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Abstract. This document complements the main paper by containing additional tech-
nical details and results. It is organized into three sections:

• in Section S.1 a review of depth functionals available in the literature is given.
The emphasis of the exposition is put on the unification of these diverse concepts
from the theoretical point of view. It is shown that most of the established depths
fall into the general framework of projection-driven depths of either integrated, or
infimal type. Within this framework, the order extended depths are introduced in
full generality.

• in Section S.2 a full-scale simulation study evaluating the performance of all the
depth functionals mentioned in Section S.1 can be found, along with all its technical
details.

• in Section S.3 the proof of Theorem 1 from the main body of the paper, and
some additional discussion on the relation of order extended depths with depths
including derivatives, are given.

S.1. Unified Approach to Depth Functionals and General Order
Extended Depth

For the sake of technical correctness, let us start by introducing detailed notations.
Let (Ω,F ,P) be a probability space on which all the random quantities are defined. For
a measurable space S, P (S) stands for the collection of all probability measures defined
on S and for P ∈ P (S), X ∼ P means a random variable X taking values in S having
distribution P . For X1, . . . , Xn ∈ S a random sample of size n ∈ N from P , the empirical
measure corresponding to this random sample will be denoted by Pn(ω) = Pn ∈ P (S)
for ω ∈ Ω.
For τ : S → S ′ a measurable mapping to a measurable space S ′, the distribution of the

transformed random variable τ(X) is denoted by Pτ(X) ∈ P (S ′). To avoid confusion, the
original distribution of X can then likewise be designated by PX = P ∈ P (S).

S.1.1. Space of Continuous Functions and its Dual. The space of real-valued con-
tinuous functions defined on the compact interval [0, 1] is denoted by C ([0, 1]) and is, if
not stated otherwise, assumed to be equipped with the uniform norm

(S.1) ‖x‖ = sup
t∈[0,1]

|x(t)| for x ∈ C ([0, 1]) .
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The dual of the Banach space C ([0, 1]), denoted by C ([0, 1])∗, plays an important role in
the framework of functional depths. It can be identified with the space of all finite signed
Borel measures on [0, 1] (cf Rudin, 1987, Theorem 6.19). This representation yields that
for any bounded linear functional φ ∈ C ([0, 1])∗ there exists a unique finite signed Borel
measure µ on [0, 1] such that

(S.2) φ(x) =

∫ 1

0

x(t) dµ(t) for all x ∈ C ([0, 1]) .

Slightly abusing the notation, we shall identify the dual space C ([0, 1])∗ with the space
of finite signed Borel measures on [0, 1] and write merely µ ∈ C ([0, 1])∗, having in mind
the functional φ defined by formula (S.2).
The simplest examples of nontrivial elements of C ([0, 1])∗ are Dirac measures. For

s ∈ [0, 1], the Dirac measure at s is defined as the element δs ∈ C ([0, 1])∗ such that for
B ⊂ [0, 1] Borel

(S.3) δs(B) =

{

1 if s ∈ B,

0 if s /∈ B.

The functional (S.2) for µ = δs is the coordinate projection in C ([0, 1])
∫ 1

0

x(t) d δs(t) = x(s) for all x ∈ C ([0, 1]) .

Other simple representatives of the dual space C ([0, 1])∗ are measures that are absolutely
continuous with respect to the Lebesgue measure on [0, 1]. For a measure µ like this,
the Radon-Nikodym theorem (cf Rudin, 1987, Theorem 6.10) asserts the existence of a
unique function h ∈ L1 ([0, 1]) such that

(S.4)

∫ 1

0

x(t) dµ(t) =

∫ 1

0

x(t)h(t) d t for all x ∈ C ([0, 1]) .

As usual, Lp ([0, 1]) is the space of functions for which the pth power of the absolute value
is Lebesgue integrable on [0, 1].
As we will see later, various depth functionals tailored for data from C ([0, 1]) fit into

a projection-based setup. These can be well defined by means of either measures on the
dual space C ([0, 1])∗, or subsets of it. We will deal with these in Sections S.1.3–S.1.5.
First, in Section S.1.2 we introduce three depth functionals which are frequently used,
but do not fit into these general classes.

S.1.2. h-Mode Depth, Band Depth and Halfregion Depth. A simple approach
towards depth assignment for functions is called h-mode depth, and is motivated by
the likelihood estimation from the finite-dimensional case. Cuevas et al. (2006) propose
to utilize the idea of kernel density estimators to measure the centrality of a curve by
accounting for how closely surrounded the curve is in a random sample from a distribution
on functions.

Definition. The h-mode depth of x ∈ C ([0, 1]) with respect to X ∼ P ∈ P (C ([0, 1])) is
defined as

(S.5) hM (x;P ) = E

[

1

h(P )
K

(

‖x−X‖2
h(P )

)]

.
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Here, ‖·‖2 is a norm on C ([0, 1]) (possibly different from (S.1)), K is a kernel function
and h(P ) > 0 a bandwidth parameter. In the sample case (S.5) reduces to

(S.6) hM (x;Pn) =
1

nh(Pn)

n
∑

i=1

K

(

‖x−Xi‖2
h(Pn)

)

.

The main difference between the h-mode depth and similar density-like concepts for
functional random variables (cf Ferraty and Vieu, 2006, Dabo-Niang et al., 2006) is that
in this case, the bandwidth h(Pn) in (S.6) is not intended to vanish as the sample size n
goes to infinity. Instead, the sample bandwidth h(Pn) is assumed to be a positive number
approaching a fixed positive value h(P ) as the sampling process continues. For details
see Cuevas et al. (2006, 2007). As far as we know, the only theoretical result available
for the h-mode depth is its sample version consistency (Nagy, 2015).
Perhaps the most popular functional depth used in many applications is the band

depth (López-Pintado and Romo, 2009).

Definition. For K = 2, 3, . . . , P ∈ P (C ([0, 1])) and X1, . . . , XK ∈ C ([0, 1]) a random
sample from P , the band depth (of order K) of x ∈ C ([0, 1]) with respect to P is defined
as

(S.7) BD (x;P ) =
1

K − 1

K
∑

k=2

P

(

x(t) ∈

[

min
l=1,...,k

Xl(t), max
l=1,...,k

Xl(t)

]

for all t ∈ [0, 1]

)

.

The sample version of BD is defined as the U-statistic corresponding to BD (x;Pn).
The basic properties of this depth were established by López-Pintado and Romo (2009),
see also Gijbels and Nagy (2015) for the consistency results.
The third important depth functional we consider here is the halfregion depth (López-

Pintado and Romo, 2011).

Definition. The halfregion depth of x ∈ C ([0, 1]) with respect to X ∼ P ∈ P (C ([0, 1]))
is defined as
(S.8)
HR (x;P ) = min {P (X(t) ≥ x(t) for all t ∈ [0, 1]) ,P (X(t) ≤ x(t) for all t ∈ [0, 1])} .

The sample version of HR is simply HR (x;Pn) and some of its properties can be found
in López-Pintado and Romo (2011). See also Kuelbs and Zinn (2015) for a discussion on
its consistency properties.
In the rest of this section we mainly focus on depths defined by means of projections.

