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1 Introduction

In Section 2, we present the proofs of Theorems 1 and 2 in the main text. In Section 3,

we describe our estimation algorithm in detail and prove Proposition 1. We also briefly

discuss the extension of our algorithm to handle an arbitrary number of covariates per clause

and summarize the algorithm proposed by Zhang et al. (2015). In Section 4, we present

additional simulation results, including the computation time and the optimal treatment

selection rate. In Section 5, we describe the covariates used in the real data example.

2 Proofs of the Theorems

2.1 Overview

An overview of our proofs is as follows. We first derive risk bounds on Q̂T and π̂T and then

recursively derive bounds for t = T − 1, T − 2, . . . , 1. In deriving each of these bounds,

we first establish a bound on the difference Q̂t − Qt, and subsequently infer bounds on

the distance between π̂t and π∗t . Due to their discrete nature, there is no natural distance

between two decision lists. Instead, we make a clause-by-clause comparison between π̂t

and π∗t , starting with the first clause. At each clause, we examine the distance between

(R̂t`, ât`) and (R∗t`, a
∗
t`), as measured by the ρt-distance defined in Section 3 of the main
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text. We are thereby able to obtain the bound

PrX{π̂t(Xt) 6= π∗t (Xt)} ≤
Lmax∑
`=1

{
Pr(ât` 6= a∗t`) + ρt(R̂t`, R

∗
t`)
}
,

where PrX is the probability measure with respect to X1, . . . ,XT only. An upper bound

on the reduction in value Vt(π
∗
t )−Vt(π̂t) is obtained similarly. In the following paragraphs,

we provide an overview of the derivation of the risk bounds for the estimated Q-functions

and the distance between (R̂t`, ât`) and (R∗t`, a
∗
t`).

In order to establish the risk bound for Q̂t, which is estimated via kernel ridge regres-

sion, we first present some auxiliary results on the properties of the RKHS induced by

Gaussian kernel with multiple scaling factors (in Section 2.4). Though most of the results

are straightforward extensions of known results for the Gaussian kernel with a single scaling

factor, to the best of our knowledge they are not found elsewhere in the literature and so

we include them for completeness. After reviewing these auxiliary results, we decompose

the difference between Q̂t and Qt into two terms, known as the approximation error (in

Section 2.5) and the estimation error (in Section 2.6), which we bound separately. Our

bounds employ a technique similar to that used in Steinwart and Christmann (2008), ex-

cept to for two major changes to accommodate the following issues:

(1) the estimation of Q̂t(·, a) only utilizes a random subset of samples with Ait = a, and

hence the randomness in Ait must be handled properly;

(2) the estimation of Q̂t(·, a) with t < T is based on the extrapolated responses using the

estimated Q-functions in later stages, rather than based on the (unobserved) true responses.

In order to derive the convergence properties of the estimated list (R̂t`, ât`), we first

transform the criterion function so that the estimation of (Rt`, at`) falls into the M -

estimation framework (in Section 2.7). We emphasize that optimization with respect to

R ∈ Rt involves the form of R, the indexes j1, j2 and the threshold values τ1, τ2. Thus,
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it will not only determine which variables should be used to define R, but also the corre-

sponding threshold values and the direction of the inequalities. Therefore, the variables

used in each clause are chosen in a data-driven way, and different variables may be chosen

for different clauses.

Though we put the computation of (R̂t`, ât`) into an M -estimation formulation, we

observe the following facts that prevents us from using the well established theory of M -

estimator:

(1) at each stage t, the product space Rt ×At is neither a vector space not equipped with

a natural definition of norm or distance;

(2) except for the first clause, the M -function involves estimated quantities such as previ-

ously estimated clauses. Because the estimated clauses do not have an influence function

expansion, they must be handled using new techniques.

In order to handle these two issues, we establish a few auxiliary inequalities for decision

lists (in Section 2.8).

After laying the groundwork as described above, the proofs of Theorem 1 (in Section 2.9)

and Theorem 2 (in Section 2.10) follow directly.

2.2 Notation

For vectors u,v ∈ Rq, define component-wise operations up = (up1, . . . , u
p
q)
T , p ∈ R, and

u ◦ v = (u1v1, . . . , uqvq)
T . For V ⊂ Rq, define u ◦ V = {u ◦ v : v ∈ V }. In addition, u is

said to be positive if each of its components is positive.

Let Oi be the collection of random variables associated with the ith subject. For any

function f , define Pn(f) = n−1
∑n

i=1 f(Oi). For any measurable function f defined on

D ⊂ Rq, we write ‖f‖2 =
( ∫

D
f 2dµ

)1/2
and ‖f‖∞ = inf{t ∈ R : µ(|f | > t) = 0}, where µ is

the Lebesgue measure on D. Let (T, d) be a metric space and S be a subset of T . For ε > 0,
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the ε-covering number of S is defined by N (S, d, ε) = inf{n ≥ 1 : there exists t1, · · · , tn ∈

T such that S ⊂
⋃n
i=1B(ti, ε)}, where inf ∅ = ∞ and B(t, ε) = {u ∈ T : d(u, t) ≤ ε} is

the a ball with center t and radius ε. If (T, ‖·‖) is a normed vector space, the ε-covering

number is defined by viewing T as a metric space with induced metric d(s, t) = ‖s − t‖.

Let (T, ‖·‖) be a normed vector space. The unit ball of T is defined by BT = {t : ‖t‖ ≤ 1}.

Given a scalar w ∈ R and a set S ⊂ T , define wS = {ws : s ∈ S}.

In the following proofs, c and ci denote generic constants.

2.3 Concentration inequalities

We first state Talagrand’s inequality (Bousquet, 2002, Theorem 2.3; see also Massart, 2000,

Theorem 3 and Boucheron et al., 2013, Theorem 12.5).

Proposition 1. Let F be a countable set of functions. Suppose E(f) = 0, E(f 2) ≤ V ,

‖f‖∞ ≤ B for all f ∈ F . Denote Z = supf∈F |Pn(f)|. Then for all τ > 0,

Pr

[
Z ≥ E(Z) +

{
2V τ + 4Bτ · E(Z)

n

}1/2

+
Bτ

3n

]
≤ e−τ .

Corollary 2. Under the conditions in Proposition 1,

Pr

{
Z ≥ 2 E(Z) +

(
2V τ

n

)1/2

+
2Bτ

n

}
≤ e−τ .

Proof. It is clear that{
2V τ + 4Bτ · E(Z)

n

}1/2

≤
(

2V τ

n

)1/2

+

{
4Bτ · E(Z)

n

}1/2

≤
(

2V τ

n

)1/2

+
Bτ

n
+ E(Z).

Note that we use a larger constant for simplicity.

When the variance of f is not available, we have the following proposition (Boucheron

et al., 2013, Theorem 12.1).
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Proposition 3. Let F be a countable set of functions. Suppose E(f) = 0, ‖f‖∞ ≤ B for

all f ∈ F . Denote Z = supf∈F |Pn(f)|. Then for all τ > 0, we have

Pr

{
Z ≥ E(Z) +

(
2B2τ

n

)1/2
}
≤ e−τ .

Next, we establish bounds on E(Z).

Proposition 4. Let F be a countable set of functions which contains the zero function.

Assume

sup
Q

logN (F , ‖·‖L2(Q), ε) ≤ ψ(ε)

for some function ψ(·), where the supremum is taken over all discrete probability measures

Q. Suppose E(f) = 0, E(f 2) ≤ V , ‖f‖∞ ≤ B for all f ∈ F . Denote Z = supf∈F |Pn(f)|.

Then we have

E(Z) ≤ 1024

(
BJV
n

)
+ 64

(
V JV
n

)1/2

,

where JV =
∫ 1

0
ψ(V 1/2ε) dε.

Proof. Without loss of generality, we assume B = 1. The general case can be obtained by

scaling f . The proof extends the idea in Boucheron et al. (2013, Lemma 13.5).

Let σ1, . . . , σn be i.i.d. Rademacher random variables, i.e., Pr(σ = 1) = Pr(σ = −1) =

1/2. By the symmetrization inequality (van der Vaart and Wellner, 1996, Lemma 2.3.1),

we have E(n1/2Z) ≤ 2 E
{

supf |n1/2 Pn(σf)|
}

.

Conditional on all random variables except σis, by Hoeffding’s inequality, the process

n1/2 Pn(σf) is subgaussian with respect to the metric ‖f − g‖L2(Pn ) =
[
Pn{(f − g)2}

]1/2
.

Hence the chaining technique (van der Vaart and Wellner, 1996, Corollary 2.2.8) implies

Eσ

{
sup
f
|n1/2 Pn(σf)|

}
≤ 4

∫ ηn

0

{
logN (F , ‖·‖L2(Pn ), ε)

}1/2
dε,
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where Eσ denote the expectation with respect to σ1, . . . , σn only and η2
n = max{supf Pn(f 2), V }.

Hence, we obtain

Eσ

{
sup
f
|n1/2 Pn(σf)|

}
≤ 4

∫ ηn

0

ψ1/2(ε) dε = 4ηn

∫ 1

0

ψ1/2(ηnε) dε ≤ 4ηn

∫ 1

0

ψ1/2(V 1/2ε) dε.

Because logN (F , ‖·‖L2(Pn ), ε) ≤ ψ(ε) and ψ(ε) is a decreasing function in ε.

Taking the other layer of expectation, we get

E(n1/2Z) ≤ 8{E(ηn)}
∫ 1

0

ψ1/2(V 1/2ε) dε ≤ 8J
1/2
V {E(η2

n)}1/2

by Jensen’s inequality. Also, we have E(η2
n) ≤ E

{
supf |Pn(f 2)−E(f 2)|

}
+V , since E(f 2) ≤

V for all f . By the symmetrization inequality (van der Vaart and Wellner, 1996, Lemma

2.3.1), we have E
{

supf |Pn(f 2)− E(f 2)|
}
≤ 2 E

{
supf |Pn(σf 2)|

}
. By the contraction

inequality (van der Vaart and Wellner, 1996, Proposition A.3.2) and ‖f‖∞ ≤ 1, we have

E
{

supf |Pn(σf 2)|
}
≤ 4 E

{
supf |Pn(σf)|

}
. By the desymmetrization inequality (van der

Vaart and Wellner, 1996, Lemma 2.3.6), we have E{supf |Pn(σf)|} ≤ 2 E{supf |Pn(f)|}.

Combining these inequalities yields E(η2
n) ≤ 16 E(Z) + V .

Therefore,

n1/2 E(Z) ≤ 8{16 E(Z) + V }1/2J
1/2
V .

Solving for E(Z), shows E(Z) ≤ (2n)−1{a + (a2 + 4nb)1/2} ≤ n−1a + n−1/2b1/2 with a =

1024JV and b = 64V JV . Hence, E(Z) ≤ 1024n−1JV + 64n−1/2V 1/2J
1/2
V .

