Supplementary material for: “Functional feature construction for

individualized treatment regimes”

The Supplementary Material provides details for the proof of the main result. Without

loss of generality throughout it is assumed that E[A] = 0.

1 Proofs

To shorten notation, we use P to denote the expectation operator taken with respect to
the joint distribution of {X, W (T), A,Y}. Thus, Theorem 3.1 from the main paper can be

re-written as follows.

Theorem 1.1. Assume (A1)-(A13). Let K,, be an increasing sequence of integers such that
K, — o0 and K,/n** — 0 as n — oo, then

PIQI {X W(T) A0, } = Q (X, W(T), 4} | = O,(Kun™ /7 + KPn~2),

By an abuse of notation let Ey, denote the conditional expectation with respect to the
distribution of W(T) given T.
Recall that

K, K,
QE {x,w(t),a; 0"} 2 xTa + > Biloi(w(t)) +a {XT5 + %?n,k(w(t))} ’

k=1 k=1

Q{x,w(t),a} £ xTa+ > Bili(w(t)) +a {XT(S + Z%zk(w(t))} :

k=1 k=1

where 0% is 2(p+ K, )-dimensional parameter defined as 0% = (o, 81, ..., Br,, 07, V1, - VK, )L -



Then @ff” {X, W(T)A, gn} — Q{X,W(T), A} can be written as By + By + Bs, where:

Bl = X'(@—a)+aX' (-8 + > 6WD)G - 8) +ad LVD)G -
B = 3 {BaaW(D) - 6w (T} B+ i)
By = ) G(W(T) (B +an).

Consider Bs; we show that P|Bs| = o(K, /).
Notice that P|Bs| < Ew{> o 1 GW(T) {307 (B +12)} /% We show next
that the term Ew{} ", ., (2(W(T))}/? is o(1); the second term is O(K» /%), since for
example Y | B7 is bounded above by > o k7% = O(K,*t).

It suffice to show that 0% . Ew [Z{W (T)}] = o(1), since Ew[(35% 4. .1 AW (T)})*] <

\/ZZO:KnJrl Ew[6{W(T)}], by using Jensen’s inequality. Let & = [ Z(t)¢x(t)dt and notice
that {w(t)} = E[|w(t)]; recall Z(-) is the latent process. Using conditional expectation
we have Eyw [, {W(T)}] = E[¢] = 0. We have

D BwlGW (MY = Y Varla{w(T)}]

k=Knp+1 k= Kn+1

= Z Var(E[&[W(T)))

k= Kn+1

Z {Var(E[&|W(T)]) + E(Var[&|W(T)))}

k= Kn+1

= Z Var(&) = Z A — 0. qed.

k=Kn+1 k=Knp+1

IN

Consider next By; we show that P|By| = O,(n™2).

Since |By| < |6 {W (T)} — ¢{W (T)}| ||,.|| where ||- || denotes the usual Euclidean norm. In



particular, [|Z, {W(T)} — {{W(T)}|| = [ o B (T) - fk(W(T»}z} " and 17 =
@1 + 1312 + {34, (B2 +37) }- Since 627 = 0,(1) as n — oo it suffices to show that
and By |6, {W(T)} — ({W(T)}|| = Op(n~*)

Recall that ({W(T)} = H(T){W(T) — u(T)} where H(T) = A®(T)"{G(T.,T) +
o2Iy} "t and £, {W(T)} = H(T){W (T)—7i(T)} for H(T) = AS(T)"{G(T, T)+52} "

