, θ, Y1, Y2) = J5(t, θ, Y1)
∫ t

0
R2
Y (s, θ, Y1)−1CTY2(s)ds−

∫ t
0
J6(s, θ, Y1)Y2(s)ds

+
∫ t

0
J7(s, θ, Y1)ds.

∫ T
0
VP (θ, Y1)(u)Y2(u)du

J4(t, θ, Y1, Y2) = J8(t, θ, Y1)
∫ t

0
R2
Y (s, θ, Y1)−1CTY2(s)ds−

∫ t
0
J9(s, θ, Y1)Y2(s)ds

+
∫ T

0
V∂P (θ, Y1)(s)Y2(s)dt+ J10(t, θ, Y1)

∫ T
0
VP (θ, Y1)(u)Y2(u)du

where the J i, i ∈ J5, 10K are functions di�erentiable in t obtained from the expression (7.8). Then

using the following formula obtained by integration by part:

∫ T
0
u(t)

(∫ t
0
v(s)ds

)
dt =

∫ T
0
u(t)dt

∫ T
0
v(t)dt−

∫ T
0

(∫ t
0
u(s)ds

)
.v(t)dt

=
∫ T

0

(∫ T
0
u(s)ds

)
v(t)dt−

∫ T
0

(∫ t
0
u(s)ds

)
.v(t)dt

=
∫ T

0

(∫ T
0
u(s)ds−

∫ t
0
u(s)ds

)
v(t)dt

=
∫ T

0

(∫ T
t
u(s)ds

)
v(t)dt

and the gradient expression given by (7.5), we know for each couple (Y1, θ) it exists a C
1 function

V (Y1, θ) such that:

D (∇θS ( . ; θ, λ)) (Y1).Y2 = < V (Y1, θ), Y2 >

7.3 Theorem

Theorem 7.3. Assuming that Ŷ is a regression splines estimator and assuming conditions 1, 2bis

and 3-10 we have for λ > F (Y ∗) that θ̂T − θ∗ is asymptotically normal and

θ̂T − θ∗ = OP (n−1/2)

Proof. The use of proposition 7.1 and lemma 7.2 thanks to conditions 1-6 gives us for λ >

max(λ3(ζ), λ4(ζ)), the following asymptotic representation:

θ̂ − θ∗ = −2
∂2S(Y ∗; θ∗, λ)

∂θT∂θ

−1 (
∇θS(Ŷ ; θ∗, λ)−∇θS(Y ∗; θ∗, λ)

)
+ oP (1)

(since �rst order optimality condition imposes: ∇θS(Y ∗; θ∗, λ) = 0) and continuous di�erentiability

of Y 7−→ ∇θS(Y ; θ, λ) on B (Y ∗, ζ) with the inner product representation in L2 :

D (∇θS ( . ; θ, λ)) (Y1).Y2 = < V (Y1, θ), Y2 >

if ζ is such that Ŷ ∈ B (Y ∗, ζ). According to Theorem 7 in [6] Ŷ is a consistent estimator of

Y ∗. Hence, asymptotically we can take ζ as small as we want and the previous results holds for

λ > F (Y ∗).

We will now use theorem 9 in [6] in order to obtain the asymptotic normality with
√
n rate of



7 Asymptotics proof 22

∇θS(Ŷ ; θ∗, λ)−∇θS(Y ∗; θ∗, λ). We have to prove that:

1) (ti, Yi) are i.i.d with V ar(Y | t) bounded.
2) E((Y − Y ∗(t))4 | t) is bounded, and V ar(Y | t) is bounded away from 0.

3) The support of t is a compact interval on which t has a probability density function bounded

away from 0.

4) There is v(t) such that E(v(t)v(t)T ) is �nite and non-singular such that: D (∇θS ( . ; θ, λ)) (Y ∗).Y ∗ =

E(v(t)Y ∗(t)) and D (∇θS ( . ; θ∗, λ)) (Y ∗).pkK = E(v(t)pkK(t)) for all k and K and there is cK with

E(‖v(t)− cKpK(t)‖22)→ 0.

5) CX∗(t) = E(Y | t) is derivable of order s on the support of t.

Requirement 1, 2, 3 are simple consequence of condition 8 and the fact the solution is de�ned

on the closed interval [0 , T ] and requirement 5 is a simple consequence of the condition 9. Using

proposition 7.2 for requirement 4 we can take

v(t) = V (Y ∗, θ∗)(t)

to obtain the scalar product representation:

D (∇θS ( . ; θ∗, λ)) (Y ∗).Y2 =< V (Y ∗, θ∗), Y2 >

In order to prove the existence of cK such that E(‖v(t)− cKpK(t)‖22)→ 0 we need to remark that

v is C1 on [0, T ] thanks to proposition 7.2, then we can use condition 9-10 and theorem 7.3 in [3]

to conclude.