Proposition 5. Let F be a countable set of functions which contains the zero function.

Assume

sup
Q

logN (F , ‖·‖L2(Q), ε) ≤ ψ(ε)

for some function ψ(·), where the supremum is taken over all discrete probability measures

Q. Suppose E(f) = 0, ‖f‖∞ ≤ B for all f ∈ F . Denote Z = supf∈F |Pn(f)|. Then we
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have

EZ ≤ 8

(
B2JB
n

)1/2

,

where JB =
∫ 1

0
ψ(Bε) dε.

Proof. Just apply the trivial bound |ηn| ≤ B in the proof of Proposition 4.

Though all the propositions in this subsection assume that F is countable, they all

apply if F is uncountable and separable as Pr
{

supf∈F |Pn(f)| = supf∈F ′ |Pn(f)|
}

= 1 for

some countable subset F ′ ⊂ F .

2.4 Properties of the RKHS

We establish several useful properties of the RKHS H induced by the Gaussian kernel with

individual scaling factors for each dimension

Kγ(x, z) = exp

{
−

q∑
j=1

γj(xj − zj)2

}
,

where x, z ∈ D ⊂ Rq. When all γjs are identical, the properties of H are well studied

(see, e.g., Steinwart and Christmann, 2008). The lemmas below extend those properties to

RKHS induced by Gaussian kernel with multiple scaling factors.

From here to Section 2.6, we use q to denote dimension, whose value will depends on the

context. For example, when we analyze the estimated Q-function at stage t, then q = dt.

We may omit γ and write K(·, ·) when the value of γ is clear from the context. Similarly,

to emphasize the dependence of H on the parameter γ and the domain D, we may write

Hγ , H(D), or Hγ(D).

The following lemma provides a feature map of the Gaussian kernel.
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Lemma 6. Define the function φxγ : Rq → L2(Rq) by

φxγ(u) =

(
4

π

)q/4( q∏
j=1

γj

)1/4

exp

{
−

q∑
j=1

2γj(xj − uj)2

}
, x ∈ D, u ∈ Rq.

Then φxγ is a feature map of Kγ(x, z).

Proof. Straightforward calculation similar to Steinwart and Christmann (2008, Lemma 4.45)

gives 〈φxγ , φzγ〉L2(Rq) = Kγ(x, z). By definition, φxγ is a feature map.

The following lemma shows that Hγ(D) can be embedded into Hγ̃(D) if γj < γ̃j for all

j = 1, . . . , q.

Lemma 7. Let γ, γ̃ be two positive vectors satisfying γj < γ̃j for all j. If f ∈ Hγ, then

f ∈ Hγ̃ and ‖f‖Hγ̃
≤
(∏q

j=1 γ̃j

)1/4 (∏
j γ

q
j=1

)−1/4

‖f‖Hγ .

Proof. We follow the same strategy as in Steinwart and Christmann (2008, Theorem 4.46).

Because f ∈ Hγ , by Steinwart and Christmann (2008, Theorem 4.21), there exists g ∈

L2 (Rq) such that f(x) = 〈φxγ , g〉L2(Rq) for all x ∈ D.

Given s ∈ Rq with sj > 0 for all j, define the operator Ws : L2 (Rq)→ L2 (Rq) by

(Wsg)(v) =

∫
Rq
π−q/2

( q∏
j=1

sj

)−1/2

exp

{
−

q∑
j=1

s−1
j (vj − uj)2

}
g(u)du, for v ∈ Rq.

For any g ∈ L2(Rq) and any v ∈ Rq, straightforward calculation using properties of normal

densities shows (Ws1Ws2g)(v) = (Ws1+s2g)(v), hence, Ws1Ws2 = Ws1+s2 .

Define τ = (τ1, . . . , τq)
T and τ̃ = (τ̃1, . . . , τ̃q)

T, where τj = 1/γj and τ̃j = 1/γ̃j. The

assumption γj < γ̃j implies τj > τ̃j. We observe that

f = 〈φxγ , g〉L2(Rq) = (Wτ/2g) · πq/4
(

q∏
j=1

γj

)−1/4

.
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Because

Wτ/2g = Wτ̃/2W(τ−τ̃ )/2g = 〈φxγ̃ ,W(τ−τ̃ )/2g〉L2(Rq) · π−q/4
(

q∏
j=1

γ̃j

)1/4

,

it follows that

f = 〈φxγ̃ ,W(τ−τ̃ )/2g〉L2(Rq) ·

(
q∏
j=1

γj

)−1/4( q∏
j=1

γ̃j

)1/4

.

By Steinwart and Christmann (2008, Theorem 4.21), f ∈ Hγ̃ .

Moreover, ‖f‖Hγ = ‖g‖L2(Rq) and ‖f‖Hγ̃
= ‖W(τ−τ̃ )/2g‖L2(Rq)·

(∏q
j=1 γj

)−1/4 (∏q
j=1 γ̃j

)1/4

.

By Young’s inequality, ‖W(τ−τ̃ )/2g‖L2(Rq) ≤ ‖g‖L2(Rq). Hence,

‖f‖Hγ̃
≤ ‖g‖L2(Rq)

(
q∏
j=1

γj

)−1/4( q∏
j=1

γ̃j

)1/4

≤ ‖f‖Hγ

(
q∏
j=1

γj

)−1/4( q∏
j=1

γ̃j

)1/4

.

The following lemma establishes an isometric isomorphism between Hα−2◦γ(α ◦D) and

Hγ(D) for any fixed α.

Lemma 8. Let α be an arbitrary positive vector. We define a mapping τα : L∞(D) →

L∞(α◦D) as follows: given a function f ∈ L∞(D), let τα(f)(x) = f(α−1◦x) for x ∈ α◦D.

Then, for all f ∈ Hγ(D), we have τα(f) ∈ Hα−2◦γ(α ◦ D) and ‖τα(f)‖H
α−2◦γ(α◦D) =

‖f‖Hγ(D)
.

Proof. It is easy to verify that the arguments in Steinwart and Christmann (2008, Propo-

sition 4.37) remain valid when scalar multiplication is replaced by component-wise multi-

plication between vectors.

The following lemma computes the covering number of the unit ball in Hγ(D).
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Lemma 9. Suppose D ⊂ sBRq . For any integer m ≥ 1,

logN{BHγ(D), ‖·‖∞, ε} ≤ cm,q,s

q∏
j=1

(1 + γj)
1/2ε−q/m,

where cm,q,s is a constant that depends on m, q and s only.

Proof. Let 1 be the vector of ones. By Lemma 3, Hγ(D) is isometric isomorphic to H1(γ1/2◦

D). Thus, it suffices to compute the covering number for H1(γ1/2 ◦D).

Define D̃ = γ1/2 ◦D. It is shown that H1(D̃) can be embedded into Cm(D̃) (Steinwart

and Christmann, 2008, Theorem 6.26). By Steinwart and Christmann (2008, Corollary

4.36), the embedding map from H1(D̃) to Cm(D̃) is continuous, and hence bounded. Thus,

there exists a constant c1 which depends only on m such that ‖f‖Cm(D̃) ≤ c1‖f‖H1(D̃) for

all f ∈ H1(D̃). Hence, we have

N{BH1(D̃), ‖·‖∞, ε} ≤ N (c1BCm(D̃), ‖·‖∞, ε} = N (BCm(D̃), ‖·‖∞, ε/c1).

By Theorem 2.7.1 in van der Vaart and Wellner (1996), there exists a constant c2 that

depends only on m and q such that

logN{BCm(D̃), ‖·‖∞, ε) ≤ c2µ({x : ‖x− D̃‖ ≤ 1})ε−q/m,

where µ is the Lebesgue measure on Rq. Because D ⊂ sBRq and (1+su1/2) ≤ (1+s)(1+u)1/2

for all u ≥ 0,

µ({x : ‖x− D̃‖ ≤ 1}) ≤
q∏
j=1

(1 + sλ
1/2
j ) ≤ (1 + s)q

q∏
j=1

(1 + λj)
1/2.
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2.5 Approximation error in kernel ridge regression

Define ỸT = YT and Ỹt = Yt + Qt+1{Xt+1, π
∗
t+1(Xt+1)} for t < T . Then, Qt(x, a) =

E(Ỹt|Xt = x, At = a) for all t. Fix a stage t and a treatment a ∈ At. For notational

simplicity, we shall omit the subscripts t and a hereafter. Let q be the dimension of X.

Given a function f ∈ L∞(D), we define

L(f) = E
[
I(A = a)

{
Ỹ − f(X)

}2
]

and

f0 = arg min
f :D→R, measurable

L(f).

Simple calculations show that f0(x) = E(Ỹ |X = x, A = a) almost surely with respect to

the distribution of X, say PX . Hence, f0 is exactly Qt(·, a). In addition,

L(f)− L(f0) = E
[
I(A = a) {f(X)− f0(X)}2] .

The function f0 need not belong to the RKHS Hγ . Nevertheless, the estimator must

belong to Hγ . The following proposition shows that it is always possible to find an f ∈ Hγ
such that f and f0 are close. The following proposition is a stronger version of Eberts and

Steinwart (2013, Theorems 2.2 and 2.3) which allows multiple scaling factors and separates

signal and noise variables.

Proposition 10. Suppose f0 satisfies the modulus of smoothness condition ωr(f0, s) ≤ c1s
r

for some positive integer r and ‖f0‖∞ ≤ B for some constant B. Let S denote the indices

of signal variables in f0, i.e., the value of f(x) only depends on xS . Then, there exists

some f ∈ Hγ such that

λ‖f‖2
Hγ

+ ‖f − f0‖2
∞ ≤ c

{
λ
(

max
j∈S

γj
)|S|/2(

max
j∈Sc

γj
)|Sc|/2

+
(

min
j∈S

γj
)−r}

and ‖f‖∞ ≤ 2rB, where c is some constant that depends on c1, r, B and |S| only.
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Proof. Define

W (x,u) =
r∑
i=1

(
r

i

)
(−1)i−1

(
2

π

)q/2( q∏
j=1

γj

)1/2

i−q exp

{
−

q∑
j=1

2γj(xj − uj)2/i2

}
,

where x,u ∈ Rq. Let f(x) =
∫
Rq W (x,u)f0(u) du, x ∈ D.

Then, for every x ∈ D,

f(x) =
r∑
i=1

(
r

i

)
(−1)i−1

(
2

π

)q/2( q∏
j=1

γj

)1/2 ∫
Rq
i−q exp

{
−

q∑
j=1

2γj(xj − uj)2/i2

}
f0(u)du.