Using triangle inequality we have that

Ewl||H(T){W(T) - u(T)} - H(T){W(T) - A(T)}|

< Ew|[{H(T) = HT)HW(T) = p(T)}| + Bw | H(T){A(T) — n(T)}|

< |H(T) = H(T)|| Bw |W(T) = p(T)]| + [ H(T)||A(T) — u(T)|
where || - || is the Frobenius matrix norm defined as ||H|| = (32, h%)"? and [lz]| is the
usual Euclidean vector norm. It is sufficient to show that (a) Ew ||[W(T) — u(T)|| < oo, (b)
|H(T)=H(T)| = Op(n=2), (¢) [ H(T)|| = O,(1), and (d) |[fi(T) — u(T)|| = Op(n~*). Result
(a) follows from the observation that Ey||W(T) — u(T)||* = Zj\il E{W(T;) — w(T))}* <
M sup, |G(t,t)| and the fact that M < oo. The results (b)-(d) follow from employing similar
arguments as in Staicu et al. (2014) and by using assumptions (A1)-(A3) and various norm
inequalities.

Finally consider B;; we show that P|B;| = O,(K,n~ Y2 + Ki/Qn*A). It is easy to show
that By S0, 2] < M||27Y #]|GE#|| = O(1), where GX» is the reduced rank approximation
of the covariance of (Z(t),...,Z(ty))T based only on the first K,, eigenfunctions. The fol-
lowing lemma shows that i) |05 —6%+ || = O,(K,n~Y/2) and ii) ||§5» — 5 || = O,(Ka*n=2).
Thus |05 — 65| = O,(K.n 2 + K)*n=2); thus P|By| = O,(K.n~ Y% + K\*n=2).

It follows that P|B; + By + Bs| = O,(K,n"'/2 + K}L/Qn*A), which concludes the proof of the

theorem.



Lemma 1.2. Assume (A1)-(A13) and that K,, be an increasing sequence of integers such that
K, — o0 and K, /n** — 0 as n — oo. Denote by 0% the 2(p + K,,)-dimensional parameter
defined as 0% = (a®, By, ..., Br,, 0L, 1, .., Yk, ) 5 let gff" and é\ff” be the estimators in the
approzimated truncated regression models QX» {X,w(t),a;QK"} and @ff" {x,w(t),a; QK”},
respectively.

Furthermore assume for convenience that E[W (t)] = 0. Then:

(@) 165 = 0% = Op(Kn 1)

(i) 05 = Bl = Ok *n™2)
Before we prove this result remark an important property, that n= > [|[¢((W,)||* = O,(1):

1 « 1 «
- (WP = = AP W|2
R LW = 257 el w

=1

1 < e
SNES ISR il
i=1
R —1/2 Tw—1/235x%7
< ||AHEZWZ X RN Y Wi:Op(l)a
=1

since ||Al| = /S0 A2 < coand n~ ! SO, vaz;”%i/\@;z;lﬂwi = 0,(1); the last result
follows from noting that X, Y 2<I>Z-A¢),L»TEZ-_ 12 g symmetric with non-negative wigenvalues that
are less than one. Here Wz =3, 1 2Wi and is multivariate normal distributed wiht zero
mean and identity covariance.

Let D, ; be the (2p + 2K,,) - dimensional column vector obtained by stacking the p-
dimensional vector X;, the K,,-dimensional vector £(W;) = ((,{W;(T,)}, ... lx, {W;(T:)) T,
the p-dimensional vector a;X; and the K,,-dimensional vector a;/(W); here we used subscript
i to refer to subject-level data. Denote by D,, the (p+ K,, +p+ K,,) X n - matrix with the ith

column given by D, ;. Also denote by X is the n X p matrix obtained by row-stacking X;TF,



; similarly define the n x K,, matrices ¢,, and A/,.

7 )

AX is the n x p matrix with rows a;X*
Notice that DI = [X|(,|AX|Al,]. From the above result we have that n™||D,[|* = O,(1).

