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Abstract

This is the supplemental file of the paper.

The proof of L (0 + Aalf) = o (Aa). By property (f), the definition of deriva-
tive, and assume the validity of interchanging the order of limitation and eval-

uation, we have
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that is, L (0 + Aalf) = o(Aa). O

The check that the power-log loss function satisfies all the 6 properties
listed in Table 1. Now we check that the power-log loss function, Ly (6,a) =
Ly (alf) = Ly (x)|x:a/0, satisfies all the 6 properties listed in Table 1. Let
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—logz and g (1) = i 1.

|

*The research was supported by the Fundamental Research Funds for the Central Univer-
sities (CQDXWL-2012-004).
*Corresponding author
Email addresses: robertzhang@cqu.edu.cn or robertzhangyying@qq.com (Ying-Ying
Zhang), 1026250991@qq. com (Ming-Qin Zhou), 545552727@qq.com (Yu-Han Xie),
wenhesong@163.com (Wen-He Song)
URL: https://zhangyingying319.wordpress.com (Ying-Ying Zhang)

Preprint submitted to Journal of Statistical Computation and Simulation June 18, 2017



We have

and
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We first show that L, (z) satisfies all the 6 properties listed in Table 1
First,

Lp(1)=9(1) —g(1) =0,

so property (b) is proved. Properties (¢) and (d) can be checked directly. For
property (f), we have

Thus,

(1) =9"(1) = (;_1)2(11_1:0'

Now we turn to property (e). We have
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—(0—1) 2<9—x> +272>0,
since 0 < z < % and 0 < 0 < 1. Therefore, L, (z) is convex in x and property
(e) is proved. With properties (b), (e), and (f), we can prove that

1
Ly (x)>0forall0 <z < —,

0
that is, property (a) is proved.

Now we prove that Ly (6,a) = Ly (a|f) satisfies all the 6 properties listed
in Table 1. Properties (a), (b), (¢), and (d) are satisfied by exploiting

Ly (6, a) = Lpi (alf) = Lyt (2)],—q /9 »



and that Ly, (v) satisfies these properties. For property (f), we have
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For property (e), we have
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Therefore, L, (alf) is convex in a and property (e) is proved. The check is
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complete. 0
The proof of 07, (z) < 65 (x). We have
. 2+ Ey ( E (x) + 4) -
() = 2L VL <E@ =@ ()
& 2+ B (x) — VE (z () +4) < 2By (x)
& 24 B (x) — 2E, () < VE (x (x) +4)

& 24 Bi () — 2B, (2)]” < By () (By () +4)
& 4+ F} (x) +4E% () +4F) (x) —8E, (x) —4E, (x) Ey (x) < E? (z)+4F, (x)
& 444F} (x) < 8E4 (z) + 4E; (x) E4 (z)
& 1+ FE?(x) <2E4 (x) + By (x) Ey (x)

& [1— By (2)]® < By (x) By ()

(1-0)°
0

& 1-E[fz])> <E |w1 E [0|]

& Ef-o) <E (199)2

|m] E[0]x]. 2)

We need the Covariance Inequality (see Theorem 4.7.9 (p.192) in |Casella and

Berger| (2002)) for the rest of the proof. For convenience, we quote it here.



Theorem (Covariance Inequality) Let X be any random variable and g (x)
and h(x) any functions such that Eg(X), Eh(X), and E(g(X)h (X)) exist.
a. If g (x) is a nondecreasing function and h (x) is a nonincreasing function,
then
E (g (X) (X)) < (Eg (X)) (ER (X))
b. If g(x) and h(x) are either both nondecreasing or both nonincreasing,
then
E(g(X)h(X)) 2 (Eg (X)) (Eh (X))

Let X = (0|x). It is easy to check that g () = (1;0)2 is a decreasing function

of 0, and h(f) = 0 is an increasing function of §. Thus, by the Covariance

Inequality, we have

(1-0)
2 0

z| E[f]z] > E [(1 —9)2|w} —E[1-0)(1-0)lx].

Now we let g(#) = 1 — 0 which is a decreasing function of 6, and h(f) =
1 — 6 which is again a decreasing function of 6. Therefore, by the Covariance

Inequality, we have
E[(1-0)1-0)|x] >E(1—-0lx)E(1—0|xz)=[E(1— 9|:c)]2.

Therefore, (2) is correct and is proved. O
The calculation of 7 (6|x) ~ Be (a*, 8*). Suppose that we observe X1, Xa,..., X,
from the beta-binomial model:

X106 % Bin(m,0), i=1,2,...,n,

0 ~ Be(a, ),
where m is a known positive integer, « > 0 and § > 0 are known constants,
0 € (0,1) is the unknown parameter of interest, Bin (m,6) is the binomial
distribution, and Be («, () is the beta distribution. By the Bayes Theorem, we
have

7 (0|x) o f (x|0) 7 (0).