Apply the change of variables hj = (uj − xj)/i so that

f(x) =
r∑
i=1

(
r

i

)
(−1)i−1

(
2

π

)q/2( q∏
j=1

γj

)1/2 ∫
Rq

exp

{
−

q∑
j=1

2γjh
2
j

}
f0(x+ ih)dh

=

∫
Rq

(
2

π

)q/2( q∏
j=1

γj

)1/2

exp

(
−

q∑
j=1

2γjh
2
j

)
r∑
i=1

(
r

i

)
(−1)i−1f0(x+ ih)dh.

Note that

f0(x) =

∫
Rq

(
2

π

)q/2( q∏
j=1

γj

)1/2

exp

(
−

q∑
j=1

2γjh
2
j

)
f0(x)dh,

therefore

|f(x)− f0(x)| ≤
∫
Rq

(
2

π

)q/2( q∏
j=1

γj

)1/2

exp

(
−

q∑
j=1

2γjh
2
j

)
|∆r

h(f0,x)| dh.

Because f0(x) = f ∗0 (xS) for some function f ∗0 : R|S| → R,

|∆r
h(f0,x)| =

∣∣∆r
hS

(f ∗0 ,xS)
∣∣ ≤ ωr(f

∗
0 , ‖hS‖2) = ωr(f0, ‖hS‖2).

Thus,

|f(x)− f0(x)| ≤
∫
R|S|

(
2

π

)|S|/2(∏
j

γS,j

)1/2

exp

(
−
∑
j

2S,jh
2
S,j

)
ωr(f0, ‖hS‖2)dhS .
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Because ωr(f0, t) ≤ (1 + t/s)rωr(f0, s) for all s, t > 0, it follows that

ωr(f0, ‖hS‖2) ≤
{

1 +
(

min
j∈S

γj
)1/2‖hS‖2

}r
ωr

{
f0,
(

min
j∈S

γj
)−1/2

}
≤ (1 + ‖γS ◦ hS‖2)r ωr

{
f0,
(

min
j∈S

γj
)−1/2

}
.

Combining these inequalities,

|f(x)− f0(x)| ≤ ωr

{
f0,
(

min
j∈S

γj
)−1/2

}
·

∫
R|S|

(
2

π

)|S|/2(∏
j

γS,j

)1/2

exp

{
−
∑
j

2γS,jh
2
S,j

}
(1 + ‖γS ◦ hS‖2)r dhS

Using the change of variables tj = γS,jhS,j, we can see that the integral above is a constant

that depends only on |S|. Denote this integral by c2, then

|f(x)− f0(x)| ≤ c2ωr

{
f0,
(

min
j∈S

γj
)−1/2

}
≤ c1c2

(
min
j∈S

γj
)−1/2

.

Note that W (x,u) =
∑r

i=1

(
r
i

)
(−1)i−1π−q/4i−q/2

(∏q
j=1 γj

)1/4

φxγ/i2(u), where φ is the

feature map defined in Lemma 1. Let gi(x) =
∫
Rq φ

x
γ/i2(u)f0(u)du, then gi ∈ Hγ/i2 . By

Lemma 2, we have gi ∈ Hγ and the Hγ norm of gi is at most iq/2 times its Hγ/i2 norm.

Thus,

‖f‖H ≤
r∑
i=1

(
r

i

)
π−q/4

(
q∏
j=1

γj

)1/4

‖f0‖2 ≤ 2rπ−q/4
(

max
j∈S

γj
)|S|/4(

max
j∈Sc

γj
)|Sc|/4‖f0‖2.

Therefore,

λ‖f‖2
H + L(f)− L(f0) = λ‖f‖2

H + E {f(X)− f0(X)}2

≤ 22rπ−q/2B2λ
(

max
j∈S

γj
)|S|/2(

max
j∈Sc

γj
)|Sc|/2

+ c2
1c

2
2

(
min
j∈S

γj
)−1

.
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In addition, for any x ∈ D, it follows that

|f(x)| ≤
r∑
i=1

(
r

i

)∫
Rq

(
2

π

)q/2( q∏
j=1

γj

)1/2

i−q exp

{
−

q∑
j=1

2γj(xj − uj)2/i2

}
du · ‖f0‖∞

=
r∑
i=1

(
r

i

)
‖f0‖∞ ≤ 2rB.

2.6 Risk bounds for kernel ridge regression

Define ŶT = YT and Ŷt = Yt + Q̂t+1{Xt+1, π̂t+1(Xt+1)} for t < T . By Assumption 1, we

have Yt ∈ [−b, b]. Hence it is safe to restrict the estimated Q-functions within the interval

[−B,B] for some sufficiently large but fixed B. To this end, define the truncation operator

TB : L∞(D)→ L∞(D) as

TB(f)(x) = f(x)I{−B ≤ f(x) ≤ B}+BI{f(x) > B}+ (−B)I{f(x) < −B}, x ∈ D.

For any function f , g, we have |TB(f)(x) − TB(g)(x)| ≤ |f(x) − g(x)|. Hence, we have

‖TB(f)− TB(g)‖∞ ≤ ‖f − g‖∞. As a consequence, for any B ≥ ‖f0‖∞, we have

L{TB(f)} − L(f0) = E{TB(f)(X)− f0(X)}2 ≤ E{f(X)− f0(X)}2 = L(f)− L(f0).

Given sequences γn and λn, the estimator of the Q-function is Q̂t(·, a) = TB(f̂n), where

f̂n = arg min
f∈Hγ

Pn

[
I(A = a)

{
Ŷ − f(X)

}2
]

+ λ‖f‖2
Hγ
.

To facilitate our analysis, we define

dn = arg min
f∈Hγ

Pn

[
I(A = a)

{
Ỹ − f(X)

}2
]

+ λ‖f‖2
Hγ
.

14



Note that we omit the subscript n in γn and λn for simplicity. The difference between f̂n

and dn is that we use Ỹt = Yt +Qt+1{Xt+1, π
∗
t+1(Xt+1)} for t < T when defining f̂n, which

is an unobserved quantity as it relies on π∗t+1 and Qt+1. In contrast, we replace π∗t+1 and

Qt+1 by their estimates π̂t+1 and Q̂t+1 to obtain Ŷt. Hence Q̂t(·, a) is based on observed

quantities only.

In this Section, we will show that the difference between TB(f̂n) and f0 = Qt(·, a) is

small. To be precise, define E(f) = λ‖f‖2
Hγ

+ L{TB(f)} − L(f0). Our goal is to show

that E(f̂n) is small with large probability. The proof below follows the idea in Steinwart

and Christmann (2008, Theorem 7.20) while accounting for the error in the responses. For

notational convenience, define γS = 1+maxj∈S γj, γS = minj∈S γj and γSc = 1+maxj∈Sc γj.

For any f , define `f = I(A = a)
{
Ỹ−f(X)

}2
and hf = `f−`f0 . Then, L(f)−L(f0) = E(hf ).

Thus, E(hf ) ≥ 0 for all f .

Lemma 11. For any f ∈ Hγ, we have

E(f̂n) ≤ λ‖f‖2
Hγ

+ Pn(hf )− Pn(hf̂n) + E
{
hTB(f̂n)

}
+ 2Pn

(
Ŷ − Ỹ

)2

.

Proof. By the definition of f̂n and dn, we have

λ‖f̂n‖2
Hγ

+ Pn

[
I(A = a)

{
Ŷ − f̂n(X)

}2
]
≤ λ‖dn‖2

Hγ
+ Pn

[
I(A = a)

{
Ŷ − dn(X)

}2
]
,

λ‖dn‖2
Hγ

+ Pn

[
I(A = a)

{
Ỹ − dn(X)

}2
]
≤ λ‖f‖2

Hγ
+ Pn

[
I(A = a)

{
Ỹ − f(X)

}2
]
.

Therefore, we have

λ‖f̂n‖2
Hγ
≤ λ‖f‖2

Hγ
+ Pn(hf )− Pn(hdn)

+ Pn

[
I(A = a)

{
Ŷ − dn(X)

}2
]
− Pn

[
I(A = a)

{
Ŷ − f̂n(X)

}2
]
.
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For any real number a1, a2, b1, b2, it follows that

(a1 − b1)2 − (a1 − b2)2 = (2a1 − b1 − b2)(b2 − b1)

= (2a2 − b1 − b2)(b2 − b1) + 2(a1 − a2)(b2 − b1)

≤ (a2 − b1)2 − (a2 − b2)2 + (a1 − a2)2 + (b1 − b2)2.

Hence,

Pn

[
I(A = a)

{
Ŷ − dn(X)

}2
]
− Pn

[
I(A = a)

{
Ŷ − f̂n(X)

}2
]

≤ Pn

(
hdn
)
− Pn

(
hf̂n
)

+ Pn

[
I(A = a)

(
Ŷ − Ỹ

)2
]

+ Pn

[
I(A = a)

{
f̂n(X)− dn(X)

}2
]
.

Let Ŷ be the vector of Ŷi, i ∈ Ia, Ỹ the vector of Ỹi, i ∈ Ia and K the matrix of

K(Xi,Xj), i, j ∈ Ia, where Ia = {i : Ai = a}. By the representer theorem and the fact

that all the eigenvalues of K(K + λI)−1 are less than one, it follows that∥∥{f̂n(Xi)}i∈Ia − {dn(Xi)}i∈Ia
∥∥

2
= ‖K(K + λI)−1(Ŷ − Ỹ )‖2 ≤ ‖Ŷ − Ỹ ‖2.

Thus, the inequality in the lemma follows from

Pn

[
I(A = a)

{
f̂n(X)− dn(X)

}2
]
≤ Pn

[
I(A = a)

(
Ŷ − Ỹ

)2
]
.

Proposition 12. Suppose Pr
{
Pn(Ŷ − Ỹ )2 ≥ c1n

−α + c2n
−βτ
}
≤ e−τ for some α, β > 0,

and f0 satisfies the conditions in Proposition 10. Then for any δ > 0 and τ > 0,

Pr

[
EX

{
TB(f̂n)(X)− f0(X)

}2

≥

c
{
λγ
|S|/2
S γ̄

|Sc|/2
Sc + γ−rS + γ

|S|/2
S γ

|Sc|/2
Sc λ−δn−1 + n−α + n−min(β,1)τ

}]
≤ e−τ ,

where c is a constant that depends on δ, q, r, B and $ only, and EX denotes the expectation

with respect to X only.

16



Proof. By Proposition 10 and the inequality E
[
I(A = a) {f(X)− f0(X)}2] ≤ ‖f − f0‖2

∞,

there exists some function fn ∈ Hγ such that

λ‖fn‖2
Hγ

+ E
(
hfn
)
≤ c

{
λ
(

max
j∈S

γj
)|S|/2(

max
j∈Sc

γj
)|Sc|/2

+
(

min
j∈S

γj
)−r}

(1)

for some constant c independent of n, and ‖f‖∞ ≤ 2rB.