We can view the conditional model for Y; given X; and W; as

Y, = D,TM-HK" + Z O(W) (B + aiye) + & for e ~ N(0,0%).
k> K41

Then 65+ is calculated as 65+ = (D, DY)~ D, Y, which equals :

~ 1 1 1<
95 = (=D, DT ~D,DT9%» + =N "D, . /
R (L I EEE LT SEN I SR MUACERAARS:

k>Kp+1

_ QK"+<%DnDZ> [%;Dn,i{ > Ek(Wi)(ﬁwam)}]

k>Kn+1

1 B
_ILJ)T - L%ii
ey (Z )

Let B,(W)=n"13"" D,; {ZsznH Ce(WH) (Br + ai'yk)} and R,(W,e) =n=t>" | D, €,

where the notation emphasizes conditional bias, given X, W’s. Then [|#%» — g%~ ||2;

2

A NG OR X UR )

in the following we investigate ||B,(W)||* and ||R,(W,¢)||*. We show in turn that each of
these terms is O,(n~' K,,). The calculations are tedious and they mainly rely on the following
results: norm inequalities of the form ||AB|| < ||A||||B|, that S;"*W; ~ N, (0, I,,,) and
furthermore 152l ~ 2, Syo Melloisl? = S0 Gt t) < MGl and 577 <
o=2v/M. The last inequality follows from the inequality between the Frobenius and the
spectral norms, ||R|| < y/m||R||2 for some m x m dimensional matrix R. Recall &; =

cov(W;) = G; + %I, and G; is the m; x m; covariance matrix of (Z(t;1),..., Z(tim,))",



with the (4, j’) element equal to G(t;;,t;;).
Consider first the first summand of B, (W), which can be written asn™" 37, o 4 B D1y Do il (W5).

We have |07 37,2 ) Br > iy D ile(Ws)||? is bounded by

( ) Bi) Y I DI = O (2)

k>Kn+1 k>Kn+1 =1

as we show next.
The first term of this product is O(K!7*). Now we consider the second term in the

product. Specifically > " | D;,l(W;) has the following column-block components:

zn: N X WIS 1y, = zn: N X WIS 2y, (3)
=1 =1

i NAD ST W WISy, = i PYWIX B R TTATTED S (4)
=1 =1

i e X, WIS 10y, = i Neai X, WEST 20y, (5)
i=1 =1

Zn: M@ A ST W, WIS Dy, = Zn: Aot AR PW WIS 2Dy (6)
i=1 =1

where we used the notation W; = 3, "*W;. Recall W; ~ N,y (0, I,,,.). Thus Y ksrc, 41 | 2oiey Dinlie(Wi)[I? =
I + I + I3 + I4 corresponding to the four pieces (3)-(6) respectively.

Consider I;. Notice that || 7, MX WIS 2012 < SO0 X2 X W12 (15212 @12
Thus

oI XS Ry < S I PP ( S )\i||<1>ik||2>
i=1

kZK'n"l‘l =1 kZK7L+1

< A MGl Y IXWE P52

=1

< A, M2 Gl Y IXGIPIWT?

=1



The second inequality follows from the fact that 3=, . AN ®ixl? < Ak, (ZsznH i Zjll (bk(tij)Q) <
Ak, Z?L(ZIQKHH Ne@r(i;)?); the parenthesis is less than G(t;;, t;;). Thus ZsznJrl || @ir|]? <
> ity Gltij tij) < M||G|oo.

For the third inequality above, it is sufficient to show that [|X; Y Il = VIS is
bounded (by definition of the spectral norml of a matrix || - ||2). This is because ||, Y 12 <
M HE;I/ ?|2. Furthermore || X;%(|5 is the inverse of the smallest eigenvalue of ¥;, which is
smaller than 1/0? (since the smallest eigenvalue of ¥; is larger than 0?). Next we have
IXWE2 = |1 X2 Will2 Thus 571X 2 Wil|2 = O,(n) using law of large numbers for
independent random variables, since H/I/TV/ZHQ has chi-square distribution with m; degrees of
freedom, where m; < M for all i and E||X;|> = Trace(E[X,X]]) < 0o and E||X;]|* < cc.
It follows that I; = O,(nAk,,).