In Section S.1.3 we start with a particular instance of a functional data depth based on
the projections of the involved functions into a few first (robust) principal components
computed from the dataset. Further, we discuss other projection-based functional depths,
which can be well categorized either into the group of integrated (Section S.1.4) or infi-
mal depths (Section S.1.5). Then, in Section S.1.6 we briefly recall how the derivatives
of functions can be incorporated into the functional depth computation, and finally in
Section S.1.7 we define the general order extensions of depth functionals.

S.1.3. Dimension Reduction and Depth for Principal Components. In what
follows, assume that D is a generic finite-dimensional depth function applicable to d-
dimensional datasets, for arbitrary d ∈ N

(S.9) D : Rd × P
(

R
d
)

→ [0, 1] : (u,Q) 7→ D (u;Q) .
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The most important finite-dimensional depth is the halfspace depth (Tukey, 1975, Donoho
and Gasko, 1992) defined in Section 1 of the main paper. To provide a unifying exposition,
similarly as in the main paper, when a concrete choice of a depth D is necessary we
consider the halfspace depth, though any other finite-dimensional depth could be utilized
as well.
A general technique applicable to functional observations rests in a two-step procedure,

starting with a dimension reduction technique as the initial step. Assume that the data
generated by a random function X ∼ P come from the Hilbert space L2 ([0, 1]). Denote

the scalar product of f, g ∈ L2 ([0, 1]) by 〈f, g〉 =
∫ 1

0
f(t)g(t) d t. If certain moment

assumptions onX may be justified, all the involved observations may initially be projected
into the first few (robust) principal component curves ψ1, . . . , ψd of P estimated from the
dataset. The resulting vectors

(S.10) (〈x, ψ1〉, . . . , 〈x, ψd〉)
T ∈ R

d for x ∈ L2 ([0, 1])

of the projections are often called the (robust) scores of the functions. In the second
step of the analysis, the scores (S.10) of all the functions are used as substitutes (or
approximations) of the original curves, and ordinary multivariate statistical analysis of
these vectors is performed. This way, a simple functional depth may be obtained as

(S.11) PCDd(x;P ) = D
(

(〈x, ψ1〉, . . . , 〈x, ψd〉)
T ;P(〈X,ψ1〉,...,〈X,ψd〉)

T

)

.

As we will see in Section S.1.7, this depth is also very close to the general family of order
extended depths. Nonetheless, the single projection on the pre-specified vector of the
principal components of P makes it more a finite-dimensional depth function applied to
a particular d-dimensional approximation of the functional data, rather than a typical
functional data depth. As far we know, no systematic study of the theoretical properties
of the depths (S.11) was performed.

S.1.4. Integrated Depth and Random Projection Depth. Cuevas and Fraiman
(2009) proposed a general depth functional of integrated type.

Definition. Consider a probability measure ν defined on the space C ([0, 1])∗. Then the
integrated dual depth of x ∈ C ([0, 1]) with respect to X ∼ P ∈ P (C ([0, 1])) is defined as

(S.12) IDD (x;P, ν) =

∫

C([0,1])∗
D

(

φ(x);Pφ(X)

)

d ν(φ).

In (S.12), Pφ(X) ∈ P (R) stands for the R-valued measure of the transformed random
variable φ(X). Notice also that in the definition we assume ν defined as a measure on
the space C ([0, 1])∗, not as an element of the space C ([0, 1])∗.
The general notion (S.12) naturally encompasses many depth functionals. For ν re-

stricted to the set of Dirac measures (S.3) δt ∈ C ([0, 1])∗ for t ∈ [0, 1], the canonical
bijection δt 7→ t provides a major simplification. The measure ν can then be considered
as defined on the space [0, 1], and for D univariate, (S.12) reduces to

(S.13) IDD (x;P, ν) =

∫ 1

0

D
(

x(t);PX(t)

)

d ν(t).

Here, again, PX(t) ∈ P (R) designates the distribution of the random variable X(t) =
δt (X) for t ∈ [0, 1] fixed. The depth defined by (S.13) for ν the Lebesgue measure on
[0, 1] is the integrated depth FD defined in (1). For different choices of D, it appears
commonly in the literature:
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• the original integrated depth of Fraiman and Muniz (2001),
• the modified band depth of López-Pintado and Romo (2009), and
• the modified halfregion depth of López-Pintado and Romo (2011),

are all special cases of (S.13) (Nagy et al., 2016) and thus, naturally, all provide very
similar results for concrete examples.
As in Section S.1.3, the series of inclusions C ([0, 1]) ⊂ L2 ([0, 1]) ⊂ L1 ([0, 1]) and the

Riesz representation (S.4) enable for the exploitation of the Hilbert space structure of
the space L2 ([0, 1]). Given a measure ν on the space L2 ([0, 1]), another special case of
the definition (S.12) is the depth

(S.14) IDD (x;P, ν) =

∫

L2([0,1])

D
(

〈x, f〉;P〈X,f〉

)

d ν(f).

Here again, D is a general depth (S.9) for d = 1 and P〈X,f〉 the distribution of 〈X, f〉 for
f ∈ L2 ([0, 1]) fixed. In practice, the integral in (S.14) is not possible to be evaluated
precisely, as we integrate over a space that is too large. However, it is possible to approx-
imate it. For M ∈ N and f1, . . . , fM ∈ L2 ([0, 1]) a random sample from the measure ν
we can define a depth

(S.15) RP (x;P, ν) =
1

M

M
∑

m=1

D
(

〈x, fm〉;P〈X,fm〉

)

.

This integrated dual depth with the choice of a Gaussian distribution in L2 ([0, 1]) for ν
was proposed in Cuevas et al. (2007), who called it the random projection depth.
While many integrated type depths proved to be useful in applications, a major re-

maining concern is their theoretical background. An essential issue that needs to be
resolved when defining a general depth in (S.12) is the choice of the reference measure ν
on C ([0, 1])∗. The Lebesgue measure suits well for the integrated depth (S.13), but the
domain in (S.14) is already an infinite-dimensional space and approximations as in (S.15)
must be used (and justified). The measurability of the integrand function in (S.12) turns
out to be another nontrivial problem. For depths in form (S.13) this was recently re-
solved (Nagy et al., 2016). However, in general, even for depths defined by (S.14), these
issues definitely deserve more attention. Apart from some scattered results for particular
instances of IDD (taking the form (S.13)) in Fraiman and Muniz (2001), Cuevas and
Fraiman (2009) and Nagy et al. (2016), not much is available from theoretical point of
view for the general IDD in (S.12).

S.1.5. Infimal Depth and Random Functional Depth. A unifying approach similar
to that of integrated dual depths was recently proposed by Mosler (2013) by introducing
the class of Φ-depths for general data. The method stems from (S.12) and differs only by
replacing the integral in the formula by an infimum. The Φ-depth, or as we will also refer
to it, the infimal type depth for functional data, can then be defined as follows. Again,
assume that D is a depth as in (S.9).

Definition. For Φ ⊂ C ([0, 1])∗ given, the Φ-depth of x ∈ C ([0, 1]) with respect to
X ∼ P ∈ P (C ([0, 1])) is

ID (x;P,Φ) = inf
φ∈Φ

D
(

φ(x);Pφ(X)

)

.