By the property of the truncation operator and the fact that ‖Ŷ ‖∞ ≤ B with probability

1, we have Pn hTB(f̂n) ≤ Pn hf̂n . We apply Lemma 11 with f = fn to obtain

E(f̂n) ≤ λ‖fn‖2
Hγ

+ Pn

(
hfn
)
− Pn

{
hTB(f̂n)

}
+ E

{
hTB(f̂n)

}
+ Pn

{
(Ŷ − Ỹ )2

}
≤
{
λ‖fn‖2

Hγ
+ E(hfn)

}
+
∣∣Pn

(
hfn
)
− E

(
hfn
)∣∣

+
∣∣E{hTB(f̂n)

}
− Pn

{
hTB(f̂n)

}∣∣+ Pn

{
(Ŷ − Ỹ )2

}
.

Note that E
{
hTB(f̂n)

}
is defined as first computing hTB(f) and then plugging in f = f̂n.

Thus, E
{
hTB(f̂n)

}
is a random variable.

We will consider the four terms in the right hand side of the above display formula

separately. The first term can be bounded above using equation (1). The fourth term is

controlled by the condition. So we will focus on the second and the third terms.

For the second term, we first observe that

|hfn| ≤ |{Y − fn(X)}2 − {Y − f0(X)}2| = |{fn(X) + f0(X)− 2Y }{fn(X)− f0(X)}|.

Because ‖f0‖∞ ≤ B̃ and ‖fn‖∞ ≤ B̃ for B̃ = 2rB, we have E
(
h2
fn

)
≤ 16B̃2 E

[
{fn(X) −

f0(X)}2
]

= 16B̃2 E
(
hfn
)

and |hfn| ≤ 8B̃2. By Bernstein’s inequality (Steinwart and

Christmann, 2008, Theorem 6.12), we obtain

Pr

∣∣Pn(hfn)− E(hfn)
∣∣ ≥ 16B̃2τ

3n
+

{
32B̃2τ E(hfn)

n

}1/2
 ≤ 2e−τ .
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Using 2(uv)1/2 ≤ u+ v, it follows that{
32B̃2τ E(hfn)

n

}1/2

≤ 8B̃2τ

n
+ E(hfn) ≤ 8B̃2τ

n
+ E(hfn) + λ‖fn‖2

Hγ
.

Therefore,

Pr

{∣∣Pn(hfn)− E(hfn)
∣∣ ≥ 14B̃2τ

n
+ E(hfn) + λ‖fn‖2

Hγ

}
≤ 2e−τ . (2)

Bounding the third term is a little bit more involved. Let s > 0 be fixed; for any

f ∈ Hγ , define

mf =
hTB(f) − E{hTB(f)}

E(f) + s
=

hTB(f) − E{hTB(f)}
λ‖f‖2

Hγ
+ E{hTB(f)}+ s

.

Because ‖TB(f)‖∞ ≤ B, we have ‖mf‖∞ ≤ 16B2/s. Furthermore, because E{h2
TB(f)} ≤

16B2 E{hTB(f)}, we have

E(m2
f ) ≤

E{h2
TB(f)}

4sE{hTB(f)}
≤ 4B2

s
,

when E{hTB(f)} > 0, and Eh2
TB(f) = 0 ≤ 4B2/s when E{hTB(f)} = 0.

Define Fs = {f ∈ Hγ : E(f) ≤ s} ∪ {0}, where 0 denotes the zero function. By

Corollary 2, it follows that

Pr

{
sup
f∈Fs
|mf | ≥ 2 E

(
sup
f∈Fs
|mf |

)
+

(
8B2τ

ns

)1/2

+
32B2τ

ns

}
≤ e−τ .

We shall derive an upper bound for E
(

supf∈Hγ
|mf |

)
based on an upper bound for

E
{

supf∈Fs |hTB(f) − EhTB(f)|
}

. To this end, we compute the covering number for Gs =

{hTB(f) − E{hTB(f)} : f ∈ Fs}.

For any f ∈ Fs, we have ‖f‖Hγ ≤ s1/2λ−1/2. Hence,

N (Fs, ‖·‖∞, ε) ≤ N{(s1/2λ−1/2)BHγ , ‖·‖∞, ε} = N (BHγ , ‖·‖∞, s−1/2λ1/2ε).
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By the fact that ‖TB(f)− TB(g)‖∞ ≤ ‖f − g‖∞, we have

‖hTB(f) − E{hTB(f)} − hTB(g) + E{hTB(g)}‖∞ ≤ 8B‖f − g‖∞.

Hence, N (Gs, ‖·‖∞, ε) ≤ N{Fs, ‖·‖∞, ε/(8B)}. Combining these inequalities and applying

Lemma 9, shows

logN (Gs, ‖·‖∞, ε) ≤ logN{BHγ , ‖·‖∞, (8B)−1s−1/2λ1/2ε} ≤ c1aγs
q/(2m)λ−q/(2m)ε−q/m,

where m ≥ 1 is an arbitrary integer, c1 is a constant that depends on m, q, B, r only, and

aγ =
∏q

j=1(1 + γj)
1/2 ≤ γ

|S|/2
S γ

|Sc|/2
Sc .

For any f ∈ Fs, we have ‖hTB(f) − E{hTB(f)}‖∞ ≤ 16B2 and VarhTB(f) ≤ Eh2
TB(f) ≤

16B2s. Apply Proposition 4 to obtain

E

[
sup
f∈Fs

∣∣hTB(f) − E{hTB(f)}
∣∣] ≤ 1024(16B2Jn−1) + 64(16B2Jsn−1)1/2,

where J =
∫ 1

0
c1aγ(16B2)q/(2m)λ−q/(2m)ε−q/m dε ≤ c2aγλ

−q/(2m). Thus,

E

[
sup
f∈Fs
|hTB(f) − E{hTB(f)}|

]
≤ c3

{
aγλ

−q/(2m)n−1 + a1/2
γ λ−q/(4m)s1/2n−1/2

}
.

Hence, by the peeling technique (Steinwart and Christmann, 2008, Theorem 7.7), we obtain

E

(
sup
f∈Hγ

|mf |

)
≤ 4c3

{
aγλ

−q/(2m)s−1n−1 + a1/2
γ λ−q/(4m)s−1/2n−1/2

}
.

Combine the bound of E(supf∈Hγ
|mf |) and the tail bound of supf∈Hγ

|mf | to obtain

Pr

[
sup
f∈Hγ

|hTB(f) − E{hTB(f)|}
E(f) + s

≥ c4

{
aγ

λq/(2m)sn
+

a
1/2
γ

λq/(4m)s1/2n1/2
+

τ 1/2

s1/2n1/2
+

τ

sn

}]
≤ e−τ ,

where c4 > 0 is some constant that depends on m, q, B, r only. Without loss of generality,

we assume c4 ≥ 1.

19



Let

s = 64c2
4 max

{ aγ
λq/(2m)n

,
τ

n

}
,

then
c2

4aγ
λq/(2m)sn

≤
(

c2
4aγ

λq/(2m)sn

)1/2

≤ 1

8
,

c2
4τ

sn
≤
(
c2

4τ

sn

)1/2

≤ 1

8
.

Therefore, we have

Pr
[
|Pn{hTB(f)} − E{hTB(f)}| ≥ E(f)/2 + s/2 for some f ∈ Hγ

]
≤ e−τ . (3)

Plug-in f = f̂n in equation (3) and combine equations (1), (2), (3) and the condition

on Pn(Ŷ − Ỹ )2 to obtain

Pr
{
E(f̂n) ≤ c6

(
λγ
|S|/2
S γ̄

|Sc|/2
Sc + γ−rS + γ

|S|/2
S γ

|Sc|/2
Sc λ−q/(2m)n−1 + n−1τ + n−α + n−βτ

)}
≤ e−τ .

Because m can be arbitrarily large, δ = q/(2m) can be arbitrarily small.

The final result follow from

E
(
f̂n
)
≥ EX

[
I(A = a)

{
TB(f̂n)(X)− f0(X)

}2
]

= EX

[
Pr(A = a|X)

{
TB(f̂n)(X)− f0(X)

}2
]

≥ $EX
{
TB(f̂n)(X)− f0(X)

}2
,

where in the last inequality we use Pr(A = a|X) ≥ $ in view of Assumption 2.

Recall that Q̂t(·, a) = TB(f̂n)(·) and Qt(·, a) = f0(·). We immediately obtain the fol-

lowing corollaries.

Corollary 13. Assume the conditions in Proposition 12 hold. Furthermore, suppose γS =

θSn
2/(2r+q), γS = θSn

2/(2r+q), γSc = θScn
2/(2r+q), and λ = θλn

−1, where q is the dimension

of X and r is the degree of the modulus of smoothness of Q(·, a). Then, for any ξ > 0,

Pr
(

EX
{
Q̂t(X, a)−Qt(X, a)

}2 ≥ c
[
n−min{2r/(2r+q)+ξ,α} + n−min(β,1)τ

])
≤ e−τ .
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Corollary 14. Assume the conditions in Proposition 12 hold. Furthermore, suppose γS =

θSn
2/(2r+|S|), γS = θSn

2/(2r+|S|), γSc = θSc, and λ = θλn
−1, where |S| is the number of signal

variables of Q(·, a) and r is the degree of the modulus of smoothness of Q(·, a). Then, for

any ξ > 0,

Pr
(

EX
{
Q̂t(X, a)−Qt(X, a)

}2 ≥ c
[
n−min{2r/(2r+|S|)+ξ,α} + n−min(β,1)τ

])
≤ e−τ .

The convergence rate of Q̂t depends on two factors. First, the term 2r/(2r + q) or

2r/(2r + |S|) reflects the curse of dimensionality and the smoothness of Q-function. If

the dimension is smaller and the Q-function is smoother, the convergence is faster. More-

over, if the tuning parameters are chosen in a clever way in the sense of the conditions in

Corollary 14, then the number of noise variables won’t affect the convergence rate. This

consequence is a major difference between Gaussian kernel with a single scaling factor and

that with multiple scaling factors. Second, the terms α and β reflects the non-random

errors in the response. The larger the values of α and β, the smaller the magnitude of

non-random errors and hence the faster the convergence rate.

Hereafter, we shall only presents results assuming the tuning parameters are chosen

following Corollary 13. Parallel results can be obtained by replacing q by |S|.

2.7 Clause estimator as an M-estimator

In this Section, we will show that the estimator R̂t`, ât` can be expressed as an M -estimator.

Define Ut(x, a) = maxa′∈At Qt(x, a
′) − Qt(x, a) and Ût(x, a) = maxa′∈At Q̂t(x, a

′) −

Qt(x, a). Because∣∣∣∣max
a′∈At

Q̂t(x, a
′)− max

a′∈At
Qt(x, a)

∣∣∣∣ ≤ max
a′∈At

∣∣∣Q̂t(x, a
′)−Qt(x, a)

∣∣∣ ,
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it follows that ∣∣∣Ût(x, a)− Ut(x, a)
∣∣∣ ≤ 2 max

a′∈At

∣∣∣Q̂t(x, a
′)−Qt(x, a

′)
∣∣∣ .

