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The proof of L (θ +4a|θ) = o (4a). By property (f), the definition of deriva-

tive, and assume the validity of interchanging the order of limitation and eval-

uation, we have

0 =
[
∂

∂a
L (a|θ)

]∣∣∣∣
a=θ

=
[

lim
4a→0

L (a+4a|θ)− L (a|θ)
4a

]∣∣∣∣
a=θ

= lim
4a→0

[
L (a+4a|θ)− L (a|θ)

4a

∣∣∣∣
a=θ

]
= lim
4a→0

L (θ +4a|θ)− L (θ|θ)
4a

= lim
4a→0

L (θ +4a|θ)
4a

,

that is, L (θ +4a|θ) = o (4a). �

The check that the power-log loss function satisfies all the 6 properties

listed in Table 1. Now we check that the power-log loss function, Lpl (θ, a) =

Lpl (a|θ) = Lpl (x)|x=a/θ, satisfies all the 6 properties listed in Table 1. Let

g (x) =

(
1
θ − 1

)2

1
θ − x

− log x and g (1) =
1
θ
− 1.
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We have

Lpl (x) = g (x)− g (1) =

(
1
θ − 1

)2

1
θ − x

− log x−
(

1
θ
− 1

)
and

Lpl (θ, a) = Lpl (a|θ) = Lpl (x)|x=a/θ =

(
1
θ − 1

)2

1
θ −

a
θ

− log
a

θ
−

(
1
θ
− 1

)

=
θ
(

1
θ − 1

)2

1− a
− log a+ log θ −

(
1
θ
− 1

)
.

We first show that Lpl (x) satisfies all the 6 properties listed in Table 1.

First,

Lpl (1) = g (1)− g (1) = 0,

so property (b) is proved. Properties (c) and (d) can be checked directly. For

property (f), we have

g′ (x) =
(

1
θ
− 1

)2 1(
1
θ − x

)2 −
1
x
.

Thus,

L′pl (1) = g′ (1) =
(

1
θ
− 1

)2 1(
1
θ − 1

)2 −
1
1

= 0.

Now we turn to property (e). We have

L′′pl (x) = g′′ (x) = [g′ (x)]′ =

[(
1
θ
− 1

)2 (
1
θ
− x

)−2

− x−1

]′

=
(

1
θ
− 1

)2

2
(

1
θ
− x

)−3

+ x−2 > 0,

since 0 < x < 1
θ and 0 < θ < 1. Therefore, Lpl (x) is convex in x and property

(e) is proved. With properties (b), (e), and (f), we can prove that

Lpl (x) ≥ 0 for all 0 < x <
1
θ
,

that is, property (a) is proved.

Now we prove that Lpl (θ, a) = Lpl (a|θ) satisfies all the 6 properties listed

in Table 1. Properties (a), (b), (c), and (d) are satisfied by exploiting

Lpl (θ, a) = Lpl (a|θ) = Lpl (x)|x=a/θ ,
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and that Lpl (x) satisfies these properties. For property (f), we have[
∂

∂a
Lpl (a|θ)

]∣∣∣∣
a=θ

=
[
∂x

∂a
· ∂
∂x
Lpl (x)

]∣∣∣∣
x=1

=
1
θ
L′pl (1) = 0.

For property (e), we have

∂2

∂a2
Lpl (a|θ) =

∂

∂a

[
∂

∂a
Lpl (a|θ)

]
=

∂

∂a

{[
∂x

∂a
· ∂
∂x
Lpl (x)

]∣∣∣∣
x=a/θ

}

=
1
θ

∂

∂a

{[
∂

∂x
Lpl (x)

]∣∣∣∣
x=a/θ

}
=

1
θ

{[
∂x

∂a
· ∂

2

∂x2
Lpl (x)

]∣∣∣∣
x=a/θ

}

=
1
θ2

L′′pl (x)
∣∣
x=a/θ

> 0.