7.4 Auxiliary lemma

For the preceeding proofs, we need to ensure the continuity of (Y, θ) 7−→ (Xθ,u(., Y ), pθ(., Y )) and

of its derivatives w.r.t Y and/or θ. For this, we have

1. to uniformly control the discrepancy between two solutions of the BVP presented in theorem

3.2 (lemma 7.5),

2. to derive conditions ensuring continuity of θ −→ Pθ where Pθ is the solution of a linear BVP

depending of a parameter θ (lemma 7.6).

Lemma 7.4. Let us suppose conditions C1, C2. ∀θ ∈ Θ let us consider (Xθ,u, pθ) an admissible

solution of: 
Ẋθ,u(t) = f(t,Xθ,u(t), θ) + 1

2λBB
T pθ(t)

ṗθ(t) = −∂f∂x (t,Xθ,u(t), θ)T pθ(t) + 2CT (CXθ,u(t)− Y (t))

(Xθ,u (0) , pθ(T )) = (x0, 0)

then ‖pθ(t, Y )‖2 ≤ E(Y ).

Proof. Using Gronwall's lemma we have:∣∣pi(t)∣∣ ≤ 2
√
d ‖C‖2

∫ t
0
e
√
dfx(t−s)

∥∥Y (T − s)− CXi
u(s)

∥∥
2
ds

≤ 2
√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

√∫ t
0

∥∥Y (T − s)− CXi
u(s)

∥∥2

2
ds

≤ 2
√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

‖Y − CXu‖L2 ≤ E(Y )
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Lemma 7.5. For λ such that λ > F (Y ∗), we have for all Y ∈ L2
(

[0, T ] , Rd′
)
the bound

‖pθ(t, Y )‖2 ≤ E(Y ∗) +K4 ‖Y − Y ∗‖L2

and for all
(
Y, Y

′
)
∈ L2

(
[0, T ] , Rd′

)
and λ such that:

λ > F (Y ∗) +
1

2

(
K0

∥∥∥Y ′ − Y ∗∥∥∥
L2

+

√(
K0 ‖Y ′ − Y ∗‖L2 + 4

√
d ‖C‖2K1

)
K0 ‖Y ′ − Y ∗‖L2

)

we have the discrepancy:

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2

≤
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6+λK3

λ−F (Y ∗)−K5‖Y ′−Y ∗‖L2

∥∥∥θ − θ′∥∥∥
2

+

√
T
(√

dTfxe
√
dfxT+1

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

∥∥∥x0 − x′0∥∥∥
2

+ K1

λ−F (Y ∗)−‖Y ′−Y ∗‖
L2K5

∥∥∥Y − Y ′∥∥∥
L2∥∥∥pθ(., Y )− pθ′ (., Y

′
)
∥∥∥
L2

≤ K7

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)(
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6+λK3

)
(
λ−F (Y ∗)−K5‖Y ′−Y ∗‖L2

) ∥∥∥θ − θ′∥∥∥
2

+ K8

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)∥∥∥θ − θ′∥∥∥
2

+
K9

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

∥∥∥x0 − x′0∥∥∥
2

+

(
K10 +

K11

(
fxx

(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

)∥∥∥Y − Y ′∥∥∥
L2

with:

K0 = ‖B‖22 d
2
√
dT 2e2

√
dfxT fxx ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

K6 = 1
2
‖B‖22 d

2T 2e2
√
dfxT fxθK4

K1 = d ‖B‖22 T
2e2
√
dfxT ‖C‖2 K7 =

√
dTe

√
dfxT

K2 = 1
2
‖B‖22 d

2T 2e2
√
dfxT fxθE(Y ∗) K8 =

√
dTfxθe

√
dfxT

K3 = fθTe
fxT K9 =

√
dT

3
2 fxe

√
dfxT

(√
dTfxe

√
dfxT + 1

)
K4 = 2

√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

(√
d‖C‖2K1

λ−F (Y ∗) + 1
)

K10 = 2
√
dT ‖C‖2 e

√
dfxT

K5 = 1
2
‖B‖22 d

2T 2e2
√
dfxT fxxK4 K11 =

√
dTe

√
dfxTK1

Proof. Firstly we will bound
∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y

′
)
∥∥∥
L2

w.r.t ‖pθ(., Y )− pθ(., Y ′)‖L2 and
∥∥∥θ − θ′∥∥∥

2
.

∥∥∥Ẋθ,u(t, Y )− Ẋθ′ ,u(t, Y
′
)
∥∥∥

2
≤

∥∥∥f(t,Xθ,u(t, Y ), θ)− f(t,Xθ′ ,u(t, Y
′
), θ
′
)
∥∥∥

2

+
d‖B‖22

2λ

∥∥∥pθ(t, Y )− pθ′ (t, Y
′
)
∥∥∥

2

≤
√
dfx

∥∥∥Xθ,u(t, Y )−Xθ′ ,u(t, Y
′
)
∥∥∥

2

+ fθ

∥∥∥θ − θ′∥∥∥
2

+
√
dd‖B‖22

2λ

∥∥∥pθ(t, Y )− pθ′ (t, Y
′
)
∥∥∥

2

Gronwall lemma and Cauchy-Schwarz inequality gives us:

∥∥∥Xθ,u(t, Y )−Xθ′ ,u(t, Y
′
)
∥∥∥

2
≤

√
dd‖B‖22

2λ

∫ t
0
e
√
dfx(t−s)

∥∥∥pθ(s, Y )− pθ′ (s, Y
′
)
∥∥∥

2
ds

+
∥∥∥x0 − x

′

0

∥∥∥
2

+
∫ t

0
e
√
dfx(t−s)

(√
dfxs

∥∥∥x0 − x
′

0

∥∥∥
2

+ fθ

∥∥∥θ − θ′∥∥∥
2

)
ds

≤
√
dd‖B‖22

2λ

√
Te
√
dfxT

∥∥∥pθ(., Y )− pθ′ (., Y
′
)
∥∥∥
L2

+ fθ
√
Te
√
dfxT

∥∥∥θ − θ′∥∥∥
2

+
(√

dfxe
√
dfxT t+ 1

)∥∥∥x0 − x
′

0

∥∥∥
2
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We �nally obtain:∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2

≤
√
dd‖B‖22

2λ Te
√
dfxT

∥∥∥pθ(., Y )− pθ′ (., Y
′
)
∥∥∥
L2

+ fθTe
√
dfxT

∥∥∥θ − θ′∥∥∥
2

+
√
T
(√

dTfxe
√
dfxT + 1

)∥∥∥x0 − x
′

0

∥∥∥
2

(7.9)

Secondly we will bound ‖pθ(., Y )− pθ(., Y ′)‖L2 w.r.t
∥∥∥θ − θ′∥∥∥

2
and

∥∥∥Y − Y ′∥∥∥
L2
. For this we have

for the reversed time adjoint equations:

ṗiθ(t, Y )− ṗiθ′ (t, Y
′
) = ∂f

∂x (T − t,Xi
θ,u(t, Y ), θ)T

(
piθ(t, Y )− pi

θ′
(t, Y

′
)
)

+
(
∂f
∂x (T − t,Xi

θ,u(t, Y ), θ)− ∂f
∂x (T − t,Xi

θ′ ,u
(t, Y

′
), θ
′
)
)T

pi
θ′

(t, Y
′
)

+ 2CTC
(
Xi
θ′ ,u

(t, Y
′
)−Xi

θ,u(t, Y )
)

+ 2CT
(
Y i(t)− Y i′(t)

)
(7.10)

Taking the Frobenius norm we have the following inequality:∥∥∥ṗiθ(t, Y )− ˙pi
θ′

(t, Y
′
)
∥∥∥

2
≤
√
d
∥∥∥∂f∂x (T − t,Xi

θ,u(t, Y ), θ)
∥∥∥

2

∥∥∥piθ(t, Y )− pi
θ′

(t, Y
′
)
∥∥∥

2

+
√
d
∥∥∥pi

θ′
(t, Y

′
)
∥∥∥

2

∥∥∥∂f∂x (T − t,Xi
θ,u(t, Y ), θ)− ∂f

∂x (T − t,Xi
θ′ ,u

(t, Y
′
), θ
′
)
∥∥∥

2

+ 2
√
d ‖C‖22

∥∥∥Xi
θ′ ,u

(t, Y
′
)−Xi

θ,u(t, Y )
∥∥∥

2

+ 2
√
d ‖C‖2

∥∥∥Y i(t)− Y i′(t)∥∥∥
2

≤
√
d
(∥∥∥piθ(t, Y ′)∥∥∥

2
fxx + 2 ‖C‖22

)∥∥∥Xi
θ,u(t, Y )−Xi

θ′ ,u
(t, Y

′
)
∥∥∥

2

+
√
d
(
fx

∥∥∥piθ(t, Y )− pi
θ′

(t, Y
′
)
∥∥∥

2
+
∥∥∥pi

θ′
(t, Y

′
)
∥∥∥

2
fxθ

∥∥∥θ − θ′∥∥∥
2

)
+ 2

√
d ‖C‖2

∥∥∥Y i(t)− Y i′(t)∥∥∥
2

By using Gronwall's lemma we obtain:

∥∥∥piθ(t, Y )− pi
θ
′ (t, Y

′
)
∥∥∥
2
≤
√
de
√
dfxT

∫ t
0

(
fxx

∥∥∥piθ(s, Y ′)∥∥∥
2
+ 2 ‖C‖22

)∥∥∥Xi
θ,u(s, Y )−Xi

θ
′
,u
(s, Y

′
)
∥∥∥
2
ds

+
√
dfxθe

√
dfxT

∥∥∥θ − θ′∥∥∥
2

∫ t
0

∥∥∥piθ(s, Y ′)∥∥∥
2
ds

+ 2
√
d ‖C‖2 e

√
dfxT

∫ t
0

∥∥∥Y i(s)− Y i′(s)∥∥∥
2
ds

We need a bound for ‖pθ(s, Y )‖2 with uniform control w.r.t by E(Y ∗) and the discrepancy

‖Y − Y ∗‖L2 but so far all we have is ‖pθ(s, Y )‖2 ≤ E(Y ). For �nding such a bound we need

to consider the special case where Y
′

= Y ∗.

