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Appendix A: Proof that maximum likelihood estimator of � does not exists 

We shall show that there does not exist a positive definite � that minimizes 

trace���	
�∗ − ���������	
�∗ − �������� + � log|�|. Let the eigendecomposition of 


�∗ − ���������	
�∗ − ������� be denoted by 
�∗ − ���������	
�∗ − ������� = ����, where � 

is a matrix with orthonormal eigenvectors as columns and � = diag"#	, … , #&' is a diagonal 

matrix of eigenvalues ordered such that #	 ≥ #� ≥ ⋯ ≥ #&. Since * > �, #,-	 = ⋯ =
#& = 0 and #, > 0 for some / ≤ �. Let us replace #,-	, … , #& in � with 1 > 0, which 

gives the diagonal matrix �2 = diag"#	, … , #, , 1, … , 1'. Now, let � = ��2��. Then, since 

��	 = ��2�	�� and |�| = 3�23 = 1&�, ∏ #5,56	 , we have  

trace���	
�∗ − ���������	
�∗ − �������� + � log|�|       

= trace7��2�	������8 + � log
1&�, ∏ #5,56	 �  

= trace7��2�	���8 + �
* − /� log
1� + � ∑ log
#5�,56	   

= trace
diag"1, … ,1,0, … ,0'���� + �
* − /� log
1� + � ∑ log
#5�,56	   

= trace
diag"1, … ,1,0, … ,0'� + �
* − /� log
1� + � ∑ log
#5�,56	   

= / + �
* − /� log
1� + � ∑ log
#5�,56	 .                 (A1) 

Observe that we can make (A1) arbitrarily small by taking 1 arbitrarily small. Thus, there is 

no maximizer of the likelihood function in the set of positive definite matrices.  

Appendix B: Condition for separability of covariance function 

As given by (13), cov�<
=�, <
=′�� = ∑ ?5ℛ5
=, =′|A5�B5B5�&56	 . Suppose that the 

covariance function also satisfies cov�<
=�, <
=′�� = C
=, =′�D for all = and =′. Then, by 

setting =′ = =, we get D = E ∑ ?5B5 B5�&56	  and C
=, =� = 1/E. We can choose E = 1 without 

loss of generality. Thus, we obtain 
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∑ ?5ℛ5
=, =′|A5�B5B5�&56	 = C
=, =′�D = C
=, =′� ∑ ?5B5 B5�&56	 .                (B1) 

Suppose C
=, =′� = 0, which gives ∑ B5 ?5ℛ5
=, =′|A5�B5�&56	 = G. This implies that 

ℛ	
=, =′|A5� = ⋯ = ℛ&
=, =H|A5� = 0 because B	, … , B&  are linearly independent, each 

?5 > 0, and there is at least one nonzero element in each B5 . Suppose C
=, =′� ≠ 0. Then  

∑ B5?5�ℛ5
=, =′|A5�/C
=, =′��B5�&56	 = ∑ ?5B5B5�&56	 .                (B2) 

Note that the right hand side of (B2) is independent of 
=, =′�. Since ?	 ≥ ⋯ ≥ ?& > 0 and 

B	, … , B&  are linearly independent, we must have ℛ5
=, =′|A5�/C
=, =′� = 1 for all J =
1, … , *. Thus, ℛ5
=, =′|A5� = C
=, =′� for all J = 1, … , * and all 
=, =′�. 

Appendix C: Proof of interpolation property 

Let ?K	, … , ?KL be the nonzero eigenvalues of M and BN 	, … , BNL be the corresponding 

eigenvectors. Then, we should choose OPK57=Q8, J = 1, … , R, S = 1, … , �T so that  

7BN 	, … , BNL8diagO?K		/�, … , ?KL	/�T UPK	
=	� ⋯ PK	
=��⋮ ⋱ ⋮PKL
=	� ⋯ PKL
=��X = <∗ − <Y��.             (C1) 

We shall show that (C1) has a unique solution OPK57=Q8, J = 1, … , R, S = 1, … , �T below. 