Consider I5; note | Y1y AeA®; X7 WV S 2|2 < ST [[ADJ2]157 || Wi | A2 | @i |2
Thus

n o n N 9 3
> I Al WIS Pl < S e (W) s ( > Azn@ikH?)
E>Kn+1  i=1 i=1 k>Kn+1

< A, (M]Gll)* YIS

i=1
< MM GIE S I
i=1

The last expression is O,(n\k, ) using the same reasoning as earlier. Similarly one can
show that the terms I3 and I, are also of the same order, and thus [;+ Iy +13+1; = O,(nAg,).
It follows that || B,(W)||*? = O(K} *n"2)0,(n)k,) = Op(K} *n " )k, ).

It is easy to note that |[R,(W,€)||? = n7Y||n"23" | D,el® = O,(n"1K,). Here we
used the fact that [|[n=Y23"" | D, e]|? = |[n~2D,¢€||? and n™Y2D,e ~ Nop 1ok, (0,071 D, DL);
thus ||n~Y2D,e||? = O,(K,)||n"'D,DT||; and ||n=*D, DI||, is the largest eigenvalue of the

matrix n=' Dy Dy In™ Dp Dy |3 < [n™ Du Dy 12 < {n [ D]} = Op(1).



Next, we focus on D, DT:

XTX XTe, XTAX XTAl,

X ere, (TAX  (TAC,
DnDT _ n n n n

n

AX)TX (AX)Te, XTX  X7¢,

(AL )TX  (AL)Te,  (FX re,

since ACTAC, = Y7 al{W,;(T) H{W(T,)}" = (¢, and similarly AXTAX = XTX

(3

because a? = 1.

We know that ||(n 1D, DI)7||> < (2p + 2K,)||[(n " D, D)7y < (2p + 2K,,) %

{Amin(n™1D, DT)}~1. Notice that the eigenvalues of n™'D, DI are greater or equal to zero.

In the following we show that, for n is sufficiently large, all the eigenvalues of (n='D, DZI)

are positive with probability one.

Let v = (v v} [vksvh)T be (2p + 2K,) - dimensional eigenvector of n™'D,, DI that we

partition according to the partition of the matrix D, DZ. Then the corresponding eigenvalue

A = 0T (n™1D, DI)v is equal to:

= n ok X" Xvx, + v/ 0 Xvoxy + 0k (AX) Xvxy + v (AL Xvx )
—i—n_l{v)T(lXTEnvﬂ + v%éﬂnva + U)T(Q(AX)TEnvﬂ + vaz(AEn)Tfnva}
+n o XTAXvxe + v EAX vxs + vk X X 0xa + 050 Xvxa}

+n ok XT Alyvgs + v Alyvgs + viea X T v + 0508 000 ).

It is easy to show that
(a) n ' X"l =07 300 XG[H{W(T) " = Opxre,;
(b) n ' XTAX =n ' Y0 AXX] =, EXXTH{P(A=1)— P(A=—1)} = Opyyp;
(¢) n ' XTAL, =n~t 30 AXW,(T) T =, Opxr,

8



(d) n~'E AL, =07t 300 ail{Wi(To) H{W(T:)}T = O, xxc,.-

Throughout this proof we use the following notation: ®; = ®(T;) is the m; x K,, ma-
trix with elements ¢ (t;;), where ¢ (-) is the kth eigenfunction of the latent process Z(-);
;. = ¢1(T;) is the m;-dimensional column vector of ¢y (;;). Also W; = W,(T;) is the m;- di-
mensional vector with elements W;(t;;), G; = G(T;, T;) is the m; x m; dimensional covariance
matrix of the true process Z; at the times T;, Z(T;); then GzK” = ®;A®! is the reduced-rank
approximation based on the leading K, eigenfunctions, where A = diag{\1,..., Ak, } is the
diagonal matrix of the eigenvalues of the true process.

Show (a). For notation simplicity assume temporarily that E[W;] = 0 for all i; recall
that W;’s are assumed multivariate Normal and they are independent over ¢. We break the
matrix into rows, and prove the result for each component ¢ =1, ..., p of X;’s in part.