Thus, for any p ≥ 1

Pn

∣∣∣Ût(Xt, a)− Ut(Xt, a)
∣∣∣p ≤ 2

∑
a′∈At

∣∣∣Q̂t(Xt, a
′)−Qt(Xt, a

′)
∣∣∣p . (4)

By equation (4), we know that Corollaries 13 and 14 hold when Q̂t, Qt are replaced by

Ût, Ut, with a possibly larger constant c′.

Following the notation used in the main text, define

Ω̂t`(R, a) = I(Xt ∈ Ĝt`,Xt ∈ R)
{
Ût(Xt, a)− ζ

}
− η {2− V (R)}

and

Ωt`(R, a) = I(Xt ∈ G∗t`,Xt ∈ R) {Ut(Xt, a)− ζ} − η {2− V (R)} .

By the definition of (R̂t`, ât`) in the main article, we have

(R̂t`, ât`) = arg max
R∈Rt,a∈At

Pn I(Xt ∈ Ĝt`)Q̂t{Xt, π̂
Q
t (Xt)}

− Pn I(Xt ∈ Ĝt`,Xt ∈ R)Ût(Xt, a)

+ Pn ζI{Xt ∈ Ĝt`,Xt ∈ R}+ η{2− V (R)}.

Thus, we observe that (R̂t`, ât`) = arg minR∈Rt,a∈At Pn Ω̂t`(R, a). Similarly,

(R∗t`, a
∗
t`) = arg max

R∈Rt,a∈At
Ψt`(R, a) = arg min

R∈Rt,a∈At
E Ωt`(R, a).

In addition, because 0 ≤ Ût ≤ B, for any ζ ≥ B we will always end up with R̂t = Rdt .

Thus, hereafter we assume ζ ∈ [0, B].
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2.8 Auxiliary results for the analysis of decision lists

Lemma 15. Rt is a Vapnik-Cervonenkis class (VC class, hereafter).

Proof. Recall that Rt consists of rectangles in Rdt defined using at most two variables.

Hence Rt is a subset of the set of all the intervals {(a, b] : a, b ∈ Rdt}, where (a, b] =

{x ∈ Rdt : aj ≤ xj ≤ bj for all j}. Hence Rt is a Vapnik-Cervonenkis (van der Vaart and

Wellner, 1996, Example 2.6.1).

The following lemma gives an upper bound for

sup
R∈Rt

∣∣Pn{Ω̂t`(R, a)} − E{Ωt`(R, a)}
∣∣

for any given a ∈ At.

Lemma 16. Let ε =
[

E
{
Ût(Xt, a)−Ut(Xt, a)

}2]1/2
+B

∑
k<` ρt

(
R̂tk, R

∗
tk

)
. We have, for

any τ > 0,

Pr

{
sup
R∈Rt

|Pn{Ω̂t`(R, a)} − E{Ωt`(R, a)}| ≥ c(ε+ n−1/2 + n−1/2τ 1/2)

}
≤ e−τ ,

where c is some constant independent of ε, n and τ .

Proof. We have

sup
R∈Rt

∣∣Pn{Ω̂t`(R, a)} − E{Ωt`(R, a)}
∣∣

≤ sup
R∈Rt

∣∣Pn{Ω̂t`(R, a)} − Pn{Ωt`(R, a)}
∣∣+ sup

R∈Rt

∣∣Pn{Ωt`(R, a)} − E{Ωt`(R, a)}
∣∣.
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For the first term, we observe that

sup
R∈Rt

∣∣Pn{Ω̂t`(R, a)} − Pn{Ωt`(R, a)}
∣∣

≤ sup
R∈Rt

∣∣∣Pn

[
I(Xt ∈ Ĝt` ∩G∗t`,Xt ∈ R)

{
Ût(Xt, a)− Ut(Xt, a)

}]∣∣∣
+ sup

R∈Rt
Pn

[
I(Xt ∈ Ĝt`4G∗t`,Xt ∈ R)

∣∣Ût(Xt, a)− ζ
∣∣]

≤ Pn

∣∣∣Ût(Xt, a)− Ut(Xt, a)
∣∣∣+B Pn

{
I(Xt ∈ Ĝt`4G∗t`)

}
,

By the definition of Gt`, we have

Pn

{
I(Xt ∈ Ĝt`4G∗t`)

}
≤
∑
k<`

Pn

{
I(Xt ∈ R̂tk 4R∗tk)

}
.

This concludes the proof of the first inequality. Since functions Ût, Ut and indicator func-

tions are bounded, using concentration inequalities, we have

Pr

[
sup
R∈Rt

∣∣Pn{Ω̂t`(R, a)} − Pn{Ωt`(R, a)}
∣∣ ≥ ε+ cn−1/2τ 1/2

]
≤ e−τ .

For the second term, by the VC preservation properties (van der Vaart and Wellner,

1996, Lemma 2.6.18), the set

F = {I(Xt ∈ R)I(Xt ∈ G∗t`){Ut(Xt, a)− ζ} : R ∈ Rt}

is also a VC class. Let ν be its VC index. Then, by Theorem 2.6.7 in van der Vaart and

Wellner (1996),

sup
Q
N (G, ‖·‖L2(Q), ε) ≤ c1ε

−2ν ,

where Q is any probability measure and c1 is a constant that depends on ν only. For any

f ∈ F , it can be seen that ‖f‖∞ ≤ B. Thus, by Propositions 3 and 5, since
∫ 1

0
log(ε−2ν) <

∞, we have

Pr

{
sup
f∈F
|Pn(f)− E(f)| ≥ c

(
B2

n

)1/2

+ c

(
B2τ

n

)1/2
}
≤ e−τ
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for any τ > 0, where c is a constant that depends on ν.

Combining both terms and adjusting τ leads to the final inequality.

Recall that ρt(R1, R2) = Pr{Xt ∈ (R1 4 R2)}. The following lemma gives an upper

bound on

sup
R∈Rt,ρt(R,R∗t`)≤δ

∣∣∣{Pn Ω̂t`(R, a
∗
t`)− E Ωt`(R, a

∗
t`)
}
−
{
Pn Ω̂t`(R

∗
t`, a

∗
t`)− E Ωt`(R

∗
t`, a

∗
t`)
}∣∣∣ .

This result will be useful for deriving the convergence rate of R̂t`.

Lemma 17. Let ε =
[

E
{
Ût(Xt, a)− Ut(Xt, a)

}2]1/2
+B

∑
k<`

{
ρt
(
R̂tk, R

∗
tk

)}1/2
, and

Jδ = sup
R∈Rt,ρt(R,R∗t`)≤δ

∣∣∣{Pn Ω̂t`(R, a
∗
t`)− E Ωt`(R, a

∗
t`)
}
−
{
Pn Ω̂t`(R

∗
t`, a

∗
t`)− E Ωt`(R

∗
t`, a

∗
t`)
}∣∣∣ .

We have, for any β > 0 and τ > 0,

Pr
{
Jδ ≥ cδ1/2−β(ε+ n−1/2 + n−1/2τ 1/2) + cδ−β(n−1 + n−1τ)

}
≤ e−τ ,

where c is a constant that is independent of ε, n and τ .

Proof. We have

sup
R∈Rt,ρt(R,R∗t`)≤δ

∣∣∣{Pn Ω̂t`(R, a
∗
t`)− E Ωt`(R, a

∗
t`)
}
−
{
Pn Ω̂t`(R

∗
t`, a

∗
t`)− E Ωt`(R

∗
t`, a

∗
t`)
}∣∣∣

≤ sup
R∈Rt,ρt(R,R∗t`)≤δ

|Pn Ωt`(R, a
∗
t`)− E Ωt`(R, a

∗
t`)− Pn Ωt`(R

∗
t`, a

∗
t`) + E Ωt`(R

∗
t`, a

∗
t`)|

+ sup
R∈Rt,ρt(R,R∗t`)≤δ

∣∣∣Pn Ω̂t`(R, a)− Pn Ω̂t`(R
∗
t`, a)− Pn Ωt`(R, a) + Pn Ωt`(R

∗
t`, a)

∣∣∣ .
The first term can be bounded above using properties of VC classes. For any δ > 0,

define

Fδ =
{
I(Xt ∈ R)I(Xt ∈ G∗t`) {Ut(Xt, a)− ζ}

− I(Xt ∈ R∗t`)I(Xt ∈ G∗t`) {Ut(Xt, a)− ζ} : R ∈ Rt, ρt(R,R
∗
t`) ≤ δ

}
.
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Because Rt is a VC class, Fδ is a VC class for any δ. In addition, supQN (Fδ, ‖·‖L2(Q), ε) ≤

c1ε
−2ν for some constants c1 and ν independent of δ.

For any f ∈ Fδ, we have ‖f‖∞ ≤ B and E f 2 ≤ B2δ. Thus, by Propositions 1 and 3,

Pr

[
sup
f∈Fδ
|Pn f − E f | ≥ c2

{
δ1/2 log1/2(1/δ)

n1/2
+

log(1/δ)

n
+
δ1/2τ 1/2

n1/2
+
τ

n

}]
≤ e−τ ,

where c2 is some constant that depends on B. As δ ∈ (0, 1], it follows that log(1/δ) ≤ c3δ
−β

for any β > 0, where c3 is same constant that depends on β only. Thus,

Pr

{
sup
f∈Fδ
|Pn f − E f | ≥ c4δ

1/2−β (n−1/2 + n−1/2τ 1/2
)

+ c4δ
−β (n−1 + n−1τ

)}
≤ e−τ .

For the second term, define

L =
∣∣∣Pn Ω̂t`(R, a)− Pn Ω̂t`(R

∗
t`, a)− Pn Ωt`(R, a) + Pn Ωt`(R

∗
t`, a)

∣∣∣ .
we observe that

L =
∣∣∣Pn {I(Xt ∈ R)− I(Xt ∈ R∗t`)} I(Xt ∈ Ĝt`)

{
Ût(Xt, a)− ζ

}
− Pn {I(Xt ∈ R)− I(Xt ∈ R∗t`)} I(Xt ∈ G∗t`)

{
Ût(Xt, a)− ζ

} ∣∣∣
≤ Pn{I(Xt ∈ R4R∗t`)I(Xt ∈ Ĝt` ∩G∗t`)

∣∣∣Ût(Xt, a)− Ut(Xt, a)
∣∣∣}

+ Pn{I(Xt ∈ R4R∗t`)I(Xt ∈ Ĝt`4G∗t`)B}.