Using the previous inequality we have:

∥∥∥piθ(t, Y )− pi
θ′

(t, Y ∗)
∥∥∥

2
≤
√
de
√
dfxT

∫ t
0

(
fxx

∥∥∥pi
θ′

(t, Y ∗)
∥∥∥

2
+ 2 ‖C‖22

)∥∥∥Xi
θ,u(s, Y )−Xi

θ′ ,u
(s, Y ∗)

∥∥∥
2
ds

+
√
dfxθe

√
dfxT

∥∥∥θ − θ′∥∥∥
2

∫ t
0

∥∥∥pi
θ′

(s, Y ∗)
∥∥∥

2
ds

+ 2
√
d ‖C‖2 e

√
dfxT

∫ t
0

∥∥Y i(s)− Y i∗(s)∥∥
2
ds

≤
√
dTe

√
dfxT

(
fxxE(Y ∗) + 2 ‖C‖22

)∥∥∥Xi
θ,u(., Y )−Xi

θ′ ,u
(., Y ∗)

∥∥∥
L2

+
√
dTfxθe

√
dfxTE(Y ∗)

∥∥∥θ − θ′∥∥∥
2

+ 2
√
dT ‖C‖2 e

√
dfxT ‖Y − Y ∗‖L2
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And so we obtain the L2-discrepancy:

‖pθ(., Y )− pθ′ (., Y ∗)‖L2 ≤
√
dTe

√
dfxT

(
fxxE(Y ∗) + 2 ‖C‖22

)∥∥∥Xi
θ,u(., Y )−Xi

θ′ ,u
(., Y ∗)

∥∥∥
L2

+
√
dTfxθe

√
dfxTE(Y ∗)

∥∥∥θ − θ′∥∥∥
2

+ 2
√
dT ‖C‖2 e

√
dfxT ‖Y − Y ∗‖L2

(7.11)

By reinjecting in (7.9) we have:∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y ∗)
∥∥∥
L2
≤ F (Y ∗)

λ

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y ∗)
∥∥∥
L2

+
(
K2

λ +K3

) ∥∥∥θ − θ′∥∥∥
2

+ K1

λ ‖Y − Y
∗‖L2

+
√
T
(√

dTfxe
√
dfxT + 1

)∥∥∥x0 − x
′

0

∥∥∥
2

and thus for λ > F (Y ∗) we obtain:

∥∥∥Xθ,u −X∗θ′ ,u∥∥∥
L2
≤ K2 + λK3

λ− F (Y ∗)

∥∥∥θ − θ′∥∥∥
2
+

√
T
(√

dTfxe
√
dfxT + 1

)
λ− F (Y ∗)

∥∥∥x0 − x′0∥∥∥
2
+

K1

λ− F (Y ∗)
‖Y − Y ∗‖L2

(7.12)

From this previous inequality and Gronwall's lemma we can now obtain a bound for
∥∥piθ(t, Y )

∥∥
2
:

∥∥piθ(t, Y )
∥∥

2
≤ 2

√
d ‖C‖2

∫ t
0
e
√
dfx(t−s)

∥∥∥Y (T − s)− CXi
θ,u(s, Y )

∥∥∥
2
ds

≤ 2
√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

√∫ t
0

∥∥∥Y (T − s)− CXi
θ,u(s, Y )

∥∥∥2

2
ds

≤ 2
√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

‖Y − CXθ,u(., Y )‖L2

≤ 2
√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

(
‖Y − Y ∗‖L2 +

∥∥∥Y ∗ − CX∗θ,u∥∥∥
L2

+
∥∥∥CX∗θ,u − CXθ,u(., Y )

∥∥∥
L2

)
≤ 2

√
d ‖C‖2

√
e2
√
dfxt−1

2
√
dfx

(
D(Y ∗) +

(√
d‖C‖2K1

λ−F (Y ∗) + 1
)
‖Y − Y ∗‖L2

)
≤ E(Y ∗) +K4 ‖Y − Y ∗‖L2

In the last inequality, the discrepancy
∥∥∥CX∗θ,u − CXθ,u(., Y )

∥∥∥ has been bound by using the in-

equality (7.12).

We can now control
∥∥∥piθ(t, Y )− pi

θ′
(t, Y

′
)
∥∥∥

2
in the general case:

∥∥∥piθ(t, Y )− pi
θ
′ (t, Y

′
)
∥∥∥
2
≤
√
de
√
dfxT

∫ t
0

(
fxx

∥∥∥piθ(s, Y ′)∥∥∥
2
+ 2

∥∥CTC∥∥
2

)∥∥∥Xi
θ,u(s, Y )−Xi

θ
′
,u
(s, Y

′
)
∥∥∥
2
ds

+
√
dfxθ

∥∥∥θ − θ′∥∥∥
2
e
√
dfxT

∫ t
0

∥∥∥pi
θ
′ (t, Y

′
)
∥∥∥
2
ds

+ 2
√
d ‖C‖2 e

√
dfxT

∫ t
0

∥∥∥Y i(s)− Y i′(s)∥∥∥
2
ds

≤
√
dTfxx

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)
e
√
dfxT

∥∥∥Xi
θ,u(., Y )−Xi

θ
′
,u
(., Y

′
)
∥∥∥
L2

+ 2
√
dT ‖C‖22 e

√
dfxT

∥∥∥Xi
θ,u(., Y )−Xi

θ
′
,u
(., Y

′
)
∥∥∥
L2

+
√
dTfxθ

∥∥∥θ − θ′∥∥∥
2
e
√
dfxT

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)
+ 2

√
dT ‖C‖2 e

√
dfxT

∥∥∥Y − Y ′∥∥∥
L2
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Taking the L2 norm �nally gives us:∥∥∥pθ(., Y )− pθ′ (., Y
′
)
∥∥∥
L2

≤
√
dTfxx

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)
e
√
dfxT

∥∥∥Xi
θ,u(., Y )−Xi

θ
′
,u
(., Y

′
)
∥∥∥
L2

+ 2
√
dT ‖C‖22 e

√
dfxT

∥∥∥Xi
θ,u(., Y )−Xi

θ
′
,u
(., Y

′
)
∥∥∥
L2

+
√
dTfxθ

∥∥∥θ − θ′∥∥∥
2
e
√
dfxT

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)
+ 2

√
dT ‖C‖2 e

√
dfxT

∥∥∥Y − Y ′∥∥∥
L2

(7.13)

By reinjecting in (7.9) we obtain:

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2
≤

F (Y ∗)+K5

∥∥∥Y ′−Y ∗∥∥∥
L2

λ

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2

+

(
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6

λ +K3

)∥∥∥θ − θ′∥∥∥
2

+ K1

λ

∥∥∥Y − Y ′∥∥∥
L2

+
√
T
(√

dTfxe
√
dfxT + 1

)∥∥∥x0 − x
′

0

∥∥∥
2

By taking λ > F (Y ∗) +
∥∥∥Y ′ − Y ∗∥∥∥

L2
K5 we have:

∥∥∥Xθ,u(., Y )−Xθ′ ,u(., Y
′
)
∥∥∥
L2
≤

K2+
∥∥∥Y ′−Y ∗∥∥∥

L2
K6+λK3

λ−F (Y ∗)−K5‖Y ′−Y ∗‖
L2

∥∥∥θ − θ′∥∥∥
2

+

√
T
(√

dTfxe
√
dfxT+1

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

∥∥∥x0 − x
′

0

∥∥∥
2

+ K1

λ−F (Y ∗)−‖Y ′−Y ∗‖
L2K5

∥∥∥Y − Y ′∥∥∥
L2

and by reinjecting in (7.13) we obtain:

∥∥∥pθ(., Y )− pθ′ (., Y
′
)
∥∥∥
L2
≤ K7

(
fxx
(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)(
K2+

∥∥∥Y ′−Y ∗∥∥∥
L2
K6+λK3

)
λ−F (Y ∗)−K5‖Y ′−Y ∗‖

L2

∥∥∥θ − θ′∥∥∥
2

+ K8

(
E(Y ∗) +K4

∥∥∥Y ′ − Y ∗∥∥∥
L2

)∥∥∥θ − θ′∥∥∥
2

+
K9

(
fxx
(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−K5‖Y ′−Y ∗‖

L2

∥∥∥x0 − x
′

0

∥∥∥
2

+

(
K10 +

K11

(
fxx
(
E(Y ∗)+K4

∥∥∥Y ′−Y ∗∥∥∥
L2

)
+2‖C‖22

)
λ−F (Y ∗)−‖Y ′−Y ∗‖

L2K5

)∥∥∥Y − Y ′∥∥∥
L2

We know K5 is a decreasing function w.r.t λ and the condition λ > F (Y ∗) +
∥∥∥Y ′ − Y ∗∥∥∥

L2
K5

becomes:

λ > F (Y ∗) +
1

2

(
K0

∥∥∥Y ′ − Y ∗∥∥∥
L2

+

√(
K0 ‖Y ′ − Y ∗‖L2 + 4

√
d ‖C‖2K1

)
K0 ‖Y ′ − Y ∗‖L2

)
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Lemma 7.6. Let us consider

(
∂X(t, θ)

∂P (t, θ)

)
solution of the linear ODE with boundary condition:


d
dt

(
∂X(t, θ)

∂P (t, θ)

)
=

(
A1(t, θ) A2(t, θ)

A3(t, θ) A4(t, θ)

)(
∂X(t, θ)

∂P (t, θ)

)
+B(t, θ)(

∂X(0, θ)

∂P (T, θ)

)
=

(
∂X0

∂PT

)

with θ a (possibly in�nite dimensional) parameter belonging to a normed space (Sθ, ‖.‖θ).