Note that <∗ − <Y�� has column rank R ≤ min "*, �' since M has rank R. Thus, <∗ −
<Y�� = ]�, where ] is a *×R matrix with R linearly independent columns of <∗ − <Y��, � is a 

R×� matrix of rank R. This gives  

M = 	� ]���]�.                    (C2) 

Note that ��� is a R×R matrix of rank R. Consequently, ���]� has rank R. We also have 

M = ∑ BN 5?K5BN 5�L56	 = 7BN	, … , BNL8 U?K	BN	�⋮?KLBNL�
X.                            (C3) 

Let _ be a R×R matrix with R linearly independent columns of U?K	BN	�⋮?KLBNL�
X. Let ` be a R×R 

matrix of the corresponding columns (columns with same indices) of 
	� ���]�. Then, by 
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equation (C2) and (C3), we obtain 

]` = 7BN 	, … , BNL8_.                    (C4)  

Because 7BN	, … , BNL8_ has rank R, the columns of ` are necessarily linearly independent. 

Since both _ and ` are invertible, we conclude that 

Column Span 
<∗ − <Y��� = Column Span 
]� = Column Span 7BN 	, … , BNL8.            (C5) 

This implies that (C1) has a unique solution, which is easily seen to be given by 

UPK	
=	� ⋯ PK	
=��⋮ ⋱ ⋮PKL
=	� ⋯ PKL
=��X = diagO?K	�	/�, … , ?KL�	/�T UBN 	�⋮BNL�
X 
<∗ − <Y���.              (C6) 

Appendix D: Proof of Theorem 1 

Denote e5 = 7P5
=	�, … , P5
=��8�
. By the model (12), 

<∗ − <Y�� = <∗ − <∗���/� = fℳ�� + ∑ B5h?5e5�&56	 − 7fℳ�� + ∑ B5h?5e5�&56	 8���/� 

             = ∑ B5h?5e5�
i − ���/��&56	 .                         (D1) 

Thus, we have 

M = ��	 ∑ 
<5 − <Y�
<5 − <Y���56	 = ��	
<∗ − <Y���
<∗ − <Y����  

= ��	 ∑ B5 h?5e5�
i − ���/��&56	 j∑ BQh?QeQ�
i − ���/��&Q6	 k�
  

= ��	 ∑ B5 h?5e5�
i − ���/��&56	 ∑ h?Q
i − ���/��eQBQ�&Q6	   

= ��	 ∑ ∑ h?5h?QB5 e5�
i − ���/���&Q6	 eQBQ�&56	   

= ��	 ∑ ∑ h?5h?QB5 e5�
i − ���/��&Q6	 eQBQ�&56	 .                           (D2) 

Define the �×� matrix �5 by 7�58lm = ℛ5
=l, =m|A5�. By independence of e5 and eQ 

for J ≠ S, we have 

n
M� = ��	 ∑ ?5B5n�e5�
i − ���/��e5�B5�&56	 = ��	 ∑ ?5B5 tracej
i − ���/���5kB5�&56	   

= ∑ ?5B5 B5�&56	 �1 − ��� ∑ ∑ ℛ5
=m , =,|A5��,6	�m6	 �.              (D3) 

 Define E5Q,lm = 7h?5h?QB5 BQ�8lm . Then, by (D2), we have 
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var�
M�lm� = ���varj∑ ∑ E5Q,lme5�
i − ���/��eQ&Q6	&56	 k  
= ���varj∑ E55,lme5�
i − ���/��e5&56	 + ∑ ∑ E5Q,lme5�
i − ���/��eQ&Q6	,Qo5&56	 k  
= ��� ∑ E55,lm� var�e5�
i − ���/��e5�&56	    

+��� ∑ ∑ 7E5Q,lm� + E5Q,lmEQ5,lm8nje5�
i − ���/��eQeQ�
i − ���/��e5k&Q6	,Qo5&56	   

= ��� ∑ E55,lm� var�e5�
i − ���/��e5�&56	    

+��� ∑ ∑ 7E5Q,lm� + E5Q,lmEQ5,lm8varje5�
i − ���/��eQk&Q6	,Qo5&56	 .             (D4) 