Therefore, Lpl (a|θ) is convex in a and property (e) is proved. The check is

complete. �

The proof of δπ
pl (x) ≤ δπ

2 (x). We have

δπ
pl (x) =

2 + E1 (x)−
√
E1 (x) (E1 (x) + 4)
2

≤ E4 (x) = δπ
2 (x) (1)

⇔ 2 + E1 (x)−
√
E1 (x) (E1 (x) + 4) ≤ 2E4 (x)

⇔ 2 + E1 (x)− 2E4 (x) ≤
√
E1 (x) (E1 (x) + 4)

⇔ [2 + E1 (x)− 2E4 (x)]2 ≤ E1 (x) (E1 (x) + 4)

⇔ 4+E2
1 (x)+4E2

4 (x)+4E1 (x)−8E4 (x)−4E1 (x)E4 (x) ≤ E2
1 (x)+4E1 (x)

⇔ 4 + 4E2
4 (x) ≤ 8E4 (x) + 4E1 (x)E4 (x)

⇔ 1 + E2
4 (x) ≤ 2E4 (x) + E1 (x)E4 (x)

⇔ [1− E4 (x)]2 ≤ E1 (x)E4 (x)

⇔ [1− E [θ|x]]2 ≤ E

[
(1− θ)2

θ
|x

]
E [θ|x]

⇔ [E [1− θ|x]]2 ≤ E

[
(1− θ)2

θ
|x

]
E [θ|x] . (2)

We need the Covariance Inequality (see Theorem 4.7.9 (p.192) in Casella and

Berger (2002)) for the rest of the proof. For convenience, we quote it here.
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Theorem (Covariance Inequality) Let X be any random variable and g (x)

and h (x) any functions such that Eg (X), Eh (X), and E (g (X)h (X)) exist.

a. If g (x) is a nondecreasing function and h (x) is a nonincreasing function,

then

E (g (X)h (X)) ≤ (Eg (X)) (Eh (X)) .

b. If g (x) and h (x) are either both nondecreasing or both nonincreasing,

then

E (g (X)h (X)) ≥ (Eg (X)) (Eh (X)) .

Let X = (θ|x). It is easy to check that g (θ) = (1−θ)2

θ is a decreasing function

of θ, and h (θ) = θ is an increasing function of θ. Thus, by the Covariance

Inequality, we have

E

[
(1− θ)2

θ
|x

]
E [θ|x] ≥ E

[
(1− θ)2 |x

]
= E [(1− θ) (1− θ) |x] .

Now we let g (θ) = 1 − θ which is a decreasing function of θ, and h (θ) =

1 − θ which is again a decreasing function of θ. Therefore, by the Covariance

Inequality, we have

E [(1− θ) (1− θ) |x] ≥ E (1− θ|x) E (1− θ|x) = [E (1− θ|x)]2 .

Therefore, (2) is correct and (1) is proved. �

The calculation of π (θ|x) ∼ Be (α∗, β∗). Suppose that we observeX1, X2, . . . , Xn

from the beta-binomial model: Xi|θ
iid∼ Bin (m, θ) , i = 1, 2, . . . , n,

θ ∼ Be (α, β) ,

where m is a known positive integer, α > 0 and β > 0 are known constants,

θ ∈ (0, 1) is the unknown parameter of interest, Bin (m, θ) is the binomial

distribution, and Be (α, β) is the beta distribution. By the Bayes Theorem, we

have

π (θ|x) ∝ f (x|θ)π (θ) .

It is easy to see that

π (θ) ∝ θα−1 (1− θ)β−1
, θ ∈ (0, 1) , α, β > 0,
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and

f (x|θ) =
n∏

i=1

f (xi|θ) =
n∏

i=1

[(
m

xi

)
θxi (1− θ)m−xi

]
∝ θ

∑n
i=1 xi (1− θ)mn−

∑n
i=1 xi .

Therefore,

π (θ|x) ∝ θ
∑n

i=1 xi (1− θ)mn−
∑n

i=1 xi θα−1 (1− θ)β−1

= θ(
∑n

i=1 xi+α)−1 (1− θ)(mn−
∑n

i=1 xi+β)−1

∼ Be (α∗, β∗) ,

where

α∗ =
n∑

i=1

xi + α and β∗ = mn−
n∑

i=1

xi + β.