If θ 7−→

(
A1(., θ) A2(., θ)

A3(., θ) A4(., θ)

)
is continuous with Ai = sup[0, T ]×Sθ |Ai(t, θ)| < +∞, θ 7−→

B(., θ) is continuous with ‖B(., θ)‖L2 uniformly bounded on Sθ and dT 2A2A3e
√
dT(A1+A4) < 1

then the solution

(
∂X(., θ)

∂P (., θ)

)
is unique for each θ, is uniformly bounded on [0, T ] × Sθ and

θ 7−→

(
∂X(., θ)

∂P (., θ)

)
is continuous on Sθ.

Proof. We have:

d
dt ‖∂X(t, θ)‖2 ≤

√
dA1 ‖∂X(t, θ)‖2 +

√
dA2 ‖∂P (t, θ)‖2 + ‖B1(t, θ)‖2

d
dt ‖∂P (t, θ)‖2 ≤

√
dA3 ‖∂X(t, θ)‖2 +

√
dA4 ‖∂P (t, θ)‖2 + ‖B2(t, θ)‖2

Gronwall's lemma gives us:

‖∂X(t, θ)‖2 ≤ e
√
dA1T

∫ t
0

(√
dA2 ‖∂P (t, θ)‖2 + ‖B1(t, θ)‖2

)
ds

‖∂P (T − t, θ)‖2 ≤ e
√
dA4T

∫ t
0

(√
dA3 ‖∂X(T − t, θ)‖2 + ‖B2(T − t, θ)‖2

)
ds

By taking the L2 norm we obtain:

‖∂X(., θ)‖L2 ≤
√
dTA2e

√
dA1T ‖∂P (., θ)‖L2 + Te

√
dA1T ‖B1(., θ)‖L2

‖∂P (., θ)‖L2 ≤
√
dTA3e

√
dA4T ‖∂X(., θ)‖L2 + Te

√
dA4T ‖B2(., θ)‖L2

The condition dT 2A2A3e
√
dT(A1+A4) < 1 implies the uniform boundedness of ‖∂X(., θ)‖L2 on Sθ

and so of ‖∂P (., θ)‖L2 .

The inequalities:

‖∂X(t, θ)‖2 ≤
√
dTA2e

√
dA1T ‖∂P (., θ)‖L2 +

√
Te
√
dA1T ‖B1(., θ)‖L2

‖∂P (T − t, θ)‖2 ≤
√
dTA3e

√
dA4T ‖∂X(., θ)‖L2 +

√
Te
√
dA4T ‖B2(., θ)‖L2

hence implies the existence of uniform bounds ∂X and ∂P .

We have:

˙∂X(t, θ)− ˙∂X(t, θ
′
) = A1(t, θ)∂X(t, θ)−A1(t, θ

′
)∂X(t, θ

′
)

+ A2(t, θ)∂P (t, θ)−A2(t, θ
′
)∂P (t, θ

′
)

+ B1(t, θ)−B1(t, θ
′
)
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and so:

d
dt

∥∥∥∂X(t, θ)− ∂X(t, θ
′
)
∥∥∥

2
≤
√
dA1

∥∥∥∂X(t, θ)− ∂X(t, θ
′
)
∥∥∥

2
+
√
d∂X

∥∥∥A1(t, θ)−A1(t, θ
′
)
∥∥∥

2

+
√
dA2

∥∥∥∂P (t, θ)− ∂P (t, θ
′
)
∥∥∥

2
+
√
d∂P

∥∥∥A2(t, θ)−A2(t, θ
′
)
∥∥∥

2

+
∥∥∥B1(t, θ)−B1(t, θ

′
)
∥∥∥

2

Gronwall's lemma gives us:

d
dt

∥∥∥∂X(t, θ)− ∂X(t, θ
′
)
∥∥∥

2
≤
√
d∂Xe

√
dA1T

∫ t
0

∥∥∥A1(t, θ)−A1(t, θ
′
)
∥∥∥

2
ds

+
√
dA2e

√
dA1T

∫ t
0

∥∥∥∂P (t, θ)− ∂P (t, θ
′
)
∥∥∥

2
ds

+
√
d∂Pe

√
dA1T

∫ t
0

∥∥∥A2(t, θ)−A2(t, θ
′
)
∥∥∥

2
ds

+ e
√
dA1T

∫ t
0

∥∥∥B1(t, θ)−B1(t, θ
′
)
∥∥∥

2
ds

By passing through similar computations we obtain the following bound for
∥∥∥∂P (t, θ)− ∂P (t, θ

′
)
∥∥∥

2
:∥∥∥∂P (t, θ)− ∂P (t, θ

′
)
∥∥∥

2
≤
√
d∂Xe

√
dA4T

∫ t
0

∥∥∥A3(s, θ)−A3(s, θ
′
)
∥∥∥

2
ds

+
√
dA3e

√
dA4T

∫ t
0

∥∥∥∂X(s, θ)− ∂X(s, θ
′
)
∥∥∥

2
ds

+
√
d∂Pe

√
dA4T

∫ t
0

∥∥∥A4(s, θ)−A4(s, θ
′
)
∥∥∥

2
ds

+ e
√
dA4T

∫ t
0

∥∥∥B2(s, θ)−B2(s, θ
′
)
∥∥∥

2
ds

Using Cauchy-Schwarz inequality and taking the L2 norm eventually lead us to:∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2
≤
√
dT∂Xe