Contrary to the integrated dual depth (S.12), for the Φ-depth one needs to predefine
only a set Φ ⊂ C ([0, 1])∗, instead of a measure ν on C ([0, 1])∗.
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Infimal type depths resembling the integrated depths reviewed in Section S.1.4 are
immediate. For Φ = {δt : t ∈ [0, 1]} one finds the infimal depth for functions ID defined
in (2) (with Φ omitted from the arguments).
A depth of infimal type corresponding to the random projection depth (S.15) is the

random functional depth of Cuesta-Albertos and Nieto-Reyes (2008a,b). Given a random
sample f1, . . . , fM ∈ L2 ([0, 1]) of sizeM ∈ N from a measure ν on L2 ([0, 1]) one can define
it as

(S.16) RF (x;P ) = inf
m=1,...,M

D
(

〈x, fm〉;P〈X,fm〉

)

.

Theoretical properties of infimal type depths are even more sparse in the literature
than those for integrated type depths. Apart from observations made by Mosler and
Polyakova (2012) and the consistency result of (Cuesta-Albertos and Nieto-Reyes, 2008b,
Theorem 2.10) for random functional depths (conditionally on M , a random sample
f1, . . . , fM and using univariate halfspace depth), no general theory applicable to these
functionals is available. Consistency results for general infimal type depths have not
been established, and there are only few consistency results for concrete representatives
of these functionals (cf Gijbels and Nagy, 2015, Kuelbs and Zinn, 2013).

S.1.6. Functional Depths Incorporating Derivatives. If all the considered functions
are differentiable, it is well known that taking the derivatives into account might lead to a
significant improvement in the performance of statistical procedures. Thus, assume in this
section that all trajectories of a random function X ∼ P ∈ P (C ([0, 1])) are continuously
differentiable on [0, 1] (with one-sided derivatives at the endpoints). Focusing, for the sake
of clarity, on the case of once differentiable functions, one can now represent the realized
random function X ∈ C ([0, 1]) by a couple (X,X ′)T ∈ C ([0, 1])2, or alternatively, by a
vector-valued function

(S.17) (X,X ′)
T
: [0, 1] → R

2 : t 7→ (X(t), X ′(t))
T
.

Here, X ′(t) stands for the derivative of X at t ∈ [0, 1].
Having the curves represented in this fashion, extensions of some depth functionals

towards differentiable functions are readily available. Assume that the trajectories of
X ∼ P ∈ P (C ([0, 1])) and x ∈ C ([0, 1]) are differentiable and suppose that the D depth
is given by (S.9) for d = 2.
The integrated depth (S.13) can be easily extended (Nagy, 2012, Claeskens et al., 2014):

IDD (x;P, ν) =

∫ 1

0

D
(

(x(t), x′(t))
T
;P(X(t),X′(t))T

)

d ν(t).

For ν the Lebesgue measure on [0, 1], this depth is called the integrated depth including
derivatives and denoted in (3) by FD(2).
Similarly, the infimal depth (2) takes in this case the form (4).
Two extended versions of the random projection depth (S.15) to this setup were in-

troduced in Cuevas et al. (2007). In both of them, the pair of functions (x, x′)T is first

projected by a function f ∈ L2 ([0, 1]) onto (〈x, f〉, 〈x′, f〉)T ∈ R
2. Then, two possibilities

were outlined by the authors:

• either a two-dimensional depth D is employed to assess the depth of the once
projected quantity (〈x, f〉, 〈x′, f〉)T directly, or
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• a second random projection of this two-dimensional quantity is made to obtain the
final, real-valued projected value. A univariate depth D of these twice projected
quantities is then computed.

If the first mentioned method is applied in the same way as in the random projection depth
RP in (S.15), we continue to speak about the random projection depth (now involving
derivatives) and denote the depth by RP (2). If the functions are projected twice and then
RP is applied, we shall denote this depth as the double random projection depth and
denote it by RPD, respecting the notation of Cuevas et al. (2007).
For the depths described in Section S.1.2, a simple extension to the setup of differen-

tiable functions can be made in the spirit of Ieva and Paganoni (2013). For the band
depth BD, for instance, the band depth involving derivatives can be defined by

(S.18) BD(2) (x;P ) = BD (x;PX) + BD (x′;PX′) ,

and similar extensions for the halfregion depthHR and the h-mode depth hM are evident.
In all these cases, the version of the depth incorporating the derivatives is distinguished
by a superscript (2). Another option for the extension of band depth BD would be
the recent proposal of simplicial band depth of López-Pintado et al. (2014) applied to
bivariate functions (S.17). However, this depth and (S.18) give in practice similar results.
Although the applicability of the depths proposed in this section is limited to smooth

functions, Cuevas et al. (2007) estimate the “derivatives” of non-differentiable functions.
By doing so they include some information about the shape of the functions into the
procedures, though, strictly speaking, the estimated derivative curves lose their interpre-
tation. In Example S.2 in Section S.2 (and Example 1 in the main paper) we proceed in
this way as well, and formally estimate derivatives for non-differentiable functional data
from the discretized functional values.

S.1.7. General Order Extended Depths. Taking into account the general exposition
on integrated and infimal type depth functionals in Sections S.1.4 and S.1.5, respectively,
the order extensions of (7) and (8) can be defined in full generality.
In both following definitions, D denotes a generic finite-dimensional depth (S.9) for

d = J , (C ([0, 1])∗)
J
is the product space of J copies of C ([0, 1])∗, and Pφ(X) ∈ P

(

R
J
)

stands for the measure of the transformed random variable φ(X), φ ∈ (C ([0, 1])∗)
J
.

Definition. For J = 1, 2, . . . consider a probability measure ν defined on (C ([0, 1])∗)
J
.

Then the Jth order integrated dual depth of x ∈ C ([0, 1]) with respect to X ∼ P ∈
P (C ([0, 1])) is defined as

(S.19) IDDJ (x;P, ν) =

∫

(C([0,1])∗)J
D

(

φ(x);Pφ(X)

)

d ν(φ),

if the integral on the right hand side is defined.

Definition. For J = 1, 2, . . . , let Φ ⊂ (C ([0, 1])∗)
J
be given. Then the Jth order Φ-depth

of x ∈ C ([0, 1]) with respect to X ∼ P ∈ P (C ([0, 1])) is

(S.20) IDJ (x;P,Φ) = inf
φ∈Φ

D
(

φ(x);Pφ(X)

)

.

The sample versions of these depths are defined just as those for order extended depth
functionals from Section 3 in the main paper, and depend on the sampling design of the
data curves. Moreover, finite approximations of these quantities in the spirit of Cuesta-
Albertos and Nieto-Reyes (2008b,a) can be defined analogously to (9) and (10).
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In general, the depths defined above may take on various forms and extensions of any
depth functional mentioned in Sections S.1.3, S.1.4 and S.1.5 can be derived as their
special case. For simplicity, in Section 3 of the main paper, in (8) and (7), respectively,
we consider the following instances

• the set Φ in (S.20) is for δt Dirac measures (S.3) set to be

Φ =
{

(δt1 , . . . , δtJ )
T : t1, . . . , tJ ∈ [0, 1]

}

⊂ (C ([0, 1])∗)
J
,

• and the reference measure ν in (S.19) is defined on Φ, such that its image in the
canonical representation

(C ([0, 1])∗)
J
→ [0, 1]J : (δt1 , . . . , δtJ )

T 7→ (t1, . . . , tJ)
T

is the Lebesgue measure on the unit cube [0, 1]J .