It is easy to see that

7(0) 6 (1 -6, 6€(0,1), a, 8> 0,



[ (x]0) = H (x:]0) —ﬁ{( )0% _a)mmi}ocgz;uzi(l_g)mnzrlzi.
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Therefore,
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a® :in+a and §* :manxiJrﬁ.
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The calculation is complete. O

The calculations of FE; (x), i =1,2,3,4. The posterior distribution of 6 is
7 (0|x) ~ Be (a*, 5%).

We calculate E; (x), E3 (), and E4 (x) first, since the calculations are straight-

forward. Then we calculate Es (x), which is sophisticated. We have
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for ™ > 1,
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, for a* > 1,

and

E,(x)=E[f|x] =

Now we calculate Fs (x). We have
1
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0
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where

1
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Note that

P (z) = = PolyGamma (z) = PolyGamma (0, z) = digamma (z)

is the digamma function, and T (z) is the gamma function. In R software (R

Core Team| (2017)), the function digamma(z) calculates 9 (z). Thus,

Therefore,

and
I (a"+87) =T (2" + ") ¢ (a” + 57).
Consequently,
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Finally,
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The calculations are complete. O

The proof of
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It is easy to obtain
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= (20" + " — 1) (
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Therefore, (4)
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Since a® > 1 and #* > 0, we obtain

20 + B8 —1>2+ 03" —-1=08"+1>0.

Therefore, is correct and is proved. O
The derivations of the moment estimators and the MLEs of « and /3.
Suppose that we observe X, X, ..., X,, from the beta-binomial model:

X;10 % Bin(m,0), i=1,2,....n

0 ~ Be(a, ),

where m is a known positive integer, & > 0 and 8 > 0 are unknown hyperpa-
rameters determined by the empirical Bayes method, 6 € (0,1) is the unknown
parameter of interest, Bin (m,8) is the binomial distribution, and Be (a, 3) is
the beta distribution.

We first derive the moment estimators of o and . The expectation and
variance of X are respectively given by

af(a+p+m) .
(a+B)? (a+B8+1)

and Var (X) =

o
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See Examples 4.4.6 and 4.4.8 of |Casella and Berger| (2002)) for details. The mo-
ment estimators of & and (8 are calculated by equating the population moments

to the sample moments, that is,

1 n
EX = — =A
moz+6 ng b

af (a+ [+ m)
Var (X) = =—> (X, - X = Mo,
ar (X) m(a+ﬂ) (a+p+1) Z ’

where A; is the sample first-order moment of X and Ms is the sample second-
order central moment of X. Solving the above equations, we obtain the moment

estimators of o and (3:

M2A1 — A% (m — Al)

M= U (m— Ay) — Mam’
- (m—Al)al
fr=08= 1 .

Now we derive the MLEs of a and 3, as and (3. The marginal distribution
of X is a beta-binomial distribution (BBD) with probability mass function
m\ B(z+a,m—xz+0)
m(ela,§) = P (X =sla,) = (1) B

_ <m> Fa+p) T'(z+a)T(m—z+0)
z)T ()l (B) T(m+a+p)

where B («, ) is the beta function and T" («) is the gamma function. Then the

likelihood function of « and S is
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Consequently, the log-likelihood function of o and f is

n

Hf(xiJra)F(m—ziJrﬂ)

log L (e, Blx) = logH( )—i—nlogF( +8) —nlogl (a) —nlogT (B) — nlogT' (m + o + )

+Z logT (x; + @) +logT (m — z; + )] .
=1
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Taking partial derivatives with respect to a and ( and setting them to zeros,

we obtain
9 _ T+ T(a) T(m+a+f) ~TD(wita)
9 B =" Ta1p) "T@ "Tmtatp +; T ta)
T+ @B Tm+a+p) ~Dm—zi+p)
%logL nr( +B) nF(ﬁ) F'm+a+p3) +; L' (m—x; + 3) 0
Since
7/’(@?((;) :%bgr(z):digamma(x)

which can be directly calculated in R software by digamma(x) (R Core Team

(2017), after some algebra, the above equations reduces to

n

£ (0,8) =% (@ +8) (o)~ bm+at A+ LY p@ra) =0, ©

F2 (0, 8) = (a+ 6) = 9 (8) ~ ¥ (m+ a4 B) + 3 b (m — i+ ) = .

i=1
(7)

The Jacobian matrix of a and  is given by

Je % %’; _ Jiw Ji2
% %% Jo1 Jao

where
J _afl_ ! / / 1 = !
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Jlgz%:w’(a+ﬁ)—w'(m+a+ﬁ)
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Note that

2
Y (x) = % logT" (z) = trigamma ()

which can be directly calculated in R software by trigamma(x) (R Core Team

(2017)). We can exploit Newton’s method to solve the equations () and
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and to obtain the MLEs of o and 3, ao and (35. Note that the MLEs of o and
[ are very sensitive to the initial estimators, and the moment estimators are

usually proved to be good initial estimators. O
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