√
dA1T

∥∥∥A1(., θ)−A1(., θ
′
)
∥∥∥
L2

+
√
dTA2e

√
dA1T

∥∥∥∂P (., θ)− ∂P (., θ
′
)
∥∥∥
L2

+
√
dT∂Pe

√
dA1T

∥∥∥A2(., θ)−A2(., θ
′
)
∥∥∥
L2

+ Te
√
dA1T

∥∥∥B1(., θ)−B1(., θ
′
)
∥∥∥
L2

≤
√
dTA2e

√
dA1T

∥∥∥∂P (., θ)− ∂P (., θ
′
)
∥∥∥
L2

+KX ‖θ − θ′‖

with KX a constant due to continuity and uniform boundedness on Sθ of A and B. We can also

�nd a bound for
∥∥∥∂P (., θ)− ∂P (., θ

′
)
∥∥∥
L2
:

∥∥∥∂P (., θ)− ∂P (., θ
′
)
∥∥∥
L2
≤
√
dT∂Xe

√
dA4T

∥∥∥A3(., θ)−A3(., θ
′
)
∥∥∥
L2

+
√
dTA3e

√
dA4T

∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2

+
√
d∂Pe

√
dA4T

∥∥∥A4(., θ)−A4(., θ
′
)
∥∥∥
L2

+ Te
√
dA4T

∥∥∥B2(., θ)−B2(., θ
′
)
∥∥∥
L2

≤
√
dTA3e

√
dA4T

∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2

+KP ‖θ − θ′‖

with KP a constant, by reinjecting the bound found for
∥∥∥∂P (., θ)− ∂P (., θ

′
)
∥∥∥
L2

in the one for∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2

we obtain:

∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2
≤ dT 2A2A3e

√
dT(A1+A4)

∥∥∥∂X(., θ)− ∂X(., θ
′
)
∥∥∥
L2

+
(√

dTA2e
√
dA1TKP +KX

)
‖θ − θ′‖
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which gives the uniqueness of the solution and the continuity of θ 7−→ ∂X(., θ) and hence of

θ 7−→ ∂P (., θ) using the upper bound of
∥∥∥∂P (., θ)− ∂P (., θ

′
)
∥∥∥
L2

for dT 2A2A3e
√
dT(A1+A4) < 1.

8 Adjoint method for gradient Computation

8.1 Pro�led cost and ODE (3.2) reformulation

In order to use adjoint method we reformulate the pro�led cost under the integral form S(Ŷ ; θ, λ) =∫ T
0
l(Rθ(s), s)ds as well as the ODE (3.2) under the form: Ṙθ(t) = F (Rθ(t), θ, t).

By posing:

Rθ(t) =
(
Xθ,u(t)T , pθ(t)

T
)T

l(Rθ(t), t) =
(
CXθ,u(t)− Ŷ (t)

)T (
CXθ,u(t)− Ŷ (t)

)
+ 1

4λpθ(t)
TBBT pθ(t)

F (Rθ(t), θ, t) =

(
f(t,Xθ,u(t), θ) + 1

2λBB
T pθ(t)

−∂f∂x (t,Xθ,u(t), θ)T pθ(t) + 2CT
(
CXθ,u(t)− Ŷ (t)

) ) .

We also need to compute their derivatives:

∂F

∂θ
(Rθ(t), θ, t) =

(
∂f
∂θ (t,Xθ,u(t), θ)

−
∑
j

(
∂fj

∂θT ∂X
(t,Xθ,u(t), θ)pj,θ(t)

) ) .

∂F

∂R
(Rθ(t), θ, t) =

(
∂f
∂X (t,Xθ,u(t), θ) 1

2λBB
T

−
∑
j

(
∂fj

∂XT ∂X
(t,Xθ,u(t), θ)pj,θ(t)

)
+ 2CTC − ∂f

∂X (t,Xθ,u(t), θ)T

)
.

∂l(Rθ(t), t)

∂R
=

(
2CT

(
CXθ,u(t)− Ŷ (t)

)
1

2λBB
T pθ(t)

)T
.

8.2 Adjoint method

8.2.1 Known initial condition

The gradient of S(Ŷ ; θ, λ) is expressed under the form:

∇θS(Ŷ ; θ, λ) =
∫ T

0
∂l
∂R (Rθ(s), s)

∂Rθ(s)
∂θ ds

with ∂Rθ(t)
∂θ solution of the sensitivity equation:

d

dt
(
∂Rθ(t)

∂θ
) =

∂F

∂R
(Rθ(t), θ, t)

∂Rθ(t)

∂θ
+
∂F

∂θ
(Rθ(t), θ, t).

If we premultiply the right and left term of the previous ODE by the 2d−sized adjoint vector

P (t) = (P1(t), P2(t)) and then integrate we obtain∫ T

0

P (t).
d

dt
(
∂Rθ(t)

∂θ
)dt =

∫ T

0

P (t).
∂F

∂R
(Rθ(t), θ, t)

∂Rθ(t)

∂θ
dt+

∫ T

0

P (t).
∂F

∂θ
(Rθ(t), θ, t)dt.
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Integration by part gives us∫ T

0

P (t).
d

dt
(
∂Rθ(t)

∂θ
)dt = P (T ).