The term n~' Y0 | X, [({W;}]" is K,,-dimensional multivariate normal with mean equal

nt Y EX i l{W;}'] = Ok, ; here we used the fact that X and Z are independent given
W and that the measurement error of W is independent of X. To show the result (a) it suffice

to show that its variance converges to zero. Recall that (W) = A®T (G, + 0%1,,,) " W;; then

Var[X ({W:}] = E[X?q]ACDiT(GZ- +0%1,,) P, (12)

To show that n™2Y"" | Var[X;¢{W;}] — 0 it suffices to show that n=2 3" | E[X7]

|APT(G; + 021,,,,) "' ®;A|| — 0 or furthermore that

n ZE AT [[(Gi + 0 Ln,) '] |@:A|] = 0. (13)

We have that HA(IDTH o L ARk (tig)? < M DT Gty tig) < MM|Gl|oo. Here

we used the facts that G(t;,ti;) = Y opeq M@i(tiy), M = sup,_y ,m;, and |G|l =

.....



sup, 4 |G(t,t')] is finite as G(-, ) is continuous bivariate function defined on compact space.

Furthermore using matrix inequalities we have |[(G;/0? + I,,) 7| < /mul|(Gi/o* +
In,) " l2; see Golub and Van Loan (2012). The last inequality is bounded up by v/M ||(G;/o?+
L) Yl2- We show next that ||(G;/0?* + I,,) ']z < 1. Here ||G]|2 denotes the spectral norm
(= maximum eigenvalue when the matrix is real-valued). Let Gi =G, /o?; G; is positive
semidefinite, e.g. aTéia > 0 for all a, and thus it admits non-negative eigenvalues. Then
éi + I,,, has positive eigenvalues which furthermore are 1 or larger; it follows that él + I,
is invertible and furthermore the largest eigenvalue of (él +1I,,,)" ! is at most 1; equivalently
1(G; + Ln,)"*|l2 < 1. This part concludes as the left hand side of (13) is bounded up by
E[X1,](M/0?)M||G|s/n which goes to zero as n — oc.

Show(b). This is straightforward since E[A] = 0.

Show(c). The result follows from (a) and (b).

Show(d). The result follows from (b) and from the fact that A and W are independent.
Observe that the weak law of large numbers yields lim,, oo n ' X7 X = lim,, oo n ! Z?:l XiTXi —p
E[XTX,] which is not singular and v% E[XT X Jvx > [[vx || Amin(E[XT X1])

Consider next n=t 3" ol (W)X (Wy)v, = n=t S0 (vF AV AY20,)U2 where T; =
AV2OT(Gi+021,,,) "1 ®;AY? and U; ~ IIDN(0,1). Below we show that n=! Y7 | (vI A2 A 20,)
is finite; showing that n=' " (vF AY2T;AY/20,)? is finite is done similarly. Then using a ver-
sion of the central limit theorem we conclude that n= """ | v ¢(W;)¢"(W;)v, converges in
probability to lim, . n ™t > (v7 A2 A 20,).

Simple algebra shows that every non-negative eigenvalue of the matrix I'; is an eigen-
value of the matrix ®;A®T(G; + 02I,,,)~!, althought the corresponding eigenvectors are
different. However the positive eigenvalues of the latter matrix ®;A®Y(G; + 021,,,)"" are
clearly less than one as Gy = ®;AD; + 37, Me@ixdl + 021,,.. Tt follows that a’T;a <
|a||? for any vector a, which implies that v} AY2T;AY2v, < [Jof AY2|| < M\i|jve]|?; thus

S oF AVETAY 20, < A |ug]|2

10



It is important to remark that lim,,_,., n " Z(UZTAUQFZ»AUZW) > 0. We show this state-
ment by contradiction. Since the sum involves non-negative terms only, the only possibil-
ity that the limit is null is to have all the terms equal to zero. Specifically AY/2®T(G; +
021, )" ®;Av, = 0 for all 4. This implies that ®;APT(G; + 021,,,) 'Pv = 0 for v = Avy,
v # 0 for all i. The last equality is true if and only if ®®v = 0. This is a contradiction
since the set {t;; : i, 7} is assumed dense with probability one and {¢x(-) : £ > 1} is a basis
system, which implies that every finite subset of these functions is linearly independent.