Note that also the principal components depth (S.11) is very similar to both order
extended depths (S.19) and (S.20), if just a single projection on the set of first d (robust)
principal components is taken. Nonetheless, formally they are not members of neither of
the families, as the choice of the projections depends on the data, and P .

S.2. Simulation Study

S.2.1. Technical Details. Let us start by listing the full technical details of the simula-
tion study to be performed in Section S.2.2 in Examples S.1–S.6 (and Examples 1 and 2
from the main paper).

• For each example, a total of 100 independent runs are generated. In each run,
two independent random samples X1, . . . , Xn and Y1, . . . , Yn of size n = 200 curves
from distribution P ∈ P (C ([0, 1])) are generated. The Xi curves constitute the
random sample of functions generated from P , Yi are additional curves generated
from P whose depths with respect to the Xi curves are computed, i = 1, . . . , n.

• A single, fixed (Examples S.1, S.3, S.4, S.5 and S.6) or random (Example S.2)
outlying function Y contaminates the random sample of test functions Yi, i =
1, . . . , n.

• The functional depths from Tab. S.1 are used to assess the depth values of the
set of curves Y1, . . . , Yn appended with Y , with respect to an empirical measure
supported in the random sample functions X1, . . . , Xn.

• To each of the depths, in the corresponding line of the tables of results (Tabs. S.2,
S.4 and S.6) the mean and standard deviation (in brackets) over 100 runs is
computed from the following characteristics:

– Rank: depth-based centrality rank of the outlying function Y (the rank of
the depth of Y with respect to the depths of functions Y1, . . . , Yn, Y , ranging
from 1 to 201, 201 meaning the smallest depth value, that is the most outlying
function);

– Ties: the total number of functions attaining simultaneously the lowest
depth value (ranging from 1 to 201, 201 meaning that all the functions at-
tained the same, low value of depth).

The actual value of the depth of Y is not displayed, since the very diverse nature
of the considered depth functionals makes it difficult to compare these values
directly from depth to depth.
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• In the associated tables of results for infimal depths only (Tabs. S.3, S.5 and S.7)
the same characteristics of Rank and Ties are obtained also for the adjusted
ranking for infimal depths, as outlined in formula (12) in Section 3 of the main
paper.
The adjusted ranking for infimal depths is defined as follows:

Definition. Consider a general depth of infimal type ID from Sections S.1.5
and S.1.7, defined as an infimum of depths D over a set of projections Φ ⊂

(C ([0, 1])∗)
J
. For a given measure ν on Φ, one says that the function x has higher

adjusted rank based on ID (is less central for ID) than y if
– either ID(x;P ) < ID(y;P ),
– or c = ID(x;P ) = ID(y;P ) and

ν
({

φ ∈ Φ: D(φ(x);Pφ(X)) = c
})

≥ ν
({

φ ∈ Φ: D(φ(y);Pφ(X)) = c
})

.

This way, x is less central than y also if their infimal depths are the same,
but for x the minimal value of D is attained over a larger subset of Φ. For the
infimal depths ID from (2) and ID(2) from (4), ν is taken to be the Lebesgue
measure on [0, 1] (or, more precisely, its canonical copy in C ([0, 1])∗). For the
order extended infimal depths IDJ and their approximations IDA

J , the Lebesgue
measure on [0, 1]J (that is, in (C ([0, 1])∗)J) is used.

• A depth well recognizing shape outliers should be assessing low (adjusted) depth
values to Y . The depth-based centrality rank of Y should be indicating outlying-
ness (i.e. as high as possible). At the same time there should not be too many
functions of the random sample attaining very low depth values (the number of
ties in the lowest depth value should be low), as this would result in a large false
alarm rate in the outlier flagging process. Thus, an ideal functional depth should
be having mean characteristics as close as possible to (201, 1) with as low standard
deviations as possible.

• The computations are made in R 3.0.2 (R Core Team, 2013).
• All the functions involved are discretized on an equidistant grid of 101 points in
the interval [0, 1]. Thus, each curve is represented by a 101-dimensional vector of
its functional values.

• The numerical derivatives of functions are computed from the associated discrete
vectors as the derivatives of fitted cubic splines (function D1ss from the R package
sfsmisc of Maechler (2013)). In Examples S.3 and S.6, the derivative of the
discontinuous outlying function Y is computed in the same manner, but separately
on the subintervals, where the function Y is continuous and differentiable.

Details for the choice of parameters of the functional depths described in Section S.1
are as follows.

• For random and double random projection depths (RP , RP (2) and RPD), 50
random functions f ∈ L2 ([0, 1]) are generated from a Gaussian distribution. This
was chosen in agreement with Cuevas et al. (2007).

• For the random functional depth RF , M = 15 projections were taken from a
Gaussian distribution. As argued by Cuesta-Albertos and Nieto-Reyes (2008b),
the number of projections should be kept rather low compared to the dimension-
ality of the random sample (which is 101 in the case of our simulations).

• For the h-mode depth, the parameters were chosen similarly to those in Cuevas
et al. (2007): ‖·‖2 is the L2 ([0, 1]) metric, K the Gaussian kernel and h(P ) the
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Table S.1. The full list of functional depths considered in the comparison.

Type No Depth Abbreviation Referenced in

W
it
h
ou

t
D
er
iv
at
iv
es

1 Integrated FD (1) in Section 1
2 Infimal ID (2) in Section 1
3 h-Mode hM (S.6) in Section S.1.2
4 Band BD (S.7) in Section S.1.2
5 Halfregion HR (S.8) in Section S.1.2
6 Random Projection RP (S.15) in Section S.1.4
7 Random Functional RF (S.16) in Section S.1.5
8 Principal Components PCD1 (S.11) in Section S.1.3
9 Principal Components PCD2 (S.11) in Section S.1.3

W
it
h
D
er
iv
at
iv
es

10 Integrated FD(2) (3) in Section 1
11 Infimal ID(2) (4) in Section 1
12 h-Mode hM (2) (S.6) in Section S.1.2, Section S.1.6
13 Band BD(2) (S.7) in Section S.1.2, Section S.1.6
14 Halfregion HR(2) (S.8) in Section S.1.2, Section S.1.6
15 Random Projection RP (2) Sections S.1.4, S.1.6
16 Double Random Projection RPD Sections S.1.4, S.1.6

N
ew

ly
P
ro
p
os
ed

17 2nd Order Integrated FD2 (7) in Section 3
18 2nd Order Integrated∗ FDA

2 (9) in Section 3
19 3rd Order Integrated∗ FDA

3 (9) in Section 3
20 2nd Order Infimal ID2 (8) in Section 3
21 2nd Order Infimal∗ IDA

2 (10) in Section 3
22 3rd Order Infimal∗ IDA

3 (10) in Section 3
∗ Approximated version with M = 100 chosen in (9) and (10).