Using the Cauchy-Schwarz inequality,

E
{
I(Xt ∈ R4R∗t`)I(Xt ∈ Ĝt` ∩G∗t`)

∣∣∣Ût(Xt, a)− Ut(Xt, a)
∣∣∣}

≤E
{
I(Xt ∈ R4R∗t`)

∣∣∣Ût(Xt, a)− Ut(Xt, a)
∣∣∣}

≤ [E {I(Xt ∈ R4R∗t`)}]
1/2

[
E
{
Ût(Xt, a)− Ut(Xt, a)

}2
]1/2

,
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and

E
{
I(Xt ∈ R4R∗t`)I(Xt ∈ Ĝt`4G∗t`)B

}
≤B [E {I(Xt ∈ R4R∗t`)}]

1/2
[
E
{
I(Xt ∈ Ĝt`4G∗t`)

}]1/2

.

Hence E(L) ≤ δ1/2ε. In addition, it is easy to see Var(L) ≤ E(L2) ≤ c5δ.

Thus, by concentration inequalities,

Pr
{
L ≥ c6δ

1/2−β (n−1/2 + n−1/2τ 1/2
)

+ c6δ
−β (n−1 + n−1τ

)}
≤ e−τ .

Combining two terms together gives the final inequality.

The following lemma is useful for establishing the rate of convergence. It is a finite-

sample version of Theorem 3.2.5 in van der Vaart and Wellner (1996). Though we state the

lemma in terms of maximizing Mn, an analogous conclusion applies for minimizing Mn.

Lemma 18. Let {Mn(θ) : θ ∈ Θ} be a stochastic process and M(θ) a deterministic func-

tion. Suppose M(θ)−M(θ0) ≤ −κd2(θ, θ0) for some non-negative function d : Θ×Θ→ R

and positive number κ. Let c0 be some value that may depend on n. Suppose when η ≥ c0,

we have

Pr

{
sup

θ:d(θ,θ0)≤δ
|(Mθ −M)(θ)− (Mn −M)(θ0)| ≥ aδξτ 1/2

}
≤ e−τ ,

where ξ ∈ (0, 1], a is an expression which is independent of δ and τ but may depend on n.

Let θ̂n = arg maxθ∈Θ Mn(θ). Define

η = max
{

4κ−1/(2−ξ)a1/(2−ξ)τ 1/(4−2ξ), c0

}
.

Then,

Pr
{
d(θ̂n, θ0) ≥ η

}
≤ 3e−τ .
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Proof. Fix η > 0, define ηj = η2−j, j ≥ 0, then

Pr
{
d(θ̂n, θ0) ≥ η

}
≤

∞∑
j=1

Pr

[
sup

θ:ηj−1≤d(θ,θ0)<ηj

{Mn(θ)−Mn(θ0)} ≥ 0

]
.

We observe that

Mn(θ)−Mn(θ0) = {(Mn −M)(θ)− (Mn −M)(θ0)}+ {M(θ)−M(θ0)}

≤ |(Mn −M)(θ)− (Mn −M)(θ0)| − κd2(θ, θ0).

Hence, we have

Pr

[
sup

θ:ηj−1≤d(θ,θ0)<ηj

{Mn(θ)−Mn(θ0)} ≥ 0

]

≤ Pr

{
sup

θ:d(θ,θ0)≤ηj
|(Mn −M)(θ)− (Mn −M)(θ0)| ≥ κη2

j−1

}
.

Let β = 1/(2− ξ). Then η = 4κ−βaβτβ/2. Hence, η2−ξ ≥ 4κ−1aτ 1/2. Because j2−j ≤ 1,

j ≥ j1/2 ≥ 1 for all j ≥ 1 and ξ − 2 ≤ −1,

η2−ξ ≥ κ−12−j+2jaτ 1/2 ≤ κ−12j(ξ−2)+2aj1/2τ 1/2.

That is, κη222j−2 ≥ ηξ2jξaj1/2τ 1/2. By the definition of ηj and ηj−1, we have κη2
j−1 ≥

ηξjaj
1/2τ 1/2. By the condition on Mn −M , we have

Pr

{
sup

θ:d(θ,θ0)≤ηj
|(Mn −M)(θ)− (Mn −M)(θ0)| ≥ κη2

j−1

}
≤ e−jτ .

Therefore, we have Pr
{
d(θ̂n, θ0) ≥ η

}
≤
∑∞

j=1 e
−jτ = e−τ/ (1− e−τ ). Note that e−τ/ (1− e−τ ) ≤

3e−τ when τ ≥ 1 and Pr
{
d(θ̂n, θ0) ≥ η

}
≤ 1 ≤ 3e−τ when τ < 1.
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2.9 Proof of Theorem 1

Since we can always increase the constant terms c1 and c2 in Theorem 1 so that the bounds

become trivial when τ ≤ 1, we can safely assume that τ > 1. In this subsection, ξ and β

denote arbitrary positive numbers. The value of ξ or β may be different at each occurrence.

Stage t = T . We start at the last stage t = T . Define ϕT = rT/(2rT + dT ). Because

ŶT = ỸT for any a ∈ AT , under the conditions on γT and λT , by Proposition 12 and its

corollary, we have

Pr

[
EX

{
Q̂T (X, a)−QT (X, a)

}2

≥ c1

(
n−2ϕT+ξ + n−1τ

)]
≤ e−τ .

This establishes the consistency and convergence rate for Q̂T .

Next, we consider (R̂T`, âT`) for ` = 1, 2, . . .. In view of Assumption 4 (i) and (ii), by

reducing κ, we can have Assumption 4 (i) hold for all R instead of only those R close to

the true value.

When ` = 1, we have ĜT1 = G∗T1 = XT . Thus, for any a ∈ AT , by equation (4) and

Lemma 16, it follows that

Pr

{
sup
R∈RT

|Pn Ω̂T1(R, a)− E ΩT1(R, a)| ≥ c1n
−ϕT+ξτ

}
≤ e−τ .

By Assumption 4 (iii), we have infR∈RT ,a6=a∗T1
E ΩT1(R, a) ≥ E ΩT1(R∗T1, a

∗
T1) + ς. Thus,

Pr(âT1 6= a∗T1) ≤
∑
a6=a∗T1

Pr

{
sup
R∈RT

Pn Ω̂T1(R, a) ≥ Pn Ω̂T1(R∗T1, a
∗
T1)

}

≤
∑
a

Pr

{
sup
R∈RT

∣∣∣Pn Ω̂T1(R, a)− E ΩT1(R, a)
∣∣∣ ≥ ς/2

}
.

Hence,

Pr(âT1 6= a∗T1) ≤ c1 exp(−c2n
ϕT−ξ),
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where c1 depends on |AT | and c2 depends on ς. Actually, as seen from the proof of The-

orem 2, we are able to obtain a faster convergence rate for âT1. However, this does not

affect the final result because R̂T1 converges at a much slower rate, as shown below.

We proceed to establish the convergence rate for R̂T1. For any δ > 0, by Lemma 17

and absorbing terms with faster convergence into those with slower convergence,

Pr

{
sup

R∈RT ,ρT (R,R∗T1)≤δ

∣∣∣Pn Ω̂T1(R, a∗T1)− Pn Ω̂T1(R∗T1, a
∗
T1)− E ΩT1(R, a∗T1) + E ΩT1(R∗T1, a

∗
T1)
∣∣∣

≥ c1δ
1/2−βn−ϕT+ξτ

}
≤ e−τ .

Hence, by Lemma 18,

Pr
{
ρT (R̂T1, R

∗
T1) ≥ c1n

−(2/3)ϕT+ξτ
}
≤ c2e

−τ .

Note that we take β sufficiently small so that it can be absorbed into ξ.

We next proceed to ` = 2. By equation (4) and Lemma 16, for any a ∈ AT ,

Pr

{
sup
R∈RT

|Pn Ω̂T2(R, a)− E ΩT2(R, a)| ≥ c1n
−(2/3)ϕT+ξτ

}
≤ e−τ .

Similar to âT1, we obtain

Pr(âT2 6= a∗T2) ≤ c1 exp
{
−c2n

(2/3)ϕT−ξ
}
.

By equation (4) and Lemma 17, for any δ > 0, we have

Pr

{
sup

R∈RT ,ρT (R,R∗T2)≤δ

∣∣∣Pn Ω̂T2(R, a∗T2)− Pn Ω̂T2(R∗T2, a
∗
T2)− E ΩT2(R, a∗T2) + E ΩT2(R∗T2, a

∗
T2)
∣∣∣

≥ c1δ
1/2−βn−(2/3)ϕT+ξτ

}
≤ e−τ .

Hence, by Lemma 18,

Pr
{
ρT (R̂T2, R

∗
T2) ≥ c1n

−(2/3)2ϕT+ξτ
}
≤ c2e

−τ .
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Again, β is chosen to be sufficiently small so as to be absorbed into ξ.

Using induction, for any `, we obtain

Pr(âT` 6= a∗T`) ≤ c1 exp
{
−c2n

(2/3)`−1ϕT
}

and

Pr
{
ρT (R̂T`, R

∗
T`) ≥ c1n

−(2/3)`ϕT τ
}
≤ c2e

−τ .

Make the change of variables τ → c1n
−(2/3)`ϕT τ to obtain, for any `,

Pr{ρT (R̂T`, R
∗
T`) ≥ τ} ≤ c1 exp

{
−c2n

(2/3)`ϕT
}
.

Since

FT (π̂T ) ≤
L∗T∑
`=1

{
Pr(âT` 6= a∗T`) + ρt(R̂T`, R

∗
T`)
}
,

we obtain

Pr {FT (π̂T ) ≥ τ} ≤
L∗T∑
`=1

Pr (âT` 6= a∗T`) +

L∗T∑
`=1

Pr
{
ρT (R̂T`, R

∗
T`) ≥ τ/L∗T

}
≤ c1 exp(−c2n

φT−ξτ),

where φT = (2/3)L
∗
TϕT . In the last inequality, the terms with faster convergence are

absorbed into the term with the slowest convergence. Consequently,

Pr {VT (π∗T )− VT (π̂T ) ≥ τ} ≤ Pr {FT (π̂T ) ≥ τ/B} ≤ c3 exp(−c4n
φT−ξτ).

By the change of variable τ → c5n
−φT+ξτ and putting c1 and c3 into the exponential terms,

we conclude that

Pr
{
FT (π̂T ) ≥ c1n

−φT+ξτ or VT (π∗T )− VT (π̂T ) ≥ c2n
−φT+ξτ

}
≤ e−τ .
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Stage t = T − 1, . . . , 1. We now proceed to the earlier stages. Consider the (T − 1)th

stage. By the risk bounds of Q̂T and π̂T ,

Pr

{
Pn

(
ŶT − ỸT

)2

≥ c1n
−φT+ξτ

}
≤ c2e

−τ .