Specifically, let ®(¢) be the K, column vector with elements ¢y (t). Then ®7®;, =
DT ®(ti;)@7 (ti;). Thus there exists a unit vector v’ € R such that Y 7" &(t;;) @7 (t;;)v" =
Og, for all i, which further implies (by multiplication to the left by v" 7) that
S v Td(t;)®T (t5)v" = 0 or equivalently >

i |0 T®(t;;)||> = 0 for all 4. Tt follows that

v T®(t;;) = 0. Since the set of {t;;: j=1,...,m;;i=1,...,n} is dense in [0, 1], it follows
that S0 v, ®(t) = 0 for all ¢t € [0,1], where there v/ € RX» is a non-zero vector. Hence
the set of functions {¢x(-) : 1 < k > K, } are linearly dependent.

Hence we have that A\, converges in probability to
v BIXT XaJuxt + vk, BIXT Xaloxs + v |2+ [lvel|* g

where 1 > 0 and g > 0 and |lox ||+ |luxz ||+ ||[val|?+|Jveel|? = 1. Recall that E[X] X;] has
positive eigenvalues. Thus the minimum eigenvalue of (n~'D,, DT is positive in probability;

1D, DTy = 0,(1). Tt implies that ||(n ™' D, DL)™|ls = O,(1). This yields

mln(

equivalently A
that ||(n~'D, DY)~ = Ka/?0,(1).

Thus using (1) it follows that [|5» — %~ ||2 = O, (K2n ).

Next we show that [|§5» — 65~ |2 = O, (K,n"22).

Recall that %+ = (n‘lﬁnﬁg ) B (n_lﬁnY> where D,, has the same structure as D,,
except {(W;)’s are replaced by Z(W,-)’s. Thus 65 — gK» = (Hz — Hp)n'/?Y | where Hp =

11



(n='D,DT)"n'/2D, and Hy = (nilﬁnﬁg)*lnl/zﬁn. Thus
|0 — 9% |2 < || Hp — Hp|)? x |[n'/?Y % (14)

Consider || D, — Dy||> = 2327, [[L(W;) — (W) |2

= 2Z|| (ARTE ! —ADTS (W, — p,) + ABT S (7, — py) |2

2ZH (ADTS ! — AT ) (W, — )2+ 2 ASI S (7, — )|

=1

IA

Using the assumptions (A8) - (A10) one can show that: ||m; — p;||* < M||lp — all%,

IAD; — A2 = ST 3o [{ (k= M) (ti) } + M D (i) — e (t) 2 < 23052y S { (e —
M) (i) Y2 + 2 30 SO N { e (tiy) — Onltig)}? < 2M supy [|oell% Sopmy (A — Ak)? +

2M (2 M o — dell%} o and 571 = S74P < (G + 0 L) MG = G)(Gi +
o2 L) Y2+ 3% = o) (G + 0%L,) NGi + 3%L) P < M?074G — G||% + M(62 —
02)2072672. Here we used the fact that ||A||*> < m|lA||? for m x m dimensional matrix A
and [|A|* < m?max; j |a;i[* . Also the fact that say |@(tij,tij/) — G(tij, tij)| < |G — CA¥||Oo
In addition we have: [|A[|* = 33 A} < oo, AT || = 317 AZlldul[® < M supy [|¢xl|Z || A2,

and |37 1|2 < Mo~*. Using the fact that n=1 3" | [[W; — p,;[|2 = O,(1) it follows that
n_lHBn - DnH2 = Op(n_2A)-

Next we show that ||[Hz — Hp||> = O,(K,n"?2).
Consider f)nf)Z; = D, DI +e,, where ¢, = €,1 L, + Ll¢,o, for L, the 4n x (2p + 2K,,)

block diagonal matrix with elements 0,,x,, f — lp, Opxp, and E —4,.