20-percentile of the distribution of ‖X1 −X2‖2 for X1, X2 random, independent
and distributed as P ∈ P (C ([0, 1])), estimated by the sample quantile from the
Xi functions, i = 1, . . . , n.

• For the band depth BD we take K = 2.

S.2.2. Simulated Examples. The first two examples exhibit difficulties when aiming
to capture a function with different monotonicity properties than all the observations,
i.e. a 2nd order outlier. In Example S.3 we deal with the identification of a discontinuous
function in a random sample of continuous ones. Example S.4 presents an instance of a
3rd order outlier. In Examples S.5 and S.6 we illustrate some difficulties of the depths
based on projecting into the principal components, in the outlier recognition task.

Example S.1. Consider X ∼ P generated by the process X(t) = A + B arctan(t) for
t ∈ [0, 1], for A and B as in Example 1. Each random function generated by such process
is almost surely increasing in [0, 1] with intercept A.
The single fixed function Y is given by Y (t) = 1 − 2 arctan(t) for t ∈ [0, 1]. One such

random sample, together with the outlying function can be found in Fig. S.1A.
The whole set of sample functions and Y comes from a two-dimensional subspace of

C ([0, 1]) spanned by a constant function and the function arctan(t), t ∈ [0, 1]. This makes
the whole dataset two-dimensional, and the coefficients of each function with respect to
this basis can be visualized in a two-dimensional plot (Fig. S.1B). While the graph of the
function Y (red solid line in Fig. S.1A) lies within the cluster of graphs of functions from
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Figure S.1. Example S.1: (A) Random sample from P and the outlier
Y (red solid); and (B) the basis coefficients of these functions (red triangle
representing Y ).

P , the point representing the coefficients of Y (red triangle in Fig. S.1B) is obviously the
single outlier in the sample.
From columns 3 and 4 of Tab. S.2 we see that, with the exception of PCD2, none of

the depths without derivatives can capture the shape difference of Y reliably. For these,
the central position of the graph of Y is enough to conclude that it must be central in
the random sample.
If the first derivative is considered, the recognition of Y is much easier, as the large

discrepancy between the derivatives of X and Y shows up. Along with PCD2, three
depths — FD(2), ID(2) and RP (2) — achieve very good results, with no variance in
rank, and with a relatively small amount of functions identified as having minimal depth
value. For FD(2) and ID(2) this is because of their non-random nature and the proper
use of derivatives, for RP (2) and PCD2 this is related to the choice of two-dimensional
projections and the matching two-dimensional nature of the dataset.
As expected, all order extended depths do a good job in identifying the function Y

as an outlier. In Tab. S.3 we can also observe that in the (relatively small) group of
functions attaining the smallest infimal depths, Y is still reliably distinguished as the
most atypical observation.
The random functional depth RF is also doing reasonably well, though with a huge

amount of variability in the results. To account for it, notice that a fair comparison of
the performance of RF to other functional depths is a tricky issue for simulated data.
While other functional depths are constructed purely for infinite-dimensional datasets, the
random functional depth is able to take advantage of the finite-dimensional discretization
of functional values. Since the data in the simulations are in fact only 101-dimensional,
the RF depth (S.16) provides a finite approximation to the 101-dimensional halfspace
depth of the discretized functional values. Consequently, for very large values of M (in
orders of tens of thousands) in (S.16), the depth deceptively recognizes any functional
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outlier perfectly; however, this is true only because of the discretization of the data. On
the other hand, for low values of M (15 in our case), the depth recognizes the outliers
usually reasonably well compared to other established depth functionals, even though the
derivatives are not considered, but with a great variance in the results. This phenomenon
will be observed also in the rest of the examples in the paper, and is not discussed in
detail there.
Another interesting trait that can be observed in Tab. S.2 is the remarkable similarity

in the results for some functional depths (depths 10, 11, 15 and the order extended depths
in Example S.1). This can be noticed also in other examples below, and accounted for
by the low-dimensional nature of the considered functional data.

Table S.2. The table of results of the simulation study in Examples S.1
and S.2.

Example S.1 Example S.2
no Abbr Rank Ties Rank Ties
1 FD 50.2 (06.8) 1.4 (0.9) 55.5 (16.1) 1.1 (0.4)
2 ID 82.0 (10.1) 3.5 (2.5) 73.1 (25.2) 6.3 (4.4)
3 hM 117.3 (13.9) 1.0 (0.0) 105.3 (29.3) 1.0 (0.0)
4 BD 144.7 (09.4) 3.2 (2.5) 119.8 (30.1) 7.6 (5.2)
5 HR 75.4 (10.1) 3.5 (2.6) 63.4 (24.9) 7.9 (5.1)
6 RP 75.9 (12.7) 1.0 (0.0) 73.7 (22.1) 1.0 (0.0)
7 RF 187.4 (24.3) 5.6 (3.1) 153.3 (51.1) 10.2 (4.8)
8 PCD1 11.8 (07.1) 2.6 (1.8) 22.6 (14.7) 3.4 (2.2)
9 PCD2 201.0 (00.0) 10.9 (6.4) 143.6 (58.0) 11.0 (5.3)
10 FD(2) 201.0 (00.0) 11.1 (4.7) 67.0 (28.6) 1.2 (0.5)
11 ID(2) 201.0 (00.0) 11.1 (4.7) 155.0 (70.0) 126.4 (7.7)
12 hM (2) 188.7 (03.4) 1.0 (0.0) 119.3 (51.5) 1.0 (0.0)
13 BD(2) 192.5 (03.8) 1.1 (0.3) 119.8 (30.1) 7.6 (5.2)
14 HR(2) 163.0 (08.3) 1.1 (0.4) 63.4 (24.9) 7.9 (5.1)
15 RP (2) 201.0 (00.0) 11.1 (4.7) 87.8 (31.4) 1.0 (0.0)
16 RPD 162.0 (13.7) 1.0 (0.0) 98.7 (47.2) 1.0 (0.0)
17 FD2 201.0 (00.0) 11.1 (4.7) 122.7 (28.0) 1.2 (0.6)
18 FDA

2 201.0 (00.0) 11.1 (4.7) 123.0 (31.0) 1.3 (0.7)
19 FDA

3 201.0 (00.0) 11.1 (4.7) 147.2 (30.8) 1.8 (1.2)
20 ID2 201.0 (00.0) 11.1 (4.7) 201.0 (00.0) 199.1 (1.4)
21 IDA

2 201.0 (00.0) 11.1 (4.7) 192.2 (32.8) 113.3 (10.2)
22 IDA

3 201.0 (00.0) 11.1 (4.7) 201.0 (00.0) 178.0 (5.8)

Example S.2. The simulation setting is the same as that in Example 1 from the main
paper. As can be seen from Tab. S.2, the results as described in Example 1 are valid also
more generally: established depths without derivatives are incapable of the identification
of the outlier, and hardly any improvement can be seen when examining depths includ-
ing derivatives (with greater variability in results). Order extended depths identify the
atypical shape of the outlier better, but the amount of noise in the data still prevents
them from achieving more plausible results.
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Table S.3. The table of results of the simulation study in Examples S.1
and S.2: Infimal depth ranks.