Hence, by Proposition 12, for any a ∈ AT−1, we have

Pr

[
EX

{
Q̂T−1(X, a)−QT−1(X, a)

}2

≥ c1n
−2ϕT−1+ξτ

]
≤ c2e

−τ ,

where ϕT−1 = min{φT/2, rT−1/(2rT−1 + dT−1)}, i.e., the convergence rate of Q̂T−1 depends

on two factors: the kernel regression convergence rate assuming the true response Ỹ is

observed, and the convergence rate of the surrogate response Ŷ towards Ỹ .

The analysis of clauses, (R̂T−1,`, âT−1,`), ` = 1, . . . , L∗T−1 are in the same manner as in

the last stage. Thus, with similar calculations we obtain

Pr
{
FT−1(π̂T−1) ≥ c1n

−φT−1+ξτ or VT−1(π∗T−1)− VT−1(π̂T−1) ≥ c2n
−φT−1+ξτ

}
≤ e−τ .

where φT−1 = (2/3)L
∗
T−1ϕT−1.

Using induction, the same inequality hold when T − 1 is replaced by t = T − 2, . . . , 1.

2.10 Proof of Theorem 2

Stage t = T . At the last stage, by Proposition 12,

Pr

[
EX

{
Q̂T (X, a)−QT (X, a)

}2

≥ c1

(
n−2ϕT+ξ + n−1τ

)]
≤ e−τ ,

where ϕT = rT/(2rT + dT ) and ξ > 0 is arbitrary. Using a similar argument to the proof

of Theorem 1,

Pr

{
sup
R∈RT

|Pn Ω̂T1(R, a)− E ΩT1(R, a)| ≥ c1

(
n−ϕT+ξ + n−1/2τ 1/2

)}
≤ e−τ ,
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and

Pr(âT1 6= a∗T1) ≤
∑
a

Pr

{
sup
R∈RT

∣∣∣Pn Ω̂T1(R, a)− E ΩT1(R, a)
∣∣∣ ≥ ς/2

}
.

Note that ς is a fixed number independent of n. Let τ 1/2 = n1/2 max(c2ς − n−ϕT+ξ, 0) and

choose c2 such that 2c1c2 < 1. Note that ϕT ∈ (0, 1). Then we have

Pr(âT1 6= a∗T1) ≤ c3 exp(−c4n).

Define ϑ = infR:ρT (R,R∗T1)>0 ρT (R,R∗T1). Because the covariates are discrete, ϑ is strictly

positive. This is a major difference between the continuous covariates and the discrete

covariates. By Assumption 4 (i), using an argument similar to that for Pr(âT1 6= a∗T1), we

have

Pr
{
ρT (R̂T1, R

∗
T1) > 0

}
≤ Pr

{
sup

R∈RT :ρT (R,R∗T1)≥ϑ
Pn Ω̂T1(R, a∗T1) ≥ Pn Ω̂T1(R∗T1, a

∗
T1)

}

≤ Pr

{
sup
R∈RT

∣∣∣Pn Ω̂T1(R, a∗T1)− E ΩT1(R, a∗T1)
∣∣∣ ≤ κϑ2/2

}
≤ c5 exp(−c6n).

We next analyze (R̂T2, âT2). For any a ∈ AT ,

Pr

{
sup
R∈RT

|Pn Ω̂T2(R, a)− E ΩT2(R, a)| ≥ c1

(
n−ϕT+ξ + n−1/2τ 1/2

)}
≤ e−τ .

Similar to (R̂T1, âT1),

Pr(âT2 6= a∗T2) ≤ c1 exp(−c2n)

and

Pr
{
ρT (R̂T2, R

∗
T2) > 0

}
≤ c3 exp(−c4n).

As seen from this inequality, a notable difference is that the estimation error does not

propagate along the list, compared to the general case where covariates can be continuous.
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The tail probability decays at the same exponential rate for every `. Therefore, we have

Pr {FT (π̂T ) > 0} ≤
L∗T∑
`=1

Pr (âT` 6= a∗T`) +

L∗T∑
`=1

Pr
{
ρT (R̂T`, R

∗
T`) > 0

}
≤ c1 exp(−c2n),

and consequently,

Pr {VT (π∗T )− VT (π̂T ) > 0} ≤ Pr {F (π̂T ) > 0} ≤ c1 exp(−c2n).

Stage t = T − 1, . . . , 1. We then move to the (T − 1)th stage. Conditional on the event

{FT (π̂T ) = 0}, which occurs with probability 1− c1 exp(−c2n),

Pr
[
Q̂ {XT , π̂T (XT )} = Q̂ {XT , π

∗
T (XT )}

]
= 1.

Hence,

Pr

{
Pn

(
ŶT−1 − ỸT−1

)2

≥ c1

(
n−2ϕT+ξ + n−1τ

)}
≤ e−τ .

Namely, the error in the pseudo response ŶT−1 only comes from the non-parametric kernel

regression. The error due to the estimation of regime is of higher order and can be absorbed.

Define ϕT−1 = min {rT−1/(2rT−1 + dT−1), ϕT}. By Proposition 12 and its corollaries,

Pr

[
EX

{
Q̂T−1(X, a)−QT−1(X, a)

}2

≥ c1

(
n−2ϕT−1+ξ + n−1τ

)]
≤ e−τ .

Compared to the counterpart inequality in the last stage, nothing is changed except that

T is replaced by T − 1. Using the same approach as in the T th stage, conditional on the

event {FT (π̂T ) = 0}, we obtain

Pr {FT−1(π̂T−1) > 0} ≤ c1 exp(−c2n),

and

Pr
{
VT−1(π∗T−1)− VT−1(π̂T−1) > 0

}
≤ c1 exp(−c2n).
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Because the event {FT (π̂T ) = 0} occurs with probability 1−c1 exp(−c2n), both inequalities

hold unconditionally with larger constants c1 and c2.

Using induction, we can establish analogous inequalities for t = T − 2, . . . , 1.

3 Algorithm Discussions

3.1 Details of the Proposed Algorithm and Proof of Proposition 1

Fix an t and `. Define

Uiat` =
[
Q̂t

{
Xit, π̂

Q
t (Xit)

}
− Q̂t(Xit, a)− ζ

]
I
(
Xit ∈ Ĝt`

)
.

For notational simplicity, we shall omit the subscript t and ` and write Uia and Xi. By

definition of (R̂t`, ât`),

(R̂t`, ât`) = arg min
R∈Rt,a∈At

1

n

n∑
i=1

UiaI(Xi ∈ R)− η{2− V (R)}.

We will first fix the treatment a and the covariates involved in R, and focus on the computa-

tion of the optimal thresholds. Then we will loop over all covariate pairs and all treatment

options.

Finding the threshold when R involves one covariate Without loss of generality,

we assume R = {x : xj ≤ τ}. The other situation R = {x : xj > τ} can be handled

similarly. We want to compute

τ̂ = arg min
τ

n∑
i=1

UitaI(Xij ≤ τ),

where Xij is the jth component of Xi.
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Let i1, . . . , in be a permutation of 1, . . . , n such that Xi1j ≤ · · · ≤ Xinj. Because the

objective function is piecewise constant, we only need to compute

F (τ) =
n∑
i=1

UiaI(Xij ≤ τ)

when τ equals to some Xisj. We observe that

F (Xisj) =
∑
h≤s

Uiha.

Thus, it follows that when s ≥ 2

F (Xisj) = F (Xis−1j) + Uisa.

Hence, by starting at s = 1 and using the recursive relationship, we can compute

F (Xisj) for all s and pick the smallest one in O(n) time.

Dealing with ties If Xisj = Xis+1j for some s ≥ 1, then F (Xisj) should not be counted

when picking the minimum. This is because F (Xisj) has not included all subjects with

Xij = Xisj yet.

To avoid this problem, when there are ties, we first aggregate the Uia values for subjects

having the same value of Xij. Similar action can be taken when R involves two covariates,

in which case the Uia values for subjects having the same value for both covariates are

aggregated.

Finding the threshold when R involves two covariates This situation is more

complicated. Without loss of generality, we assume R = {x : xj ≤ τ and xk ≤ σ}. We

want to compute

(τ̂ , σ̂) = arg min
τ,σ

1

n

n∑
i=1

UiaI(Xij ≤ τ,Xik ≤ σ).
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We cannot utilize the idea for one covariate as there is no natural ordering in two-dimensional

space. Our solution is to sort in one dimension and to use binary tree for fast lookup and

insertion in the other dimension.

We start with constructing a complete binary tree of at least n leaves. The height of

such a tree is of order O(log2 n).

Let i1, . . . , in be a permutation of 1, . . . , n such that Xi1j ≤ . . . Xinj. At each time

s, we will insert Uisa into the binary tree and search for the optimal threshold σ among

Xik, i = 1, . . . , n. Note that at time s, values Uiha, h ≤ s are contained in the binary tree.

So we are looking at the threshold τ = Xisj. Specifically, if the rank of Xisk among Xiks is

h, which means Xisk is the hth smallest among Xiks, then we put Uisa in the hth leaf from

the left in the tree.

In the tree, each node is associated with a subtree in which that node serves as the

root. Each node contains two pieces of information. First, it computes the sum of all Uisas

in the associated subtree. Second, it computes the best thresholding sum in the associated

subtree, which is the smallest value among the sum of all Uisas that satisfies Xisk ≤ σ for

some σ, where σ can take the value of any Xisk in the associated subtree.

The binary tree structure enables us to update these two pieces of information effectively

when a new value, Uisa, is inserted into the tree. We move from the leaf node to its parent,

and then its ancestors, and finally the root. At each node, the sum of all Uisas in the

associated subtree is increased by Uisa. As for updating the best thresholding sum, because

the thresholding condition is Xisk ≤ σ, the best thresholding sum of a node can only be

either the best thresholding sum in its left child, or, the sum of all Uisa values in the left

child plus the best thresholding sum in the right child, whichever is smaller.

Because the height of the tree is O(log2 n), the updating process involves at most

O(log2 n) nodes and the time complexity at each node is constant. Therefore, when Uisa is
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inserted into the tree, we are able to find the optimal σ that minimizes
∑

h≤s UihaI(Xihk ≤

σ) in O(log2 n) time.

Then we let s run from 1 to n, and find the s that gives the minimum. In this way, we

find the minimum of
∑n

h=1 UihaI(Xihk ≤ σ,Xihj ≤ Xisj) with respect to σ and s, which is

exactly the minimum of
∑n

i=1 UisaI(Xik ≤ σ,Xij ≤ τ) with respect to σ and τ . And the

time complexity for finding both τ and σ is O(n log2 n).

Finding the covariate(s) and treatment Heretofore, we have discussed how to find

the optimal thresholds when the covariates to use Xij, Xik and the treatment a are given.

Certainly we need to explore all Rs defined using only one covariate, and all Rs defined

using some pair of Xij and Xik. We also need to loop over all treatment options a ∈ At.