The third equality follows from the fact that nje5�
i − ���/��eQel�
i − ���/��emk = 0 

whenever there are three or four distinct indices among J, S, p, 1. 
 It is well-known that (Page 109 of Rencher and Schaalje (2008)) 

var�e5�
i − ���/��e5� = 2tracej
i − ���/���5
i − ���/���5k.                        (D5) 

In addition, we have 
varje5�
i − ���/��eQk = var r7e5� , eQ�8 s G 
i − ���/��/2
i − ���/��/2 G t se5eQtu   
= 2trace vrs G 
i − ���/��/2
i − ���/��/2 G t s�5 GG �Qtu�w 

= tracej
i − ���/���5
i − ���/���Qk.                (D6) 

References 

Rencher, A. C. and Schaalje, G. B. (2008). Linear models in statistics (2nd Edition). New 

York: John Wiley & Sons. 

 

Appendix E: Asymptotic rates of convergence of M and <Y 

 In this appendix, we establish the asymptotic rate of convergence of M and <Y under 

increasing domain asymptotics, as given by Theorem 2 and Theorem 3 below.  

Theorem 2: For fixed ℳ, each component of M converges to the corresponding component 

of x = ∑ ?5B5 B5�&56	  in mean square at a rate of y
��	�. 

Theorem 3: For fixed ℳ, f�ℳ = <Y is an unbiased estimator of fℳ that converges to fℳ in 

mean square at a rate of y
��	�. 
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First, we need two assumptions.  

Assumption 1: For all J, 0 ≤ ℛ5
=, =′|A5� = y
‖= − =′‖�{�, | > } as ‖= − =′‖ → ∞. 

Remark: This assumption holds for the product Matèrn correlation in (6) and ‖∙‖ can refer to 

any norm defined on ℝ�. 

Assumption 2: Let �� = "=	, =�, … ' ⊂ ℝ� be the sequence of design points. For each 

compact ball � in ℝ�, i.e., � = "= ∈ ℝ�: ‖= − =�‖ ≤ ��', where =� is a fixed point in ℝ�, 

the set � ∩ �� is finite and |� ∩ ��| ≤ ���� for fixed � > 0, where |� ∩ ��| is the 

cardinality of � ∩ ��. 

Remark: This assumption holds if the design points are constrained to be on a grid, such as 

"… , −0.02, −0.01,0,0.01,0.02, … '�. Note that other authors such as Mardia and Marshall 

(1984) have also used increasing domain asymptotics to study GP model parameter estimates. 

 In order to prove Theorem 2 and Theorem 3, we need the following lemma: 

Lemma 1:      

1. ��� ∑ ∑ ℛ5
=m , =,|A5��,6	�m6	 = y
��	�. 

2. ��� ∑ ∑ jℛ5
=m, =,|A5�ℛQ7=m , =,|AQ8k�,6	�m6	 = y
��	� 

3. ��� ∑ ∑ j��� ∑ ℛ5
=m, =,|A5��m6	 ∑ ℛQ7=m , =�3AQ8�m6	 k�,6	��6	 = y
���� 

4. ��� ∑ ��	�∑ ℛ5
=, , =m|A5��m6	 �j∑ ℛQ7=, , =m|AQ8�m6	 k�,6	 = y
���� 

Proof of 1: 

By Assumption 1, there exists �� such that ℛ5
=, =′|A5� ≤ �/�{ for some � > 0 whenever 

‖= − =′‖ = � ≥ ��. Suppose that � = ���� , �� > ��, and �	, … , ���	 are numbers such that 

��	� = �	 = ������, ���� = �� = �	 + 1, … , ���� = �� = �, where �� = ��. Then, for 

fixed 1 ∈ "1, … , �', we have   

��	 ∑ ℛ5
=m, =,|A5��,6	 ≤ ��	j����
1� + 7��	� − ������8�/�	{ + ⋯ + 7���� −
����	� 8�/��{k = yO��	j���� + ∑ �/�5{�56	 kT = yO��	j���� + ∑ �{/��/�5{/��56	 kT =
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yO��	j���� + ∑ �{/��/J{/��56	 kT = y
��	�∀1 ∈ "1, … , �'. 