Example S.1 Example S.2
no Abbr Rank Ties Rank Ties
2 ID 80.2 (10.1) 1.0 (0.1) 72.5 (25.1) 1.1 (0.3)
11 ID(2) 201.0 (00.0) 1.2 (0.5) 111.9 (51.5) 1.1 (0.4)
20 ID2 201.0 (00.0) 1.2 (0.5) 176.2 (29.7) 1.5 (1.3)
21 IDA

2 201.0 (00.0) 1.2 (0.5) 175.3 (34.1) 1.1 (0.4)
22 IDA

3 201.0 (00.0) 1.2 (0.5) 175.5 (29.2) 1.3 (0.8)

Example S.3. The simulation setting is the same as that in Example 2 from the main
paper. As in Example S.2, the analysis from Section 2 for this example is still valid: all
non-extended depths, except for PCD2, perform poorly, ranking the outlier deeply into
“typical” curves. As a result of integration in FD2 and FDA

3 , the order extended inte-
grated depths are also not performing too good for reasons explained in Example 2. On
the other hand, all the order extended infimal depths do a good job, and rank the outlier
into the set of (small amount of) curves with minimal depth value. The good performance
of PCD2 is rather incidental. It can be explained by the (almost) one-dimensional nature
of the data, making it easy to recognize the outlier as the only observation not fitting
into the one-dimensional subspace of the linear space spanned by the first two principal
components of X.

Example S.4. This example provides a dataset and an outlier Y which is exceptionally
hard to be detected. Define the random function X ∼ P again as in Example S.1, and
take the outlying function Y (t) = tan(t)/4 for t ∈ [0, 1]. Both X and Y are strictly
increasing, and at the same time the graph of Y is located inside the bundle of random
sample curves from P (see Fig. S.2A). All the functions are differentiable, and it takes the
inspection of the first derivatives (Fig. S.2B) to observe that Y is in fact the only convex
function in a random sample of concave ones. Thus, Y should be identified as an outlier
with respect to X, but this might be very hard to notice as neither the location of the
graph, nor the location of the graph of the derivative indicate any abnormal behaviour.
Looking at columns 5 and 6 of Tab. S.4, all the depths without derivatives, as well

as the vast majority of depths considering them, fail critically by claiming Y to be very
central in the random sample. The single exception is the band depth with derivatives
BD(2) assigning Y into the less central half of the data, though this is not caused by
proper shape recognition, but only by the fact that the graph of the first derivative of Y
crosses a lot of graphs of derivatives of random sample curves near t = 1.
As for the order extended depths, the choice J = 2 is not enough to spot the difference

in the second derivative of Y , and neither of these extended depths outperforms the usual
depth functionals. Nevertheless, if the choice J = 3 is employed, both FDA

3 and IDA
3

provide almost perfect outlier recognition, similarly as FD2 and ID2 did in Example S.1,
see Tab. S.4. This is confirmed also in Tab. S.5.

Example S.5. Let X ∼ P take the form

X(t) = 0.3A sin(2π(t− 1/2)) + 0.3B sin(4π(t− 1/2)) + C for t ∈ [0, 1],

for A, B and C independent, standard normal random variables.
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Table S.4. The table of results of the simulation study in Examples S.3
and S.4.

Example S.3 Example S.4
no Abbr Rank Ties Rank Ties
1 FD 41.7 (06.8) 1.6 (1.1) 18.8 (11.1) 1.6 (1.0)
2 ID 39.7 (08.7) 3.6 (2.7) 15.7 (08.5) 3.6 (2.3)
3 hM 97.5 (14.3) 1.0 (0.0) 22.6 (14.9) 1.0 (0.0)
4 BD 96.3 (14.1) 3.6 (2.7) 13.9 (09.7) 3.8 (2.4)
5 HR 37.2 (08.5) 3.9 (2.8) 12.9 (08.0) 3.9 (2.4)
6 RP 62.4 (10.4) 1.0 (0.0) 16.2 (08.8) 1.0 (0.0)
7 RF 180.7 (34.0) 5.5 (3.6) 30.3 (24.3) 5.3 (2.8)
8 PCD1 24.9 (08.6) 2.9 (2.4) 15.1 (07.5) 2.9 (1.9)
9 PCD2 200.8 (01.8) 11.6 (5.8) 32.8 (06.0) 10.8 (5.4)
10 FD(2) 42.8 (10.4) 10.8 (4.4) 26.9 (06.4) 10.6 (4.1)
11 ID(2) 50.0 (10.9) 10.8 (4.4) 76.9 (13.3) 10.6 (4.1)
12 hM (2) 76.3 (09.7) 1.0 (0.0) 22.2 (06.9) 1.0 (0.0)
13 BD(2) 85.7 (11.4) 1.0 (0.2) 138.3 (08.6) 1.1 (0.3)
14 HR(2) 52.2 (10.0) 1.1 (0.4) 56.0 (12.4) 1.1 (0.3)
15 RP (2) 58.7 (11.0) 10.8 (4.4) 47.8 (12.5) 10.6 (4.1)
16 RPD 57.9 (13.3) 1.0 (0.0) 36.8 (10.2) 1.0 (0.0)
17 FD2 62.0 (08.5) 10.8 (4.4) 20.9 (06.4) 10.6 (4.1)
18 FDA

2 62.8 (09.9) 10.8 (4.4) 21.0 (06.9) 10.6 (4.1)
19 FDA

3 112.3 (15.3) 10.8 (4.4) 201.0 (00.0) 11.6 (4.1)
20 ID2 201.0 (00.0) 11.8 (4.4) 74.3 (13.2) 10.6 (4.1)
21 IDA

2 201.0 (00.0) 11.8 (4.4) 58.5 (14.0) 10.6 (4.1)
22 IDA

3 201.0 (00.0) 11.8 (4.4) 201.0 (00.0) 11.6 (4.1)

Table S.5. The table of results of the simulation study in Examples S.3
and S.4: Infimal depth ranks.

Example S.3 Example S.4
no Abbr Rank Ties Rank Ties
2 ID 38.9 (08.5) 1.0 (0.1) 15.0 (08.6) 1.0 (0.1)
11 ID(2) 47.9 (10.7) 1.1 (0.4) 74.1 (13.2) 1.2 (0.5)
20 ID2 190.2 (04.4) 1.1 (0.4) 71.8 (12.7) 1.2 (0.5)
21 IDA

2 190.2 (04.4) 1.1 (0.4) 56.0 (13.9) 1.2 (0.5)
22 IDA

3 190.2 (04.4) 1.1 (0.4) 201.0 (00.0) 1.2 (0.5)

The single deterministic function Y is given by Y (t) = 2 sin(10π(t−1/2)) for t ∈ [0, 1].
One such sample, together with the outlying function can be found in Fig. S.3A. The
outlier Y is atypical because of its higher amplitude, and shorter period. Though, it is
constructed to lie inside the main bundle of the sample curves from X.
As can be seen in Tab. S.6, most depth functionals are capable of identifying Y as

atypical, especially due to its high peak-to-peak amplitude. The only exceptions are
the depths based on the expansion into principal components, PCD1 and PCD2. The
reason for this failure is obvious: X is, up to some noise, a function from the bivariate
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Table S.6. The table of results of the simulation study in Examples S.5
and S.6, and the computational cost of the considered depths, corresponding
to one run in a single simulation setup.