The calculation is complete. �

The calculations of Ei (x), i = 1, 2, 3, 4. The posterior distribution of θ is

π (θ|x) ∼ Be (α∗, β∗) .

We calculate E1 (x), E3 (x), and E4 (x) first, since the calculations are straight-

forward. Then we calculate E2 (x), which is sophisticated. We have

E1 (x) = E
[
θ−1 (1− θ)2 |x

]
=

∫ 1

0

θ−1 (1− θ)2 π (θ|x) dθ

=
∫ 1

0

θ−1 (1− θ)2 Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

θα∗−1 (1− θ)β∗−1
dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

∫ 1

0

θ(α
∗−1)−1 (1− θ)(β

∗+2)−1
dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

B (α∗ − 1, β∗ + 2)

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

Γ (α∗ − 1) Γ (β∗ + 2)
Γ (α∗ + β∗ + 1)

=
(β∗ + 1)β∗

(α∗ − 1) (α∗ + β∗)
, for α∗ > 1,
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E3 (x) = E
[
θ−1|x

]
=

∫ 1

0

θ−1π (θ|x) dθ

=
∫ 1

0

θ−1 Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

θα∗−1 (1− θ)β∗−1
dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

∫ 1

0

θ(α
∗−1)−1 (1− θ)β∗−1

dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

B (α∗ − 1, β∗)

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

Γ (α∗ − 1) Γ (β∗)
Γ (α∗ + β∗ − 1)

=
α∗ + β∗ − 1
α∗ − 1

, for α∗ > 1,

and

E4 (x) = E [θ|x] =
α∗

α∗ + β∗
.

Now we calculate E2 (x). We have

E2 (x) = E [log θ|x] =
∫ 1

0

(log θ)π (θ|x) dθ

=
∫ 1

0

(log θ)
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

θα∗−1 (1− θ)β∗−1
dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

∫ 1

0

(log θ) θα∗−1 (1− θ)β∗−1
dθ

=
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

I1,
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where

I1 =
∫ 1

0

(log θ) θα∗−1 (1− θ)β∗−1
dθ

=
∫ 1

0

dθα∗−1

dα∗
(1− θ)β∗−1

dθ

=
∫ 1

0

d

dα∗

(
θα∗−1 (1− θ)β∗−1

)
dθ

=
d

dα∗

∫ 1

0

θα∗−1 (1− θ)β∗−1
dθ

=
d

dα∗
B (α∗, β∗)

=
d

dα∗

(
Γ (α∗) Γ (β∗)
Γ (α∗ + β∗)

)
= Γ (β∗)

d

dα∗

(
Γ (α∗)

Γ (α∗ + β∗)

)
= Γ (β∗)

Γ′ (α∗) Γ (α∗ + β∗)− Γ (α∗) Γ′ (α∗ + β∗)
Γ2 (α∗ + β∗)

.

Note that

ψ (z) =
Γ′ (z)
Γ (z)

= PolyGamma (z) = PolyGamma (0, z) = digamma (z)

is the digamma function, and Γ (z) is the gamma function. In R software (R

Core Team (2017)), the function digamma(z) calculates ψ (z). Thus,

Γ′ (z) = Γ (z)ψ (z) .

Therefore,

Γ′ (α∗) = Γ (α∗)ψ (α∗)

and

Γ′ (α∗ + β∗) = Γ (α∗ + β∗)ψ (α∗ + β∗) .

Consequently,

I1 =
Γ (β∗)

Γ2 (α∗ + β∗)
[Γ (α∗)ψ (α∗) Γ (α∗ + β∗)− Γ (α∗) Γ (α∗ + β∗)ψ (α∗ + β∗)]

=
Γ (α∗) Γ (β∗)
Γ (α∗ + β∗)

[ψ (α∗)− ψ (α∗ + β∗)] .
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Finally,

E2 (x) =
Γ (α∗ + β∗)
Γ (α∗) Γ (β∗)

Γ (α∗) Γ (β∗)
Γ (α∗ + β∗)

[ψ (α∗)− ψ (α∗ + β∗)]

= ψ (α∗)− ψ (α∗ + β∗) .

