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Proof of Theorem 1. (i) Under Assumptions 1 and 2, we have that

KL(λ) = KL(qλ‖π) −

∫
qλ(θ)E(z|θ)dθ = KL(qλ‖π) +

σ2

2
, (1)

where KL(qλ‖π) is the Kullback-Leibler divergence between the variational distribu-

tion qλ(θ) and the posterior π(θ). So, ∇λKL(λ) = ∇λKL(qλ‖π) is independent of

σ2, and minimizing KL(λ) with respect to λ is equivalent to minimizing KL(qλ‖π).

Algorithm 1 and 2 are the Robbins-Monro procedure for finding the root λ∗ of the

equation ∇λKL(qλ‖π)=0. Then, the result follows from Theorem 1 of Sacks (1958)

with the constant cλ∗ independent of σ2.

(ii) Denote ĥ(θ,z) = log(p(θ)p̂N (y|θ,z)) = log(p(θ)p(y|θ))+z = h(θ)+z. We consider

the case with the noisy traditional gradient; the proof for the other cases is similar.

We denote by ∇̃λKL(λ∗) the noisy gradient obtained when the likelihood is available.

Then, noting that E∗(ζ∗(θ))=0, the constant c in (6) is

c=
Eθ,z{ζ∗(θ)2(log qλ∗(θ) − h(θ) − z)}

E∗

{
ζ∗(θ)2

} =
E∗{ζ∗(θ)2(log qλ∗(θ) − h(θ))}

E∗

{
ζ∗(θ)2

} +
σ2

2
= c̃+

σ2

2
.

We note that c̃ is the control variate constant we would use to compute ∇̃λKL(λ∗) if
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the likelihood was known.

V
(
∇̂λKL(λ∗)

)
=

1

S
Vθ,z

{
ζ∗(θ)(log qλ∗(θ) − h(θ) − z − c)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+

1

S
V∗

{
ζ∗(θ)(log qλ∗(θ) − h(θ) +

σ2

2
− c)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+

1

S
V∗

{
ζ∗(θ)(log qλ∗(θ) − h(θ) − c̃)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+ V

(
∇̃λKL(λ∗)

)
.

Therefore,

σ2
asym(λ̂M ) = cλ∗V

(
∇̂λKL(λ∗)

)
= σ2

asym(λ̃M ) + cλ∗
σ2

S
V∗

{
ζ∗(θ)

}
.

Derivation for Section 5.1

The density of the d−variate normal N (µ,Σ) is

q(β) =
1

(2π)d/2|Σ|1/2
exp

(
−

1

2
(β − µ)′Σ−1(β − µ)

)
.

A simplified form of the inverse Fisher matrix for a multivariate normal under the

natural parameterization is given in Wand (2014). For a d×d matrix A, denote by

vec(A) the d2-vector obtained by stacking the columns of A, by vech(A) the 1
2
d(d+1)-

vector obtained by stacking the columns of the lower triangular part of A. The

duplication matrix of order d, Dd, is the d2× 1
2
d(d+1) matrix of zeros and ones such

that for any symmetric matrix A

Ddvech(A) = vec(A).
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Let D+
d =(D′

dDd)
−1D′

d be the Moore-Penrose inverse of Dd, and vec−1 be the inverse

of the operator vec. Then, the exponential family form of the normal distribution

q(β) is q(β)=exp(T (β)′λ−Z(λ)) with

T (β) =




β

vech(ββ ′)


 , λ =



λ1

λ2


 =




Σ−1µ

−1
2
D′

dvec(Σ−1)


 . (2)

The usual mean and variance parameterization is






µ = −1
2

{
vec−1(D+

d
′

λ2)
}
−1
λ1

Σ = −1
2

{
vec−1(D+

d

′

λ2)
}
−1
.

Wand (2014) derives the following very useful formula

IF (λ)−1 =




Σ−1 +M ′S−1M −M ′S−1

−S−1M S−1


 , (3)

with

M = 2D+
d (µ⊗ Id) and S = 2D+

d (Σ ⊗ Σ)D+
d

′

,

where ⊗ is the Kronecker product and Id the identity matrix of order d. The gradient

∇λ[logq(β)] is

∇λ[log q(β)] =




β − µ

vech(ββ ′ − Σ − µµ′)


 . (4)

For the inverse gamma distribution q(τ 2) with density

q(τ 2) =
ab

Γ(a)
(τ 2)−1−a exp(−b/τ 2),
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the natural parameters are (a,b). The Fisher information matrix for the inverse

gamma is

IF(a, b) =



∇aa[log Γ(a)] −1/b

−1/b a/b2


 ,

and the gradient

∇a[log qλ(θ)] = − log(τ 2) + log(b)−∇a[log Γ(a)]

∇b[log qλ(θ)] = −
1

τ 2
+
a

b
.