Example S.5 Example S.6
no Abbr Rank Ties Rank Ties Time (in s)
1 FD 146.1 (06.2) 1.0 (0.2) 145.9 (07.3) 1.0 (0.2) 0.03
2 ID 186.7 (05.7) 6.4 (4.0) 187.2 (06.3) 5.8 (3.3) 0.03
3 hM 199.9 (01.0) 1.0 (0.0) 200.1 (01.0) 1.0 (0.0) 0.04
4 BD 196.3 (04.2) 8.4 (5.1) 196.0 (04.0) 7.4 (4.0) 0.22
5 HR 194.3 (05.6) 8.5 (5.1) 193.5 (05.4) 7.6 (3.9) 0.02
6 RP 153.1 (13.6) 1.0 (0.0) 152.4 (13.4) 1.0 (0.0) 0.01
7 RF 200.3 (07.0) 10.7 (4.5) 200.9 (01.3) 10.3 (4.9) 0.01
8 PCD1 9.5 (05.7) 2.7 (1.9) 9.3 (05.9) 2.4 (1.7) 0.27
9 PCD2 1.5 (00.8) 8.2 (3.9) 1.5 (01.0) 7.4 (3.6) 0.28
10 FD(2) 199.1 (01.5) 1.1 (0.3) 84.6 (07.9) 1.0 (0.2) 1.52
11 ID(2) 201.0 (00.0) 26.2 (6.4) 161.0 (15.9) 24.1 (6.6) 1.52
12 hM (2) 201.0 (00.0) 1.0 (0.0) 55.1 (06.7) 1.0 (0.0) 1.19
13 BD(2) 200.3 (01.2) 1.5 (0.9) 184.9 (06.4) 1.4 (0.7) 1.40
14 HR(2) 194.3 (05.6) 8.5 (5.1) 193.5 (05.4) 7.6 (3.9) 1.16
15 RP (2) 199.4 (02.7) 1.0 (0.0) 79.7 (17.9) 1.0 (0.0) 1.67
16 RPD 201.0 (00.2) 1.0 (0.0) 43.9 (14.8) 1.0 (0.0) 1.67
17 FD2 185.6 (03.9) 1.1 (0.2) 185.9 (04.1) 1.0 (0.2) 18.72
18 FDA

2 185.0 (05.9) 1.2 (0.4) 185.4 (06.4) 1.1 (0.3) 0.37
19 FDA

3 176.2 (08.2) 20.1 (9.6) 176.5 (07.1) 22.0 (8.3) 85.92∗

20 ID2 201.0 (00.0) 41.5 (9.2) 201.0 (00.0) 39.9 (9.6) 18.72
21 IDA

2 201.0 (00.0) 26.9 (6.8) 201.0 (00.0) 25.3 (6.7) 0.37
22 IDA

3 201.0 (00.0) 26.6 (6.6) 201.0 (00.0) 25.4 (6.5) 85.92∗

∗ The Fortran implementation developed by the authors makes the computation of most
of the depths very efficient. On the other hand, the evaluation of both 3rd order depths
is performed using the much slower depth function (Genest et al., 2012) in the R envi-
ronment, which should be taken into account when interpreting these results.

Table S.7. The table of results of the simulation study in Examples S.5
and S.6: Infimal depth ranks.

Example S.5 Example S.6
no Abbr Rank Ties Rank Ties
2 ID 182.3 (05.0) 1.0 (0.2) 182.4 (05.6) 1.0 (0.2)
11 ID(2) 199.8 (01.3) 1.0 (0.0) 151.4 (12.8) 1.0 (0.2)
20 ID2 197.3 (02.7) 1.0 (0.1) 197.7 (02.2) 1.1 (0.4)
21 IDA

2 197.3 (02.7) 1.0 (0.0) 197.7 (02.3) 1.0 (0.1)
22 IDA

3 176.3 (07.9) 1.1 (0.3) 176.7 (06.5) 1.1 (0.3)

subspace of C ([0, 1]) spanned by sin(2π(t− 1/2)) and sin(4π(t− 1/2)), orthogonal to Y .
Thus, any projection of Y onto a function from this subspace is zero. In particular, the
projection of Y onto any number of (robust) principal components of a sample from X
is close to zero, and Y is mistakenly claimed to be very central w.r.t. X. This example
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Figure S.2. Example S.4: (A) Random sample from P and the outlier
Y (red solid); and (B) the first derivatives of these functions (red solid for
Y ).

is intended to demonstrate that even though it may appear that the projection into
principal components discriminates shape outliers quite well in Tabs. S.2 and S.4, this
is true only because of the low-dimensional nature of the random samples. Generally,
depths based on the projection into (robust) principal components computed from data
are not capable of proper recognition of functions outlying in shape.
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Figure S.3. Random sample from P and the outlier Y (red solid) from
Example S.5 (A); and Example S.6 (B).
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Example S.6. Finally, let us conclude the simulation study with a slight modifica-
tion of Example S.5, demonstrating that the good performance of depths incorporating
derivatives in Example S.5 also cannot be guaranteed if the data is observed imper-
fectly. To see this, take the random function X from Example S.5, and modify Y to be
Y (t) = round(2 sin(10π(t − 1/2)), 0.1) for t ∈ [0, 1], where round(u, 0.1) stands for the
closest integer multiple of 0.1 to u ∈ R. A single realization of this setup is in Fig. S.3B.
The function Y here is very close to Y from Example S.5, yet is observed at a grid rougher
than the rest of the data. As in Example S.3, its derivatives cannot be estimated reliably,
and even though the function is clearly different from the sample curves, many depths
including derivatives deceivingly rank it quite centrally inside the data. In contrast, order
extended depths still perform well, see Tabs. S.6 and S.7.

S.3. Theorem 1: Proof and Discussion

S.3.1. Proof. To begin, consider only the first derivative, i.e. K = 1, and J = 2.
Due to the affine invariance property of the halfspace depth D we can write

(S.21)

D

((

x(t)
x(t+h)−x(t)

h

)

;P
(X(t),

X(t+h)−X(t)
h )

T

)

= D

(

M(h)

(

x(t)
x(t+ h)

)

;PM(h)(X(t),X(t+h))T

)

= D

((

x(t)
x(t+ h)

)

;P(X(t),X(t+h))T

)

for any h ∈ R \ {0} and t ∈ [0, 1], where

(S.22) M(h) =

(

1 0
−1
h

1
h

)

is the non-singular matrix of constants of finite differences corresponding to the zero-th
(functional value) and the first derivative. Taking the limit as h → 0 on both sides
of (S.21) then yields the assertion of the theorem for K = 1. This is due to Mizera and
Volauf (2002, Proposition 1), as for the halfspace depth for any uν −−−→

ν→∞
u in R

d and

Qν
w

−−−→
ν→∞

Q in P
(

R
d
)

it is true that

lim sup
ν→∞

D (uν ;Qν) ≤ D (u;Q) ,

and also

limν→∞D (uν ;Qν) = D (u;Q) ,

if a condition analogous to (14) holds true for the random vector distributed as Q.
The general case of K ∈ N follows analogously to that of K = 1 apart from the usage

of a different non-singular matrix

M(h) =















1 0 0 . . . 0 0
−1
h

1
h

0 . . . 0 0
...