∂Rθ(T )

∂θ
− P (0).

∂Rθ(0)

∂θ
−
∫ T

0

Ṗ (t).
∂Rθ(t)

∂θ
dt.

Since
∂Xθ,u(0)

∂θ = 0 and ∂pθ(T )
∂θ = 0 by developing by block we have:

∫ T

0

P (t).
d

dt
(
∂Rθ(t)

∂θ
)dt = P1(T ).

∂Xθ,u(T )

∂θ
− P2(0).

∂pθ(0)

∂θ
−
∫ T

0

Ṗ (t).
∂Rθ(t)

∂θ
dt.

So if we take P1(T ) = 0 and P2(0) = 0 we obtain the variational relation:∫ T

0

(
Ṗ (t) + P (t).

∂F

∂R
(Rθ(t), θ, t)

)
∂Rθ(t)

∂θ
dt+

∫ T

0

P (t).
∂F

∂θ
(Rθ(t), θ, t)dt = 0

and by imposing:

Ṗ (t) + P (t).
∂F

∂R
(Rθ(t), θ, t) =

∂l(Rθ(t), t)

∂R

we derive the expression:∫ T

0

∂l(Rθ(t), t)

∂R

∂Rθ(t)

∂θ
dt = −

∫ T

0

P (t).
∂F

∂θ
(Rθ(t), θ, t)dt

and so

∇θS(Ŷ ; θ, λ) = −
∫ T

0

P (t).
∂F

∂θ
(Rθ(t), θ, t)dt.

We can now compute ∇θS(Ŷ ; θ, λ) by considering:

∇θS(Ŷ ; θ, λ) = −
∫ T

0
P (t).∂F∂θ (Rθ(t), θ, t)dt

Ṗ (t) = ∂l(Rθ(t),t)
∂R − P (t).∂F∂R (Rθ(t), θ, t)

P1(T ) = 0

P2(0) = 0

.

8.2.2 Unknown initial condition

In that case we have to consider the extended parameter set (θ, x0) and the extended gradient:

∇(θ,x0)S(Ŷ ; θ, x0, λ) =
(
∇θS(Ŷ ; θ, x0, λ), ∇x0S(Ŷ ; θ, x0, λ)

)
.

We have already obtained ∇θS(Ŷ ; θ, x0, λ) we now compute

∇x0
S(Ŷ ; θ, x0, λ) =

∫ T

0

∂l

∂R
(Rθ(s), s)

∂Rθ(s)

∂x0
ds

using adjoint method. If we premultiply the right and left term of the sensitivity ODE w.r.t x0:

d

dt

(
∂Rθ(t)

∂x0

)
=
∂F

∂R
(Rθ(t), θ, t)

∂Rθ(t)

∂x0
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by the 2d−sized adjoint vector P (t) = (P1(t), P2(t)) and then integrate we obtain:∫ T

0

P (t).
d

dt
(
∂Rθ(t)

∂x0
)dt =

∫ T

0

P (t).
∂F

∂R
(Rθ(t), θ, t)

∂Rθ(t)

∂x0
dt.

Integration by part gives us∫ T

0

P (t).
d

dt
(
∂Rθ(t)

∂x0
)dt = P (T ).

∂Rθ(T )

∂x0
− P (0).

∂Rθ(0)

∂x0
−
∫ T

0

Ṗ (t).
∂Rθ(t)

∂x0
dt.

Reminding that ∂Rθ(T )
∂x0

=

(
∂Xθ,u(0)
∂x0

T
, 0

)T
and ∂Rθ(0)

∂x0
=
(
Id,

∂pθ(0)
∂x0

T)T
we know if we take

P1(T ) = 0 and P2(0) = 0 we obtain the variational relation:∫ T

0

(
Ṗ (t) + P (t).

∂F

∂R
(Rθ(t), θ, t)

)
∂Rθ(t)

∂x0
dt+ P1(0) = 0

and by imposing:

Ṗ (t) + P (t).
∂F

∂R
(Rθ(t), θ, t) =

∂l(Rθ(t), t)

∂R

we derive from that ∫ T

0

∂l(Rθ(t), t)

∂R

∂Rθ(t)

∂x0
dt = −P1(0)

and so

∇x0
S(Ŷ ; θ, x0, λ) = −P1(0).

We can now compute ∇x0
S(Ŷ ; θ, x0, λ) by considering:

∇x0
S(Ŷ ; θ, x0, λ) = −P1(0)
Ṗ (t) = ∂l(Rθ(t),t)

∂R − P (t).∂F∂R (Rθ(t), θ, t)

P1(T ) = 0

P2(0) = 0

.

Since the adjoint ODE has already been solved for parameter gradient computation, it does not

require any extra cost to compute ∇x0
S(Ŷ ; θ, x0, λ).
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