12



0p><n XT 0p><n XTA On><p OnXKn On><p OnXKn

Okoxn 07 Opoxn (TA X 6, AX AL,
€Epl — and €Eng —

0p><n XTA Opxn XT On><p OnXKn On><p OnXKn

Ok,xn (XA Op,xn 07 AX AL, X4,

It follows that ||n='D, DT — n~'D, DT||? is equal to
1 2 1 1 T 2 2 2 2 2 712 7 2 —2A
ngnH = ”Eenan + ELnEnQH < ﬁ”enanH < 2 X 8 X (|| X7 + [|€n]]) X [[€n — £ull” = Op(n™=7),

as both terms n~!|| X||2 and n~!||0,||2 are O,(1) and n=2||0, — £,||? is Op(n~22).

Furthermore this implies that ||(n=1D,DI)~Y(n"te,)||s = O,(n~?2), which means that
n=1D, DY is a small perturbation of n='D,, DT and thus is also invertible; and ||(n "D, DT)~!| =
O,(1). For the last result we used Theorem 2.3.4 of Golub and Van Loan (2012). It implies

that |[Hs — Hp||?

D)™ = (07 D D) P2 Dyl + ([ (0 Du DY) P In (D = Do)

INA
s
L
=)}
3
S
~

< O(K,)|(n™' Do Di)™ = (07" Dy DE) I3 [0~ /2Dy

+O(K,)||(n " D, DT) 22 ||n~Y4(D,, — D,)|1%

the first term is smaller than O(K,)|n te,|?||(n 1D, DI)~1||3 using the same Theorem
2.3.4 and the second term is of order O(K,,)||(n"*D, DL)~1|20,(n?2); thus ||[Hy — Hp||* =
O,(K,n728).

13



We show that ||n'/2Y[|2 = O,(1). For this notice:

1 & 1
n <= n
2
+3= Z{ Z Cri(Bre +az7k)} (16)
=1 k=K,+1

1=,
= 2. 1
+3n ;1 €5 (17)

by an abuse of notation we use £ ; = ¢4(W;). Next we take each term in part. Term (15) is
0,(1) since |n 1D, DL|| < ||n=Y2D,||? and n=Y||D,||?> = O,(1). Term (16) is O,(K}~%) since
it is bounded upward by Y 72 o (87 4+ %) x n Tt Y00 Dotk 41 G- The first component
of this product is O(K,~*) while the second is Op(1). Consider Y .7 . | (7, = WTHW;,
where W, = ;W is multivariate N (0, ,,,) and H; = 352 0 X220, 00572 1t
is sufficient to show that the eigenvalues of H; are non-negative and are bounded, since we
can use the argument that n=* "7 fI/IZTHiﬁ//Z» can be written as the average of weighted chi-
square variables that is bounded by the average of independent and identically distributed
chi-square random variables with M degrees of freedom, which is O,(1). First, note that H; is
symmetric, thus its eigenvalues are non-negative. Secondly, let v an m;-dimensional unit vec-
tor; we calculate v Hyv = 707 o \oT 5] V2, Ly Py = 30 Kot 0T 8] V2,012

(e’ 1/2 —1/2 1/2 —1/2 1/2
Thus " Hiv < 350 e o IN IR0 IS 2RI 2@l < A 1272125 00 o I 2012

Now ZZO:KnH H>‘11c/2q)ik|’2 Zk Kn,+1 Z )‘kq)g( Z]) Z {Zk Knp+1 Akqﬂ( U)} < Zml G( 137

thus vT Hyo < A, M||S7Y12? % M||Gleo < 07" Ak, M2||G||s for all i. Tt follows that the
eigenvalues of H; are bouded.

The term (17) is O,(1) since it converges in probability to E[e?] = 202.

This concludes the proof that [|§5» — 65|12 = O, (K,n24).
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