...
...

. . .
...

...
(

K−1
K−1

)

(−1)K−1

hK−1

(

K−1
K−2

)

(−1)K−2

hK−1

(

K−1
K−3

)

(−1)K−3

hK−1 . . .
(

K−1
0

)

(−1)0

hK−1 0
(

K

K

)

(−1)K

hK

(

K

K−1

)

(−1)K−1

hK

(

K

K−2

)

(−1)K−2

hK
. . .

(

K

1

)

(−1)1

hK

(

K

0

)

(−1)0

hK















instead of (S.22). M is now the matrix of constants of finite differences corresponding to
all derivatives of orders 0 (functional value) through K.
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S.3.2. Discussion. Note that in Theorem 1, the relation of order extended depths with
depths including derivatives is described only “locally”, i.e. only in terms of the depth D
at t ∈ [0, 1] fixed. For general distributions P ∈ P (C ([0, 1])) and x ∈ C ([0, 1]), no global
inequalities between FDJ (x;P ) and FD(J) (x;P ) can be shown. Let us demonstrate
this on two simple examples for J = 2. In Example S.7 we show that the depth FDJ

of a function may be arbitrarily close to zero, yet its FD(J) depth may still be high; in
Example S.8 we demonstrate the opposite situation.

Example S.7. Let X ∼ P ∈ P (C ([0, 1])) be given P (X ≡ 0) = 1/2, and P (X ≡ 1) =
1/2. For K ∈ N, split the domain [0, 1] into K subintervals Ik = [(k − 1)/K, k/K),
k = 1, . . . , K. Consider first the function xK defined by

xK(t) =

{

k/K for t ∈ Ik,

1 for t = 1.

As in Examples S.3 and S.6, xK is discontinuous at k/K and constant on Ik for all
k = 1, . . . , K − 1. Thus, 0 ≤ xK ≤ 1, and the derivative of xK is zero almost everywhere
in [0, 1]. Thus, FD(2)(xK ;P ) = 1/2, regardless of the value of K. On the other hand, for
FD2 we have that

D
(

(xK(t1), xK(t2))
T ;P(X(t1),X(t2))

T

)

=

{

1/2 if t1 and t2 come from the same Ik,

0 elsewhere,

from which we get FD2(xK ;P ) = 1/(2K), vanishing as K → ∞. The functions xK
are constructed discontinuous. Proper convolution of xK with a mollifier (compactly
supported smooth function) yields a continuous modification such that the assertion still
holds true, up to small constants.

Example S.8. For ε ∈ (0, 1), consider X ∼ P ∈ P (C ([0, 1])) given by P (X ≡ 1) =
P (X ≡ −1) = P (X(t) = 1 + ε t) = P (X(t) = −1 + ε t) = 1/4. For K ∈ N such that
K > 1/(2π(1− ε)), set

xK(t) = sin (2πK t) /(2πK), for t ∈ [0, 1].

The joint distribution (X(t), X ′(t))T for any t ∈ [0, 1] gives probability 1/4 to each of
the four vertices of a (possibly degenerate) parallelogram (1, 0)T, (−1, 0)T, (1 + ε t, ε)T,

(−1 + ε t, ε)T. Denote this parallelogram by Π(t). For xK , we have (xK(t), x
′
K(t))

T =

(sin(2πK t)/(2πK), cos(2πK t))T. It is easy to see that (xK(t), x
′
K(t))

T ∈ Π(t) if and
only if cos(2πK t) ∈ [0, ε], where the latter is equivalent with t lying in a certain subset
Cε ⊂ [0, 1] of Lebesgue measure 1/2− arccos(ε)/π. For the marginal depth of xK and its
derivative we therefore have

D
(

(xK(t), x
′
K(t))

T
;P(X(t),X′(t))T

)

=

{

1/4 if t ∈ Cε,

0 if t /∈ Cε,

giving
FD(2) (xK ;P ) = (1/2− arccos(ε)/π) /4 = 1/8− arccos(ε)/(4π).

This depth value depends on ε, but not on K.
Let us now deal with the depth FD2(xK ;P ). Assume, without loss of generality, that

t1, t2 ∈ [0, 1] is such that t1 < t2. This is possible, as the diagonal t1 = t2 is of zero
(two-dimensional) Lebesgue measure, and the depth D is invariant with respect to the
permutation of the coordinates on its input.
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The joint distribution of (X(t1), X(t2))
T is the uniform distribution on points (1, 1)T,

(−1,−1)T, (1+ε t1, 1+ε t2)
T, (−1+ε t1,−1+ε t2)

T. Denoting the parallelogram of these
four points by Π2(t1, t2), we get

(S.23) D
(

(xK(t1), xK(t2))
T;P(X(t1),X(t2))T

)

=

{

1/4 if (xK(t1), xK(t2))
T ∈ Π2(t1, t2),

0 otherwise.

The set Π2(t1, t2) does not depend on K. On the other hand, |xK(t)| ≤ 1/(2πK)
for all t ∈ [0, 1], so the vector (xK(t1), xK(t2))

T is contained in the centred square
[−1/(2πK), 1/(2πK)]2 ⊂ R

2. Take any (t1, t2)
T ∈ [0, 1]2 such that t1 < t2 and xK(t1) 6=

xK(t2) for all K ∈ N. We may restrict to such a pair of points because the (two-
dimensional) Lebesgue measure of the set EK =

{

(t1, t2)
T : xK(t1) = xK(t2)

}

is zero for
each K ∈ N, and therefore also the set E =

⋃∞
K=1EK is of zero Lebesgue measure.

It is easy to verify that if K ≥ 1/(π ε (t2 − t1)), then for any t1 < t2 it holds true that
(xK(t1), xK(t2))

T ∈ Π2(t1, t2) if and only if xK(t1) < xK(t2). Denoting

UK =
{

(t1, t2)
T : 0 < t1 < t2 < 1 and xK(t1) < xK(t2)

}

,

(S.23) can be rewritten into

D
(

(xK(t1), xK(t2))
T;P(X(t1),X(t2))T

)

=

{

1/4 if (t1, t2)
T ∈ UK ,

0 otherwise,

if t1 < t2 and K ≥ 1/(π ε (t2 − t1)).
By symmetry considerations, for all K ∈ N the Lebesgue measure of UK must be

1/4 (since the Lebesgue measure of
{

(t1, t2)
T : 0 < t1 < t2 < 1

}

is 1/2). Therefore, for
K → ∞ we may use the Lebesgue dominated convergence theorem and write

FD2(xK ;P ) = 2

∫ 1

0

∫ 1

t1

D
(

(xK(t1), xK(t2))
T;P(X(t1),X(t2))T

)

d t2 d t1

≈ 2

∫∫

UK

1/4 d t2 d t1 = 1/8 for K large.

By taking ε > 0 small, we see that for K large enough FD(2)(xK ;P ) ≈ 0, yet
FD2(xK ;P ) ≈ 1/8. Consequently, the depth including derivatives may also be very
small compared to an order extended depth.
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