Proof of 2: 

By Assumption 1, there exists �� such that ℛ5
=, =′|A5� ≤ �/�{ and ℛQ7=, =′|AQ8 ≤ �/�{ for 

some � > 0 whenever ‖= − =′‖ = � ≥ ��. Suppose that � = ���� , �� > ��, and �	, … , ���	 

are numbers such that ��	� = �	 = ������, ���� = �� = �	 + 1, … , ���� = �� = �, where 

�� = ��. Then, for fixed 1 ∈ "1, … , �', 

��	 ∑ jℛ5
=m , =,|A5�ℛQ7=m , =,|AQ8k�,6	 ≤ ��	 �����
1�� + 7��	� − ������87�/�	{8� +
⋯ + 7���� − ����	� 87�/��{8�� = yO��	j���� + ∑ ��/�5�{�56	 kT = yO��	j���� +
∑ ��{/���/�5�{/��56	 kT = yO��	j���� + ∑ ��{/���/J�{/��56	 kT = y
��	�∀1 ∈ "1, … , �'.  
Proof of 3 and 4: 

This follows from the fact that ��	 ∑ ℛ5
=m, =,|A5��,6	 = y
��	�. 

Proof of Theorem 2 

 By Lemma 1 and (D3)-(D6), we obtain 

n �j
M�lm − ∑ E55,lm&56	 k�� = On�
M�lm� − ∑ E55,lm&56	 T� + var�
M�lm�  
= O∑ E55,lm&56	 �1 − y
��	�� − ∑ E55,lm&56	 T� + ∑ E55,lm� y
��	�&56	 + ∑ ∑ 7E5Q,lm� +&Q6	,Qo5&56	
E5Q,lmEQ5,lm8y
��	� = y
��	�.                   (E1) 

Proof of Theorem 3 

Since <Y = 7fℳ�� + ∑ B5 h?5e5�&56	 8�/�, we immediately see that n
<Y� = fℳ. 

Moreover, due to independence of e5 and eQ for J ≠ S, we have  

cov
<Y� = ∑ ?5B5 B5����var
e5���&56	 = ∑ ?5B5 B5����� ∑ ∑ ℛ5
=m , =,|A5��,6	�m6	 �&56	 =
∑ ?5B5 B5�y
��	�&56	 .                   (E2) 

References 
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Appendix F: Example with Dirichlet boundary and initial conditions 

We consider the PDE system given by (1)-(4). We want to model the temperature of a 

plate with plane geometry �−#, #��\�−0.25#, 0.25#�� and uniform thermal conductivity �. 

To illustrate how a single spatial mesh can be used when the spatial domain changes size, we 

transform the PDE so that 
�	, ��� ∈ � = �−1,1��\�−0.25,0.25��. The transformed PDE is 

obtained by replacing   ∙ 7� ¡
�	, ��, �¢�8£ in (1) with   ∙ 7� ¡
�	, ��, �¢�8£#��. We let 

¤�	 = ¤�, and ¤�� = " '. The initial condition is ¡�
�	, ��� = ¥	 + ¥��
‖
�	, ���‖� − 0.25�/
0.75��, and the Dirichlet boundary condition is §	
�	, ��� = ¡�
�	, ���. The other inputs are 

¥¢ = #, ¥¨ = £, ¥© = ª«, ¥¬ = ¡­, ¥® = �, ¥¯ = °��. Ranges of the inputs are given in 

Table F1. The PDE is solved using the Matlab PDE toolbox. The mesh used is shown in 

Figure F1a, and the output values on the six-point time grid "0,18, … ,90' are observed. Note 

that the time grid is not the actual time grid used by Matlab to solve the PDE, which is 

unknown. It is simply the time points at which an output is requested from Matlab. For 

illustration, we plot the initial condition and solution at time 90 for two different ¥� values 

with the other inputs held fixed. For ¥� = −100, we obtain the initial condition shown in 

Figure F1b and solution at time 90 shown in Figure F1c. For ¥� = 0, we obtain the initial 

condition shown in Figure F1d and solution at time 90 shown in Figure F1e. It is seen that the 

functional output can have very different shapes over the experiment region.   