Therefore, the overall time complexity is O(n log nd2
tmt), where dt is the dimension of

Xi and mt = |At| is the number of available treatment options.

3.2 Extension of the Proposed Algorithm

We present an extension of the proposed algorithm which is able to handle an arbitrary

number of covariates per if-then clause. Let q be the number of covariates in each clause.

Recall that

(R̂t`, ât`) = arg min
R∈Rt,a∈At

1

n

n∑
i=1

UiaI(Xi ∈ R)− η{q − V (R)},

and At is the set of treatment options. In general, any element in Rt can be written as

R = {x : sk(xjk − τk) ≤ 0, k = 1, . . . , q}, where sk ∈ {−1, 1}, jk ∈ {1, . . . , dt} and τk ∈ R.

The important observation is that, since the objective function is piecewise constant, the

maximum with respect to τk ∈ R is the same as the maximum with respect to τk ∈ Xk,

where the set Xk consists of all unique values in X1k, . . . , Xnk.

Hence, we can compute (R̂t`, ât`) as follows.
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1. Loop a over At.

2. For each a, loop j1 < · · · < jq over all possible dt-choose-q combinations in {1, . . . , dt}.

3. For each a and each j1 < · · · < jq, loop (s1, . . . , sq)
T over {−1, 1}q. The usage of sk

is to control the direction of the inequality.

4. For each a, each j1 < · · · < jq, and each (s1, . . . , sq)
T, loop (τ1, . . . , τk)

T over the

Cartesian product Xj1 × · · · × Xjq .

5. Construct R as R = {x : sk(xjk − τk) ≤ 0, k = 1, . . . , q} and evaluate the objective

function at R, a; keep track of the minimizer.

This algorithm has a time complexity of O(2qnqdqtmt).

3.3 A Description of the Algorithm in Zhang et. al. (2015)

For the sake of completeness, we present the algorithm in Zhang et al. (2015) using the

notations in our paper.

Step 1. Choose a maximum list length Lmax and a critical level α ∈ (0, 1). Set ` = 1,

and Πt1 = {π} with π = {(Xt, at1)}, where at1 = arg maxa∈At n
−1
∑n

i=1 Q̂t(Xit, a).

Note that π is just the best single treatment. Define

V̂t(π) =
1

n

n∑
i=1

∑
a∈At

I{π(Xit) = a}Q̂t(Xit, a).

Step 2. Fix π ∈ Πt`. Then π can be represented by

{(Rt1, at1), . . . , (Rt,`−1, at,`−1), (Xt, at`)}.
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Let Gt1 = Xt, Gt` = Xt \
(⋃

k<`Rtk

)
for ` ≥ 2. Compute

(R̂t`, ât`, ãt`) ∈ arg max
R∈Rt,a∈At,a′∈At

1

n

n∑
i=1

[
I(Xit ∈ Gt`,Xit ∈ R)Q̂t(Xit, a)

+ I(Xit ∈ Gt`,Xit /∈ R)Q̂t(Xit, a
′)

]
. (5)

Note that the maximizer won’t be unique, since if (R̂t`, ât`, ãt`) is a maximizer, then

(R̂t`, ãt`, ât`) is also a maximizer. Let Ωt` be the sets that consists of all the maximiz-

ers. For each (R̂t`, ãt`, ât`) in Ωt`, define a regime π̂ represented by

{(Rt1, at1), . . . , (Rt,`−1, at,`−1), (R̂t`, ât`), (Xt, ãt`)}.

Roughly speaking, π̂ adds one more layer of personalization to π, because π̂ is a

regime that has the same first (` − l) if-then clauses as π and has one more if-then

clause. Let Πt,`+1 be the set

{π̂ : π ∈ Πt` and V̂ (π̂)− V̂ (π) > zασ̂π̂,π},

where zα is the upper α-quantile of standard normal, and σ̂π̂,π}2 is some quantity

that approximates the variance of V̂ (π̂)− V̂ (π). The purpose of the inequality is to

avoid scenarios that the additional if-then clause only captures random fluctuations.

Step 3. Increase ` by 1. If ` < Lmax and Πt` is not an empty set, repeat Step 2;

otherwise, go to Step 4.

Step 4. Compute π̂t = arg maxπ∈Πt`
V̂t(π) and output π̂t as the estimated optimal

regime.
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4 Additional Simulation Results

In Section 4 in the main text, we present the mean outcome under the estimated treatment

regime. In this section, in order to provide more insights, we shall present the probability

that the estimated regime selects the best treatment option and the computation time of

the proposed algorithm. The scenarios considered are the same as those in the main text.

The probabilities of correct treatment selection under regimes estimated by different

methods are given in Table 1. We say that the treatment selection is correct if at every

stage, the treatment dictated by the estimated regime coincides with the best option in

that stage. The pattern in treatment selection accuracy is qualitatively very similar to that

in the mean outcome. Special caution should be given to Scenario V, because there are

ten stages in total, and seven treatment options per each stage. Hence there are altogether

710 possible choices of treatment. Consequently, it is extremely difficult for the estimated

regime to get treatment recommendations at all stages correct.

The computation time of the proposed algorithm are given in Table 2. In each cell,

we report the time in seconds for estimating a dynamic treatment regime, which consists

on T regimes, one per each stage. All tunings are included in the timing. Admittedly,

due to the complexity of estimating a discrete structure, the proposed algorithm run the

slowest among all approaches. Though slow, the proposed algorithm is able to estimate

a dynamic treatment regime within a few minutes, which won’t cause much burden in

practice. Moreover, we believe that the interpretability brought by the if-then clauses

outweigh such a computation burden.

5 Covariates in Real Data Example

In the first stage, we have the following variables:

41



Table 1: Simulation results. The number in each cell is the probability that the estimated

regime selects the best treatment option, averaged over 1000 replications, with standard

deviation in parentheses.

Scenario n DL Q-lasso Q-RF BOWL SOWL

I 100 0.36 (0.05) 0.45 (0.08) 0.36 (0.04) 0.35 (0.06) 0.36 (0.06)

I 200 0.41 (0.08) 0.52 (0.05) 0.36 (0.03) 0.35 (0.06) 0.36 (0.05)

I 400 0.50 (0.11) 0.54 (0.04) 0.36 (0.02) 0.35 (0.06) 0.36 (0.05)

II 100 0.88 (0.04) 0.89 (0.04) 0.81 (0.05) 0.74 (0.01) 0.69 (0.11)

II 200 0.91 (0.03) 0.92 (0.03) 0.87 (0.04) 0.75 (0.02) 0.70 (0.08)

II 400 0.93 (0.02) 0.94 (0.02) 0.91 (0.02) 0.79 (0.03) 0.71 (0.06)

III 100 0.76 (0.11) 0.42 (0.21) 0.64 (0.10) 0.58 (0.12) 0.56 (0.15)

III 200 0.86 (0.08) 0.55 (0.10) 0.77 (0.07) 0.66 (0.07) 0.70 (0.08)

III 400 0.92 (0.05) 0.59 (0.06) 0.88 (0.04) 0.74 (0.05) 0.83 (0.06)

IV 100 0.73 (0.15) 0.35 (0.22) 0.52 (0.10) 0.45 (0.10) 0.38 (0.12)

IV 200 0.88 (0.07) 0.50 (0.15) 0.64 (0.09) 0.50 (0.07) 0.47 (0.10)

IV 400 0.94 (0.05) 0.58 (0.08) 0.75 (0.08) 0.55 (0.04) 0.54 (0.10)

V 100 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) − −

V 200 0.04 (0.02) 0.00 (0.00) 0.00 (0.00) − −

V 400 0.08 (0.03) 0.00 (0.00) 0.01 (0.00) − −
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Table 2: Simulation results. The number in each cell is the computation time in seconds,

averaged over 1000 replications, with standard deviation in parentheses.

Scenario n DL Q-lasso Q-RF BOWL SOWL

I 100 35.97 (4.53) 0.49 (0.08) 0.96 (0.05) 0.97 (0.09) 7.19 (0.35)

I 200 110.09 (9.89) 0.36 (0.05) 2.67 (0.17) 1.24 (0.14) 10.37 (0.52)

I 400 275.93 (37.54) 0.24 (0.02) 8.31 (0.65) 2.32 (0.11) 13.00 (0.61)

II 100 21.91 (1.42) 0.39 (0.06) 0.79 (0.03) 1.10 (0.07) 7.73 (0.30)

II 200 53.08 (3.97) 0.39 (0.11) 2.20 (0.06) 1.18 (0.06) 11.13 (1.23)

II 400 136.10 (12.38) 0.30 (0.02) 4.98 (0.23) 2.49 (0.07) 12.04 (1.19)

III 100 0.80 (0.22) 0.26 (0.06) 0.33 (0.07) 0.60 (0.04) 6.32 (0.64)

III 200 3.51 (1.45) 0.23 (0.03) 0.73 (0.08) 0.91 (0.09) 6.47 (1.35)

III 400 18.88 (9.50) 0.23 (0.01) 2.11 (0.26) 1.37 (0.09) 7.34 (0.63)

IV 100 37.20 (7.89) 1.11 (0.30) 1.18 (0.10) 1.53 (0.07) 12.89 (0.67)

IV 200 82.39 (11.16) 1.25 (0.16) 3.46 (0.13) 3.36 (0.54) 24.30 (1.84)

IV 400 193.65 (18.48) 1.06 (0.13) 7.86 (0.73) 12.04 (1.66) 32.14 (4.26)

V 100 47.03 (7.31) 3.38 (0.45) 1.00 (0.15) − −

V 200 92.40 (12.74) 9.07 (1.14) 2.78 (0.30) − −

V 400 195.55 (24.05) 4.45 (1.15) 6.50 (1.16) − −
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1. age: integer;

2. gender: 1 for male, 0 for female;

3. race: 1 for white, 0 for others;

4. education level: 1 for high school or below, 2 for some college, 3 for bachelor or up;

5. work status: 1 for full time, 0.5 for part time, 0 for no work;

6. bipolar type: 1 or 2;

7. status prior to the onset of the current episode: 1 for remission longer than 8 weeks;

8. status prior to the onset of the current episode: 1 for manic/hypomanic;

9. status prior to the onset of the current episode: 1 for mixed/cycling;

10. SUM-D at week 0;

11. SUM-ME at week 0.

In the second stage, we have the following variables:

1. binary indicator for adverse effect tremor;

2. binary indicator for adverse effect dry mouth;

3. binary indicator for adverse effect sedation;

4. binary indicator for adverse effect constipation;

5. binary indicator for adverse effect diarrhea;
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6. binary indicator for adverse effect headache;

7. binary indicator for adverse effect poor memory;

8. binary indicator for adverse effect sexual dysfunction;

9. binary indicator for adverse effect increase appetite;

10. SUM-D at week 6;

11. SUM-ME at week 6.
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