The calculations are complete. �

The proof of

δπ
pl (x) = 1 +

(β∗ + 1)β∗

2 (α∗ − 1) (α∗ + β∗)
− 1

2
1

(α∗ − 1) (α∗ + β∗)

×
√

(β∗ + 1)β∗ (4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2)

<
α∗

α∗ + β∗
= δπ

2 (x) . (3)

We have, (3)

⇐⇒ 1 +
(β∗ + 1)β∗

2 (α∗ − 1) (α∗ + β∗)
− α∗

α∗ + β∗

<

√
(β∗ + 1)β∗ (4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2)

2 (α∗ − 1) (α∗ + β∗)

⇐⇒ 2 (α∗ − 1) (α∗ + β∗) + (β∗ + 1)β∗ − 2 (α∗ − 1)α∗

2 (α∗ − 1) (α∗ + β∗)

<

√
(β∗ + 1)β∗ (4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2)

2 (α∗ − 1) (α∗ + β∗)

⇐⇒ 2 (α∗ − 1)β∗+(β∗ + 1)β∗ <
√

(β∗ + 1)β∗ (4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2)

⇐⇒ β∗ (2α∗ + β∗ − 1) <
√

(β∗ + 1)β∗ (4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2)

⇐⇒ β∗ (2α∗ + β∗ − 1)2 < (β∗ + 1)
(
4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2

)
. (4)
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It is easy to obtain

4α∗2 + 4α∗β∗ − 4α∗ − 3β∗ + β∗2

= (2α∗ + β∗ − 1) (2α∗ + β∗)− 2 (α∗ + β∗)

= (2α∗ + β∗ − 1) (2α∗ + β∗ − 1 + 1)− 2 (α∗ + β∗)

= (2α∗ + β∗ − 1)2 + (2α∗ + β∗ − 1)− 2 (α∗ + β∗)

= (2α∗ + β∗ − 1)2 − (β∗ + 1) .

Therefore, (4)

⇐⇒ β∗ (2α∗ + β∗ − 1)2 < (β∗ + 1)
[
(2α∗ + β∗ − 1)2 − (β∗ + 1)

]
⇐⇒ β∗ (2α∗ + β∗ − 1)2 < (β∗ + 1) (2α∗ + β∗ − 1)2 − (β∗ + 1)2

⇐⇒ (β∗ + 1)2 < (2α∗ + β∗ − 1)2 . (5)

Since α∗ > 1 and β∗ > 0, we obtain

2α∗ + β∗ − 1 > 2 + β∗ − 1 = β∗ + 1 > 0.

Therefore, (5) is correct and (3) is proved. �

The derivations of the moment estimators and the MLEs of α and β.

Suppose that we observe X1, X2, . . . , Xn from the beta-binomial model: Xi|θ
iid∼ Bin (m, θ) , i = 1, 2, . . . , n,

θ ∼ Be (α, β) ,

where m is a known positive integer, α > 0 and β > 0 are unknown hyperpa-

rameters determined by the empirical Bayes method, θ ∈ (0, 1) is the unknown

parameter of interest, Bin (m, θ) is the binomial distribution, and Be (α, β) is

the beta distribution.

We first derive the moment estimators of α and β. The expectation and

variance of X are respectively given by

EX = m
α

α+ β
and Var (X) = m

αβ (α+ β +m)
(α+ β)2 (α+ β + 1)

.
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See Examples 4.4.6 and 4.4.8 of Casella and Berger (2002) for details. The mo-

ment estimators of α and β are calculated by equating the population moments

to the sample moments, that is,

EX = m
α

α+ β
= X̄ =

1
n

n∑
i=1

Xi = A1,

Var (X) = m
αβ (α+ β +m)

(α+ β)2 (α+ β + 1)
=

1
n

n∑
i=1

(
Xi − X̄

)2 = M2,

where A1 is the sample first-order moment of X and M2 is the sample second-

order central moment of X. Solving the above equations, we obtain the moment

estimators of α and β:

α1 = α̃ =
M2A1 −A2

1 (m−A1)
A1 (m−A1)−M2m

,

β1 = β̃ =
(m−A1)α1

A1
.

