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1 MM algorithm for 2D FLR

Yu et al. (2015) propose an MM algorithm to solve (1). The MM algorithm iterates between

two steps: majorization and minimization. Given the current estimate β̂0 of the optimal

solution to (1), the majorization step constructs a majorizing function g
(
β
∣∣β̂0

)
such that

f
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)
= g

(
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)
and f

(
β
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)
for all β 6= β̂0. The minimization step updates the

estimate with β̂ = argminβ g
(
β
∣∣β̂0

)
. Motivated by Hunter and Li (2005), Yu et al. (2015)

proposed to perturb (1) slightly and successively minimize this by MM. The ǫ-perturbed

version of (1) is given by
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, (A1)

and its majorizing function gǫ(β|β̂
0) is
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(A2)

For the estimate coefficient vector β̂(r) at the rth iteration, the majorizing function gǫ(β|β̂
(r))

is minimized over β when ∂gǫ(β|β̂
(r))/∂β = 0. Otherwise, to solve a linear system of equa-

tions

(
XTX + λ1A

(r) + λ2B
(r)
)
β = XTy, (A3)

where A(r) = diag(a
(r)
1 , a

(r)
2 , . . . , a

(r)
p ) with a

(r)
j = 1/(|β̂

(r)
j | + ǫ) for 1 ≤ j ≤ p, and B(r) =

(
b
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is a symmetric and positive semidefinite matrix with
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A standard procedure to solve (A3) is the Cholesky decomposition, followed by the back-

ward substitution, both of which are difficult to parallelize. Yu et al. (2015) observed that

the matrix term

M (r) = λ1A
(r) + λ2B

(r)

in (A3) can be constructed in O(m) operations, which has an advantage over the other

procedures for solving (1), and considered a preconditioned conjugate gradient (PCG)

method that uses this term as the preconditioner. For the standard FLR, the preconditioner

solve is a tridiagonal linear system, and can be conducted in parallel by using a variant of

the cyclic reduction algorithm (Stone, 1973) for GPU (Zhang et al., 2010). It is observed

that for the standard FLR, the MM algorithm tends to converge within a few tens of

iterations for tens of thousands of p (Yu et al., 2015).

However, for the 2D FLR, each preconditioner solve involves a block tridiagonal system,

and the strategy for the standard FLR appears not to be effective any more. Specifically,

for a p1-by-p2 grid, we have

M (r) =




T1 D1

D1 T2 D2

. . . . . . . . .

Dp2−2 Tp2−1 Dp2−1

Dp2−1 Tp2




(A4)

where Tk is a p1 × p1 tridiagonal matrix, and Dk is a p1 × p1 diagonal matrix. Inverting

(A4) amounts to solve

Dj−1xj−1 + Tjxj +Djxj+1 = vj, j = 1, . . . , p2, D0 = Dp2 = 0. (A5)

Block cyclic reduction eliminates x2k−1 and x2k+1 by multiplying D2k−1(T2k−1)
−1 to the

2k−1st equation and D2j(T2j+1)
−1 to the 2k+1st equation, and by subtracting them from

the 2kth equation (Gander and Golub, 1997). Each reduction step involves three p1-by-p1

tridiagonal system solves. Ultimately, block cyclic reduction requires 3p2 tridiagonal solves.

Unless p1 is small, this strategy is not very effective.
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Figure A1: Memory hierarchy of the CUDA (Owens et al., 2008).

2 Overview of the GPU architecture

In this section, we focus primarily on NVidia’s CUDA GPUs, although many of the prin-

ciples can also be applied to other single-instruction-multiple-data (SIMD) architectures.

A CUDA GPU consists of thousands of cores that can execute the same program, called a

thread, in parallel. A certain number of cores (depending on the “compute capability” of

the GPU) are contained in a streaming multiprocessor (SM). A GPU is a scalable array of

SMs. The group of threads that executes the same program simultaneously on the same

SM is called a warp. The global memory of a GPU is accessible from all SMs; each SM

is equipped with a small amount of shared memory with which the threads of a warp can

communicate with each other (NVidia Corporation, 2015). A thread can be assigned reg-

isters from the register file of the SM. From a programming point of view, the programmer

allocates memory on the GPU, copies the data from the host’s main memory to the GPU’s

global memory, and specifies a program called a kernel whose multiple instances run on

the SM. After the kernel threads terminate, the programmer copies the data back to the

host. The memory hierarchy of CUDA is illustrated in Fig. A1.

For the 2D FLR, the split Bregman algorithm consists mostly of scalar-vector multipli-

cation, vector-vector addition, matrix-vector multiplication, and squared Euclidean norm
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calculation. These operations have a typical SIMD structure, and can be parallelized easily

using the cuBLAS. The FFT used in solving the linear system can also be performed in

parallel using the cuFFT library. Both cuBLAS and cuFFT are parts of the CUDA toolkit

version 7.5 (NVidia Corporation, 2012) Xin et al. (2014) Zhu (2016).

3 Image denoising examples

β (original) y (corrupted) β̂ (denoised)

Figure A2: Image denoising with Peppers, Cameraman, and Baboon.
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