Table F1: Ranges of the Inputs (SI units are used for all inputs)  

 ¥	 ¥� ¥¢ ¥¨ ¥© ¥¬ ¥® ¥¯ 

Minimum 500 -100 0.2 0.0025 30 270 170 2.3x106 

Maximum 600 0 0.3 0.005 60 300 230 2.5x106 

 

We generate 30 maximin Latin hypercube designs (LHDs) of size 56. For each 

design, we fit the covariance separable GP, modified KL-GP, and KL-GP models. The 

modified KL-GP model in Section 4.1 is used to take into account the Dirichlet boundary and 

initial conditions. The starting value for optimizing ª in (32) is 1. All GP’s use the product 
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Matèrn correlation function (6). Each scale parameter in (6) is restricted to be less than or 

equal to 16.4888. The performance of each of the three alternative methods in predicting the 

functional output is evaluated on a test set of 50 values of = given by a maximin LHD. The 

performance criteria are the mean absolute error (MAE), mean squared error (MSE),  

 

  

 
Figure F1: (a) Mesh; (b) Initial condition given by ¥� = −100 (¥	 = 550, ¥¢ = 0.3, ¥¨ =0.005, ¥© = 30, ¥¬ = 270, ¥® = 170, ¥¯ = 2.3×10¬); (c) Numerical solution at time 90 with 

initial condition (b); (d) Initial condition given by ¥� = 0 (¥	 = 550, ¥¢ = 0.3, ¥¨ =0.005, ¥© = 30, ¥¬ = 270, ¥® = 170, ¥¯ = 2.3×10¬); (e) Numerical solution at time 90 with 

initial condition (d). 
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Figure F2: (a) Boxplots of MAE; (b) Boxplots of MSE; (c) Boxplots of coverage; (d) 

Boxplots of average prediction interval length; (e) Boxplots of model running time. The six 

boxplots in each figure are for the modified KL-GP, covariance separable GP, and KL-GP 

models fitted with maximin LHDs of size 56 and 80.  

 

coverage of 98% prediction intervals, average prediction interval length, and model running 

time, which includes the time to fit the model and the time to compute predictions on the test 
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set on a Lenovo laptop with 4GB RAM and 2.9GHz processor. The above simulation is 

repeated with 30 maximin LHDs of size 80 as experimental designs. 

Results for these simulations are presented in Figures F2a-F2e. We see that the 

modified KL-GP model performs best with respect to the MAE criterion. However, the 

modified KL-GP and covariance separable GP models have similar performance with respect 

to the MSE criterion, with the former having more variation in MSE. It is seen that the KL-

GP model has worst performance with respect to both MAE and MSE. The separable GP 

model and modified KL-GP model tend to have coverage higher than the nominal 0.98, and 

the KL-GP model tends to have coverage closest to nominal. We see that the modified KL-

GP model clearly gives prediction intervals of far shorter length than the separable GP and 

KL-GP models. The average interval lengths of the latter two models tend to be more than 

two times the average interval length given by the modified KL-GP model. Despite these 

shorter intervals given by the modified KL-GP model, its coverage is comparable to the 

coverage achieved by the covariance separable GP and KL-GP models. Lastly, we see from 

Figure 2e that the modified KL-GP and KL-GP models take negligible time compared to the 

covariance separable GP model. Note that the size * of the functional output is 210, which is 

small for FE simulations since we use a coarse mesh and a coarse time grid. However, the 

covariance separable GP model requires 2000 to 3000 seconds, which is quite expensive. 

 