Now we derive the MLEs of α and β, α2 and β2. The marginal distribution

of X is a beta-binomial distribution (BBD) with probability mass function

m (x|α, β) = P (X = x|α, β) =
(
m

x

)
B (x+ α,m− x+ β)

B (α, β)

=
(
m

x

)
Γ (α+ β)
Γ (α) Γ (β)

Γ (x+ α) Γ (m− x+ β)
Γ (m+ α+ β)

,

where B (α, β) is the beta function and Γ (α) is the gamma function. Then the

likelihood function of α and β is

L (α, β|x) = m (x|α, β) =
n∏

i=1

m (xi|α, β)

=
n∏

i=1

[(
m

xi

)
Γ (α+ β)
Γ (α) Γ (β)

Γ (xi + α) Γ (m− xi + β)
Γ (m+ α+ β)

]

=

[
n∏

i=1

(
m

xi

)]
Γn (α+ β)

Γn (α) Γn (β) Γn (m+ α+ β)

[
n∏

i=1

Γ (xi + α) Γ (m− xi + β)

]
.

Consequently, the log-likelihood function of α and β is

logL (α, β|x) = log
n∏

i=1

(
m

xi

)
+ n log Γ (α+ β)− n log Γ (α)− n log Γ (β)− n log Γ (m+ α+ β)

+
n∑

i=1

[log Γ (xi + α) + log Γ (m− xi + β)] .
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Taking partial derivatives with respect to α and β and setting them to zeros,

we obtain

∂

∂α
logL = n

Γ′ (α+ β)
Γ (α+ β)

− nΓ′ (α)
Γ (α)

− nΓ′ (m+ α+ β)
Γ (m+ α+ β)

+
n∑

i=1

Γ′ (xi + α)
Γ (xi + α)

= 0,

∂

∂β
logL = n

Γ′ (α+ β)
Γ (α+ β)

− nΓ′ (β)
Γ (β)

− nΓ′ (m+ α+ β)
Γ (m+ α+ β)

+
n∑

i=1

Γ′ (m− xi + β)
Γ (m− xi + β)

= 0.

Since

ψ (x) =
Γ′ (x)
Γ (x)

=
d

dx
log Γ (x) = digamma (x)

which can be directly calculated in R software by digamma(x) (R Core Team

(2017)), after some algebra, the above equations reduces to

f1 (α, β) = ψ (α+ β)− ψ (α)− ψ (m+ α+ β) +
1
n

n∑
i=1

ψ (xi + α) = 0, (6)

f2 (α, β) = ψ (α+ β)− ψ (β)− ψ (m+ α+ β) +
1
n

n∑
i=1

ψ (m− xi + β) = 0.

(7)

The Jacobian matrix of α and β is given by

J =

∂f1
∂α

∂f1
∂β

∂f2
∂α

∂f2
∂β

 =

J11 J12

J21 J22

 ,

where

J11 =
∂f1
∂α

= ψ′ (α+ β)− ψ′ (α)− ψ′ (m+ α+ β) +
1
n

n∑
i=1

ψ′ (xi + α) ,

J12 =
∂f1
∂β

= ψ′ (α+ β)− ψ′ (m+ α+ β) ,

J21 =
∂f2
∂α

= ψ′ (α+ β)− ψ′ (m+ α+ β) ,

J22 =
∂f2
∂β

= ψ′ (α+ β)− ψ′ (β)− ψ′ (m+ α+ β) +
1
n

n∑
i=1

ψ′ (m− xi + β) .

Note that

ψ′ (x) =
d2

dx2
log Γ (x) = trigamma (x)

which can be directly calculated in R software by trigamma(x) (R Core Team

(2017)). We can exploit Newton’s method to solve the equations (6) and (7)
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and to obtain the MLEs of α and β, α2 and β2. Note that the MLEs of α and

β are very sensitive to the initial estimators, and the moment estimators are

usually proved to be good initial estimators. �
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