The importance of the natural gradient

We demonstrate the importance of the natural gradient using a simple example where

the likelihood is available. We consider a model where the data yi ∼ B(1,θ) - the

Bernoulli distribution with probability θ. We generate n=200 observations yi from

B(1,θ = 0.3) and obtain k =
∑

iyi = 57. We use a uniform prior on θ. Then, the

posterior p(θ|y) is Beta(k+1,n−k+1). The variational distribution qλ(θ) is chosen

to be Beta(α,β) which belongs to the exponential family with the natural parameter

λ=(α,β)′. The Fisher information matrix IF (λ) is

IF(λ) =



ψ1(α) − ψ1(α+ β) ψ1(α + β)

ψ1(α+ β) ψ1(β)− ψ1(α+ β)


 ,

where ψ1(x) =∇xx[logΓ(x)] is the trigamma function. In this simple example, the

gradient ∇λKL(λ) can be computed analytically

∇λKL(λ)=IF (λ)λ−H(λ)
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with

H(λ) =




kψ1(α) − nψ1(α+ β)

(n − k)ψ1(β)− nψ1(α + β)


 .

Using the traditional gradient, the update in Algorithm 1 is

λ(t+1) = λ(t) − at

(
IF (λ(t))λ(t) −H(λ(t))

)
.

Using the natural gradient, the update is

λ(t+1) = (1 − at)λ
(t) + atIF(λ(t))−1H(λ(t)).

Figure 1 plots the densities of the exact posterior π(θ) and the variational distri-

butions qλ(θ) estimated by the VBIL using the traditional gradient and the natural

gradient, with two different random initializations. The figure shows that the VBIL

algorithm using the natural gradient is superior to that using the traditional gradient.

Furthermore, the VBIL algorithm based on the natural gradient is insensitive to the

initial λ(0).

Using VBIL to improve estimates of the marginal posteriors

We illustrate this application by generating n = 100 observations from a univari-

ate mixture of two normals p(x) = ωN (x|µ1,σ
2
1)+(1−ω)N (x|µ2,σ

2
2) with ω = 0.3,

µ1 = −3, µ2 = 3, σ2
1 = 2 and σ2

2 = 3. Suppose that we are interested in getting an

accurate variational approximation of the posterior p(ω|y). Getting an accurate es-

timate of w is often more challenging than the other parameters. We use diffuse

priors ω∼U(0,1), µ1∼N (0,100), µ2∼N (0,100), σ2
1∼(σ2

1)
−1 and σ2

2∼(σ2
2)

−1, and run

VBIL to approximate p(ω|y) by a Beta distribution. We use the VB algorithm of
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Figure 1: Importance of the natural gradient: Plots of the densities of the exact pos-
terior (solid line) and the variational approximation estimates using the traditional
gradient (dotted line) and the natural gradient (dashed line), with two different start-
ing values λ(0) at random. VB based on the natural gradient produces highly accurate
estimates.

McGrory and Titterington (2007), in which the variational distribution is factorized

as q(ω)q(σ2
1,σ

2
2)q(µ1,µ2|σ2

1,σ
2
2), to design the proposal density to obtain an importance

sampling estimator of p(y|ω).

Figure 2 plots the McGrory-Titterington estimate (dashed line) and VBIL esti-

mate (solid line) of the posterior p(ω|y). As shown, the VBIL estimate has heavier

tails than the VB estimate. By (20), it follows that the difference between the two es-

timates gives an indication of the extent to which the McGrory-Titterington estimate

is suboptimal. This example shows that the VBIL method provides an attractive way

to obtain accurate approximation of marginal posteriors.
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Figure 2: Improving estimates of marginal posteriors: Plots of the VB (dashed line)
and VBIL estimates (solid line) of the posterior p(ω|y). The VBIL estimate has
heavier tails than the VB estimate.
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